
Partitioning Multivariate Polynomial Equations
via Vertex Separators for Algebraic Cryptanal-
ysis and Mathematical Applications

Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

Abstract. We present a novel approach for solving systems of polynomial
equations via graph partitioning. The concept of a variable-sharing graph of a
system of polynomial equations is defined. If such graph is disconnected, then
the system of equations is actually two separate systems that can be solved
individually. This can provide a significant speed-up in computing the solution
to the system, but is unlikely to occur either randomly or in applications.
However, by deleting a small number of vertices on the graph, the variable-
sharing graph could be disconnected in a balanced fashion, and in turn the
system of polynomial equations are separated into smaller ones of similar
sizes. In graph theory terms, this process is equivalent to finding balanced
vertex partitions with minimum-weight vertex separators.

The techniques of finding these vertex partitions are discussed, and ex-
periments are performed to evaluate its practicality for general graphs and
systems of polynomial equations. Applications of this approach to the QUAD
family of stream ciphers, algebraic cryptanalysis of the stream cipher Triv-
ium and its variants, as well as some mathematical problems in game theory
and computational algebraic geometry are presented. In each of these cases,
the systems of polynomial equations involved are well-suited to our graph
partitioning method, and constructive results are discussed.

Mathematics Subject Classification (2000). 05C90, 11T71, 68R10, 94A60, 14G50.

Keywords. balanced vertex partitions, graph partitioning, polynomial systems
of equations, QUAD, Trivium, resultants, algebraic cryptanalysis.

1. Introduction

There has been a long history of the use of graph theory in solving systems of equa-
tions. Graph partitioning techniques are applied to processes such as reordering
variables in matrices to reduce fill-in for sparse systems [24, Ch. 7] and partitioning

2 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

a finite element mesh across nodes in parallel computations [54]. These techniques
primarily focus on linear systems over the real or complex fields. In this paper,
we apply similar graph theory techniques to systems of multivariate polynomial
equations, and develop methods of partitioning these systems into ones of smaller
sizes via their “variable-sharing” graphs. These techniques are intended to work
over any field, finite or infinite, but are particularly suited to GF(2) for use in
algebraic cryptanalysis of symmetric ciphers.

Computing the solution to a system of multivariate polynomial equations is
an NP-complete problem [7, Ch. 3.9]. A variety of solution techniques have been
developed for solving these polynomial systems over finite fields, such as lineariza-
tion, Gröbner bases, and resultants [8, Ch. 12], as well as recent ones such as
SAT-solvers [9] and the Raddum-Semaev method [60]. Over the real and complex
numbers, numerical techniques are also known including Gradient Descent, New-
ton’s Method, the Conjugate Gradient Methods and the Nelder-Mead Simplices
Algorithm [6]. In addition, homotopy methods, also known as continuation meth-
ods, have become popular [3], but require the field to be ordered and complete.
The graph partitioning method introduced in this paper could be a novel addition
to the variety of methods available, principally as a preprocessor.

From a multivariate polynomial system of equation, a variable-sharing graph
is constructed with a vertex for each variable in the system, and an edge between
two vertices if and only if those variables appear together in any equation in
the system. Clearly, if the graph is disconnected, the system can be split into
two separate systems of smaller sizes, and they can be solved for individually.
However, even if the graph is connected, we show that it may be possible to
disconnect the graph by eliminating a few variables by, for example, guessing their
values when computing over a small finite field, and thereby splitting the remaining
system. Over larger and infinite fields, we show how to perform the elimination
with resultants. This suggests a divide-and-conquer approach to solving systems
of equations. When the polynomial terms in the an system of equations are very
sparse, we show that the system can usually be reduced to a set of smaller systems,
whose solutions can be computed individually in much less time.

In order for a partition of a system to be productive, the minimum number
of variables should be eliminated, and the two subsystems must be approximately
equal in size. This ensures that the benefit of partitioning the system is maximised.
These conditions lead to the problem of finding a balanced vertex partition with
a minimum-weight vertex separator on its variable-sharing graph, which is an
NP-complete problem [39, 55]. Nevertheless, heuristic algorithms can often find
near-optimal partitions efficiently [41]. In this paper, we apply this approach to
polynomial systems arising from algebraic cryptanalysis of ciphers, and achieve sig-
nificant advantages in attacking these ciphers. We also discuss some uses of graph
partitioning to solve mathematical problems in game theory and computational
algebraic geometry more efficiently.

Section 2 introduces the necessary background in graph theory and graph
partitioning. Section 3 shows how a system of polynomial equations can be split

Partitioning Multivariate Polynomial Equations via Vertex Separators 3

into ones of smaller sizes using graph partitioning methods. Sections 3.1 and 3.2
describe how the actual partitions can be found. In GF(2) polynomial systems,
the values of the variables to be removed can be simply guessed, but in larger or
infinite fields, we present an alternative method in Section 3.3. Section 4 provides
results for some partitioning experiments and analyses the feasibility of equation
solving via graph partitioning methods.

We offer two cryptographic applications of vertex parititioning in Section 5.
The first is a method whereby a manufacturer of a sparse implementation of
QUAD, a provably-secure stream cipher family, could “poison” the polynomial
system in the cipher, and thereby enable messages transmitted with it to be read
by the manufacturer. Second, we present an algebraic cryptanalysis of Trivium,
a profiled stream cipher in the eSTREAM project, as well as its reduced ver-
sions Bivium and Bivium-A, and discuss their vulnerability or resistance to graph
partitioning methods.

We also offer two applications to other branches of mathematics in Section 6.
The first is finding the Nash equilibria in an 8-player game called “the cube game”.
Normally, the equations for p-player Nash equilibria, without coalitions, are of
degree (p − 1) [23, 63]. In this case, the equations are cubic, and the solution
of them is greatly sped up by the techniques from this paper. The second is the
Apollonius Problem, known to the Ancient Greeks but used in molecular chemistry
[49].

Conclusions will be drawn in Section 7. Appendix A discusses the NP-completeness
of finding balanced graph partitions. Some theorems guaranteeing the existence of
balanced graph partitions for special graphs are given in Appendix B. An algo-
rithm to convert from edge partitions to vertex partitions is given in Appendix C.
Finally, some additional experimental results of graph partitioning are presented
in Appendix D.

2. Preliminaries

In this section, a brief introduction to graphs and graph partitioning is presented.
For a detailed treatment on graph theory, see [36]. A graph describes a set of nodes
and connections between them. Each node is called a vertex, and a connection
between two nodes is called an edge.

Let G = (V,E) be a graph with vertex set V and edge set E. Two vertices
vi, vj ∈ V are connected if there is a path from vi to vj through edges in E. A
disconnected graph is a graph where there exists at least one pair of vertices that
is not connected, or if the graph has only one vertex.

A graph G1 = (V1, E1) with vertex set V1 ⊆ V and edge set E1 ⊆ E is called a
subgraph of G. Given a graph G, subgraphs of G can be obtained by removing ver-
tices and edges from G. Let G = (V,E) be a graph with k vertices and l edges, such
that V = {v1, v2, . . . , vk−1, vk}, E = {(vi1 , vj1), (vi2 , vj2), . . . , (vil

, vjl
)}. Removing

a vertex vk from V forms a subgraph G1 = (V1, E1) with V1 = {v1, v2, . . . , vk−1}

4 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

and E1 = {(vi, vj) ∈ E | vk /∈ {vi, vj}}. We call G1 the subgraph of G induced by
the vertex set (V − {vk}).

Let G1 = (V1, E1), G2 = (V2, E2) be two subgraphs of G. G1, G2 are con-
sidered disjoint if no vertices in G1 are connected to vertices in G2. Clearly, the
condition V1 ∩ V2 = ∅ is necessary.

2.1. Graph Connectivity

The goal of partitioning a graph is to make the graph disconnected by remov-
ing some of its vertices or edges. The number of vertices or edges that needs to
be removed to disconnect a graph is related to its vertex or edge connectivities
respectively.

Definition 2.1. The vertex connectivity κ(G) of a graph G is the minimum number
of vertices that must be removed to disconnect G. The edge connectivity λ(G) of
G is the minimum number of edges that must be removed to disconnect G.

Clearly, a disjoint graph has vertex connectivity zero. On the other extreme,
a complete graph Kn, where all n vertices are connected to each other, has vertex
connectivity (n− 1). The removal of all but one vertex from Kn results in a graph
consisting of a single vertex, which is considered to be disconnected.

The following theorem relates graph connectivities with paths in the graph.

Theorem 2.2 (Menger [53], 1927). If a graph has n vertex-distinct paths from any

particular vertex to any other, then its vertex connectivity is at least n. Further-

more, if there are n edge-distinct paths then its edge connectivity is at least n.

2.2. Graph Partitioning

The process of removing vertices or edges to disconnect a graph is called vertex
partitioning or edge partitioning respectively. All non-empty graphs admit trivial
vertex and edge partitions, where all connections to a single vertex are removed.
This is obviously not useful for most applications. In this paper, we only consider
balanced partitions with minimum-weight separators, in which a graph is separated
into subgraphs of roughly equal sizes by removing as few vertices or edges as
possible.

2.2.1. Balanced Vertex Partitions. More specifically, our primary focus of this
paper is on balanced vertex partitions.

Definition 2.3. Let G = (V,E) be a graph. A vertex partition (V1, C, V2) of G is a
partition of V into mutually exclusive and collectively exhaustive sets of vertices
V1, C, V2, where V1, V2 are non-empty, such that no edges connect vertices of V1

directly to vertices of V2. The removal of C causes the subgraphs induced by V1

and V2 to be disjoint, hence C is called the vertex separator.

For a balanced vertex partition, we require V1 and V2 to be of similar size. For
a minimum-weight separator, we also require that C be sufficiently small. This is
to ensure that the vertex partition obtained is useful for its applications, otherwise
much of the original information would be lost.

Partitioning Multivariate Polynomial Equations via Vertex Separators 5

Definition 2.4. Let G = (V,E) be a graph, and (V1, C, V2) be a vertex partition of
G with vertex separator C (see Definition 2.3). If max(|V1|, |V2|) ≤ α|V |, then G
is said to have an α-vertex separator.

The problem of finding α-vertex separators is known to be NP-hard. For more
details, see Appendix A.

Definition 2.5. Let G = (V,E) be a graph. If (V1, C, V2) is a vertex partition of G,
then define

β =
max(|V1|, |V2|)

|V1| + |V2|
=

max(|V1|, |V2|)

|V | − |C|

to be a measure of balance of the vertex partition.

Suppose the balance of a vertex partition of G into (V1, C, V2) is β = α, then
the partition also satisfies max(|V1|, |V2|) = α(|V1|+ |V2|) ≤ α|V |, and hence the G
has an α-vertex separator. Therefore, theorems that apply to α-vertex separators
would also apply to vertex partitions with balance α. See [55] for more details of α-
vertex separators. Several theoerems governing the existence of α-vertex separators
are presented in Appendix B.

Figure 1 presents examples of balanced and unbalanced partitions, and their
respective β values. The vertex separators C are circled, with the partitioned
vertices V1, V2 outside. The removal of the vertices in the separators disconnects
the graphs. For a balanced partition, β should be close to 1/2.

unbalanced vertex

partition (= 5/6)

balanced vertex

partition (= 1/2)

original graph

Figure 1. Balanced and Unbalanced Vertex Partitions

2.2.2. Partitioning Algorithms and Software. Balanced edge partitioning is widely
used in scientific and engineering applications, such as electric circuit design [62],
parallel matrix computations [44], and finite element analysis [54]. Software pack-
ages are readily available for computing balanced edge partitions using a variety
of algorithms [10, 13, 31, 37, 56, 57, 66].

On the other hand, balanced vertex partitioning has fewer applications, one
of which being variable reordering in linear systems [24]. We are not aware of pub-
licly available software that could be used for directly computing balanced vertex
partitions with minimum-weight vertex separators. Therefore, we have chosen to
use an indirect method to compute vertex partitions from edge partitions obtained
by software. More details will be discussed in Section 3.

6 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

Unless otherwise stated, from here on we will only consider the problem of
balanced vertex partitioning with minimum-weight vertex separators (sometimes
simply referred to as vertex partitioning or partitioning) and its applications to
solving systems of multivariate polynomial equations.

3. Partitioning Polynomial Systems

In this section, our method for partitioning systems of multivariate polynomal
equations by finding balanced vertex partitions of their variable-sharing graphs
is described. Several methods for finding and using these partitions will also be
discussed.

Definition 3.1. Let F be the polynomial system

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fm(x1, x2, . . . , xn) = 0

of m polynomial equations in the variables x1, x2, . . . , xn. The variable-sharing

graph G = (V,E) of F is obtained by creating a vertex vi ∈ V for each variable
xi, and creating an edge (vi, vj) ∈ E if two variables xi, xj appear together in any
polynomial fk.

Example 3.2. Suppose we have the following quadratic system of equations over
GF(2), where the variables x1, x2, . . . , x5 are known to take values in GF(2).

x1x3 + x1 + x5 = 1

x2x4 + x4x5 = 0

x1x5 + x3 = 0

x2x5 + x2 + x4 = 0

x2 + x4x5 = 1

(1)

The corresponding variable-sharing graph G and a balanced vertex partition is
shown in Figure 2.

The quadratic system can then be partitioned into two systems of equations
with the common variable x5 as follows.

x1x3 + x1 + x5 = 1 x2x4 + x4x5 = 0

x1x5 + x3 = 0 x2x5 + x2 + x4 = 0

x2 + x4x5 = 1

(2)

Partitioning Multivariate Polynomial Equations via Vertex Separators 7

v4v3

v2v1

v5 v4v3

v2

v5

v1

V1 C V2G(V,E)

vertex

partition

Figure 2. Graph of quadratic system (1) and a vertex partition.

Since x5 ∈ GF(2), we can substitute all possible values of x5 into (1) and computing
solutions to the reduced systems to give

x5 = 0 ⇒ no solution

x5 = 1 ⇒ x = (1, 0, 1, 0, 1)

The solution obtained is the same as if we had directly computed the solution to
the full system of equations. However, the systems have been reduced to having
less than half the number of variables compared to the the original, at the cost of
applying guesses to one variable.

This method of guessing and solving will be used for the algebraic crypt-
analysis of the Trivium stream cipher in Section 5. For simplicity, from here on
we might use the terms for variables and vertices interchangeably to denote the
variables in the polynomial systems of equations and their corresponding vertices
in the variable-sharing graphs, provided there are no ambiguities.

3.1. Special Cases for Low Vertex-Connectivity

Let G = (V,E) be a variable-sharing graph representing a polynomial system of
equations. The special case of a disconnected graph with vertex connectivity κ = 0
for a graph G can be detected with a standard Depth-First Search (DFS). Mark
each vertex “unvisited” initially, and mark it “visited” as the DFS progresses. If
not all nodes are visited by the end of the DFS, then G is not connected. This
has expected running time of Θ(|V |d) if the average degree of the graph is d. In
this case, the polynomial system can be partitioned trivially, without a need to
compute a vertex separator.

The special case of κ = 1 can be detected by removing and restoring, one
at a time, all vertices, and checking a DFS in each case. Likewise, κ = 2 can be
detected by removing all possible pairs. The number of steps required to detect a
vertex-connectivity of at most k is

k∑

i=0

(
|V |

i

)

|V |d ≈
(|V | + 1 − k/2)

k+1
d

k!
,

8 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

where we have used
(

a

b

)

+

(
a

b − 1

)

=

(
a + 1

b

)

,

(
a

n

)

≈
(a − n/2)n

n!
, n ≪ a.

This approach also has the advantage of revealing the vertex separator. We call
this Pseudo-Brute Force Search. For example, if |V | = 100, testing up to κ = 7
requires

7∑

i=0

(
100

i

)

= 17, 278, 988, 696

depth-first searches. This may still be a feasible computation on distributed com-
puting systems, since each DFS can be performed independently of each other.

Since we desire a balanced partition, we can mark each subset of k or fewer
vertices that partitions the graph, found during the search, with a difficulty num-
ber. The difficulty number should be the size of the largest connected component,
since this will presumably be the hardest subsystem of equations to solve. At the
conclusion of the search, we take the partition with the lowest difficulty number.
This would assure that the optimal partition of all those possible can be discovered.

3.2. Heuristic Partitioning Algorithms

The method above does not scale up to large graphs with high vertex connectiv-
ities, so other computational methods are required. While balanced partitioning
is an NP-hard problem, a variety of heuristic algorithms have been found to be
very efficient in finding near-optimal partitions. Software implementing these al-
gorithms and their applications are as discussed in Section 2.2.2.

One of the efficient schemes for balanced graph partitioning is called multi-
level partitioning, which we have selected to use for our experiments. Suppose a
graph G0 is to be partitioned. Firstly, G0 “coarsened” progressively into simpler
graphs G1, G2, . . . , Gr by contracting adjacent vertices. The process of choosing
vertices for contraction is called matching. After reaching a graph Gr with the
desired level of simplicity, a partitioning is performed. The result is then pro-
gressively refined back through the chain of graphs Gr−1, Gr−2, . . . , G0. At each
refining step, a refinement to the partition can be performed. The output is then a
partition of G0. Details of multilevel partitioning can be found in [38, 41]. Exam-
ples of partitioning and refinement algorithms include the ones by Kerighan-Lin
[42] and Fiduccia-Mattheyses [30].

As discussed in Section 2, it appears that implementations of vertex par-
titioning are not readily available. This is also true for multilevel partitioning
algorithms. Therefore, we have chosen to use the multilevel edge partitioning soft-
ware Metis [40] for our study. The Matlab interface Meshpart [34] to Metis is used
to access the algorithms. The interface Meshpart also contains a routine to con-
vert an edge partition found by Metis to a vertex partition, which completes our

Partitioning Multivariate Polynomial Equations via Vertex Separators 9

software requirements for finding balanced vertex partitions. These will be used
for the experiments in Section 4 and for the algebraic cryptanalysis of Trivium in
Section 5.2.

3.3. Exploting Partitions in Large Finite Fields or Infinite Fields

As shown at the start of this section, for a polynomial system over GF(2), a
partition is easy to exploit. There are only 2|C| possible values for all the variables
in the vertex separator |C|. Since solving the two smaller systems of equations
is much faster than solving the original system, provided that the partition is
balanced and C is relatively small, it is feasible to check every possibility of the
values of the variables in C. If we were to partition equations in, for example
GF(256) or GF(16), as used in the Advanced Encryption Standard [22] and one
of its variants [61] respectively, then the number of possibilities to check for |C|
variables in the vertex separators would be 256|C| and 16|C| respectively, which
would be extremely infeasible. In these cases, and for the case of an infinite field
like Q, we suggest the following method.

Suppose the variables V in a system of polynomial equations are partitioned
into V1, V2 with vertex separator C, and the system is then divided into two sub-
systems F,G with variables V1 ∪ C and V2 ∪ C respectively. This means that, in
each of the subsystems, there are no equations having a variable from V1 and also
a variable from V2. Now relabel the variables as follows. Denote the variables rep-
resented by vertices in C by xi, those from V1 as yi, and those in V2 as zi. Also, let
the equations in F be fi, those in G be gi. Then, we can use a well-known tech-
nique of resultants, whereby unknowns are divided into two classes: “variables”
and “parameters”. Given m polynomials, one can label (m − 1) of the unknowns
as “variables”, and the remaining unknowns as “parameters”. The resultant of
these m polynomials will be a polynomial entirely in the “parameters”, but with
none of the “variables”. This is a highly-non-trivial process, but for m < 12 it is
quite feasible. This can be repeated for all subsets of size m among the equations.

As stated before, there are two sets of equations, namely fi, gi. Let xi be
the “variables” in both sets, and yi, zi be the “parameters” in their respective
sets. We can then take |C| + 1 equations from fi, and calculate their resultant.
This will be a polynomial entirely in terms of yi. This can then be applied to all
collections of fi consisting of exactly |C| + 1 equations, or only some collections,
as desired. This process will also be performed for the collections of size |C| + 1
among gi, to produce polynomials entirely in terms of zi. Observe now that the
resultants obtained are entirely disjoint, and can be solved for separately. Their
solutions can then be substituted back into the original polynomials to obtain the
“variables” xi. Note that this technique requires min(|V1|, |V2|) > |C|, preferably
with a non-trivial margin. Furthermore, if |C| < 11, the running time is on the
order of minutes or a few hours, depending on the number of variables in V , with
the computer algebra software Fermat [45].

10 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

4. Experiments

To evaluate the practicality of partitioning large systems of equations, experi-
ments have been performed on random graphs of different sizes resembling typical
variable-sharing graphs. These experiments were run on a Pentium M 1.4 GHz
CPU with 1 GB of RAM using the Meshpart [34] Matlab interface to the Metis
[40] partitioning software.

Definition 4.1. Let G = (V,E) be a graph. The degree deg(v) of a vertex v ∈ V is
the number of edges e ∈ E incident (connecting) to v.

Definition 4.2. The density ρ(G) of a graph G = (V,E) is the ratio of the number
of edges |E| in G to the maximum possible number 1

2
|V |(|V | − 1) of edges in G.

In each experiment, random graphs G = (V,E) are generated, each with
prescribed number of vertices |V |, number of edges |E|, and average degree d of its
vertices. Their densities ρ are also computed. For each graph, a vertex partition is
performed to give (V1, C, V2), where C is the vertex separator. The balance measure
β is then computed, and the time required is also noted. Some experimental results
are shown in Table 1. More results can be found in Tables 4-5 in Appendix D.

|V | |E| ρ d |C| |V1| |V2| β Time
64 64 0.0308 2 5 31 28 0.5254 61.26 ms
64 128 0.0615 4 15 30 19 0.6122 63.06 ms
64 256 0.1231 8 26 28 10 0.7368 80.95 ms
64 512 0.2462 16 32 3 29 0.9063 67.36 ms
128 128 0.0155 2 7 64 57 0.5289 64.80 ms
128 256 0.0310 4 28 60 40 0.6000 66.73 ms
128 512 0.0620 8 55 45 28 0.6164 63.27 ms
128 1024 0.1240 16 62 63 3 0.9545 83.51 ms
1024 1024 0.0020 2 51 508 465 0.5221 74.58 ms
1024 2048 0.0039 4 222 482 320 0.6010 90.05 ms
1024 4096 0.0078 8 418 355 251 0.5858 113.66 ms
1024 8192 0.0156 16 509 511 4 0.9922 168.55 ms
4096 4096 0.0005 2 183 2039 1874 0.5211 122.48 ms
4096 8192 0.0010 4 877 1903 1316 0.5912 175.20 ms
4096 16384 0.0020 8 1697 1539 860 0.6415 289.24 ms
4096 32768 0.0039 16 2037 2047 12 0.9942 548.75 ms

Table 1. Vertex Partitioning Experiments

It can be observed from Table 1 that the graph of β is likely to be correlated
with the average degree d of the graphs. Small vertex separators can be obtained
when the number of edges is a small factor of the number of vertices. At d = 16,
the value of β is near its upper bound of 1, which means that those partitions
are unlikely to be useful. Since the maximum number of edges for a graph of size

Partitioning Multivariate Polynomial Equations via Vertex Separators 11

n is O(n2), the edge density must be smaller with a larger graph for practical
partitions. This is a reasonable assumption for polynomial systems, since certain
sparse systems have only a small number of variables in each equation, regardless
of the total number of variables in the system. This fact is true for the case of
Trivium in Section 5.

It is also noted that the time required to compute vertex partitions are quite
short for the graph sizes considered, and would be negligible compared to the time
required to solve the partitioned systems.

4.1. Predicting β

Figure 3 shows the effect of varying the number of edges in a graph on the balance
β of vertex partitions for graphs of different sizes, where n = |V |. Each value of
the partition balance parameter β shown in the figure is the average value of 200
separate graph partitions.

2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Average Degree (d)

α

n = 50
n = 100
n = 150

Figure 3. Partition Balance vs Average Degree of Graph

It can be observed that the balance parameter β increases approximately
linearly with the average degree d of the graphs. Furthermore, the increase seems
to be slower with graphs having more vertices. However, Table 1 suggests that the
increase becomes faster again for even larger graphs. From the vertex partition
theorems shown in Appendix B, we assert that a reasonable balance is obtained
when 1

2
≤ β ≤ 2

3
. With the graph sizes considered in Figure 3, it seems that

this reasonable balance can be obtained with d ≤ 6. This also means that when
d ≤ 6, the graph may be planar, since planar graphs has 2

3
-vertex separators,

which implies 1

2
≤ β ≤ 2

3
. Marginally balanced partitions with β < 3

4
are possible

with d ≤ 9.

12 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

Based upon the graph shown in Figure 3, an experiment is performed to try
to predict β as a function of the number n of vertices and average degree d. An
extended dataset for 25 ≤ n ≤ 400 and 2 ≤ d ≤ 10 with a total of 192 data points
were used to arrive at the prediction. The following formula with 8 coefficients was
found using a power-law regression.

β ≈ 0.008369149n−0.778855746d2.584865649 + 2.489035921e−0.246287194d

+ 12.33556203 − 14.06086217d−0.074824899

The data and predictions are provided in Tables 6-8 in Appendix D. The prediction
has an average relative error of 1.90%, and a maximum error over the data set of
6.76%.

5. Applications to Algebraic Cryptanalysis

A bit-based stream cipher usually consists of an internal state s ∈ GF(2)n and
a defined procedure to update s at each timestep t of the cipher. At the start of
an encryption, a key initialisation phase would take place, whereby a secret key k
and a known initialisation vector IV are used to set its s to its secret initial state
s0. The cipher then begins its keystream generation phase, and outputs a series of
keystream bits z1, z2, . . . from s at each timestep t, where s is updated based on
the defined procedure. This procedure can usually be described by st+1 = g(st)
at each timestep t. Simliarly, the keystream bits zt can usually be described by
zt = f(st) at each timestep t. Given plaintext bits p1, p2, . . ., the stream cipher
encrypts them using the keystream into ciphertext bits c1, c2, . . . as ct = pt + zt

over GF(2).
Since stream ciphers are traditionally designed for implementation in digital

circuits, f, g can often be represented as polynomial functions. Then, if both pt

and ct are known for enough timesteps, one can write a system of equations based
on zt = pt + ct using f, g. This forms the foundation of algebraic cryptanalysis. To
perform an algebraic cryptanalysis of a stream cipher, the cipher is first described
as a system of equations. Its variables usually correspond to the bits in the key
k or the initial state s0. If the variables are from k, solving the system is called
“key recovery”, and the cipher is immediately broken. If the variables are from s0,
solving the system is called “state recovery”, and the key could be derived from
the solution, whose difficulty depends on the specific cipher design.

Every attack on every cipher has its nuances, and so above description is
necessarily vague. For an overview of algebraic cryptanalysis, see [8]. For techniques
of algebraic cryptanalysis on specific types of ciphers, see [20, 19, 17, 2, 68]. Some
uses of graph theory for algebraic attacks can also be found in [59, 67]. In this
section, two applications of our equation partitioning to algebraic cryptanalysis
are presented. Firstly, we show a malicious use of the stream cipher QUAD [11].
Then, we describe and perform an algebraic cryptanalysis to the stream cipher
Trivium [25] and its variants Bivium-A and Bivium-B [59]. We discuss only the

Partitioning Multivariate Polynomial Equations via Vertex Separators 13

equations arising from the cipher, and refer the reader to the respective references
of these ciphers for their design and implementation details.

5.1. QUAD

The stream-cipher family QUAD is given in [11]. The security of QUAD is based
on the Multivariate Quadratic (MQ) problem. The heart of the cipher is a random
system of kn quadratic equations in n variables over a finite field GF(q). Usually,
we have q = 2, but implementations with q = 2s have also been discussed [69]. This
system of equations is not secret, but publicly known, and there are criteria for
these equations, such as those relating to rank, which we omit here. In a different
context, QUAD has been analyzed in [69, 5], and [8, Ch. 5.2].

5.1.1. Equations of QUAD. The authors of QUAD recommend k = 2 and n ≥ 160,
so it is assumed that we have a randomly generated system of 2n = 320 equations
in n = 160 unknowns. The system is to be drawn uniformly from all those possible,
which is to say that the coefficients can be thought of as generated by fair coins.

Each quadratic equation is a map GF(2)n → GF(2), so the first set of n equa-
tions form a map GF(2)n → GF(2)n called f1, and the second set of n equations
also form a map of the same dimensions called f2. The internal state is a vector
s of 160 bits. The first 160 equations are evaluated at s, and the resulting vector
f1(st) = st+1 becomes the new state. The second 160 equations are evaluated to
become the output of that timestep zt = f2(st). The vector zt is added to the
next n bits of the plaintext pt over GF(2), and is transmitted as the ciphertext
ct = pt + zt. There is also an elaborate setup stage which maps the secret key and
an initialization vector to the initial state s0.

Finding a pre-image under the maps f1, f2 i.e. finding si given si+1 and zi,
is equivalent to solving a quadratic system of 2n equations in n unknowns, and is
NP-hard [7, Ch. 3.9]. This is further complicated by the fact that the adversary
would not have si+1, but rather only zi + pi.

Given a known-plaintext scenario, where the attacker knows both the plain-
text p1, p2 . . . , pn and ciphertext c1, c2, . . . , cn, one can write the following system
of equations.

c1 + p1 = z1 = f2(s1)

c2 + p2 = z2 = f2(s2) = f2(f1(s1))

c3 + p3 = z3 = f2(s3) = f2(f1(f1(s1)))

... =
...

ct + pt = zt = f2(st) = f2(f1(f1(f1(· · · f1(
︸ ︷︷ ︸

i times

s1) · · ·))))

The interesting fact here is that f2(f1(f1(· · · f1(s1) · · ·)))) and higher iterates
might be quite dense even if f1 is sparse. The authors of QUAD have excellent se-
curity arguments when the polynomial system is generated by fair coins. However,
it will have on average 6440.5 monomials per equation or roughly 2 million in the

14 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

system, which would require a large gate count or would be slow in software. Thus,
in their conference presentation but not the paper, the authors of QUAD mention
that a slightly sparse f might still be secure. Furthermore, because of repeated
iteration and the general difficulty of the MQ problem, there would probably be
no feasible algebraic attack against the sparse version.

5.1.2. Poisoned Equations and QUAD. One could imagine the following scenario,
which is inspired by Jacques Patarin’s system “Oil and Vinegar” [43]. A malicious
manufacturer does not generate the system at random, but rather creates a system
that is sparse and has vertex connectivity of 20, for some vertex partition with
β ≈ 0.6. Our experiments in Section 4 show that this is a feasible partition.
The malicious manufacturer would claim that the system is sparse for efficiency
reasons and it might have a considerably faster encryption throughput than a
QUAD system with quadratic equations generated by fair coins.

Some separators of 20 vertices divides the variable sharing graph into roughly
56 and 84 vertices. This means that an attacker would need only to know the
plaintext and ciphertext of one 160-bit sequence, and solve the equation

f2(f1(f1(· · · f1(f1(
︸ ︷︷ ︸

i−1 times

s1)) · · ·))) = pt + ct

.
For any guess of the key, this would be solving 56 equations in 56 unknowns

and 84 equations in 84 unknowns. Such a problem is certainly trivial for a SAT-
solver, as shown in [9], [7, Ch. 3] and [8, Ch. 7]. Only 220 iterations would be
required, and with a massive parallel network, such as BOINC [1], this would be
quite feasible.

5.1.3. Remedy to Poisoned Systems for QUAD. While finding a balanced vertex
partition of a graph G is NP-hard, as discussed in Appendix A, calculating the
vertex connectivity κ(G) is easier. If κ(G) > 80, for example, then there is no
vertex partition, balanced or otherwise, with fewer than 80 vertices in the vertex
separator. Then, by calculating κ(G), a manufacturer of QUAD could prove that
they are not poisoning the quadratic system as explained in the previous subsec-
tion. There are also techniques to generate functions with verifiable randomness
[16], which could be used to construct polynomial systems of equations for QUAD,
such that they are provably not poisoned.

5.2. Trivium

Trivium [25] is a bit-based stream cipher in the eSTREAM project portfolio for
hardware implementation with an 80-bit key, 80-bit initialization vector, and a
288-bit internal state. As at the end of the eSTREAM project, after three phases
of expert and community reviews, no feasible attacks faster than an exhaustive
key search on the full implementation of Trivium were found. However, Trivium
without key initialisation, as well as its reduced versions Bivium-A and Bivium-
B with a 177-bit internal state, admit attacks faster than exhaustive key search.

Partitioning Multivariate Polynomial Equations via Vertex Separators 15

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 25962

Figure 4. Graph Adjacency Matrix of Trivium Equations

Cryptanalytic results on Trivium and Bivium have been presented in [12, 26, 27,
28, 51, 52, 58, 64].

5.2.1. Equation Construction. The equations governing keystream generation from
the initial state s0 can be found in [25] for Trivium and [59] for Bivium. In the al-
gebraic cryptanalysis presented in this paper, we do not consider the initialisation
phase from the key k and initialisation vector IV , and hence we are performing
state recovery of the cipher.

Trivium can be described as a system of 288 multivariate polynomial equa-
tions in 288 variables, but we found that this is too dense for partitioning to be
useful. Instead, we use the quadratic equations presented in [59], which contains
more variables, but are very sparse. The quadratic system of Trivium consists of
954 sparse quadratic equations in 954 variables, and observed keystream from 288
clocks. Similarly, the polynomial system of Bivium-A and Bivium-B consists of
399 sparse quadratic equations in 399 variables, and observed keystream from 177
clocks. There are at most 6 variables present in each equation, hence the variable-
sharing graph has maximum degree 6, and there is at most one quadratic term in
an equation. We attempt to solve these equations via partitioning.

5.2.2. Equation Partitioning. The sparse quadratic equations for Trivium and
Bivium are constructed as per [59], and their variable-sharing graphs are then
computed. Figure 4 shows the adjacency matrix for the variable-sharing graph of
Trivium. The sparsity of this matrix appears promising for a reasonable partition.
Graphs for Bivium are of similar sparsity.

Partitioning these variable-sharing graphs G = (V,E) into vertex sets V1, V2

and vertex separator C with [40] as in Section 4 gives the results shown in Table 2.

16 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

State Number of
Cipher Size Variables |C| |V1| |V2| β

Bivium-A 177 399 96 156 147 0.5149
Bivium-B 177 399 122 150 127 0.5415
Trivium 288 954 288 476 190 0.7147

Table 2. Partitioning Equations of Bivium-A, Bivium-B and Trivium

From these results, it seems that both of the Bivium ciphers admit very balanced
partitions, whereas Trivium did not. However, using an implementation of the
greedy algorithm in Appendix C, we were able to find a balanced partition for
Trivium with |C| = 295 and β ≈ 0.5. This result is still preliminary, so we omit
further details here.

The sizes of the vertex separators C are the number of variables that must be
eliminated to separate the systems into two. In algebraic attacks, this corresponds
to the number of variables whose values are to be discovered or guessed at a
complexity of 2|C|. The process of guessing certain bits in order to find a solution
is called partial key guessing. If the guessed bits are correct, then solving the
remaining system would lead to the solution.

For Trivium, the separator size is exactly the same as the internal state size.
For Bivium and Bivium-A, the separator sizes are less than the internal state size,
but larger than the key size of 80-bits. This means that the time complexity of
partial key guessing on all bits of the separators would be higher than that of a
brute force search on the key.

5.2.3. Partial Key Guessing. However, we can attempt to guess less bits then the
size of the separator C. The remaining system would not be separated, but it
can still be solved. We have found by experiment that a partial key guess on a
subset of bits in C provides a significant advantage over that on random bits, in
that the reduced polynomials systems are much faster to solve. These experiments
were performed using Magma [14] with its implementation of the Gröbner basis
algorithm F4 [29] for solving the reduced polynomial systems. The results are
shown in Table 3, where n is the number of bits guessed, m is the number of
equations resulting from the guess, with q of them being quadratic. Correct guesses
are always used to reduce the polynomial systems, which means that the time
and memory use presented are for solving the entire system arriving at a unique
solution. All values are averaged over at most 10 individual runs.

The experimental results show that the time required for partial key guessing
on n bits is reduced significantly if those bits are taken from the separator. This
means that, by finding partitions to the system of equations, we have reduced the
resistance of these ciphers to algebraic cryptanalysis, since a feasible partial key
guess attack can potentially be launched on less bits with this extra information.
For example, with Bivium-B, the time to compute a solution by guessing 78 bits
randomly is roughly equivalent to that by guessing 66 bits in the separator. Hence,

Partitioning Multivariate Polynomial Equations via Vertex Separators 17

Cipher All Guesses in |C| n m q Time Memory
Bivium-A No 24 422 193 26 s 42 MB
Bivium-A No 22 419 200 120 s 175 MB
Bivium-A No 20 421 200 195 s 234 MB
Bivium-A No 18 417 203 2558 s 843 MB
Bivium-A Yes 24 422 187 1 s 22 MB
Bivium-A Yes 22 420 190 1 s 22 MB
Bivium-A Yes 20 419 193 45 s 89 MB
Bivium-A Yes 18 417 195 80 s 127 MB
Bivium-A Yes 16 415 201 1101 s 751 MB
Bivium-A Yes 14 413 202 2023 s 1200 MB
Bivium-B No 82 481 140 180 s 1044 MB
Bivium-B No 80 479 143 392 s 1044 MB
Bivium-B No 78 477 146 740 s 1044 MB
Bivium-B No 76 475 141 1213 s 1044 MB
Bivium-B Yes 74 473 128 4 s 35 MB
Bivium-B Yes 70 469 132 12 s 62 MB
Bivium-B Yes 66 465 136 623 s 546 MB
Bivium-B Yes 62 461 141 3066 s 1569 MB
Trivium No 280 1333 329 13 s 80 MB
Trivium No 276 1228 341 110 s 308 MB
Trivium No 272 1224 343 155 s 554 MB
Trivium No 268 1221 344 125 s 576 MB
Trivium No 264 1217 344 594 s 1569 MB
Trivium No 260 1213 344 747 s 3600 MB
Trivium Yes 190 1140 493 14 s 584 MB
Trivium Yes 184 1135 497 16 s 596 MB
Trivium Yes 180 1131 499 18 s 596 MB
Trivium Yes 178 1130 499 18 s 596 MB
Trivium Yes 176 1127 499 4511 s 1875 MB
Trivium Yes 174 1126 501 10543 s 3150 MB

Table 3. Partial Key Guessing on Trivium and Bivium

the time complexity for an attack on Bivium-B is reduced from 278T to 266T with
the use of the separator, where T denotes the time complexity required to compute
a solution to a reduced system.

In an actual algebraic attack, many of the guesses will result in inconsistent
equations with no solutions, which can be checked and discarded easily. This means
that the time required to process a guess is at most T . A full attack attempt was
launched on Bivium-A with a partial key guess on 20 bits in its separator. About
200000 guesses of out the possible 220 were made, with each guess taking on average

18 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

about 0.15 seconds to process. This is much faster than the 45 seconds required
from the experimental results to process a correct guess.

5.2.4. A Bit-Leakage Attack. There is another scenario whereby the graph parti-
tioning would provide an advantage to algebraic cryptanalysis. Suppose by some
means, accidental or deliberate, some bits of the internal state could be leaked to
an attacker. This would occur in a side-channel attack setting. If the attacker could
control which bits are leaked, then the best choices would be those variables in the
separator. Fewer bits would need to be leaked before the system of equations can
be solved in a reasonable time.

6. Applications to Mathematics

In this section, two applications of graph partitioning to mathematical problems
are presented.

6.1. Nash Equilibria

This is a well known topic in economic game theory [23, 63]. Briefly, a strategy is
a Nash equilibrium if for each player p in the game, p could never attain a better
payoff by changing only p’s own strategy, leaving all other strategies fixed. On
the other hand, coalitions of players can change their strategies simultaneously to
achieve higher payoff.

Nash equilibria can be characterized by systems of polynomial equations [63].
We investigate here a “cube game”, based on a graph G resembling the edges of
the 3-dimensional cube. The eight players are associated to the vertices of the
cube. Each player’s name, vertex coordinate in 3-space, and variable is shown as
follows.





Alice Bob Carl Dick Fran Gary Hugh Jane
000 001 010 011 100 101 110 111
a b c d f g h j





Thus Alice’s neighbors are Bob, Carl and Fran. The choices made by Dick, Gary,
Hugh and Jane are irrelevant for Alice’s payoff. In this game, there are two choices
per player, so a strategy can be encoded as a single probability in the range [0, 1].
Thus, the variables a, b, . . . , j are probabilities. For example, b is the probability
allocated by Bob to the first choice. Therefore, Alice’s equation is a trilinear form
in the three variables b, c, f ; analagously for the others. Generalizing the specific

Partitioning Multivariate Polynomial Equations via Vertex Separators 19

game discussed by Sturmfels [63], we have these equations:

(u1b − 1)(u1c − 1)(u1f − 1) = rr

(u1a − 1)(u1d − 1)(u1g − 1) = rr

(u2a − 1)(u2d − 1)(u1h − 1) = rr

(u2b − 1)(u2c − 1)(u1j − 1) = rr

(u3a − 1)(u2g − 1)(u2h − 1) = rr

(u3b − 1)(u2f − 1)(u2j − 1) = rr

(u3c − 1)(u3f − 1)(u3j − 1) = rr

(u3d − 1)(u3g − 1)(u3h − 1) = rr

(3)

Sturmfels used values u1 = 3, u2 = 5, u3 = 7, rr = 1/10.

6.1.1. Experimental Findings. Our first experiments were performed on the ma-
chine1 sage.math.washington.edu using Magma [14] and Singular [35]. The ma-
chine has 64 gigabytes of RAM and 16 AMD Opteron cores. We chose the degree-
reversed lexicographical order for the polynomial equations. It is known that
Magma uses the algorithm F4 [29], and Singular uses the Buchberger algorithm
[15].

Even after substituting in the above constants for u2, u3, and rr, keeping
u1 as symbolic, no solution was found by Magma after 63 minutes, using 585
megabytes of RAM. Neither was a solution forthcoming from Singular after using
1054 megabytes of RAM and 55 minutes.

However, one can see that half the equations use the variables b, c, f, j and
the other half use a, d, g, h. Thus we can split the system into

(u1b − 1)(u1c − 1)(u1f − 1) = 1/10,

(u2b − 1)(u2c − 1)(u1j − 1) = 1/10,

(u3b − 1)(u2f − 1)(u2j − 1) = 1/10,

(u3c − 1)(u3f − 1)(u3j − 1) = 1/10,

(4)

which was solved in 0.1 seconds by Magma and 0.15 seconds by Singular, and

(u1a − 1)(u1d − 1)(u1g − 1) = 1/10,

(u2a − 1)(u2d − 1)(u1h − 1) = 1/10,

(u3a − 1)(u2g − 1)(u2h − 1) = 1/10,

(u3d − 1)(u3g − 1)(u3h − 1) = 1/10,

(5)

which was solved in 0.1 seconds by Magma and 0.17 seconds by Singular.
Since u1 is a constant known parameter, it can be shared between the two

broken systems. If the parameters u2, u3, and rr are left in the equations, the same
splitting applies.

1We would like to thank Prof. William Stein for access to this machine, and the NSF for pur-

chasing it. The grant was DMS-0555776.

20 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

Using the Dixon-EDF resultant algorithm [46], Lewis [48] considered the
fully symbolic equation system (3). After a small simplification using substitutions
a = a/u1, g = g/u3 etc., the resultant for a was computed in about ten minutes on
a desktop computer, having has 2961 terms. On the other hand, each of the fully
symbolic partitioned systems (4), (5) derived from (3) is handled by Dixon-EDF
in about five seconds. The result is, of course, the same polynomial of 2961 terms.
The systems in which there are substitutions u2 = 5, u3 = 7, rr = 1/10 are trivial
for Dixon-EDF.

From the above, one can observe the possible superiority of Dixon-EDF over
Gröbner basis techniques for systems such as (3), since Magma did not return a
solution with the F4 algorithm. More importantly, we have shown that the efficacy
of the equation partitioning to Gröbner bases and resultant computations, based on
the fact that two computations are significantly shortened after the straightforward
partitioning step.

6.2. The Appolonius Circle Problem

The Apollonius Circle Problem dates back to Greek antiquity. Given three circles in
the plane, the problem is to find or construct a circle tangent to all three. This can
be generalized by replacing some circles with straight lines, by considering spheres
in three dimensions, or even further with ellipsoids, lines, or planes. The application
of the theory of resultants to solving this problem and its generalisations in practice
can be found in [49].

Consider the classic three circles on a Euclidean plane. Let the circles be S1,
S2, and S3. We require a circle S0, that is tangent to each one. The centers of the
circle Si, denoted (hi, ki), are known for S1, S2, S3, but not for S0. Then, denote
by (xi, yi) the points of tangency between Si and S0, none of which are known, for
i ∈ {1, 2, 3}. Furthermore, let the radius of each circle Si be ri, and the unknown
radius of S0 be r0. Thus, there are nine unknowns in total, and, as we show below,
the problem can be precisely defined by nine equations. We will now determine
the system of equations and its variable-sharing graph.

The first constraint is that each point (xi, yi) must lie on the circle Si. This
results in the three equations

(xi − hi)
2 + (yi − ki)

2 = r2
i , i ∈ {1, 2, 3}

Therefore, there is an edge between each xi and yi. All other terms of the above
equation are known.

The second constraint is that the point (xi, yi) must be on the circle S0. This
results in the three equations

(xi − h0)
2 + (yi − k0)

2 = r2
0, i ∈ {1, 2, 3}

Therefore, the variables h0, k0, r0 are connected to each other, and also to the
variables {xi, yi} for all i ∈ {1, 2, 3}. Thus, the variable-sharing graph is connected.

The third constraint is that the slope of Si at the point of tangency (xi, yi)
must be equal to the slope of S0 at that point. Through implicit differentiation,

Partitioning Multivariate Polynomial Equations via Vertex Separators 21

we obtain the three equations

(xi − hi)(yi − k0) = (xi − h0)(yi − ki), i ∈ {1, 2, 3}

which only involves the variables xi, yi, h0, k0, which are already connected in the
graph. A system of nine equations in nine variables is then obtained for describing
all the constraints.

It can then be observed that a partition of the variable-sharing graph with
separator C = {h0, k0, r0} will divide the graph into three components of two
vertices each, namely {xi, yi} for i ∈ {1, 2, 3}. This should make sense, because
once S0 is known, finding the tangency points is trivial. Furthermore, no proper
subset of C will partition the graph, because if any vertex in C remains, then
it is connected to all the other variables, and the graph is connected. One can
further see that this is the optimal vertex partition. The separator variables can
be eliminated using resultants, so that the three components can be solved for
separately. One such method has been presented in Section 3.3, while another is
the Dixon-EDF method [47]. For a detailed treatment of resultants, see [21].

At first, it may seem strange to discard the variables in C, as they define the
solution circle, while keeping (xi, yi), as they are only intermediate variables. A
line connects the center of any input circle, its point of tangency with the solution
circle, and the center of the output circle. However, once two of the tangency
points are known, it is trivial to find the center of the solution circle, since it is
the intersection of the lines through the corresponding centers (hi, ki) and tangent
points (xi, yi). The desired radius can then also be computed.

7. Conclusions

In this paper, the concept of a variable-sharing graph of a system of polynomial
equations was defined. It has been shown that this concept can be used to break
systems of polynomial equations into useful pieces, which can be solved for sepa-
rately, provided that the graph has a vertex partition satisfying various require-
ments, namely that the vertex separator should be small, and the partition should
be balanced. We also presented methods for finding the partition, and methods for
using the partition to solve polynomial systems of equations over small and large
fields.

It has been shown that balanced vertex partition is feasible for sparse systems
of polynomial equations. We have performed experiments on random graphs of rea-
sonable size and sparsity resembling variable-sharing graphs of equation systems,
and have produced a formula that predicts the balance of the partitions.

The practicality of this partitioning technique has been demonstrated in the
algebraic cryptanalysis of the stream cipher Trivium and its reduced versions,
where we have found partitions of significant size. These partitions provide in-
formation for launching effective algebraic attacks with partial key guessing. Fur-
thermore, we show how this technique can be used to poison the provably secure

22 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

stream cipher QUAD. In terms of applications to problems in classical mathemat-
ics, we have also shown that this technique is extremely effective in the case of
the cube game, an 8-player Nash Equilibrium problem, as well as the Apollonius
Problem from computational algebraic geometry.

As discussed earlier, this paper has provided a novel technique for preprocess-
ing large sparse systems of equations, which could be used together with popular
techniques such as Gröbner basis methods and resultants to significantly reduce
the time for computation solutions. It has also been shown that this technique
could be widely applicable to algebraic cryptanalysis and mathematics in general,
and further research in this area is warranted.

References

[1] BOINC: Berkeley Open Infrastructure for Network Computing. http://boinc.

berkeley.edu/.

[2] S. Al-Hinai, L. Batten, B. Colbert, and K. K.-H. Wong. Algebraic attacks on clock-
controlled stream ciphers. In L. M. Batten and R. Safavi-Naini, editors, 11th Aus-
tralasian Conference on Information Security and Privacy — ACISP 2006, volume
4058 of Lecture Notes in Computer Science, pages 1–16, Melbourne, Australia, 2006.
Springer.

[3] E. L. Allgower and K. Georg. Introduction to Numerical Continuation Methods,
volume 45 of Classics in Applied Mathematics. Society for Industrial Mathematics,
1987.

[4] N. Alon, P. Semour, and R. Thomas. A separator theorem for graphs with an ex-
cluded minor and its applications. Journal of the American Mathematical Society,
3(4):801–808, Oct. 1990.

[5] D. Arditti, C. Berbain, O. Billet, H. Gilbert, and J. Patarin. QUAD: Overview
and recent developments. In E. Biham, H. Handschuh, S. Lucks, and V. Rijmen,
editors, Symmetric Cryptography, volume 07021 of Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

[6] M. Avriel. Nonlinear Programming: Analysis and Methods. Dover, 2003.

[7] G. V. Bard. Algorithms for solving linear and polynomial systems of equations over
finite fields with applications to cryptanalysis. PhD thesis, Department of Applied
Mathematics and Scientific Computation, University of Maryland at College Park,
Aug. 2007. Available at http://www.math.umd.edu/∼bardg/bard thesis.pdf.

[8] G. V. Bard. Algebraic Cryptanalysis. Springer, 2009.

[9] G. V. Bard, N. Courtois, and C. Jefferson. Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over GF(2) via
SAT-Solvers. Cryptology ePrint Archive, Report 2007/024, 2007. http://eprint.
iacr.org/2007/024.pdf.

[10] R. Baños, C. Gil, J. Ortega, and F. G. Montoya. Multilevel heuristic algorithm
for graph partitioning. In Applications of Evolutionary Computing, volume 2611 of
Lecture Notes in Computer Science. Springer, 2003.

Partitioning Multivariate Polynomial Equations via Vertex Separators 23

[11] C. Berbain, H. Gilbert, and J. Patarin. QUAD: A practical stream cipher with
provable security. In S. Vaudenay, editor, Advances in Cryptology - Eurocrypt 2006,
volume 4004 of Lecture Notes in Computer Science, pages 109–128. Springer, 2006.

[12] D. Bernstein. Response to slid pairs in Salsa20 and Trivium. Technical report, 2008.
http://cr.yp.to/snuffle/reslid-20080925.pdf.

[13] J. Berry, N. Dean, M. Goldberg, G. Shannon, and S. Skiena. Graph computation
with LINK. Software: Practice and Experience, 30:12851302, 2000.

[14] W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra system. I. The user
language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[15] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
rings nach einem nulldimensionalen Polynomideal. PhD Thesis, University of Inns-
bruck, 1965.

[16] M. Chase and A. Lysyanskaya. Simulatable vrfs with applications to multi-theorem
nizk. In Advances in Cryptology - CRYPTO 2007, volume 4622 of Lecture Notes in
Computer Science, pages 303–322. Springer, 2007.

[17] J. Y. Cho and J. Pieprzyk. Algebraic attacks on SOBER-t32 and SOBER-t16 without
stuttering. In B. Roy and W. Meier, editors, Fast Software Encryption, volume 3017
of Lecture Notes in Computer Science, pages 49–64, Delhi, India, 2004. Springer.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

[19] N. Courtois. Algebraic attacks on combiners with memory and several outputs. In
C. Park and S. Chee, editors, Information Security and Cryptology - ICISC 2004,
volume 3506 of Lecture Notes in Computer Science, Seoul, Korea, 2004. Springer.

[20] N. Courtois and W. Meier. Algebraic attacks on stream cipher with linear feedback.
In E. Biham, editor, Advances in Cryptology - Eurocrypt 2003, volume 2656, Warsaw,
Poland, 2003. Springer.

[21] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Undergradu-
ate Texts in Mathematics. Springer, 2nd edition, 2006.

[22] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard, volume Information Security and Cryptography. Springer, 2002.

[23] R. S. Datta. Finding all Nash equilibria of a finite game using polynomial algebra.
Economic Theory, 2009. Invited Survey.

[24] T. A. Davis. Direct methods for sparse linear systems, volume 2 of Fundamentals of
Algorithms. SIAM, Philadelphia, USA, 2006.

[25] C. De Cannière and B. Preneel. Trivium specifications. Technical re-
port, Katholieke Universiteit Leuven, 2007. http://www.ecrypt.eu.org/stream/

p3ciphers/trivium/trivium p3.pdf.

[26] I. Dinur and A. Shamir. Cube attacks on tweakable black box polynomials. In Ad-
vances in Cryptology - Eurocrypt 2009, volume 5479 of Lecture Notes in Computer
Science, pages 278–299. Springer, 2009.

[27] N. Eén and N. Sörensson. Minisat — a SAT solver with conflict-clause minimization.
In F. Bacchus and T. Walsh, editors, Proc. Theory and Applications of Satisfiability
Testing (SAT’05), volume 3569 of Lecture Notes in Computer Science, pages 61–75.
Springer-Verlag, 2005.

24 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

[28] T. Eibach, E. Pilz, and G. Völkel. Attacking Bivium using SAT solvers. In H. K.
Büning and X. Zhao, editors, Theory and Applications of Satisfiability Testing (SAT
’08), volume 4996 of Lecture Notes in Computer Science, pages 63–76. Springer-
Verlag, 2008.

[29] J.-C. Faugère. A new efficient algorithm for computer Gröbner bases (f4). Journal
of Pure and Applied Algebra, 139:61–88, 1999.

[30] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network par-
titions. In 19th ACM/IEEE Design Automation Conference, pages 175–181, 1982.

[31] C. Fremuth-Paeger. Goblin: A graph object library for network programming prob-
lems, 2007. http://goblin2.sourceforge.net/.

[32] M. R. Garey, P. S. Johnson, and L. Stockmeyer. Simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1:237–267, 1976.

[33] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separation theorem for graphs
of bounded genus. Journal of Algorithms, 5:391–407, 1984.

[34] J. R. Gilbert and S.-H. Teng. Meshpart: Matlab mesh partitioning and graph sepa-
rator toolbox, 2002. http://www.cerfacs.fr/algor/Softs/MESHPART.

[35] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular — A computer algebra
system for polynomial computations. 2009. http://www.singular.uni-kl.de/.

[36] J. L. Gross and J. Yellen, editors. Handbook of Graph Theory, volume 25 of Discrete
Mathematics and its Applications. CRC Press, New York, USA, 2003.

[37] B. Hendrickson and R. Leland. The Chaco user’s guide: Version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories, 1994.

[38] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In
1995 ACM/IEEE Supercomputing Conference. ACM, 1995.

[39] D. S. Johnson. The NP-completeness column: An on-going guide. J. Algorithms,
8:438–448, 1987.

[40] G. Karypis et al. Metis — Serial graph partitioning and fill-reducing matrix ordering,
1998. http://glaros.dtc.umn.edu/gkhome/views/metis/.

[41] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999.

[42] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphics.
Bell Systems Technical Journal, 49:291–307, 1970.

[43] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature schemes.
In EUROCRYPT, pages 206–222, 1999.

[44] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms. Benjamin/Cummings Publishing Company,
Redwood City, CA, 1994.

[45] R. H. Lewis. Fermat: A computer algebra system for polynomial and matrix com-
putation. http://home.bway.net/lewis.

[46] R. H. Lewis. Heuristics to accelerate the dixon resultant. Mathematics and Comput-
ers in Simulation, 77(4):400–407, 2008.

[47] R. H. Lewis. Heuristics to accelerate the Dixon resultant. Mathematics and Com-
puters in Simulation, 77(4), 2008.

Partitioning Multivariate Polynomial Equations via Vertex Separators 25

[48] R. H. Lewis. Polynomial equations arising in global positioning systems and in Nash
equilibria. In Applications of Computer Algebra, RISC Summer 2008, Linz, Austria,
27-30 July 2008.

[49] R. H. Lewis and S. Bridgett. Conic tangency equations and apollonius problems
in biochemistry and pharmacology. Mathematics and Computers in Simulation,
61(2):101–114, 2003.

[50] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics, 36(2):177–189, Apr. 1979.

[51] A. Maximov and A. Biryukov. Two trivial attacks on Trivium. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, Proc. Selected Areas in Cryptography (SAC07),
volume 4876 of Lecture Notes in Computer Science, pages 36–55. Springer-Verlag,
2007. Available from http://eprint.iacr.org/2007/021.

[52] C. McDonald, C. Charnes, and J. Pieprzyk. An algebraic analysis of Trivium ci-
phers based on the boolean satisfiability problem. Cryptology ePrint Archive, Report
2007/129, 2007. http://eprint.iacr.org/2007/129. Presented at the International
Conference on Boolean Functions: Cryptography and Applications (BFCA2008).

[53] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–115,
1927.

[54] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partition-
ing. In A. George, J. Gilbert, , and J. Liu, editors, Graph Theory and Sparse Matrix
Computation, volume 56 of The IMA Volumes in Mathematics and its Application,
pages 57–84. Springer, 1993.

[55] R. Müller and D. Wagner. α-vertex separator is NP-hard even for 3-regular graphs.
J. Computing, 46:343–353, 1991.

[56] F. Pellegrini and J. Roman. SCOTCH: A software package for static mapping by
dual recursive bipartitioning of process and architecture graphs. In HPCN’96, volume
1067 of LNCS, pages 493–498, Brussels, Belgium, 1996. Springer.

[57] R. Preis and R. Diekmann. The PARTY partitioning-library, user guide - version
1.1. Technical Report tr-rsfb-96-024, University of Paderborn, 1996.

[58] D. Priemuth-Schmid and A. Biryukov. Slid pairs in Salsa20 and Trivium. In
D. R. Chowdhury, V. Rijmen, and A. Das, editors, Progress in Cryptology—
INDOCRYPT’08, volume 5365 of Lecture Notes in Computer Science, pages 1–14.
Springer-Verlag, 2008.

[59] H. Raddum. Cryptanalytic results on Trivium. Technical Report 2006/039, The eS-
TREAM Project, 27 March 2006. http://www.ecrypt.eu.org/stream/papersdir/
2006/039.ps.

[60] H. Raddum and I. Semaev. New technique for solving sparse equation systems.
Cryptology ePrint Archive, Report 2006/475, 2006. http://eprint.iacr.org/2006/
475.

[61] J. Rejeb, V. Ramaswamy, and K. Ghadiri. Hardware implementation of the rijndael
algorithm for high-speed networks. In International Signal Processing Conference
(ISPC ’03), March 2003.

[62] D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning of
electrical circuits. In 9th workshop on Design automation, pages 57–92. ACM, 1972.

26 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

[63] B. Sturmfels. Solving Systems of Polynomial Equations. American Mathematical
Society, October 2002.

[64] M. Vielhaber. Breaking One.Fivium by AIDA an algebraic IV differential attack.
Cryptology ePrint Archive, Report 2007/413, 2007. http://eprint.iacr.org/2007/
413.

[65] D. Wagner and F. Wagner. Between min-cut and graph bisection. Technical Report
B-91-1, Freie Universität Berlin, 1991.

[66] C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software
- An Overview. Technical report, Civil-Comp Ltd., 2007.

[67] K. K.-H. Wong. Application of Finite Field Computation to Cryptology: Extension
Field Arithmetic in Public Key Systems and Algebraic Attacks on Stream Ciphers.
PhD Thesis, Information Security Institute, Queensland University of Technology,
2008.

[68] K. K.-H. Wong, B. Colbert, L. Batten, and S. Al-Hinai. Algebraic attacks on clock-
controlled cascade ciphers. In R. Barua and T. Lange, editors, Progress in Cryptology
- Indocrypt 2006, volume 4329, pages 32–47, Kolkata, India, 2006. Springer.

[69] B.-Y. Yang, O. C.-H. Chen, D. J. Bernstein, and J.-M. Chen. Analysis of QUAD. In
Fast Software Encryption, volume 4593 of Lecture Notes in Computer Science, pages
290–308. Springer, 2007.

Appendix A. NP-Completeness of the Problem

Both the problems of finding balanced vertex partitions and balanced edge par-
titions are known to be NP-complete. For balanced vertex partitions, these are
equivalent to the α-vertex separator decision and optimization problems, and
were proven NP-Complete/NP-hard respectively by Müller and Wagner in [55].
For α = 1

2
, the problems were proven NP-complete/NP-hard by Johnson in [39],

by reduction to the known NP-complete problem “Balanced Complete Bipartite
Subgraph Problem”. In the case of edge partitions, these become the α-edge sep-
arator decision and optimization problems, which can be defined similarly. The
were proven NP-Complete/NP-hard respectively by Wagner and Wagner in [65].
The α = 1

2
case was shown to be NP-Complete/NP-hard by Garey Johnson and

Stockmeyer, in [32], as the “Minimum-Bisection Problem.”.

Appendix B. Existence Theorems for Vertex Partitions

Several theorems govern the existence of balanced vertex partitions and small
vertex cuts for specific classes of graphs. These include planar graphs, graphs of
a certain genus and graphs with specific structures. Throughout this section, let
G = (V,E) be a graph, and (V1, C, V2) be a vertex partition of G with vertex
separator C.

Partitioning Multivariate Polynomial Equations via Vertex Separators 27

Definition B.1. A graph G is planar if it can be embedded in a plane without
graph edges crossing, i.e. it can be drawn in a plane without any edge crossing
another.

Theorem B.2 (Lipton and Tarjan [50], 1979). If G is a planar graph, there is a

vertex partition with |C| ≤
√

8|V | such that |V1| ≤
2

3
|V | and |V2| ≤

2

3
|V |.

This implies G has a 2

3
-vertex separator. A graph that cannot be drawn

without edges crossing on a plane, but can be so drawn on a torus is said to be
genus 1. This can be generalized as follows.

Definition B.3. A graph G is said to be genus g if it can be drawn without edges
crossing on a surface of topological genus g but not on any surface of smaller
topological genus.

Theorem B.4 (Gilbert, Hutchinson and Tarjan [33], 1984). If G is a graph of genus

g > 1, there is a vertex partition with |C| = O(
√

g|V |).

The following theorem relates edge contraction and graph minors with vertex
cuts. Contracting an edge between two vertices vi, vj means creating a new vertex
vk, such that any edge to either vi or vj now goes to vk instead, and then both
vi, vj are deleted. A graph G is said to have a minor K if some subgraph of G is
isomorphic to K after contracting zero or more edges.

Theorem B.5 (Alon, Seymour and Thomas [4], 1990). If a graph has no Kh minor,

then there is a cut with |C| ≤
√

h3|V | such that2 |V1| ≤
2

3
|V | and |V2| ≤

2

3
|V |.

Again, this implies G has a 2

3
-vertex separator. Determining the largest h

for a general graph is NP-hard, because it is related to the known NP-complete
problem “Max-Clique” [18, Ch. 34].

In the special case of bounded-degree graphs, where each vertex has at most
degree dmax, this last theorem is particularly useful to us. Since Kh has degree h at
every vertex, a bounded-degree graph cannot have Kh as a subgraph if h > dmax.
However, it may have Kh as a minor, as merging adjacent vertices can increase
degree. Nonetheless, the experiments in Section 4 and Appendix D also show that
low-degree graphs tend to have balanced vertex cuts, while high-degree random
graphs do not.

Given that C is small, the conditions |V1| ≤ |V2| ≤
2

3
|V | would represent good

balance. However, in most applications, the graphs that arise are usually large and
have less favorable structures then the above (i.e. they have Kh minors for large
values of h). Therefore, we rely on heuristics to compute these vertex partitions.

Appendix C. From Edge Partition to Vertex Partition

Given an edge partition of a graph G with edge separator B, there may be many
sets of vertices of various cardinalities which will give a similar vertex partition.

2Furthermore, it is conjectured in the same paper that the h
3 can become h

2 instead.

28 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

In particular, this will happen if there exist at least one vertex that is incident to
several edges in the partition.

Figure 5 shows a greedy algorithm for finding a vertex partition with small
vertex separator C that is equivalent to a given edge partition with edge separator
B. One starts with a set of edges D representing the edge separator. Then, at each
iteration, choose the vertex which is incident on the largest number of edges in
D. Mark that vertex as “to be deleted”, and then delete the edges in D that are
incident upon that vertex. This process is repeated until D is empty.

Input: B, an edge separator of a graph G = (V,E).
Output: C, a small vertex separator of G based on B.

1. D ← B.
2. R ← ∅.
3. While D 6= ∅ do:

(a) Pick the vertex in V that is incident on the highest number of
edges in D. Call it v.

(b) Insert v into C.
(c) Remove from D any edge that v is incident upon.

4. Return C.

Figure 5. The Greedy Algorithm Approach to Converting a Bal-
anced Edge Partition to a Balanced Vertex Partition

Clearly, this algorithm will produce disconnected components that are subsets
of the original edge partition, but there may possibly be smaller unrelated vertex
subsets which could have accomplished the same with fewer vertices.

Appendix D. More Experimental Results

Kenneth Koon-Ho Wong
Information Security Institute
Queensland University of Technology
2 George Street
Brisbane 4001, Australia

e-mail: kk.wong@qut.edu.au

Gregory V. Bard
Department of Mathematics
Fordham University
The Bronx, NY, 10428

e-mail: bard@fordham.edu

Partitioning Multivariate Polynomial Equations via Vertex Separators 29

|V | |E| ρ d |C| |V1| |V2| β Time

20 20 0.0952 2 1 9 10 0.5263 74.66 ms

20 30 0.1429 3 3 10 7 0.5882 70.35 ms

20 40 0.1905 4 5 9 6 0.6000 69.46 ms

20 50 0.2381 5 7 10 3 0.7692 70.98 ms

20 60 0.2857 6 9 9 2 0.8182 76.19 ms

20 70 0.3333 7 9 10 1 0.9091 80.58 ms

20 80 0.3810 8 10 7 3 0.7000 72.95 ms

20 90 0.4286 9 11 0 9 1.0000 74.25 ms

20 100 0.4762 10 10 0 10 1.0000 58.92 ms

40 40 0.0488 2 4 19 17 0.5278 58.11 ms

40 60 0.0732 3 10 19 11 0.6333 57.72 ms

40 80 0.0976 4 10 19 11 0.6333 59.28 ms

40 100 0.1220 5 14 20 6 0.7692 58.39 ms

40 120 0.1463 6 15 19 6 0.7600 57.96 ms

40 140 0.1707 7 16 16 8 0.6667 69.02 ms

40 160 0.1951 8 18 19 3 0.8636 69.51 ms

40 180 0.2195 9 18 7 15 0.6818 72.84 ms

40 200 0.2439 10 20 1 19 0.9500 70.32 ms

60 60 0.0328 2 0 32 28 0.5333 69.42 ms

60 90 0.0492 3 8 30 22 0.5769 70.18 ms

60 120 0.0656 4 16 24 20 0.5455 70.58 ms

60 150 0.0820 5 19 24 17 0.5854 71.00 ms

60 180 0.0984 6 20 29 11 0.7250 71.66 ms

60 210 0.1148 7 22 24 14 0.6316 71.33 ms

60 240 0.1311 8 26 12 22 0.6471 72.26 ms

60 270 0.1475 9 27 30 3 0.9091 61.75 ms

60 300 0.1639 10 27 30 3 0.9091 72.81 ms

80 80 0.0247 2 4 40 36 0.5263 61.71 ms

80 120 0.0370 3 13 39 28 0.5821 58.73 ms

80 160 0.0494 4 21 37 22 0.6271 58.83 ms

80 200 0.0617 5 25 34 21 0.6182 70.27 ms

80 240 0.0741 6 27 36 17 0.6792 74.13 ms

80 280 0.0864 7 32 35 13 0.7292 72.76 ms

80 320 0.0988 8 34 29 17 0.6304 76.81 ms

80 360 0.1111 9 34 15 31 0.6739 75.50 ms

80 400 0.1235 10 39 38 3 0.9268 72.55 ms

100 100 0.0198 2 5 49 46 0.5158 69.30 ms

100 150 0.0297 3 14 48 38 0.5581 71.41 ms

100 200 0.0396 4 19 49 32 0.6049 71.74 ms

100 250 0.0495 5 29 40 31 0.5634 72.78 ms

100 300 0.0594 6 32 41 27 0.6029 75.59 ms

100 350 0.0693 7 40 47 13 0.7833 73.98 ms

100 400 0.0792 8 44 31 25 0.5536 74.35 ms

100 450 0.0891 9 44 47 9 0.8393 79.04 ms

100 500 0.0990 10 48 48 4 0.9231 88.69 ms

Table 4. Vertex Partitioning Experiments, Part 1 of 2

Robert H. Lewis
Department of Mathematics
Fordham University
The Bronx, NY, 10428
e-mail: rlewis@fordham.edu

30 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

|V | |E| ρ d |C| |V1| |V2| β Time

120 120 0.0165 2 6 59 55 0.5175 70.06 ms

120 180 0.0248 3 21 59 40 0.5960 70.90 ms

120 240 0.0331 4 26 54 40 0.5745 72.52 ms

120 300 0.0413 5 36 54 30 0.6429 73.43 ms

120 360 0.0496 6 39 45 36 0.5556 63.93 ms

120 420 0.0579 7 50 47 23 0.6714 65.50 ms

120 480 0.0661 8 50 35 35 0.5000 65.07 ms

120 540 0.0744 9 52 31 37 0.5441 66.05 ms

120 600 0.0826 10 54 22 44 0.6667 66.48 ms

140 140 0.0142 2 8 69 63 0.5227 70.93 ms

140 210 0.0213 3 20 68 52 0.5667 73.76 ms

140 280 0.0284 4 33 66 41 0.6168 73.80 ms

140 350 0.0355 5 41 63 36 0.6364 78.15 ms

140 420 0.0426 6 47 60 33 0.6452 74.65 ms

140 490 0.0496 7 54 50 36 0.5814 79.88 ms

140 560 0.0567 8 59 67 14 0.8272 67.15 ms

140 630 0.0638 9 61 63 16 0.7975 66.69 ms

140 700 0.0709 10 65 57 18 0.7600 75.43 ms

160 160 0.0124 2 8 80 72 0.5263 71.23 ms

160 240 0.0186 3 25 79 56 0.5852 73.84 ms

160 320 0.0248 4 36 74 50 0.5968 75.24 ms

160 400 0.0311 5 43 66 51 0.5641 75.41 ms

160 480 0.0373 6 59 66 35 0.6535 77.78 ms

160 560 0.0435 7 61 67 32 0.6768 77.57 ms

160 640 0.0497 8 65 65 30 0.6842 71.26 ms

160 720 0.0559 9 72 46 42 0.5227 67.61 ms

160 800 0.0621 10 75 28 57 0.6706 76.35 ms

180 180 0.0110 2 6 89 85 0.5115 64.23 ms

180 270 0.0166 3 28 87 65 0.5724 65.60 ms

180 360 0.0221 4 34 85 61 0.5822 73.36 ms

180 450 0.0276 5 50 86 44 0.6615 64.37 ms

180 540 0.0331 6 65 84 31 0.7304 68.36 ms

180 630 0.0387 7 69 82 29 0.7387 68.46 ms

180 720 0.0442 8 79 87 14 0.8614 67.67 ms

180 810 0.0497 9 80 83 17 0.8300 71.01 ms

180 900 0.0552 10 84 88 8 0.9167 76.07 ms

200 200 0.0100 2 13 99 88 0.5294 61.56 ms

200 300 0.0149 3 30 99 71 0.5824 72.98 ms

200 400 0.0199 4 46 95 59 0.6169 74.56 ms

200 500 0.0249 5 54 85 61 0.5822 75.95 ms

200 600 0.0299 6 67 91 42 0.6842 69.84 ms

200 700 0.0348 7 73 72 55 0.5669 69.95 ms

200 800 0.0398 8 80 90 30 0.7500 73.63 ms

200 900 0.0448 9 86 48 66 0.5789 77.18 ms

200 1000 0.0498 10 93 96 11 0.8972 73.69 ms

Table 5. Vertex Partitioning Experiments, Part 1 of 2

Partitioning Multivariate Polynomial Equations via Vertex Separators 31

n d true alpha prediction abs error rel error

25 2 0.51855 0.51039 -0.00816 -1.57%

25 3 0.55508 0.58648 0.03140 5.66%

25 4 0.60108 0.61405 0.01297 2.16%

25 5 0.63551 0.64142 0.00591 0.93%

25 6 0.68269 0.67683 -0.00586 -0.86%

25 7 0.72733 0.73054 0.00321 0.44%

25 8 0.80355 0.79510 -0.00845 -1.05%

25 9 0.87544 0.88098 0.00554 0.63%

25 10 0.93626 0.97436 0.03810 4.07%

50 2 0.51550 0.50869 -0.00681 -1.32%

50 3 0.56609 0.58003 0.01394 2.46%

50 4 0.60961 0.60380 -0.00581 -0.95%

50 5 0.63884 0.62197 -0.01687 -2.64%

50 6 0.66424 0.64762 -0.01662 -2.50%

50 7 0.71550 0.68465 -0.03086 -4.31%

50 8 0.76743 0.73365 -0.03378 -4.40%

50 8 0.76743 0.73365 -0.03378 -4.40%

50 9 0.82509 0.79405 -0.03104 -3.76%

50 9 0.82509 0.79405 -0.03104 -3.76%

50 10 0.87989 0.86495 -0.01494 -1.70%

50 10 0.87989 0.86495 -0.01494 -1.70%

75 2 0.51164 0.50804 -0.00360 -0.70%

75 3 0.55805 0.57864 0.02059 3.69%

75 4 0.59384 0.59993 0.00608 1.02%

75 5 0.62633 0.61530 -0.01103 -1.76%

75 6 0.64058 0.63656 -0.00401 -0.63%

75 7 0.66363 0.66868 0.00504 0.76%

75 8 0.69095 0.71040 0.01945 2.81%

75 9 0.77376 0.76328 -0.01048 -1.35%

75 10 0.81330 0.82356 0.01026 1.26%

100 2 0.51895 0.50769 -0.01126 -2.17%

100 2 0.51895 0.50769 -0.01126 -2.17%

100 3 0.56334 0.57719 0.01385 2.46%

100 3 0.56334 0.57719 0.01385 2.46%

100 4 0.59367 0.59783 0.00416 0.70%

100 4 0.59367 0.59783 0.00416 0.70%

100 5 0.62718 0.61134 -0.01583 -2.52%

100 5 0.62718 0.61134 -0.01583 -2.52%

100 6 0.64282 0.63059 -0.01223 -1.90%

100 6 0.64282 0.63059 -0.01223 -1.90%

100 7 0.66420 0.65928 -0.00492 -0.74%

100 7 0.66420 0.65928 -0.00492 -0.74%

100 8 0.69631 0.69783 0.00152 0.22%

100 8 0.69631 0.69783 0.00152 0.22%

100 9 0.75234 0.74548 -0.00686 -0.91%

100 9 0.75234 0.74548 -0.00686 -0.91%

100 10 0.82477 0.80118 -0.02359 -2.86%

100 10 0.82477 0.80118 -0.02359 -2.86%

125 2 0.51538 0.50747 -0.00791 -1.54%

125 3 0.56050 0.57682 0.01632 2.91%

125 4 0.59124 0.59650 0.00526 0.89%

125 5 0.61908 0.60908 -0.01000 -1.61%

125 6 0.63982 0.62679 -0.01302 -2.04%

125 7 0.65993 0.65388 -0.00605 -0.92%

125 8 0.66981 0.68985 0.02003 2.99%

125 9 0.68852 0.73505 0.04653 6.76%

125 10 0.77929 0.78697 0.00768 0.99%

150 2 0.51882 0.50732 -0.01151 -2.22%

150 2 0.51882 0.50732 -0.01151 -2.22%

150 3 0.56314 0.57612 0.01298 2.30%

150 3 0.56314 0.57612 0.01298 2.30%

150 4 0.59903 0.59557 -0.00345 -0.58%

150 4 0.59903 0.59557 -0.00345 -0.58%

150 5 0.62210 0.60732 -0.01478 -2.38%

150 5 0.62210 0.60732 -0.01478 -2.38%

150 6 0.63997 0.62415 -0.01583 -2.47%

150 6 0.63997 0.62415 -0.01583 -2.47%

150 7 0.65777 0.64969 -0.00808 -1.23%

150 7 0.65777 0.64969 -0.00808 -1.23%

150 8 0.67181 0.68428 0.01247 1.86%

150 8 0.67181 0.68428 0.01247 1.86%

150 9 0.71095 0.72711 0.01616 2.27%

150 9 0.71095 0.72711 0.01616 2.27%

150 10 0.79604 0.77706 -0.01899 -2.39%

150 10 0.79604 0.77706 -0.01899 -2.39%

Table 6. Experimental Results for β Value Predictor, Part 1 of 3

32 Kenneth Koon-Ho Wong, Gregory V. Bard and Robert H. Lewis

n d true alpha prediction abs error rel error

175 2 0.51643 0.50720 -0.00923 -1.79%

175 3 0.55838 0.57598 0.01759 3.15%

175 4 0.59471 0.59489 0.00018 0.03%

175 5 0.61738 0.60617 -0.01121 -1.82%

175 6 0.62729 0.62219 -0.00510 -0.81%

175 7 0.64584 0.64693 0.00109 0.17%

175 8 0.66270 0.68015 0.01745 2.63%

175 9 0.69043 0.72177 0.03134 4.54%

175 10 0.78720 0.76971 -0.01749 -2.22%

200 2 0.52090 0.50711 -0.01379 -2.65%

200 2 0.52090 0.50711 -0.01379 -2.65%

200 3 0.56232 0.57554 0.01322 2.35%

200 3 0.56232 0.57554 0.01322 2.35%

200 4 0.59400 0.59435 0.00036 0.06%

200 4 0.59400 0.59435 0.00036 0.06%

200 5 0.61678 0.60515 -0.01163 -1.89%

200 5 0.61678 0.60515 -0.01163 -1.89%

200 6 0.63735 0.62067 -0.01669 -2.62%

200 6 0.63735 0.62067 -0.01669 -2.62%

200 7 0.65174 0.64450 -0.00724 -1.11%

200 7 0.65174 0.64450 -0.00724 -1.11%

200 8 0.65827 0.67695 0.01869 2.84%

200 8 0.65827 0.67695 0.01869 2.84%

200 9 0.72042 0.71718 -0.00324 -0.45%

200 9 0.72042 0.71718 -0.00324 -0.45%

200 10 0.78167 0.76402 -0.01765 -2.26%

200 10 0.78167 0.76402 -0.01765 -2.26%

225 2 0.51926 0.50704 -0.01221 -2.35%

225 3 0.56121 0.57548 0.01427 2.54%

225 4 0.58971 0.59393 0.00422 0.72%

225 5 0.61493 0.60444 -0.01050 -1.71%

225 6 0.63076 0.61945 -0.01131 -1.79%

225 7 0.64911 0.64281 -0.00630 -0.97%

225 8 0.66393 0.67440 0.01046 1.58%

225 9 0.71505 0.71390 -0.00115 -0.16%

225 10 0.76950 0.75946 -0.01003 -1.30%

250 2 0.51985 0.50698 -0.01287 -2.48%

250 2 0.51985 0.50698 -0.01287 -2.48%

250 3 0.56138 0.57517 0.01379 2.46%

250 3 0.56138 0.57517 0.01379 2.46%

250 4 0.59345 0.59358 0.00013 0.02%

250 4 0.59345 0.59358 0.00013 0.02%

250 5 0.61682 0.60376 -0.01305 -2.12%

250 5 0.61682 0.60376 -0.01305 -2.12%

250 6 0.63780 0.61845 -0.01934 -3.03%

250 6 0.63780 0.61845 -0.01934 -3.03%

250 7 0.64493 0.64121 -0.00373 -0.58%

250 7 0.64493 0.64121 -0.00373 -0.58%

250 8 0.67207 0.67230 0.00024 0.03%

250 8 0.67207 0.67230 0.00024 0.03%

250 9 0.70640 0.71087 0.00447 0.63%

250 9 0.70640 0.71087 0.00447 0.63%

250 10 0.77584 0.75573 -0.02010 -2.59%

250 10 0.77584 0.75573 -0.02010 -2.59%

275 2 0.51752 0.50693 -0.01058 -2.04%

275 3 0.55937 0.57515 0.01577 2.82%

275 4 0.59138 0.59329 0.00190 0.32%

275 5 0.61676 0.60328 -0.01348 -2.18%

275 6 0.63281 0.61762 -0.01519 -2.40%

275 7 0.64964 0.64006 -0.00958 -1.47%

275 8 0.67316 0.67055 -0.00262 -0.39%

275 9 0.68846 0.70864 0.02018 2.93%

275 10 0.77737 0.75261 -0.02476 -3.18%

Table 7. Experimental Results for β Value Predictor, Part 2 of 3

Partitioning Multivariate Polynomial Equations via Vertex Separators 33

n d true alpha prediction abs error rel error

300 2 0.52122 0.50689 -0.01432 -2.75%

300 2 0.52122 0.50689 -0.01432 -2.75%

300 3 0.56230 0.57491 0.01261 2.24%

300 3 0.56230 0.57491 0.01261 2.24%

300 4 0.59187 0.59304 0.00117 0.20%

300 4 0.59187 0.59304 0.00117 0.20%

300 5 0.61697 0.60280 -0.01416 -2.30%

300 5 0.61697 0.60280 -0.01416 -2.30%

300 6 0.63364 0.61691 -0.01673 -2.64%

300 6 0.63364 0.61691 -0.01673 -2.64%

300 7 0.64519 0.63891 -0.00629 -0.97%

300 7 0.64519 0.63891 -0.00629 -0.97%

300 8 0.66775 0.66905 0.00130 0.20%

300 8 0.66775 0.66905 0.00130 0.20%

300 9 0.70033 0.70647 0.00614 0.88%

300 9 0.70033 0.70647 0.00614 0.88%

300 10 0.76241 0.74995 -0.01245 -1.63%

300 10 0.76241 0.74995 -0.01245 -1.63%

325 2 0.51807 0.50686 -0.01121 -2.16%

325 3 0.55842 0.57491 0.01648 2.95%

325 4 0.59119 0.59282 0.00163 0.28%

325 5 0.61698 0.60245 -0.01453 -2.35%

325 6 0.62845 0.61630 -0.01215 -1.93%

325 7 0.64417 0.63808 -0.00609 -0.95%

325 8 0.65269 0.66777 0.01508 2.31%

325 9 0.67750 0.70485 0.02735 4.04%

325 10 0.76182 0.74767 -0.01415 -1.86%

350 2 0.52064 0.50683 -0.01381 -2.65%

350 3 0.56135 0.57472 0.01337 2.38%

350 4 0.59039 0.59264 0.00224 0.38%

350 5 0.61795 0.60209 -0.01586 -2.57%

350 6 0.63350 0.61577 -0.01774 -2.80%

350 7 0.64644 0.63720 -0.00923 -1.43%

350 8 0.68034 0.66665 -0.01369 -2.01%

350 9 0.69314 0.70321 0.01006 1.45%

350 10 0.78845 0.74567 -0.04277 -5.43%

375 2 0.51925 0.50680 -0.01245 -2.40%

375 3 0.55949 0.57473 0.01523 2.72%

375 4 0.58862 0.59247 0.00385 0.65%

375 5 0.61111 0.60182 -0.00929 -1.52%

375 6 0.63147 0.61530 -0.01617 -2.56%

375 7 0.63348 0.63657 0.00310 0.49%

375 8 0.65084 0.66566 0.01482 2.28%

375 9 0.67054 0.70197 0.03143 4.69%

375 10 0.74747 0.74391 -0.00355 -0.48%

400 2 0.52050 0.50677 -0.01372 -2.64%

400 3 0.56082 0.57457 0.01376 2.45%

400 4 0.59339 0.59233 -0.00106 -0.18%

400 5 0.61481 0.60153 -0.01327 -2.16%

400 6 0.63355 0.61488 -0.01867 -2.95%

400 7 0.65569 0.63588 -0.01981 -3.02%

400 8 0.65274 0.66479 0.01205 1.85%

400 9 0.67628 0.70068 0.02440 3.61%

400 10 0.75910 0.74235 -0.01675 -2.21%

Table 8. Experimental Results for β Value Predictor, Part 3 of 3

