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Abstract. In this paper a new structural attack on the McEliece/Nieder-
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choices in polynomial time with high probability.
Keywords. Public key cryptography, McEliece encryption, Niederre-
iter encryption, error-correcting codes, generalized Reed-Solomon codes,
Sidelnikov-Shestakov attack

1 Introduction

Public key cryptosystems based on the difficulty of the (syndrome) decoding
problem for linear codes have been discussed since the work by McEliece [1] in
1977. Although the McEliece cryptosystem remains unbroken till today (for suit-
able parameter choices) in practice it could not stand up to encryption schemes
such as RSA or schemes based on the discrete logarithm problem. This is partly
due to the large (public) key sizes needed in the McEliece scheme. For example
in terms of security a RSA public key of size 1024 bit is comparable to a 69 kB
key in the McEliece scheme [2].

In order to reduce key sizes several alternative approaches for code based
cryptography were proposed. In most of these approaches the Goppa code which
is used in the McEliece cryptosystem is replaced by other codes which al-
low polynomial-time bounded distance decoding such as Reed-Muller codes,
Gabidulin codes or generalized Reed-Solomon codes. However most of these basic
variants turn out to be insecure [3–5].

Recently Berger and Loidreau presented a public key scheme based on sub-
codes of generalized Reed-Solomon codes [6]. It was partially cryptanalyzed in
[7] where it was shown that the secret key can be recovered in manageable time
if the subcode is chosen too large. However the attack quickly becomes infeasible
for smaller subcodes. In the present paper we describe a new structural attack
on the Berger-Loidreau scheme which works for almost all practical parameter
choices. It is shown that even if relatively few (linear independent) codewords
of a generalized Reed-Solomon code are given the complete code can be recov-
ered with high probability which allows the reconstruction of the secret code
parameters.



In the subsequent sections 2 and 3 we introduce some basic properties of
generalized Reed-Solomon codes and the cryptosystems using those. In section 4
we review some known attacks and in section 5 we continue with the description
of the new attack. A (preliminary) experimental analysis is given in section 6.

2 Basic facts about generalized Reed-Solomon codes

Let F be a finite field with q elements. We will always work with a field of
characteristic 2, i.e. q = 2e. For a matrix M let <M> denote the linear code
generated by the rows of M . Let k, n ∈ N, k ≤ n, α = (α1, . . . , αn) ∈ Fn, x =
(x1, . . . , xn)∈ (F\{0})n, where the αi are pairwise distinct. The generalized Reed-
Solomon code (or GRS code) GRSn,k(α, x) is a linear code of length n and
dimension k over F given by the generator matrix

Gα,x =


x1 x2 · · · xn

x1α1 x2α2 . . . xnαn

...
. . .

x1α
k−1
1 x2α

k−1
2 · · · xnαk−1

n

 , (1)

i.e. GRSn,k(α, x) =<Gα,x>. Typically we will assume that GRSn,k(α, x) has
full length, i.e. n = q. It is easy to see that GRSn,k(x, α) consists exactly of
those codewords c ∈ Fn for which a (unique) polynomial fc ∈ F[x] of degree at
most k − 1 exists such that

c = (x1fc(α1), x2fc(α2), . . . , xnfc(αn)).

We call fc the polynomial associated to c. GRS codes allow efficient error correc-
tion. Up to bn−k

2 c errors can be corrected using the Berlekamp-Welch algorithm
[8]. By applying so called list-decoding techniques even up to n −

√
(k − 1)n

errors can be corrected [9] in polynomial time.
A useful fact about GRS codes is stated in the following

Proposition 1. Let α, x be defined as above. Then

GRSn,k(α, x) = GRSn,k((aα1 + b, . . . , aαn + b), (cx1, . . . , cxn))

for all a, b, c ∈ F, a, c 6= 0.

A proof can be found in [10]. It follows for example that α1 and α2 can be fixed
to arbitrary distinct values in F.

The dual of a GRS code is also a GRS code:

Proposition 2. Let α, x be defined as above and u := (u1, . . . un) where ui :=
x−1

i

∏
j 6=i(αi − αj)−1. Then the dual code of GRSn,k(α, x) is given by

GRSn,k(α, x)⊥ = GRSn,n−k(α, u) .

Proof. See [10]. ut



3 Cryptosystems based on GRS codes

Niederreiter was the first to suggest a public-key scheme based on GRS codes
[11]. It can be described as follows:

Key generation. Given n, k (k < n) randomly choose α, x with above prop-
erties and let Gα,x be the generator matrix (1) of the corresponding GRS code.
Furthermore choose a random nonsingular k × k-matrix H over F and compute
M := H · Gα,x. Let t := bn−k

2 c. The public key ist given by (M, t), the private
key by (α, x).

Encryption. Suppose Alice wants to send a message b ∈ Fk to Bob using his
public key (M, t). Therefore she chooses a random e ∈ Fn with Hamming weight
at most t and computes the ciphertext v := b ·M + e.

Decryption. Using α, x Bob applies the Berlekamp-Welch algorithm to the
received ciphertext v obtaining b′ := b ·M . Let M−1 be a right side inverse on
M . The plaintext is given by b = b′ ·M−1.

As we will see below the Niederreiter scheme is insecure due to the Sidelnikov-
Shestakov attack.

The Berger-Loidreau cryptosystem [6] is a variant of the Niederreiter scheme
which resists the Sidelnikov-Shestakov attack:

Key generation. Let n, k, α, x and Gα,x be as above and l ∈ N≤k. Now choose
a random (k− l)× k-matrix H over F of rank k− l and compute M := H ·Gα,x.
Let t := bn−k

2 c. The public key ist given by (M, t), the private key by (α, x).
Encryption. The plaintext b ∈ Fk−l is encrypted by choosing a random e ∈ Fn

with Hamming weight at most t and computing the ciphertext v := b ·M + e.
Decryption. Decrpytion works the same way as in the Niederreiter scheme.

The Berlekamp-Welch algorithm is applied to v giving b′ := b ·M . Finally b can
be calculated from b′ as above.

Obviously in the Berger-Loidreau scheme the public matrix M is the gen-
erator matrix of a subcode of GRSn,k(α, x). In [6] the example parameters
(n, k, l) = (255, 133, 4) are given. In this case the work factor of a decoding
attack is > 2100.

4 Existing Attacks

4.1 The Sidelnikov-Shestakov attack

The Niederreiter cryptosystem based on GRS codes was broken by Sidelnikov
and Shestakov [5]. They show that the parameters α, x of the chosen GRS code
can be recovered from the public key in polynomial time. The basic idea of their
attack can be described as follows. Let M = HGα,x be the public key. In a first
step α is reconstructed. Compute the echelon form E(M) of M :

E(M) =


1 0 · · · 0 b1,k+1 · · · b1,n

0 1 · · · 0 b2,k+1 · · · b2,n

. . .
...

...
0 · · · 0 1 bk,k+1 · · · bk,n





Consider the i-th row bi of E(M) and the associated polynomial fbi
. Since the

entries bi,1, . . . , bi,i−1 and bi,i+1, . . . , bi,k of bi are equal to zero and fbi has degree
at most k − 1 the polynomial must have the form

fbi
(y) = cbi

·
k∏

j=1,j 6=i

(y − αj) (2)

with cbi
∈ F\{0}. Now pick two arbitrary rows of E(M), for example b1 and b2,

and divide the entries of the first row by the corresponding entries in the second
row as long as these are different from zero. Using (2) we get

b1,j

b2,j
=

xj · fb1(αj)
xj · fb2(αj)

=
cb1(αj − α2)
cb2(αj − α1)

(3)

for j = k + 1, . . . , n. By Proposition 1 we can assume that α1 = 0 and α2 = 1.
Since the b1,j

b2,j
are known, the αj can uniquely be reconstructed from (3), if cb1

cb2

is guessed correctly. It remains to find α3, . . . , αk. Therefore we replace the row
b2 by bi (i = 3, . . . , k) in the above equation (3) and get

b1,j

bi,j
(αj − α1) =

cb1

cbi

(αj − αi). (4)

Here cb1
cbi

and αi are unknown, but by letting j = k + 1, k + 2 for example, those
values can uniqely be reconstructed by solving a system of two linear equations.

In total α can be calculated using O(k2n) arithmetic operations in F.
Now in a second step x (and the matrix H as a byproduct) can be recovered.

First find a non-trivial solution c = (c1, . . . , ck+1) of the linear system

M ′ · c = 0,

where M ′ is the k×(k+1)-matrix consisting of the k+1 leftmost columns of the
public key M . Let G′ be the k × (k + 1)-matrix consisting of the k + 1 leftmost
columns of Gα,x. Because of M ′ = HG′ c also solves

G′ · c = 0

and therefore the first k + 1 entries x1, . . . , xk+1 of x solve
c1α

0
1 c2α

0
2 · · · ck+1α

0
k+1

c1α
1
1 c2α

1
2 · · · ck+1α

1
k+1

...
. . .

...
c1α

k−1
1 c2α

k−1
2 · · · ck+1α

k−1
k+1




x1

x2

...
xk+1

 = 0.

By assuming x1 = 1 the solution is uniquely determined. Now the matrix G′

is completely known. Let G′′ be the matrix consisting of the first k columns
of G′ and M ′′ the matrix consisting of the first k columns of M . We have
H = M ′′(G′′)−1. Finally G = H−1M (and thereby the remaining xi) can be
computed. The second step can be completed with O(k3 + k2n) operations in F.
The attack works if 2 ≤ k ≤ n− 2.

The above attack proves the following



Proposition 3. Let 2 ≤ k ≤ n − 2 and α, x be as above. There are at most
q(q − 1)2 pairwise distinct vectors α′ ∈ Fn for which a x′ ∈ Fn exists, s.t.

GRSn,k(α, x) = GRSn,k(α′, x′). (5)

If α1 and α2 are fixed, the number of different α′ for which x′ with (5) exists is
upper bounded by (q − 1).

Proof. Equation (3) shows that αk+1, . . . , αn are uniquely determined if α1, α2,
cb1
cb2

are given (since the GRS code has minimum weight n − k + 1 we know that
b1,j

b2,j
6= 0). Furthermore, if αk+1, αk+2 are uniquely determined, so are α3, . . . , αk

according to equation (4). The proof is complete by noting that there are at
most q(q − 1)2 different choices for (α1, α2,

cb1
cb2

).

4.2 An Attack on the Berger-Loidreau cryptosystem

The attack on the Berger-Loidreau cryptosystem presented in [7] can be consid-
ered as an extension of the above method by Sidelnikov and Shestakov. We give
a brief overview. Let E(M) = [1k−l|B] = (ti,j) be the echelon form of the public
matrix M of the Berger-Loidreau scheme. Generalizing the above argument for
every pair (c, d) ∈ {1, . . . , k− l}2 there exist polynomials Pc, Pd ∈ F[x] of degree
≤ l such that

tc,j

td,j
=

(αj − αd)Pc(αj)
(αj − αc)Pd(αj)

(6)

for all j = k − l + 1, . . . , n with td,j 6= 0. Now let d = k − l =: m and define

P̃c(x) := (x− αm)Pc(x), Q̃c(x) := (x− αc)Pm(x),

s.t. (6) becomes
tc,j

td,j
=

P̃c(αj)
Q̃c(αj)

.

Suppose (for a moment) that αm+1, . . . , αm+2l+3 are known. In this case the
polynomials P̃c, Q̃c can be calculated by solving a linear system. (The polynomi-
als are uniqely determined if we assume that they are relatively prime and Q̃c is
monic.) By extracting the linear factors of Q̃c, where c ranges over 1, . . . ,m− 1
the α1, . . . , αm−1 can be recovered. By appropriately permuting the columns of
M and applying the just described method to the permuted matrix the remain-
ing αm, αm+2l+4, . . . , αn can be found easily. Once α is found, x can easily be
determined: since <M> is a subcode of GRSn,k(α, x) it follows from Proposition
2 that

Mi,1α
j
1u1 + · · ·+ Mi,nαj

nun = 0

for all i = 1, . . . , k− l and j = 0, . . . , n− k− 1, where M = (Mi,j). So the values
u1, . . . , un can be recovered by solving a system of (k− l)(n−k) linear equations.
Typically (k− l)(n−k) > n so (u1, . . . , un) is expected to be uniqely determined
if we require u1 = 1. Finally x can be computed from (u1, . . . , un).



However since αm+1, . . . , αm+2l+3 are unknown (we can assume αm+1 = 0,
αm+2 = 1) all (q−2) · . . . ·(q−2l−2) possible assignments have to be checked. In
total the procedure to reconstruct α can be completed with O(m2n + q2l+1ml3)
arithmetic operations in F, so is feasible if l and q are small. However if for
example q ≥ 64 and l ≥ 8 the attack becomes infeasible in practice.

The described method can be improved by finding two codewords in <M>
which have many (i.e. more than m − 2) zero entries in common positions. For
details we refer to [7].

5 An improved attack on the Berger-Loidreau
cryptosystem

Let M = H · Gα,x be the public matrix of the Berger-Loidreau cryptosystem,
which is the generator matrix of a (k− l)-dimensional subcode of GRSn,k(α, x).
We present an algorithm to recover the secret parameters α, x from M which is
feasible even for larger l).

Let r1, . . . , rm be the rows of M and f1, . . . , fm (m = k−l) be the polynomials
associated to those rows. For two row vectors a, b ∈ Fn we define the component-
wise product a ∗ b ∈ Fn to be

a ∗ b := (a1 · b1, a2 · b2, . . . , an · bn).

For our attack we distinguish two cases. First we consider the case 2k−1 ≤ n−
2. Then the attack works as follows. Calculate ri∗rj for all i, j ∈ {1, . . . ,m}, i ≤ j.
Obviously ri ∗ rj has the form

ri ∗ rj = (x2
1fi(α1) · fj(α1), . . . , x2

nfi(αn) · fj(αn)),

and since deg fi · fj ≤ 2k − 2 the code C generated by the ri ∗ rj is a subcode
of GRSn,2k−1(α, x′), where x′ = (x2

1, . . . , x
2
n). If C = GRSn,2k−1(α, x′) then the

Sidelnikov-Shestakov attack can be applied to an generator matrix of C returning
x′, α. If char F = 2 the vector x can be computed from x′ directly (by applying
the inverse Frobenius operator), otherwise x can be recovered from M with the
method described in section 4.2.

Otherwise if C 6= GRSn,2k−1(α, x′) we consider the attack to have failed.
Since the running time of the attack of section 4.2 largely depends on l = k−m at
least we can apply 4.2 to a generator matrix of C if 0 < 2k−1− dim C < l. Note
however that for not too large l the probability that C equals GRSn,2k−1(α, x′)
seems to be very high (see section 6).

For typical instances of the Berger-Loidreau cryptosystem we may have the
case 2k − 1 > n − 2. The above attack does not work here in general since
the Sidelnikov-Shestakov algorithm cannot be applied or the code generated
by the ri ∗ rj may be equal to Fn. However the idea of multiplying codewords
componentwise can be applied to a shortened code of <M>.



Definition 1. Let C ⊂ Fn be a linear code of length n and dimension k and let
d ∈ N≤k. The shortened code Sd(C) consists of all codewords (s1, . . . , sn−d) ∈
Fn−d such that

(0, . . . , 0︸ ︷︷ ︸
d times

, s1, . . . , sn−d) ∈ C.

Given the generator matrix GC = [1k|T ] of C in echelon form (where T denotes
a k × (n− k)-matrix) a basis of Sd(C) can easily be obtained by extracting the
n− d rightmost components of the last k − d rows of GC .

Now let M again be the public (m× n)-matrix of the Berger-Loidreau cryp-
tosystem and S be a generator matrix of Sd(<M>). For a row s = (s1, . . . sn−d)
of S we have

(0, . . . , 0, s1, . . . , sn−d) ∈ GRSn,k(α, x),

so s can be written

s = (xd+1f(αd+1), . . . , xnf(αn)),

where f(x) ∈ F[x] has the form

f(x) = g(x)
d∏

j=1

(x− αj)

with deg g(x) ≤ k − d − 1. Letting z := (xd+i

∏d
j=1(αd+i − αj))i=1,...n−d and

α′ := (αd+1, . . . , αn) obviously we have

Sd(<M>) =<S>⊂ GRSn−d,k−d(α′, z).

if d can be chosen such that d ≤ m− 1 and 2(k − d)− 1 ≤ n− d− 2 the above
algorithm can be applied to S which in case of success delivers at most q(q−1)2

candidates for α′ according to proposition 3 (q − 1 candidates at most if we
require α′n−1 = 1, α′n = 0 for example). Let T be the set of these solutions. Once
T is known the remaining α1, . . . , αd can be computed with similiar methods as
described in [7]. In the following an alternative approach is given.

Let m(1), . . . ,m(n) be the column vectors of matrix M and π : {1, . . . , n} →
{1, . . . , n} be a permutation. Let Mπ denote the matrix obtained from M by
permuting the columns according to π, i.e. Mπ = (m(π(1)), . . . ,m(π(n))). Simil-
iarly for y := (y1, . . . , yn) ∈ Fn we define yπ := (yπ(1), . . . , yπ(n)). Obviously we
have

<Mπ>⊂ GRSn,k(απ, xπ). (7)

For simplicity we assume 2d ≤ n − 3 (for typical instances d can be chosen
this way, however the following method can easily be extended to the general
case). Now let π : {1, . . . , n} → {1, . . . , n} be given by

π(i) =

d + i, 1 ≤ i ≤ d
i− d, d + 1 ≤ i ≤ 2d

i, 2d + 1 ≤ i ≤ n.





Apply the above algorithm to Mπ, i.e. compute a generator matrix S′ of Sd(<
Mπ >) and multiply every pair of rows of S′ componentwise. Because of (7)
we find a set T ′ of candidates for (απ(d+1), . . . , απ(n)). A solution for α can be
reconstructed by finding σ ∈ T and τ ∈ T ′ with σd+1 = 0, σd+2 = 1 and σi = τi

for i = d + 1, . . . , n− d and setting

αi = τi for 1 ≤ i ≤ d,
αi = σi−d for d + 1 ≤ i ≤ 2d,
αi = σi−d = τi−d for 2d + 1 ≤ i ≤ n.

The above algorithm is summarized in Algorithms 1 and 2. The procedure
SidelnikovShestakovAlpha(P) in line 13 of algorithm 1 represents the Sidelnikov-
Shestakov algorithm and returns the set of all possible α for a given generator
matrix P of a GRS code.

Algorithm 1 partAlpha(d,M)
Input: d, generator matrix M with m = k − l rows s.t. <M>⊂ GRSn,k(α, x)
Output: Set A of candidates for (αd+1, . . . , αn)

1: G = (Gi,j)← echelon form of M
2: S ← (Gi,j)i=d+1,...,m

j=d+1,...,n

3: s1, . . . , sm−d ← rows of S
4: r ← 1
5: for i← 1, . . . , m− d do
6: for j ← i, . . . , m− d do
7: pr ← si ∗ sj

8: r ← r + 1
9: end for

10: end for
11: P ← generator matrix of the code spanned by the pr

12: if dim <P>= 2(k − d)− 1 then
13: A← SidelnikovShestakovAlpha(P)
14: return A
15: else
16: return FAIL
17: end if

6 Analysis and Experimental Results

Let us consider the case 2k ≤ n−1. The above attack is successful if the products
ri∗rj generate the code GRSn,2k−1(α, x′). The number of different products is at
most m(m+1)

2 . If l is chosen small (as it is suggested in [6]) then m(m+1)
2 > 2k−1.

For randomly chosen subcodes it is expected that indeed the above GRS code
is generated. In this case the algorithm takes O(m4n + k2n + m2(n − k)2n)



Algorithm 2 Reconstruction of α and x

Input: Public generator matrix M of the Berger-Loidreau scheme with m = k− l rows
and n columns

Output: Parameters α, x, s.t. <M>⊂ GRSn,k(α, x)

1: d← 2k − n + 2
2: if d > m− 1 then
3: return FAIL
4: end if
5: if d < 0 then
6: d← 0
7: end if
8: A1 ← partAlpha(d,M)
9: if d = 0 then

10: α← random element of A1

11: end if
12: if d > 0 then
13: for i← 1, . . . , n do
14: if 1 ≤ i ≤ d then
15: π(i)← d + i
16: end if
17: if d + 1 ≤ i ≤ 2d then
18: π(i)← i− d
19: end if
20: if 2d + 1 ≤ i ≤ n then
21: π(i)← i
22: end if
23: end for
24: A2 ← partAlpha(d, Mπ)
25: Find (σ, τ) ∈ A1 ×A2 with σd+1 = 0, σd+2 = 1, σi = τi for i = d + 1, . . . , n− d
26: for i← 1, . . . , n do
27: if 1 ≤ i ≤ d then
28: αi ← τi

29: end if
30: if d + 1 ≤ i ≤ n then
31: αi ← σi−d

32: end if
33: end for
34: end if
35: X ← solution space of the linear system

Mi,1α
j
1u1 + · · ·+ Mi,nαj

nun = 0

for i = 1, . . . , m and j = 0, . . . , n− k.
36: (u1, . . . , un)← random nonzero element of X
37: for i← 1, . . . , n do
38: xi ← (ui

Q
j 6=i(αi − αj))

−1

39: end for
40: return α, x



operations in F in the worst case, i.e. we have a polynomial running time in the
code length n.

In case 2k > n− 1 the attack is sucessful if there is a d such that

2k − n + 1 ≤ d ≤ m− 1. (8)

and the si ∗ sj , where si, sj are the rows of the generator matrix S of the
(permuted) shortened code, generate the codes GRSn−d,k−d(α′, x′) respectively
GRSn−d,k−d(απ, xπ). A necessary condition for this is

(m− d)(m− d + 1)
2

≥ 2(k − d)− 1. (9)

In this case we need O((m − d)4n + (k − d)2n + n3 + m2(n − k)2n) operations
for the complete attack (assuming q = n).

The above attack was implemented in MAGMA and verified experimentally.
To this end 100 random instances of the public key for four different parameter
sets were created. It turned out that for all 400 created instances the private
key could be reconstructed. The average times tα and tx to reconstruct the
vectors α and x respectively are given in table 1. (Experiments were made using
MAGMA V2.11-6 on a 1.83 GHz Core 2 Duo machine.) The first line in table
1 represents the suggested parameters in [6]. The results clearly show that even
if the dimension m of the subcode is small the parameters of the GRS code
can easily be obtained.1 For most practical parameter sets the scheme of [6] is
insecure.

Table 1. Running times of the attack

q n k m tα (sec) tx (sec)

28 256 133 129 337 209
28 256 126 45 176 105
27 128 60 16 23 10
27 128 70 34 40 14

However it is not difficult to construct instances of the Berger-Loidreau
scheme where the above attack fails in the sense that GRSn,2k−1(α, x) can-
not be completely generated. For example let k < n−3

2 , b, c ∈ N with 1 < c < k

and b(b−1)
2 < c. Let M be an instance of the public matrix with rows mi where

the polynomials associated to the mi have the form

fi(x) = ai(x)g(x) + ri(x)

with i = 1, . . . ,m (m < k) for a fixed g(x) where deg g(x) = c, deg ai(x) ≤
k − c− 1, deg ri(x) < c and

rb(x) = rb+1(x) = . . . = rm(x) = 0.

1 Note also that small m are insecure due to possible decoding attacks.



We have
fi · fj = aiajg

2 + (airj + ajri)g + rirj .

Since there are at most b(b−1)
2 different rirj 6= 0 the subspace of F[x] generated

by the fifj cannot cover all possible remainders mod g, which means the fifj

cannot generate the linear space F2k−2[x] of all polynomials over F of degree at
most 2k − 2 and thus the mi ∗mj cannot generate GRSn,2k−1(α, x′).

7 Conclusion and Future Work

We presented an new attack on the Berger-Loidreau public key cryptosystem
which allows the reconstruction of the private key and gave experimental evi-
dence of its correctness. The presented attack is much more efficient than previ-
ously known structural attacks. It is possible to construct instances of the scheme
which resist the attack however it seems doubtful that these are secure.

Finally we make some remarks on possible implications to the security of the
original McEliece scheme [1]. The original McEliece cryptosystem is one of the
few unbroken code-based public key schemes. It is analogous to the Niederreiter
scheme presented in section 3 where the GRS code is replaced by a binary
irreducible Goppa code. This type of code belongs to the class of alternant
codes. More specifically let n := 2e, (α1, . . . , αn) a permutation of the elements
of F := GF (n) and G(x) ∈ F[x] an irreducible polynomial. Then the binary
linear code given by

GF (2)n ∩GRSn,k((α1, . . . , αn), (G(α1), . . . , G(αn)),

where k := n−deg G, is called binary irreducible Goppa code. So given a (scram-
bled) generator matrix M of such a code (which represents the public key of the
McEliece scheme), M can be considered as a generator matrix of a subcode of a
GRS code. However the attack of section 5 fails in this case, since typically we
have for the dimension m of the Goppa code

m ≈ n− e · deg G = 2k − n− (e− 2) deg G.

As (e − 2) deg G > 0 there is no suitable d with (8). Of course another reason
is that the component-wise products of the rows of M are elements of GF (2)n,
so they cannot generate a non-trivial GRS code in Fn. There seems to be no
straightforward way to generalize the attack to this case, however a more detailed
analysis of the attack in this respect remains part of future work.
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