
Non-delegatable Identity-based Designated Verifier Signature

Qiong Huang∗ Willy Susilo† Duncan S. Wong∗

Abstract

Designated verifier signature is a cryptographic primitive which allows a signer to convince a
designated verifier of the validity of a statement but in the meanwhile prevents the verifier from
transferring this conviction to any third party. In this work we present the first identity-based
designated verifier signature scheme that supports non-delegatability, and prove its security in the
random oracle model, based on computational Diffie-Hellman assumption. Our scheme is perfectly
non-transferable, and its non-delegatability follows the original definition proposed by Lipmaa et
al. [21].

Keywords. designated verifier signature, non-delegatability, non-transferability, random oracle model,
signature scheme

1 Introduction

Designated verifier signature (DVS in short), introduced by Jakobsson, Sako and Impagliazzo [15],
aims to allow an entity say, Alice, to prove that she has signed a document Θ to a specific entity say,
Bob, in such a way that Bob is convinced about the fact but, unlike conventional digital signatures,
he could not transfer this conviction to any third party. This property is called non-transferability,
which is accomplished by empowering Bob the ability of producing signatures indistinguishable from
those generated by Alice. After receiving a signature from Alice, Bob is sure about that Alice made
the signature as he didn’t do so. However, any third party only believes that either Alice or Bob is
the signer of the signature. Designated verifier signature has applications in e-voting [15], deniable
authentication [29] and etc.

1.1 Related Work

Since the introduction of DVS [15], there have been a lot of work on it and its variants. Jakobsson et al.
[15] proposed a stronger version of DVS, strong designated verifier signature (SDVS), in which only the
verifier can verify the validity of a signature designated to him since the verification requires the secret
key of the designated verifier. Steinfeld et al. [25] proposed the notion of universal designated verifier
signature (UDVS), in which the holder of a signature can designate any third party as the designated
verifier for checking the validity of the signature, but in the meanwhile, the designated verifier still
could not convince others the source of the signature. Laguillaumie et al. studied other variants of
designated verifier signatures [19, 18], i.e. multi-designated verifiers signatures and etc. Later, Zhang
et al. [34] proposed a UDVS scheme secure without random oracles based on Boneh-Boyen short

∗Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.,
China. Emails: csqhuang@student.cityu.edu.hk, duncan@cityu.edu.hk.

†School of Computer Science and Software Engineering, University of Wollongong, Northfields Avenue, New South
Wales 2522, Australia. Email: wsusilo@uow.edu.au.

1



signature [3]. Independently, Laguillaumie et al. [17] and Huang et al. [13] proposed (almost) the
same UDVS schemes based on Waters signature [30], which are also secure without random oracles.
Vergnaud [28] gave another two constructions of UDVS, one based on Boneh-Boyen short signature [3]
and secure without random oracles but requiring a strong assumption named knowledge-of-exponent
assumption [7], and the other based on Boneh-Lynn-Shacham signature [5] and secure in the random
oracle model [2]. Recently Yu et al. [31] gave a construction of universal designated verifier proxy
signature scheme without random oracles, which is essentially an extension of the schemes in [17, 13].

Besides the aforementioned designated verifier signature schemes and variants in the conventional
public key infrastructure (PKI) setting, another interesting and practically useful variant is identity-
based designated verifier signature (IBDVS in short), which is a combination of DVS and identity-based
cryptography [24]. Susilo et al. [27] studied DVS schemes in the identity-based setting and proposed
an identity-based SDVS scheme based on bilinear Diffie-Hellman (BDH) assumption. Huang et al. [14]
also proposed a strong DVS scheme and an identity-based SDVS scheme based on Diffie-Hellman key
exchange, which has very short signature size. Recently, Kang et al. [16] proposed another identity-
based SDVS scheme which is secure based BDH assumption, which was later shown to be forgeable
[9, 11]. Cao et al. [6] proposed the first identity-based (universal) designated verifier signature scheme
that is secure without the random oracles. Their scheme is based on Paterson-Schuldt identity-based
signature scheme [22], which in turn is based Waters signature scheme [30]. In essence, their scheme
is the two-user version of the identity-based ring signature scheme proposed by Au et al. [1].

Lipmaa, Wang and Bao [21] considered a new type of attacks against DVS schemes, i.e. delegata-
bility attack, in which Alice or Bob could release a derivative of their secret key to any third party say
Teddy, so that Teddy can produce signatures on behalf of Alice using this derivative. They proposed
the notion of non-delegatability, which basically requires that if one produces a valid signature with re-
spect to Alice and Bob, it must ‘know’ the secret key of either Alice or Bob. Though non-delegatability
is debatable, as argued in [21], it is still desired in many applications, such as the hypothetical e-voting
protocol, and the online subscription system. Susilo et al. showed the reasonableness of the definition
of non-delegatability and further refined the definition of it in [26].

Many DVS schemes have been shown to be vulnerable to delegatability attacks in [21, 20]. Besides
those scheme, it is also easy to show that the identity-based schemes recently proposed in [14, 6, 16]
are also vulnerable to this kind of attacks. In 2006, Huang et al. [12] proposed the first UDVS scheme
which supports non-delegatability. However, their scheme is in the PKI setting. Recently, Zhang et al.
[33] proposed an identity-based SDVS scheme which is claimed to be non-delegatable. But a recent
work [32] showed that their scheme is actually delegatable. Therefore, there is still no DVS scheme in
the identity-based setting that is provably non-delegatable.

1.2 Our Work

In this work we propose the first non-delegatable identity-based designated verifier signature scheme,
which is based on Gentry et al.’s hierarchical identity-based encryption scheme [10]. Though our
scheme does not outperform other schemes like [33, 6] in terms of signature size, our proposal is
provably non-delegatable according to the original definition proposed by Lipmaa et al. [21], i.e. there
is an extractor which, given a forger algorithm, can extract the secret key of either the signer or the
verifier in the black-box manner. In addition, we show that our scheme is existentially unforgeable
in the random oracle model assuming the hardness of CDH problem, which is a widely used and
well studied number-theoretic assumption. Our construction of IBDVS also enjoys perfectly non-
transferability in the sense that the signer’s signatures can be perfectly simulated by the designated
verifier.

2



1.3 Paper Organization

In the next section we review the definition of IBDVS and its security model. Some mathematical
background is given in Sec. 3. Our IBDVS scheme is then proposed in Sec. 4. We also prove its
security with respect to the given security definitions in the random oracle model in Sec. 5, along
with a comparison between our scheme and other existing schemes. The paper is concluded in Sec. 6.

2 Identity-based Designated Verifier Signature

A designated verifier signature scheme [15] consists of four (probabilistic) polynomial-time algorithms,
one for key generation, one for the signer to sign with respect to a designated verifier, one for the
designated verifier to simulate the signer’s signature, and the other for verification. Identity-based
designated verifier signature (IBDVS) is the analogy of DVS in the identity-based setting. Below is
the formal definition of it.

Definition 2.1 (IBDVS). An identity-based designated verifier signature scheme consists of five (prob-
abilistic) polynomial-time algorithms, described as below:

* Setup: The algorithm takes as input a security parameter 1k, and outputs a master key pair for
the PKG, i.e. (mpk, msk) ← Setup(1k), where mpk is published, and msk is kept secret by the
PKG.

* Extract: The algorithm takes as input the master secret key msk and an identity id which can
be a string of arbitrary length, and outputs the corresponding secret key uskid for the user with
identity id, i.e. uskid ← Extract(msk, id).

* Sign: The algorithm takes as input the secret key of the signer uskS, the identity of the designated
verifier idV , the master public key mpk and a message M ∈ {0, 1}∗, and outputs a signature σ,
i.e. σ ← Sign(uskS , idV , mpk,M).

* Ver: The algorithm takes as input a message M , the identities of the signer and the verifier, i.e.
idS , idV , the master public key mpk and a purported signature σ, and outputs a bit b, which is
1 for acceptance or 0 for rejection, i.e. b← Ver(M, idS , idV , mpk, σ).

* Sim: The algorithm takes as the secret key of the verifier uskV , the identity of the signer
idV , the master public key mpk and a message M , and outputs a signature σ, i.e. σ ←
Sim(uskV , idS , mpk,M).

The completeness requires that for any (mpk, msk) ← Setup(1k), any idS , idV ∈ {0, 1}∗, uskS ←
Extract(msk, idS), uskV ← Extract(msk, idV ), any message M ∈ {0, 1}∗, it holds that

Pr[Ver(M, idS , idV , mpk, Sign(uskS , idV , mpk,M)) = 1] = 1, and

Pr[Ver(M, idS , idV , mpk, Sim(uskV , idS , mpk,M)) = 1] = 1

2.1 Unforgeability

Roughly speaking, unforgeability requires that any third party other than the signer and the designated
verifier, cannot forge a signature on behalf of the signer with non-negligible probability. Formally, it is
defined by the following game, Gu, played between a game challenger C and a probabilistic polynomial-
time adversary A:

3



1. C runs the Setup algorithm to generate a master key pair (mpk, msk), and invokes A on input
mpk.

2. In this phase, the adversary can issue queries to the following oracles, for polynomial times:

* OE: Given a query id from A, the oracle computes uskid ← Extract(msk, id), and returns
uskid to A.

* OSign: Given a query of the form (idS , idV ,M), the oracle first computes the secret key of
idS as uskS ← Extract(msk, idS), and signs M by computing σ ← Sign(uskS , idV , mpk,M).
It returns σ back to A.

* OSim: Given a query of the form (idS , idV ,M), the oracle first computes the secret key of
idV as uskV ← Extract(msk, idV ), and signs M by computing σ ← Sim(uskV , idS , mpk,M).
It returns σ back to A.

3. Finally, A outputs its forgery, (id∗S , id
∗
V ,M

∗, σ∗). It wins the game if

(a) 1← Ver(M∗, id∗S , id
∗
V , mpk, σ

∗);

(b) A did not query OE on input id∗S and id∗V , and

(c) A did not query OSign and OSim on input (id∗S , id
∗
V ,M

∗).

Definition 2.2 (Unforgeability). An IBDVS scheme is said to be (T, qE, qSign, qSim, ϵ)-unforgeable if
there is no adversary A which runs in time at most T , issues at most qE queries to OE, at most qSign
queries to OSign, at most qSim queries to OSim, and wins the game with probability at lease ϵ.

2.2 Non-Transferability

Non-transferability says that given a message-signature pair (M,σ) which is accepted by the designated
verifier, it is infeasible for any probabilistic polynomial-time distinguisher to tell whether the message
was signed by the signer or the designated verifier, if the distinguisher does not know the signer’s
secret key. Formally, we consider the following definition.

Definition 2.3 (Non-Transferability). An IBDVS scheme is non-transferable if the signature output
by the signer is computationally indistinguishable from that output by the designated verifier, i.e.

{Sign(uskS , idV , mpk,M)} ≈ {Sim(uskV , idS , mpk,M)}

That is, for any probabilistic polynomial-time distinguisher D, for any (mpk, msk) ← Setup(1k), any
identities idS , idV ∈ {0, 1}∗, any message M ∈ {0, 1}∗, let uskS ← Extract(msk, idS) and uskV ←
Extract(msk, idV ), it holds that∣∣∣∣∣Pr

[
σ0 ← Sign(uskS , idV , mpk,M), σ1 ← Sim(uskV , idS , mpk,M)

b
$← {0, 1}, b′ ← D(mpk, msk, idS , idV , σb)

: b′ = b

]
− 1

2

∣∣∣∣∣ < ϵ(k)

where ϵ(k) is a negligible function1 in the security parameter k, and the probability is taken over the
randomness used in Setup, Extract, Sign and Sim, and the random coins consumed by D.

If the two distributions are identical, we say that the IBDVS scheme is perfectly non-transferable.

1A function f : N → N is negligible in the security parameter k if for every polynomial q(·), there exists some K ∈ N
such that for every k > K, f(k) < 1/q(k).

4



Remark 1 : The definition of non-transferability above is actually very strong, in the sense that even
the trusted authority (the PKG) cannot tell correctly that a signature is from the signer or from the
designated verifier, with a probability non-negligibly larger than one-half. One can also define a much
weaker version of non-transferability, by restricting the distinguisher from obtaining the master secret
key.

2.3 Non-Delegatability

Intuitively, non-delegatability requires that to generate a valid signature on a message, one has to
‘know’ the secret key of the signer or the designated verifier. Formally, we consider the following
definition, which is an extension of the definition given in [21] to the identity-based setting.

Definition 2.4 (Non-delegatability). Let κ ∈ [0, 1] be the knowledge error. An IBDVS scheme is
(T, κ)-non-delegatable if there exists a black-box knowledge extractor K that, for every algorithm F ,
satisfies the following condition:

For every (mpk, msk)← Setup(1k), every idS , idV ∈ {0, 1}∗, every uskS ← Extract(msk, idS),
uskV ← Extract(msk, idV ), and every message M ∈ {0, 1}∗, if F produces a valid signature
on M with respect to idS , idV with probability ϵ > κ, (denote this algorithm by FS,V,M ),
then on input M and on oracle access to FS,V,M , K produces either uskS or uskV in ex-
pected time T · (ϵ− κ)−1, without counting the time to make oracle queries. Note that the
probability of F is taken over the choice of its random coins and the choices of the random
oracles.

Remark 2 : We stress that if the IBDVS scheme is provably secure in the random oracle model, all
the adversaries in games of unforgeability, non-transferability and non-delegatability have access to
the random oracles. The definitions of the three security properties are modified accordingly to take
into account the numbers of queries to the random oracles issued by the adversaries.

3 Mathematical Background

(Admissible Pairings): Let G and GT be two cyclic groups of large prime order p. The mapping
e : G×G→ GT is said to be an admissible pairing, if

* Bilinearity : ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;

* Non-degeneracy : ∃u, v ∈ G such that e(u, v) ̸= 1T , where 1T is the identity element of GT ; and

* Computability : there exists an efficient algorithm for computing e(u, v) for any u, v ∈ G.

(CDH Assumption): Let G be a cyclic group of prime order p, and g be a random generator of G.
The computational Diffie-Hellman (CDH) problem is as follows:

Given g, ga, gb for some random a, b
$← Zp, compute gab.

Definition 3.1 (CDH Assumption). We say that the CDH assumption (T, ϵ) holds in G if there is
no probabilistic polynomial-time adversary A that runs in time at most T and

Pr
[
a, b

$← Zp, D ← A(g, ga, gb) : D = gab
]
> ϵ

where the probability is taken over the random choices of a, b ∈ G and the random coins consumed by
A.

5



4 Our Non-delegatable IBDVS

In this section we propose an identity-based designated verifier signature scheme which is non-
delegatable. Before proposing the scheme, we first briefly discuss the difficulty in constructing an
IBDVS scheme.

To the best of our knowledge, all the identity-based (strong) designated verifier signature schemes
use bilinear pairings. These schemes either use a common secret key shared between the signer and
the designated verifier to produce a signature, i.e. [14, 16, 6], thus impossible for one to extract the
user secret key from a signature, or use too many blind factors to hide the user secret key, i.e. [27, 33],
thus infeasible for one to recover the key.

Based on the observation, we employ a different method in constructing IBDVS schemes. Our
scheme is based Gentry-Silverberg HIBE scheme [10], in which there is only one blind factor for
hiding the user secret key. A signature of user with identity id on message M is σ = (S1, S2) =
(H1(id)

α · H2(M)r, gr), where H1(id)
α is the user secret key. A signature of user id is verified as

e(S1, g)
?
= e(H1(id), g

α) · e(H2(M), S2) where gα is the master public key. If we do not include S2 = gr

in the signature, but instead set S2 to be a non-interactive proof of knowledge of the randomness r
showing that S1 is binding to either the signer or the designated verifier, the signature becomes a
designated verifier signature. Moreover, given an adversary which forges a signature, we can run the
extractor of the proof of knowledge to extract the randomness r from S2, and then get the secret key
by removing the factor H2(M)r.

4.1 The Scheme

Our construction of IBDVS works as follows:

* Setup(1k): The PKG chooses two cyclic groups of prime order p of k bits, G and GT , a random

generator g of G, and an admissible pairing e : G × G → GT . It selects at random α
$← Zp,

sets g1 = gα, and selects three collision-resistant hash functions, H1 : {0, 1}∗ → G, H2 : {0, 1}∗ →
G\{1} and H3 : ({0, 1}∗)3 × G × G2

T → Zp, which will be modeled as random oracles in the
security proofs. The master public key is set to be mpk = (g, g1, H1, H2, H3), and the master secret
key is msk = α.

* Extract(msk, id): The secret key of a user with identity id is set to be uskid = H1(id)
α.

* Sign(uskS , idV , mpk,M): To sign a message M with respect to the designated verifier (with
identity idV ), the signer (with identity idS) does as follows:

1. Choose at random r
$← Zp.

2. Set S1 = uskS · H2(M)r. Using r and hash function H3, compute the following proof of
knowledge:

S2 = PK

{
β : e(H2(M), g)β =

e(S1, g)

e(H1(idS), g1)

∨
e(H2(M), g)β =

e(S1, g)

e(H1(idV ), g1)

}
(M)

(1)
where M = (idS , idV ,M, S1). Set σ = (S1, S2). In Sec. 4.2 we give the details in the
generation and verification of S2.

* Ver(M, idS , idV , mpk, σ): After receiving a signature σ = (S1, S2) and a message M from the
signer (with identity idS), the verifier (with identity idV ) checks the validity of the proof of
knowledge S2 with respect to (idS , idV ,M, S1). It accepts if the proof of knowledge is valid,
and rejects otherwise.

6



* Sim(uskV , idS , mpk,M): To simulate a signature on M , the verifier does as the signer, except
that S1 is now computed as S1 = uskV · H2(M)r.

It’s easy to see that the scheme is complete. Details can be found in Sec. 4.2.

Efficiency: In our IBDVS scheme a signature comprises of 1 element of G and 4 elements of Zp.
The signing algorithm and the simulation algorithm involves 3 pairing evaluations, 1 exponentiation
in G and 3 exponentiations in GT . The verification algorithm involves 4 pairing evaluations and 4
exponentiations in GT .

4.2 Details of Generation and Verification of (1)

To generate (1), the signer does as follows:

1. Choose r0, e1, z1
$← Zp.

2. Set R0 = e(H2(M), g)r0 and

R1 =
e(H2(M), g)z1

(e(S1, g)/e(H1(idV ), g1))
e1

3. Set e = H3(idS , idV ,M, S1, R0, R1).

4. Set e0 = e− e1, z0 = r0 + βe0.

The proof of knowledge S2 is set to be S2 = (R0, e0, z0, R1, z1). To shorten the signature, we can set
S2 = (e0, z0, e1, z1). For the sake of the simplicity, we use the former setting of S2 here and in the
security proofs, while using the latter setting in the performance comparison at the end of Sec. 5.

A designated verifier with identity idV can produce an indistinguishable proofs of knowledge
similarly. The difference is to replace the subscripts of the variables above with their complements.

To verify a proof of knowledge S2 = (R0, e0, z0, R1, z1), the verifier does as the following:

1. Compute e1 = H3(idS , idV ,M, S1, R0, R1)− e0.

2. Check if

e(H2(M), g)z0
?
= R0 ·

(
e(S1, g)

e(H1(idS), g1)

)e0

(2)

e(H2(M), g)z1
?
= R1 ·

(
e(S1, g)

e(H1(idV ), g1)

)e1

(3)

It accepts if both of the equations above hold, and rejects otherwise.

The proof of knowledge can be simulated without the knowledge of β efficiently in the random

oracle model. Namely, the simulator randomly selects e0, z0, e1, z1
$← Zp, computes

R0 =
e(H2(M), g)z0

(e(S1, g)/e(H1(idV ), g1))
e0 and R1 =

e(H2(M), g)z1

(e(S1, g)/e(H1(idV ), g1))
e1

and then patches the random oracle H3 with ((idS , idV ,M, S1, R0, R1), e), i.e. setting H3(idS , idV ,M ,
S1, R0, R1) = e. It’s easy to see that the simulated proof also passes the verification above, and

7



the simulated proof is perfectly indistinguishable from a real proof generated by the signer or the
designated verifier.

Moreover, given two valid tuples (R0, e0, z0, R1, z1) and (R0, e
′
0, z

′
0, R1, z

′
1) and two different answers

to the query (idS , idV ,M, S1, R0, R1) returned by the random oracle H3, say e and e′ ̸= e, there is an
efficient algorithm which extracts the secret β from the two tuples.

If e0 ̸= e′0. Let R0 = e(H2(M), g)r0 for some r0 ∈ Zp. From the two instances of Eq. (2) we have
that

z0 = r0 + e0β0 and z′0 = r0 + e′0β0

Then β0 can be obtained by computing

β0 =
z0 − z′0
e0 − e′0

It can be verified that
e(S1, g)

e(H1(idS), g1)
= e(H2(M), g)β0

On the other hand, if e−e0 ̸= e′−e′0, the extractor can extract another β1 ∈ Zp from (e1, z1, e
′
1, z

′
1)

as above, such that
e(S1, g)

e(H1(idV ), g1)
= e(H2(M), g)β1

5 Security Proofs

Informally, since the group G is of prime order p, H2(M)r generates the whole group. Therefore,
H1(idS)

α is perfectly hidden by H2(M)r. That is, the distribution of H1(idS)
αH2(M)r is identical to

that of H1(idV )
αH2(M)r. In addition, the proof of knowledge S2 is perfectly witness indistinguishable.

In a consequence, the signature produced by the signer is perfectly indistinguishable from that by the
verifier.

To see the non-delegatability, we can construct an extractor which controls the output of the
random oracle H2. The validity of a signature indicates that either the secret key of idS or that of idV
is contained in S1. If an adversary outputs a valid signature with respect to idS , idV , the extractor
can first extract the witness r encapsulated in S2 by rewinding the adversary to some previous status,
and then remove the factor H2(M)r from S1.

Theorem 5.1. If CDH assumption (T, ϵ) holds in G, the IBDVS scheme above is (T ′, qH1 , qH2 , qH3 , qE,
qSign, qSim, ϵ

′)-unforgeable, where

T ′ = Θ(T ), ϵ′ <
10e2q2E

√
qH3

9
·
√
ϵ

and e is the natural logarithm.

Proof. Given an adversary A against the unforgeability of the IBDVS scheme with success probability
ϵ′, we use it to build another algorithm B for solving the CDH problem with success probability ϵ.
Given a random instance of CDH problem, (g, g1 = ga, g2 = gb), B aims to find gab. It works as
follows:

Setup : B chooses three collision-resistant hash functions H1, H2 and H3 as required by the scheme,
and invokes the adversary A on input mpk = (g, g1, H1, H2, H3). Note that the master secret key
msk = logg g1 = a is unknown to B.

8



Qeury : B simulates the following oracles for A by maintaining three hash tables, HT1, HT2 and
HT3.

* H1 Query : Given a query id, if there is an entry starting with id in table HT1, B retrieves
the corresponding value H1(id) from HT1, and returns it. Otherwise, B tosses a coin c so

that Pr[c = 1] = δ which will be determined later. If c = 0, B chooses at random t
$← Zp,

and sets H1(id) = gt2; otherwise, it chooses at random t
$← Zp, and sets H1(id) = gt. In

either, B stores the tuple (id, H1(id), c, t) into table HT1, and returns H1(id) back to A.
* H2 Query : Given an input M , if there is an entry starting with it in table HT2, B retrieves

the corresponding answer H2(M) from the table and returns it. Otherwise, B returns
m← H2(M). It stores (M, H2(M)) into table HT2, and returns the hash value.

* H3 Query : Given an input (idS , idV ,M, S1, R0, R1), if there is an entry starting with it in
table HT3, B retrieves the corresponding answer H3(idS , idV ,M, S1, R0, R1) from the table

and returns it. Otherwise, B chooses at random e
$← Zp, and sets H3(idS , idV ,M, S1, R0, R1)

= e. It stores ((idS , idV ,M, S1, R0, R1), e) into table HT3, and returns e.

* Extract Query : Given an identity id, B retrieves the corresponding tuple (id, H1(id), c, t)
from HT1. If c = 1, B computes the user secret key uskid = gt1 and returns it to A. If
c = 0, B aborts.

* Sign Query : Given a query (idS , idV ,M), B retrieves the tuple (idS , H1(idS), c, t) from
HT1. We distinguish two cases:

– If c = 1, B generates the user secret key of idS as in the simulation of Extract or-
acle, and then computes the signature σ by running the Sign algorithm on input
(uskS , idV , mpk,M).

– If c = 0, B randomly selects S1
$← G. Note that there exists some r (unknown to B)

such that S1 = H1(idS)
a·H2(M)r. B then simulates the proof of knowledge S2 in the way

specified in Sec. 4.2. In case there is a collision when patching the oracle H3, B aborts.
This event occurs only with probability at most ((qSign + qSim)

2 + (qSign + qSim)qH3)/p.
B returns σ = (S1, S2) to A.

* Sim Query : This kind of queries can be answered by B in a similar way with that above.
The difference is that B generates the signature from the point of the designated verifier.

Forge : Finally, A outputs its forgery, (id∗S , id
∗
V ,M

∗, σ∗) where σ∗ = (S∗
1 , S

∗
2 = (R∗

0, e
∗
0, z

∗
0 , R

∗
1, z

∗
1)).

Suppose that A wins the game. (Otherwise B aborts.) B retrieves the two tuples (id∗S , H1(id
∗
S),

cS , tS) and (id∗V , H1(id
∗
V ), cV , tV ) from HT1. If cS = 1 or cV = 1, B aborts. It also retrieves the

tuple (M∗, H2(M
∗)) from HT2, and the tuple ((id∗S , id

∗
V ,M

∗, S∗
1 , R

∗
0, R

∗
1), H3(id

∗
S , id

∗
V , S

∗
1 ,M

∗,
R∗

0, R
∗
1)) from HT3. Let e∗ = H3(id

∗
S , id

∗
V ,M

∗, S∗
1 , R

∗
0, R

∗
1). Next, B rewinds A to the status

of querying oracle H3 on input (id∗S , id
∗
V ,M

∗, S∗
1 , R

∗
0, R

∗
1). It chooses at random e′∗ ̸= e∗ ∈

Zp and answers A with e′∗. B then continues to simulate oracles as above for A. Suppose
that again, A outputs a successful forgery, say (id′∗S , id

′∗
V ,M

′∗, σ′∗) where σ′∗ = (S′∗
1 , S

′∗
2 =

(R′∗
0 , e

′∗
0 , z

′∗
0 , R

′∗
1 , z

′∗
1 )). If (id′∗S , id

′∗
V ,M

′∗, S′∗
1 , R

′∗
0 , R

′∗
1 ) ̸= (id∗S , id

∗
V ,M

∗, S∗
1 , R

∗
0, R

∗
1), B aborts.

Otherwise, it runs the extractor (described in Sec. 4.2) to extract the secret randomness r∗ from
(S∗

2 , S
′∗
2 ).

* If e(H2(M
∗), g)r

∗
= e(S∗

1 , g)/e(H1(id
∗
S), g1), we have that S∗

1 = H1(id
∗
S)

a · H2(M∗)r
∗
. Recall

that H1(id
∗
S) = gtS2 . B then can recover gab from S∗

1 by computing

gab =

(
S∗
1

H2(M∗)r∗

) 1
tS

9



* If e(H2(M
∗), g)r

∗
= e(S∗

1 , g)/e(H1(id
∗
V ), g1), we have that S∗

1 = H1(id
∗
V )

a · H2(M∗)r
∗
. Recall

that H1(id
∗
V ) = gtV2 . B then can recover gab from S∗

1 by computing

gab =

(
S∗
1

H2(M∗)r∗

) 1
tV

In either case B obtains the solution to the given instance of CDH problem.

Probability Analysis: In the process of solving the CDH problem above, there are some cases in
which B aborts.

1. A collision occurs when patching the oracle H3. This does not happen with probability at least
1− ((qSign + qSim)

2 + (qSign + qSim)qH3)/p.

2. A issues an Extract query on input an identity id whose corresponding c value (stored in HT1)
is 0. This event does not happen with probability δqE .

3. Conditioned on that B does not abort in the simulation of oracles, A fails in outputting its
forgery. This event does not happen with probability ϵ′ due to the perfect simulation of the
oracles.

4. Conditioned on that B does not abort in the simulation of oracles and A succeeds in outputting
its forgery, either of the two identities, i.e. id∗S , id

∗
V , has the corresponding c value being 1. This

does not happen with probability (1− δ)2.

Therefore, in the first run of A, B does not abort with probability at least

ε ≥
(
1−

(qSign + qSim)
2 + (qSign + qSim)qH3

p

)
· δqE · (1− δ)2 ·

(
ϵ′ − 1

p

)
where 1/p stems from that A obtains H3(id

∗
S , id

∗
V ,M

∗, S∗
1 , R

∗
0, R

∗
1) without querying the oracle H3. A

similar analysis with that in [23, 4] shows that with probability at least

ϵ ≥ ε2

16qH3
=

(
1− (qSign+qSim)

2+(qSign+qSim)qH3
p

)2
· (δqE · (1− δ)2)2 ·

(
ϵ′ − 1

p

)2

16qH3

A outputs a successful forgery that satisfies the aforementioned conditions, which, together with the
successful output in the first run, enables B to solve the given CDH problem. This probability is
maximized when δ = qE

qE+2 . Thus, we get that

ϵ ≥
(
1−

(qSign + qSim)
2 + (qSign + qSim)qH3

p

)2

·

((
1− 2

qE+2

)qE
·
(

2
qE+2

)2
)2

·
(
ϵ′ − 1

p

)2

16qH3

≈
(
1−

(qSign + qSim)
2 + (qSign + qSim)qH3

p

)2

· 1

qH3 · q4E · e4
·
(
ϵ′ − 1

p

)2

where e is the natural logarithm. Hence,

ϵ′ ≤
e2 · q2E ·

√
qH3(

1− (qSign+qSim)2+(qSign+qSim)qH3
p

) · √ϵ+ 1

p
<

10e2q2E
√
qH3

9
·
√
ϵ

This completes the proof.

10



Remark 3 : In the proof above, hash functions H1 and H3 are modeled as programmable random
oracles, while H2 is modeled as a non-programmable random oracle.

Theorem 5.2. The IBDVS scheme is perfectly non-transferable (see Def. 2.3).

Proof. Note that the first component in a (real or simulated) signature is of the form S1 = usk·H2(M)r

for some r randomly chosen from Zp, where usk is either uskS or uskV . Since the group G is of
prime order, H2(M) is a generator of G, and thus H2(M)r perfectly hides the secret key. Therefore,
uskS ·H2(M)r and uskV ·H2(M)r are identically distributed. Given an S1, there do exist r, r′ ∈ Zp such
that S1 = uskS · H2(M)r = uskV · H2(M)r

′
. On the other hand, the proof of knowledge S2 is perfectly

witness indistinguishable, thus revealing no information about the randomness r used in the signature
generation. In a consequence, the signature σ = (S1, S2) is information-theoretically hiding.

Theorem 5.3. Assume that for some identities idS , idV ∈ {0, 1}∗ and some message M ∈ {0, 1}∗,
the algorithm F can produce valid signatures in time T and with probability ϵ. Then the IBDVS scheme
is (56T/ϵ, 1/p)-non-delegatable (see Def. 2.4) in the random oracle model.

Proof. Assume that ϵ > κ = 1/p, where 1/p is the probability that F guesses correctly the hash value
without asking the random oracle H3. There is an extractor K that, on input σ and black-box oracle
access to algorithm F , extracts the secret key of either the signer or the designated verifier.

Let FS,V,M be a forger with input (idS , idV ,M). Consider two runs of FS,V,M on the same random
input to FS,V,M . In both runs, K executes FS,V,M step-by-step, except that K returns different random
values (e versus e′) as the answer to the hash query H3(idS , idV ,M, S1, R0, R1). Since S1, R0, R1 are in
the input to the hash function, their values must be equal in both runs. If both signatures, i.e. (S1, S2 =
(R0, e0, z0, R1, z1)) and (S1, S

′
2 = (R0, e

′
0, z

′
0, R1, z

′
1)), are valid, one can call the extractor of the proof

of knowledge (described in Sec. 4.2) to extract the randomness r from (S2, S
′
2). If e(H2(M), g)r =

e(S1, g)/e(H1(idS), g1), one can find uskS = S1/H2(M)r. If e(H2(M), g)r = e(S1, g)/e(H1(idV ), g1), one
can find uskV = S1/H2(M)r.

Now assume that Rewind is an algorithm that given oracle access to FS,V,M , in time TR produces
two different valid signatures (S1, S2 = (R0, e0, z0, R1, z1)) and (S′

1, S
′
2 = (R′

0, e
′
0, z

′
0, R

′
1, z

′
1)) on M

with respect to idS , idV , such that (S1, R0, R1) = (S′
1, R

′
0, R

′
1). Then one can compute uskS or uskV

with probability 1. Thus, given that algorithm Rewind runs in expected time 56/ϵ, we have proven
the theorem.

The algorithm Rewind works as the following. We are given an algorithm FS,V,M which returns
a valid signature with probability at least ϵ, where the probability is taken over the random coins
used by FS,V,M and the random outputs of H3 (and H1, H2). Let H be a matrix with a row for each
possible set of random coins for FS,V,M , and one column for each possible H3 value e. Write 1 in an
entry if FS,V,M outputs a valid signature with corresponding random choices and the H3 value, and
0 otherwise. Using FS,V,M as a black box, we can probe any entry in H, and the goal is to find two
1’s in the same row. Note that ϵ equals the fraction of 1-entries in the matrix H. Using an algorithm
from [8], Rewind can find such 1-entries in time 56/ϵ.

Disavowability: Since our IBDVS is perfectly non-transferable, given a signature, the signer is unable
to disavow that it is the real signer, though it is possible for the signer to confirm the fact.

Comparison. In Table 1 we give a comparison of our scheme with those existing identity-based
(S)DVS schemes, where Sign-Cost and Ver-Cost indicate the dominating computational cost in
signature generation and verification, respectively; NT indicates the level of non-transferability; ND
indicates if the scheme is non-delegatable under the definition of [21]; RO indicates if the security of
the scheme is in the random oracle model; and Assump indicates the underlying assumption that the

11



unforgeability of the scheme is based on. Note that in columns Sign-Cost and Ver-Cost by ‘P ’, ‘E’
and ‘ET ’ we denote the pairing evaluation, exponentiation in group G and exponentiation in group
GT , respectively; and that the question mark ‘?’ in the column Non-Dele means that it is unknown
whether the scheme is non-delegatable.

Scheme Type Signature-Size Sign-Cost Ver-Cost NT ND RO Assump

Ours IBDVS 1G+ 4Zp 3P + 1E + 3ET 4P + 4ET perfect
√ √

CDH
[6] IBUDVS 4G 6E 5P perfect × × CDH
[14] IBSDVS 1H 1P 1P perfect ×

√
Gap-BDH

[16] IBSDVS 2GT 2P + 2E + 1ET 1P + 1ET perfect ×
√

BDH
[27] IBSDVS 1G+ 1Zp + 1Z∗

p 1P + 1ET + 2E 2P + 2ET perfect ?
√

BDH

[33] IBSDVS 3G 4E 3P perfect ×
√

BDH

Table 1: Comparison between our scheme and other existing schemes.

6 Conclusion

In this work we proposed the first efficient non-delegatable identity-based designated verifier signature
scheme. The scheme was proved to be existentially unforgeable based on CDH assumption in the
random oracle model, and be perfectly non-transferable. Though our scheme has slightly larger
signature size and requires more computational cost than previous works, it is the first identity-
based DVS scheme which is provably non-delegatable according the definition proposed by Lipmaa et
al. [21].

References

[1] M. H. Au, J. K. Liu, T. H. Yuen, and D. S. Wong. Id-based ring signature scheme secure in the
standard model. In IWSEC06, volume 4266 of LNCS, pages 1–16. Springer, 2006.

[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In CCS, pages 62–73. ACM, 1993.

[3] D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT04, volume
3027 of LNCS, pages 56–73. Springer, 2004.

[4] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO04, volume 3152 of
LNCS, pages 41–55. Springer, 2004.

[5] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J. Cryptology,
17(4):297–319, 2004. A preliminary version appeared in Asiacrypt 2001.

[6] F. Cao and Z. Cao. An identity based universal designated verifier signature scheme secure in
the standard model. The Journal of Systems and Software, 82(4):643–649, 2009.

[7] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks. In
CRYPTO91, volume 576 of LNCS, pages 445–456. Springer, 1991.

[8] I. Damg̊ard and E. Fujisaki. An integer commitment scheme based on groups with hidden order.
In ASIACRYPT02, volume 2501 of LNCS, pages 125–142. Springer, 2002.

12



[9] H. Du and Q. Wen. Attack on Kang et al.’s identity-based strong designated verifier signature
scheme. Cryptology ePrint Archive, Report 2008/297, 2008. http://eprint.iacr.org/.

[10] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASIACRYPT02, volume
2501 of LNCS, pages 548–566. Springer, 2002.

[11] Q. Huang, G. Yang, D. S. Wong, andW. Susilo. Identity-based strong designated verifier signature
revisited. http://www.cs.cityu.edu.hk/∼qhuang/papers/ibsdvs.pdf, 2009.

[12] X. Huang, W. Susilo, Y. Mu, and W. Wu. Universal designated verifier signature without dele-
gatability. In ICICS06, volume 4307 of LNCS, pages 479–498. Springer, 2006.

[13] X. Huang, W. Susilo, Y. Mu, and W. Wu. Secure universal designated verifier signature without
random oracles. International Journal of Information Security, 7(3):171–183, 2007.

[14] X. Huang, W. Susilo, Y. Mu, and F. Zhang. Short designated verifier signature scheme and its
identity-based variant. International Journal of Network Security, 6(1):82–93, 2008.

[15] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applications. In
EUROCRYPT96, volume 1070 of LNCS, pages 143 – 154. Springer, 1996.

[16] B. Kang, C. Boyd, and E. Dawson. A novel identity based strong designated verifier signature
scheme. The Journal of Systems and Software, 82(2):270–273, 2009.

[17] F. Laguillaumie, B. Libert, and J.-J. Quisquater. Universal designated verifier signatures without
random oracles or non-black box assumptions. In SCN06, volume 4116 of LNCS, pages 63–77.
Springer, 2006.

[18] F. Laguillaumie and D. Vergnaud. Designated verifier signatures: Anonymity and efficient con-
struction from any bilinear map. In SCN04, volume 3352 of LNCS, pages 105–119. Springer,
2004.

[19] F. Laguillaumie and D. Vergnaud. Multi-designated verifiers signatures. In ICICS04, volume
3269 of LNCS, pages 495–507. Springer, 2004.

[20] Y. Li, H. Lipmaa, and D. Pei. On delegatability of four designated verifier signatures. In ICICS05,
volume 3783 of LNCS, pages 61–71. Springer, 2005.

[21] H. Lipmaa, G. Wang, and F. Bao. Designated verifier signature schemes: Attacks, new security
notions and a new construction. In ICALP05, volume 3580 of LNCS, pages 459–471. Springer,
2005.

[22] K. G. Paterson and J. C. Schuldt. Efficient identity-based signature secure in the standard model.
In ACISP06, volume 4058 of LNCS, pages 207–222. Springer, 2006.

[23] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J.
Cryptology, 13(3):361–396, 2000.

[24] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO84, pages 47–53,
1984.

[25] R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal designated-verifier signatures. In
ASIACRYPT03, volume 2894 of LNCS, pages 523–542. Springer, 2003.

13

http://eprint.iacr.org/
http://www.cs.cityu.edu.hk/~qhuang/papers/ibsdvs.pdf


[26] W. Susilo, W. Wu, Y. Mu, and X. Huang. On the ‘non-delegatability’ notion of designated verifier
signature schemes. In IWAP06, LNCS. Springer, 2006.

[27] W. Susilo, F. Zhang, and Y. Mu. Identity-based strong designated verifier signature schemes. In
ACISP04, volume 3108 of LNCS, pages 313–324. Springer, 2004.

[28] D. Vergnaud. New extensions of pairing-based signatures into universal designated verifier signa-
tures. In ICALP06, volume 4052 of LNCS, pages 58–69. Springer, 2006.

[29] B. Wang and Z. Song. A non-interactive deniable authentication scheme based on designated
verifier proofs. Information Sciences, 179(6):858–865, 2009.

[30] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor,
EUROCRYPT05, volume 3494 of LNCS, pages 114–127. Springer, 2005.

[31] Y. Yu, C. Xu, X. Zhang, and Y. Liao. Designated verifier proxy signature scheme without random
oracles. Computers and Mathematics with Applications, 57(8):1352–1364, 2009.

[32] J. Zhang and Q. Geng. On the security of group signature scheme and designated verifier signature
scheme. In NAS08, pages 351–358. IEEE, 2008.

[33] J. Zhang and J. Mao. A novel id-based designated verifier signature scheme. Information Sciences,
178(3):766–773, 2008.

[34] R. Zhang, J. Furukawa, and H. Imai. Short signature and universal designated verifier signature
without random oracles. In ACNS05, volume 3531 of LNCS, pages 483–498. Springer, 2005.

14


	Introduction
	Related Work
	Our Work
	Paper Organization

	Identity-based Designated Verifier Signature
	Unforgeability
	Non-Transferability
	Non-Delegatability

	Mathematical Background
	Our Non-delegatable IBDVS
	The Scheme
	Details of Generation and Verification of (1)

	Security Proofs
	Conclusion

