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Abstract

We consider the computation of cube roots in finite fields. For the compu-
tation of square roots in finite fields, there are two typical methods; the
Tonelli-Shanks method [9, 12] and the Cipolla-Lehmer method [4, 6]. The
former can be extended easily to the case of r-th roots, which is called
the Adleman-Manders-Miller method [1], but it seems to be difficult to
extend the latter to more general cases. In this paper, we propose two
explicit algorithms for realizing the Cipolla-Lehmer method in the case
of cube roots for prime fields Fp with p ≡ 1 (mod 3). We implement these
methods and compare the results.
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1 Introduction

Solving algebraic equations over finite fields is one of the most popular
topics in the computational algebra. The typical equations are in the form
xr = a, given a natural integer r(≥ 2) and an element a in the base field.
For square roots (i.e., r = 2), there exist two well-known methods; the
Tonelli-Shanks method [9, 12] and the Cipolla-Lehmer method [4, 6]. The
former can be extended easily to the case of r-th roots, which is called
the Adleman-Manders-Miller method [1], but it seems to be difficult to
extend the latter to more general cases. In this paper, we propose two
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explicit algorithms for realizing the Cipolla-Lehmer method in the case
of cube roots for prime fields Fp with p ≡ 1 (mod 3). More precisely, we
describe two methods for constructing irreducible polynomials of degree
three satisfying some conditions to apply the Cipolla-Lehmer method. We
implement these methods and compare the results.

The remainder of this paper is organized as follows: In Section 2, we
describe the Tonelli-Shanks algorithm and the Cipolla-Lehmer algorithm
for square roots computation. In Section 3, we consider the cube root
versions of the Tonelli-Shanks method and the Cipolla-Lehmer method,
and propose two algorithms of constructing irreducible polynomials of
degree three which we need in the Cipolla-Lehmer method. In Section 4,
we implement these methods, and compare the results. In Section 5, we
give a conclusion and future works.

2 The computation of square roots in finite fields

In this section, we introduce two algorithms of computing square roots in
finite fields, that is, the Tonelli-Shanks algorithm [9, 12] and the Cipolla-
Lehmer algorithm [4, 6].

Let p be a prime and q a power of p, and Fq denote a finite field with
q elements.

In the case of p = 2, there exists a unique square root for each a in
Fq, which can be computed easily as a

q
2 . So we assume that p is odd.

2.1 Tonelli-Shanks algorithm

The Tonelli-Shanks algorithm is described in Table 1 ([9, 12], or [7]):
Since this algorithm searches a quadratic non-residue (Step 2), it is in

a class of randomized algorithms. Its complexity is O(v2(q − 1)(log q)3),
where v2(q − 1) denotes the maximum non-negative integer e such that
2e|(q − 1). Although the worst time complexity is O((log q)4), some im-
provements with complexities O((log q)3) have been proposed in the case
where v2(q − 1) is small ([2, 8], or [7]).

2.2 Cipolla-Lehmer algorithm

The Cipolla-Lehmer algorithm is described in Table 2 ([4, 6], or [7]):
From the same reason as the Tonelli-Shanks algorithm, the Cipolla-

Lehmer algorithm is also in a class of randomized algorithms. Its com-
plexity is O((log q)3), which does not depend on the exponent of 2 in q−1,
unlike the Tonelli-Shanks algorithm.



Table 1. The Tonelli-Shanks algorithm

Input: A quadratic residue a in Fq

with odd characteristic.
Output: A square root of a.

Step 1: Compute the integers s, t
such that q − 1 = 2st with t odd.

Step 2: Select a quadratic non-residue b in Fq.
Compute c = bt and r = at.

Step 3: (Computation of the square root of (at)−1, say h.)
h← 1, c← c−1

for i = 1 to s− 1

Compute d = r2s−i−1
.

if d ̸= 1, then h← h · c, r ← r · c2.
c← c2.

end for

Step 4: Return a
t+1
2 · h.

Table 2. The Cipolla-Lehmer algorithm

Input: A quadratic residue a in Fq

with odd characteristic.
Output: A square root of a.

Step 1: Select an element b such that
b2 − 4a is a quadratic non-residue in Fq.

Step 2: Let f(x) be the polynomial x2 − bx + a

Step 3: Return x(q+1)/2 (mod f(x)).

3 The computation of cube roots in finite fields

In this section, we consider the computation of cube roots in prime fields
Fp with p ≡ 1 (mod 3). We assume p ≡ 1 (mod 32) because efficient
methods are proposed for the other cases [3]. All algorithms which we
describe in this section are in a class of randomized algorithms because
we need a cubic non-residue in Fp. We remark that a non-zero element a

in Fp is a cubic non-residue if and only if a
p−1
3 ̸≡ 1 (mod p), and in that

case, a
p−1
3 is a primitive cube root of unity in Fp.



3.1 The Tonelli-Shanks based algorithm

The Tonelli-Shanks method for square roots computation was extended
to the general r-th roots computation by Adleman, Manders and Miller
[1]. We describe the algorithm for the case of cube roots in Table 3.

Table 3. The cube root computation based on the Tonelli-Shanks algorithm

Input: A cubic residue a in Fp

Output: A cube root of a.

Step 1: Compute the integers s, t
such that p− 1 = 3st with t = 3k ± 1 .

Step 2: Select a cubic non-residue b in Fp.
Compute c = bt and r = at.

Step 3: (Computation of the cube root of (at)−1, say h.)

h← 1, c′ ← c3s−1
, c← c−1.

for i = 1 to s− 1

Compute d = r3s−i−1
.

if d = c′, then h← h · c, r ← r · c3.
else if d ̸= 1 (equivalently, d = c′2),

then h← h · c2, r ← r · (c3)2.
c← c3.

end for

Step 4: r ← ak · h.
if t = 3k + 1, then r ← r−1.
Return r.

As in the case of quadratic roots, the complexity of the algorithm
(Table 3) is depend on the value v3(p − 1) as well as on the size of log p.

3.2 The Cipolla-Lehmer based algorithm

To extend the Cipolla-Lehmer method to the cube roots computation, we
need irreducible polynomials of degree three satisfying some conditions.
More precisely, given a cubic residue a in Fp, we have to construct an
irreducible monic polynomial f(x) of degree three with coefficients in Fp

and constant term −a. Once we find such an f(x), we can compute a

cube root of a as x
p2+p+1

3 (mod f(x)) because we have f(x) = (x−α)(x−
αp)(x − αp2

) for a root α ∈ Fp3 of f(x).



Let f(x) be a polynomial of degree three with coefficients in Fp. Then
we have

f(x): irreducible ⇐⇒ f(x) has no factor of degree one. (1)

Since
∏

a∈Fp
(x − a) = xp − x, we also have

f(x): irreducible ⇐⇒ gcd(f(x), xp − x) = 1. (2)

We call the search of irreducible polynomials of degree three based on
the fact (2) ”the original method”. In the original method, we choose a
random polynomial f(x) in the form x3 + βx − a with β ∈ Fp and see
whether gcd(f(x), xp − x) = 1.

In the remainder of this section, we describe two improvements for
finding irreducible polynomials of degree three with constant term −a.

Dickson based method: L. E. Dickson described a necessary and
sufficient condition for a cubic polynomial over finite fields of odd char-
acteristic to be irreducible, which is as follows:

Theorem 1 ([5]). Let Fq be a finite field of characteristic ̸= 2, 3, and
f(x) = x3 + ax + b a polynomial over Fq of degree three. Then f(x) is
irreducible if and only if the following two conditions hold:{

(i) D(f) is a quadratic residue in Fq, say D(f) = (32µ)2

(ii) α := 1
2(−b + µ

√
−3) is a cubic non-residue in Fq(

√
−3),

where D(f) = −(4a3 + 27b2) denotes the discriminant of f(x). We see
that the element α is a root of the quadratic equation x2 +bx−3−3a3 = 0.

Since p ≡ 1 (mod 3) in our case, we see that (−3
p ) = (p

3) = 1 by
the quadratic reciprocity law, where ( ·

· ) denotes the Legendre symbol.
Therefore, we have Fp(

√
−3) = Fp.

Based on Theorem 1, we describe an algorithm which we call ”Pro-
posed method 1”, for constructing a polynomial of degree three with con-
stant term −a (Table 4).

Linear transformation based method: We propose another method
to search irreducible polynomials over Fp of degree three, which is based
on the following fact:

f(x): irreducible ⇐⇒ f(x + α): irreducible for any α in Fp. (3)



Table 4. Proposed algorithm 1

Input: A cubic residue a in Fp.
Output: An irreducible monic polynomial

with constant term −a.

Step 1: Choose an element β in Fp at random.
f(x)←− x3 + βx− a.
D(f)←− −(4β3 + 27a2).

Step 2: if D(f) is zero or a quadratic non-residue,
then go to Step 1.

else α←− 1
2
(a + 3−2

√
−3D(f))

(i.e, α: a root of x2 − ax− 3−3β3 = 0).

Step 3: if α is a cubic non-residue,
then return f(x).
else go to Step 1.

We now consider the polynomial in the form f(x) = x3 − α over Fp.
If α is a cubic non-residue, that is, if there exists no element β in Fp such
that β3 = α, then f(x) is irreducible from the fact (1).

Combining this with the fact (3), we propose an algorithm which we
call ”Proposed method 2”, for constructing a polynomial of degree three
with constant term −a (Table 5). We remark that, for Steps 1 and 3, the
number of β’s in Fp such that a+β3 is a cubic non-residue is approximately
2
3p for all sufficiently large p (see Appendix).

Table 5. Proposed algorithm 2

Input: A cubic residue a in Fp.
Output: An irreducible monic polynomial

with constant term −a
or a cube root of a.

Step 1: Choose an element β in Fp at random.
α←− a + β3.

Step 2: if α = 0, then return −β as a cube root of a.

Step 3: if α
p−1
3 ̸= 1, then return (x + β)3 − α

as an irreducible polynomial.
else go to Step 1.



4 Experimental results

In this section, we implement the algorithms for computing cube roots
based on the proposed methods for various cases, which are listed in
Tables 6 – 9. We compute 100 times for each case and list the average
time. For the quadratic roots computation in Step 2 of ”Proposed method
1” (Table 4), we use the Tonelli-Shanks method (Table 1). This implies
that the running time of ”Proposed method 1” depends on the value
v2(p − 1) as well as on the size of log p.

All computations are performed on a 3 GHz Pentium IV with 0.99
Gb RAM. The language is C with Borland C++ compiler 5.5.1 and with
no mathematical library.

If the value v3(p−1) is not so large, the Tonelli-Shanks method is more
efficient than the Cipolla-Lehmer method. But, if the value v3(p − 1) is
large, the Cipolla-Lehmer method is more efficient.

For the Cipolla-Lehmer method, we see that the running time is not
depend on the value v3(p−1) and that the proposed methods 1 and 2 are
about twice faster than the original method. We further observe the fol-
lowing: (i) In the step of finding an irreducible polynomial f(x) of degree
three with a given constant term, the proposed method 2 is more efficient
than the proposed method 1. In our implementations, the average number
of trials for finding f(x) in the proposed method 1 (resp. the proposed
method 2) is about 3 (resp. about 1.5) for a cube root computation. (ii)

For the computation of x
p2+p+1

3 (mod f(x)), the proposed method 1 is
more efficient than the proposed method 2 because f(x) is a trinomial
for the proposed method 1, while f(x) is a quadrinomial for the proposed
method 2.

Table 6. Running time (ms) for Fp with the size of p being 250 bits

the value of v3(p− 1) 2 10 20 30 40 50 60 70 80 90 100

Tonelli-Shanks 3.9 3.4 4.5 7.7 7.2 9.2 12.2 15.1 19.2 23.1 29.2

Cipolla Original 28.4 32.2 18.6 19.4 20.9 19.8 21.9 20.0 21.2 20.5 19.1
-Lehmer Proposed 1 18.0 17.2 12.2 10.3 13.0 12.7 10.5 12.2 12.6 10.6 10.6

Proposed 2 13.6 10.9 10.6 10.3 10.9 10.8 10.8 10.9 10.9 10.9 10.9



Table 7. Running time (ms) for Fp with the size of p being 500 bits

the value of v3(p− 1) 2 20 40 60 80 100 120 140 160 180 200

Tonelli-Shanks 34.5 32.5 35.6 47.8 76.7 102.5 123.4 167.7 207.3 266.9 314.1

Cipolla Original 132.8 140.2 120.1 121.9 125.6 121.9 121.6 120.9 121.6 130.6 127.2
-Lehmer Proposed 1 65.1 77.5 63.6 75.0 78.1 73.7 78.6 74.1 64.4 77.3 74.4

Proposed 2 65.9 66.4 65.5 63.0 65.0 65.0 64.4 65.3 64.4 66.1 64.1

Table 8. Running time (ms) for Fp with the size of p being 750 bits

the value of v3(p− 1) 2 30 60 90 120 150 180 210 240 270 300

Tonelli-Shanks 68.0 75.2 113.6 175.3 269.1 400.3 528.3 720.2 883.1 1142.3 1371.7

Cipolla Original 387.5 361.4 404.4 337.2 347.2 361.1 344.5 371.2 363.1 364.5 330.8
-Lehmer Proposed 1 191.1 216.4 238.4 183.0 185.3 230.5 185.3 220.6 221.7 226.6 217.6

Proposed 2 186.9 186.1 194.1 190.8 189.4 193.9 187.0 187.7 185.9 190.9 188.1

5 Conclusion and future works

In this paper, we considered the computation of cube roots in finite fields
based on the Tonelli-Shanks method and the Cipolla-Lehmer one, and
described the computational procedure for realizing the Cipolla-Lehmer
method in the case of cube roots. More precisely, we proposed two meth-
ods for constructing irreducible polynomials of degree three. We further
implemented these methods and compare them.

We leave the detailed analysis of these methods, for example the theme
whether there exists a deterministic algorithm for cube roots computation
with(out) the Genelized Riemann Hypothesis, and the extension of the
Cipolla-Lehmer method to the general r-th roots computation. These are
our future works.
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Appendix

Unless explicitly stated otherwise, we assume p ≡ 1 (mod 3). In this
appendix, for a cubic residue a in Fp, we consider the number

N := #{x ∈ Fp | x3 + a is a cubic non-residue}.

Let a = g3 with g ∈ Fp. Since x3 + a = g3{(xg−1)3 + 1}, we consider the
number of Fp-rational points C(Fp) on the Fermat curve

C/Fp : x3 + 1 = y3.

Setting x = X
Z and y = Y

Z , we see that C(Fp) contains three points at
infinity [X : Y : Z] = [1 : 1 : 0], [1 : ω : 0], [1 : ω2 : 0], where ω



is a primitive cube root of unity. For x in Fp, the number of y’s in Fp

satisfying x3 + 1 = y3 is as follows:
0 (x3 + 1: cubic non-residue)
1 (x3 + 1 = 0, i.e. x = −1, −ω, −ω2)
3 (x3 + 1: cubic residue)

So we obtain

N = p − {3 + (#C(Fp) − 6)/3} = (p − 1) − #C(Fp)/3.

Since the Fermat curve C/Fp has genus one in the case of p ̸= 3 [11], we
have

p + 1 − 2
√

p ≤ #C(Fp) ≤ p + 1 + 2
√

p

from the Hasse-Weil theorem [11]. Therefore, the number N = (p − 1) −
#C(Fp)/3 is approximately 2

3p for all sufficiently large p.
Finally, we describe the explicit estimation on the number of Fp-

rational points on the projective curve defined by X3 + Y 3 + Z3 = 0,
which comes from Gauss’ Disquisitiones Arithmeticae, Article 358:

Theorem 2 ([10]). We assume p ̸= 3. Let C/Fp be the Fermat curve
defined by X3 + Y 3 + Z3 = 0. We have

#C(Fp) =
{

p + 1 (p ̸≡ 1 (mod 3))
p + 1 + A (p ≡ 1 (mod 3)),

where the rational integer A is chosen so that 4p = A2 + 27B2 with a
rational integer B and A ≡ 1 (mod 3).


