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Abstract.  A Sensor Node in Wireless Sensor Network has very limited 
resources such as processing capability, memory capacity, battery power, 
and communication capability. When the communication between any 
two sensor nodes are required to be secured, the symmetric key 
cryptography technique is used for its advantage over public key 
cryptography in terms of requirement of less resources.  Keys are pre-
distributed to each sensor node from a set of keys called key pool before 
deployment of sensors nodes. Combinatorial design helps in a great way 
to determine the way keys are drawn from the key pool for distributing to 
individual sensor nodes. J. Dong et al proposed a key predistribution 
scheme based on orthogonal array. We present the weakness of this 
predistribution scheme.  
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1. Introduction  
 
 In general, a sensor node consists of four basic units: (i) Processing unit, (ii) 

Sensing unit, (iii) Transceiver unit, and (iv) Power unit [6]. In general, a sensor network 
consists of a large number of sensor nodes. Sensor networks consisting of 10,000 nodes 
or 1,00,000 nodes are not uncommon. Although individual sensor nodes have limited 
resources, they are capable of achieving worthy task of big volume when they work as a 
group. Sensor networks are used in a number of different areas such as military, 
industry, health, environment, and home [3, 4]. Locations of sensor nodes in the network 
are not pre determined in most of the cases. This permits us to deploy sensor nodes in 
hostile environments such as border area of a hostile neighbor country by some means, 
for example, by using aeroplane.  

 
When secured communication between two sensor nodes is required, then they can 
follow either symmetric key cryptography or asymmetric key cryptography. Asymmetric 
key cryptography requires huge computing resources that a tiny sensor can’t afford. So a 
symmetric key cryptography is preferred. But key generation and distribution using 
Diffie-Hellman key exchange protocol or public key infrastructure is also more or less 
infeasible in distributed sensor network consisting of resource limited sensor nodes. So 
distributing a set of keys to each sensor node before their deployment is a good solution. 
 



A sensor node can communicate with other node if the second one is lying within the 
circle of radio frequency range of the first one, and if both of them share a common key.   
In a key predistribution scheme, there are three phases. These are key predistribution, 
shared-key discovery, and path-key establishment [9]. In key predistribution phase a set 
of keys are chosen from a key pool following a predetermined order. In shared-key 
discovery phase if two nodes want to communicate and they are lying in one another’s 
radio frequency range then they communicate to each other and find which one is the 
common key between them. If two nodes Ni and Nj want to communicate with each other 
and there is no common key then they look for one or more intermediate nodes such that 
every pair of adjacent nodes share a common key, so that Ni and Nj are able to 
communicate with each other securely. This phase is known as path-key establishment. In 
our survey we focus on the key predistribution phase only.  
 

Key predistribution scheme (KPS) proposed by Camtepe and Yener was the first 
proposal that uses combinatorial design for key predistribution in distributed wireless 
sensor network [7, 8]. They have used two kinds of designs – projective plane and 
generalized quadrangle. Next Lee and Stinson proposed a KPS that uses transversal 
design [9]. Dong, Pei, and Wang have proposed two different kind of KPS based on 
Orthogonal Array [12], and based on 3-design [13]. The KPS proposed by Ruj and Roy is 
based on partially balanced incomplete block design (PBIBD) [10]. 
 
2. Background  

 
 The subject combinatorial design found its application initially in the design of 

experiments in statistics for long days. Then it was used extensively in the field of coding 
theory. Also combinatorial design techniques have been used in numerous other area of 
computer science such as Boolean function, authentication code, visual cryptography, 
multiple accesses to channel, software testing etc [1, 2].  
 
2.1 Combinatorial Design 

 
Combinatorial design theory is interested in arranging elements of a finite set into 

subsets to satisfy certain properties. It is the study of families of subsets with various 
prescribed regularity properties. Members of the universal set S in a combinatorial design 
are usually called treatments, or varieties, and the subsets chosen are called blocks. A 
regular design based on a v-set S is a collection of k-sets from S such that every member 
of S belongs to r of the k-set blocks. It is usual to write b for the number of blocks in a 
design. So a regular design has four parameters: v, b, r, and k. However these parameters 
are not independent. A regular design is represented as (v, b, r, k)-design. 
 
In any regular design, b*k = v*r.   
 
A block design is proper if all of its block have same length. The number of blocks that 
contain a given treatment is the replication number, r. If all v treatments occur in a block 
of a design, then the block is called complete. If a regular design has the property this 
property then that design is called complete design. Complete design is of very little 



interest unless some further structure is imposed (such as in Latin Square). Given a 
design if at least one block is incomplete then the design is incomplete design. If v = b, 
the design is called symmetric. 
 
If x and y are any two different treatments in an incomplete design, we shall refer to the 
number of blocks that contain both x and y as the covalency of x and y, and write it as 
λxy. Many important designs are concerned with this covalency function.  More stuff on 
this interesting subject can be found in [14, 15]. 
 
2.2 Orthogonal Array 
 

An N x K array A with elements from S (|S|=s) is said to be orthogonal array 
(OA) with s levels, strength t and index λ (0≤ t ≤k) if every N x t sub-array of A contains 
each  t-tuple based on S exactly λ times as a row. 
   
  When λ=1 we say OA has index unity. 
 
   N, k, s, t, λ are parameters of OA. λ can be derived from other parameters (λ=N/st). So 
an OA is represented as OA(N, k, s, t). 

 
An example of OA(8, 4, 2, 3) is given below. 
 
 0  0  0  0 
 0  0  1  1 
 0  1  0  1 
 0  1  1  0 
 1  0  0  1 
 1  0  1  0 
 1  1  0  0 
 1  1  1  1 
 
3. Metrics of key predistribution Scheme   

 
Metrics to judge a given key predistribution scheme are:  connectivity, resiliency, 

network size and scalability, computation and communication overhead, complexity of 
shared-key discovery and path-key establishment. We illustrate few parameters using the 
example given below. 
 



 
       Figure 1. A sensor network of six sensor nodes 

 
There are six sensor nodes in the sensor network shown in the above figure. The key pool 
is {1, 2, 3, 4}. Each sensor has two keys. For example, node 1 has the key-chain {2, 4}, 
node 2 has the key-chain {1, 4}, and so on. We assume all these sensors are in the 
communication range of each other. So any two nodes in this network can communicate 
if they have a common key. For example, Node 3 and Node 4 share a common key 1. So 
there is a communication link between them. But nodes 4 and 5 do not share any key, so 
there is no communication link between them. Given any two nodes, connectivity or 
connection probability defines the probability that there is a common key between them. 
In the above example, there are 6 nodes. So maximum number of connections possible in 
the network is ቀ62ቁ = 15. The number of direct communication links that exist in the 

network is 11. So connection probability p = ଵଵ
ଵହ

 = 0.733. There are two kinds of 
resiliency: E(s), and V(s). Given a sensor network, if s nodes are compromised, then  
E(s) = number of communication links broken / total number of communication links, 
V(s) = number of victim nodes / total number of nodes. 
In our example, let us suppose that s = 2 and attacker has captured the nodes 1 and 2. So 
she is able to extract the keys used by these nodes. This compromised key pool set is {1, 
2, 4}. As a result we can check that among eleven communication links total nine 
communication links are compromised. So E(2) = ଽ

ଵଵ
 = 0.818. And we see that due to this 

compromise of nodes 1 and 2, a different node that is node 4 is no more able to 
communicate with no other node. Because all keys of this node are compromised. In 
other words this node 4 has become victim node due to the compromise of nodes 1 and 2. 
Note that no other node turns victim node. So here V(2) = ଵ

ଵହ
 = 0.066. Scalability means 

given the same key pool and same key-chain length the ability to add new nodes in the 
distributed sensor network and assign them key-chains. 

  
4.  Orthogonal Array based KPS 

 
J Dong et al proposed key predistribution scheme based on orthogonal array 

design in [12]. They have used OA of index one. Further they have used Bush’s 
construction for constructing OA of index one.  
 
 
 



4.1     Bush’s construction method of OA of index unity 
 

Step 1: Start. 
Step 2: GF(s) is a Galois Field with s=qn elements. These elements are denoted 
by        ei  for i=0, 1, … , s-1. 
Step 3: Consider the polynomial 
 yj(x)=at-1*xt-1 + at-2*xt-2 + … + a1*x + a0,  where ai ∈  GF(s) 
Step 4: So we can have st polynomials (j=0,1,…,st – 1). 
Step 5: Form an s by st array by inserting u at OA[i, j] such that 
            yj(ei)= eu mod q. 
Step 6: Stop. 

 
4.2       Example of Bush’s Construction 
 
            Let qn=5 and t=2.. Note that q always has to be a prime number. So qn is a prime 
power, where n is a positive integer. So we get s=5, and e0=0, e1=1, e2=2, e3=3, e4=4, and 
the polynomial is yj(x)= a1*x + a0 , where ai∈  GF(5). So there are 25 polynomials such 
as 
 y0(x)= 0*x + 0 
 y1(x)= 0*x + 1 
 y2(x)= 0*x + 2 
 y3(x)= 0*x + 3 
 y4(x)= 0*x + 4 
 y5(x)= 1*x + 0 
 y6(x)= 1*x + 1 
 y7(x)= 1*x + 2 
 y8(x)= 1*x + 3  
 y9(x)= 1*x + 4   
  y10(x)= 2*x + 0 , and so on. 
 
4.3  Construction of the orthogonal Array 
 
Suppose we take a polynomial y8(x)= x +3 
 
 y8(0)= 3  
 y8(1)= 4 
 y8(2)= 5 mod 5 =0 
 y8(3)= 6 mod 5 = 1 
 y8(4)= 7 mod 5 = 2 
  
so we get the 8th row of array: 3  4  0  1  2  y 
this y i.e., OA[i,q+1] term is filled up as the coefficient of the leading term. So here y=1. 
 



4.4  The Key Predistribution Scheme 
  
        This OA is used to construct a combinatorial design (X, B ) with v = |X| = q*(q+1) = 
q2+1,  b = qt , k = q+1.  That is, Size of  key pool = q2+1,  number  of  sensor  nodes = qt, 
number  of  keys  in  each  node = q+1.  Elements   from   different   columns  of  OA  are 
considered  as  different  elements  of  OA. So, Key Pool, X = { ai,j | 0≤ i ≤q-1, 0≤ j ≤q }. 
For example, we take the same example as above, i.e. qn=5, t=2. The resultant orthogonal 
array following Bush’s construction is shown in the table below.  
 
Column 0 Column 1 Column 2 Column 3 Column 4 Column 5 

0 0 0 0 0 0 
1 1 1 1 1 1 
2 2 2 2 2 2 
3 3 3 3 3 3 
4 4 4 4 4 4 
0 1 2 3 4 1 
1 2 3 4 0 1 
2 3 4 0 1 1 
3 4 0 1 2 1 
4 0 1 2 3 1 
0 2 4 1 3 2 
1 3 0 2 4 2 
2 4 1 3 0 2 
3 0 2 4 1 2 
4 1 3 0 2 2 
0 3 1 4 2 3 
1 4 2 0 3 3 
2 0 3 1 4 3 
3 1 4 2 0 3 
4 2 0 3 1 3 
0 4 3 2 1 4 
1 0 4 3 2 4 
2 1 0 4 3 4 
3 2 1 0 4 4 
4 3 2 1 0 4 

 
Table 1. An orthogonal array obtained following Bush’s construction 
 

In the KPS, the elements from different columns of OA are considered as 
different elements of OA. That is, in the above example, elements of the first row would 
become (0,0), (0,1), (0,2), (0,3), (0,4), (0,5). So we get a two-dimensional array of 
elements of the form (x,y). Each of these elements is a key identifier. Some mapping 
technique is used to transform this key identifier to a cryptographic key of sufficient bit-
length. In KPS literature, this key-identifier is loosely referred as key. Here key pool is 
the set {(x,y) | 0≤ x ≤4, and 0≤ y ≤5}. Each row represents the key-chain that is assigned 



to a particular sensor node. So the resultant key predistribution is shown in the following 
table. 

 
 

Sensor 
Node 

Key-chain 
Key0 Key1 Key2 Key3 Key4 Key5 

0 (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) 
1 (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) 
2 (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) 
3 (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) 
4 (4,0) (4,1) (4,2) (4,3) (4,4) (4,5) 
5 (0,0) (1,1) (2,2) (3,3) (4,4) (1,5) 
6 (1,0) (2,1) (3,2) (4,3) (0,4) (1,5) 
7 (2,0) (3,1) (4,2) (0,3) (1,4) (1,5) 
8 (3,0) (4,1) (0,2) (1,3) (2,4) (1,5) 
9 (4,0) (0,1) (1,2) (2,3) (3,4) (1,5) 
10 (0,0) (2,1) (4,2) (1,3) (3,4) (2,5) 
11 (1,0) (3,1) (0,2) (2,3) (4,4) (2,5) 
12 (2,0) (4,1) (1,2) (3,3) (0,4) (2,5) 
13 (3,0) (0,1) (2,2) (4,3) (1,4) (2,5) 
14 (4,0) (1,1) (3,2) (0,3) (2,4) (2,5) 
15 (0,0) (3,1) (1,2) (4,3) (2,4) (3,5) 
16 (1,0) (4,1) (2,2) (0,3) (3,4) (3,5) 
17 (2,0) (0,1) (3,2) (1,3) (4,4) (3,5) 
18 (3,0) (1,1) (4,2) (2,3) (0,4) (3,5) 
19 (4,0) (2,1) (0,2) (3,3) (1,4) (3,5) 
20 (0,0) (4,1) (3,2) (2,3) (1,4) (4,5) 
21 (1,0) (0,1) (4,2) (3,3) (2,4) (4,5) 
22 (2,0) (1,1) (0,2) (4,3) (3,4) (4,5) 
23 (3,0) (2,1) (1,2) (0,3) (4,4) (4,5) 
24 (4,0) (3,1) (2,2) (1,3) (0,4) (4,5) 

 
Table 2. Key predistribution following the D. Pei et el scheme. 

 
 
5. Analysis of OA based KPS 

 
In [12], authors have compared their scheme with other existing KPS based on two 
parameters: 
 
(1) Connection Probability  
(2) Probability fail(1) 
 
 



The parameter fail(1) denotes the probability of a node becomes victim node when a 
single node is compromised.  In the following table we present the connection probability 
and resiliency of this scheme. 
 
Value of  q Value of  t N Connection 

Probability, P 
E(1) V(1) 

5 3 125 0.707 0.218 0.707 
5 4 625 0.757 0.216 0.757 
7 3 343 0.648 0.963 0.733 
7 4 2401 0.726 0.148 0.0004 
7 5 16807 0.715 0.148 0.00006 
11 2 121 0.992 0.0916 0.00826 
11 3 1331 0.593 0.092 0.0007 
11 4 14641 0.701 0.092 0.00006 
13 2 169 0.994 0.774 0.0059 
13 3 2197 0.579 0.077 0.0004 
13 4 28561 0.695 0.0776 0.000035 
 
Table 3. Measurement of Connection Probability, and of Resiliency when 1 node is 
compromised in Dingyi Pei et el scheme. 
 
6. Weakness of the Scheme 

 
Upon simulation of this scheme we observe very serious flaw in the scheme. When 

we compromise 5% or 10% of the total number of sensor nodes, which is very natural, 
we see that resiliency becomes very poor. Both the E(s) and V(s) becomes close to 1.0. 
That means all the connections are getting compromised if we compromise only 5% or 
10% of nodes. Also almost all the remaining sensor nodes are becoming victim nodes in 
the sense they can no longer communicate with other nodes as their all keys get 
compromised. In the following table we summarize these observations. 

 
Value of 
q 

Value of 
t 

N Connection 
probability 
p1 

Number of 
compromised 
nodes, s 

E(s) V(s) 

5 2 25 0.966 3 0.554 0.12 
5 2 25 0.966 5 0.698 0.20 
5 3 125 0.707 7 0.798 0.21 
5 3 125 0.707 13 0.982 0.872 
7 3 343 0.648 17 0.963 0.733 
7 3 343 0.648 34 1.0 0.998 
7 4 2401 0.726 120 1.0 0.999 
7 4 2401 0.726 240 1.0 0.999 
 
Table 4. Resiliency of the KPS when 5% and 10% nodes are compromised 
 



Since number of nodes, N = q*t, we can get larger N by either increasing q or by 
increasing t or by increasing both. In the above simulation we have taken prime power q 
small . For similar values of N, we wanted to study if there is any change in the 
performance of the scheme if we take prime power q larger and keep t small. We 
observe that the scenario does not change much. The result of simulation is shown 
below. 

 
Value of 
q 

Value of 
t 

N Connection 
probability 
p1 

Number of 
compromised 
nodes, s 

E(s) V(s) 

11 2 121 0.992 6 0.442 0.049 
11 2 121 0.992 12 0.687 0.099 
19 2 361 0.997 18 0.632 0.049 
19 2 361 0.997 36 0.863 0.111 
47 2 2209 0.999 110 0.913 0.054 
47 2 2209 0.999 220 0.993 0.745 
 
Table 5. Resiliency of the KPS when 5% and 10% nodes are compromised with 
changed parameters for similar N as of Table 4. 
 
 
The reason for such poor resiliency is the small key pool size. This small key pool 

size is also the reason of good connectivity of this OA based KPS. This key pre-
distribution scheme is suitable only for sensor network of very small size. 

 
7. Future Work 

 
In the work by J Dong  et al, they have used Bush’s construction for the construction 

of orthogonal array. One can use different orthogonal array construction schemes and 
look if that gives good results. 

 
 

8. Conclusion 
 

Designs provide balanced set systems. This balance yields some good algorithmic 
consequences. One consequence is that it helps us to get efficient description of key 
establishment algorithms when designs are used for key predistribution. Key 
predistribution using combinatorial designs are an area of active research. This work will 
definitely help researchers to get detail understanding of the key predistribution scheme 
using orthogonal array done by J Dong et al and its weakness in terms of resiliency. One 
can further look for different orthogonal array construction schemes for proposing 
improved key predistribution scheme. 
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