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Abstract. Square is 8-round SPN structure block cipher and its round
function and key schedule have been slightly modified to design building
blocks of Rijndael. Key schedule of Square is simple and efficient but
fully affine, so we apply a related-key attack on it.
We find a 3-round related-key differential trail with probability 2−28,
which have zero differences both on its input and output states, and this
trail is called the local collision in [5]. By extending of this related-key
differential, we construct a 7-round related-key boomerang distinguisher
and successful attack on full round Square. The best attack on Square
have ever been known is the square attack on 6-round reduced variant of
Square.
In this paper, we present a key recovery attack on the full round of
Square using a related-key boomerang distinguisher. We construct a
7-round related-key boomerang distinguisher with probability 2−119 by
finding local collision, and calculate its probability using ladder switch
and local amplification techniques. As a result, one round on top of dis-
tinguisher is added to construct a full round attack on Square which
recovers 16-bit key information with 236 encryptions and 2123 data.
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1 Introduction

The block cipher Square [8] was designed by Joan Daemen, Lars Knudsen,
and Vincent Rijmen and two of them are the designers of Advanced Encryption
Standard (AES) [11]. Since the structure and mathematical logics that used in
both block ciphers Square and AES are similar, so Square is considered as a
predecessor of AES.

Attacks on AES-192 and AES-256 [4–6] have been discussed and those at-
tacks are based on the related-key model [1]. In [5], Biryukov, et al. have shown
successful attacks on the full round AES-192 and AES-256 using a related-key
boomerang distinguisher, where some helpful techniques have been added such
as local collision, Feistel switch, ladder switch, and so on.



2 Bon Wook Koo, Yongjin Yeom, and Junghwan Song

In this paper, we construct a related-key boomerang distinguisher with local
collision and ladder switch techniques to attack the block cipher Square. In
addition, a simple idea local amplification is used to calculate a lower bound to
be increased in the value of the distinguisher’s probability.

Local amplification is based on the fact that the coincidence of differences
at the switching point of both lower trail is enough to construct a related-key
boomerang distinguisher, thus we gather these probabilities of trails so that a
factor of distinguisher’s probability is amplified from 2−14 to 2−7. Therefore,
we get a better estimation for probability of distinguisher which is greater than
2−128.

1.1 Related works

Square is designed under the Wide Trail Strategy to guarantee security against
differential and linear cryptanalysis and the designers of Square have claimed
that 6-round Square is sufficiently secure against differential and linear crypt-
analysis. Also they have given a dedicated attack which is called Square Attack,
and by this attack, at most 6-round Square would be attacked with 272 com-
plexity. There are no more attack results on the block cipher Square so far.

In 2005, the related-key boomernag attack has been applied to several ciphers
KASUMI [3], COCONUT98 [2], IDEA [2], and AES-192/256 [5]. In [3], authors
have given a related key boomerang attack on KASUMI reduced to 6-round
out of 8-round with 34 related-keys and 213 time complexity, and also they
have shown that the full round KASUMI could be attacked with 4 related-
keys and 278.7 time complexity by transforming boomerang attack into chosen
ciphertext/adaptive chosen plaintext attack. Full round COCONUT98 was easily
distinguished by 1 related-key boomerang quartet with 2 related keys in [2] and
the authors presented key recovery attack on 6-round IDEA out of 8.5-round
using related-key boomerang distinguisher with 4 related-key and 251.6 data
complexity.

In 2008, Gorski et al. presented the first related-key boomerang attacks on
reduced round of AES-192 [9]. They gave an attack on 7-round AES-192 with
only 218 chosen plaintext and 267.5 encryptions and extend it to the attack on
9-round AES-192 with 267 chosen plaintext and 2143.33 encryptions.

At last, in 2009, related-key boomerang attacks on full round AES-192 and
AES-256 are presented at ASIACRYPT2009 by Biryukov et, al [5]. They uses
differential trails including local collision and some boomerang switching tech-
niques such as ladder switch, Feistel switch, and s-box switch. Their attack on
AES-192 requires 2176 encryptions and 2123 data and on AES-256 requires 2119

encryptions and data.

2 Description of block cipher SQUARE

The size of block, master key, and round keys of Square are all 128-bit. The fol-
lowings are the different representations of a 128-bit dataX ∈ GF(28)× · · · ×GF(28)︸ ︷︷ ︸

16times

=
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GF(28)16.

X = (x0, x1, ..., x15) =
x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

=
x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

,

where xi and xj,k ∈ GF(28).
Let an irreducible polynomial p be p(x) = x8 + x4 + x3 + x+ 1 over GF(2),

which is the same one to define the finite field GF(28) = GF(2)[x]/〈p(x)〉 as in
AES.

Square is an 8-round SPN block cipher with 9 round keys. The round trans-
formation ρ, which is a composition of four functions such as θ, γ, π, and σ, is
as the following.

ρrki(X) = σrki ◦ π ◦ γ ◦ θ(X).

The θ consists of 4 times of row-wise matrix multiplications over GF(28).
The following 4 × 4 MDS matrix M represent the function θ and is the same
matrix of MixColumns in AES.

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 .

The γ is a byte-wise S-box operation with identical S-boxes. Since no specific
S-box is given in [8], we choose an S-box which is the same as to AES. The
choice of S-box can affect the complexity of our attack. However, every S-box
defined by an affine transformation of inversion over a finite field GF(28) have
the same aspect against our attack, and this kind of S-box is the most wide used
one. Therefore, our assumption does not lose generality. The π is a transposition
of 4× 4 data array and the σ is a round key addition.

The key schedule of Square is quite similar to the key schedule of AES-128.
Adding S-boxes and transposition of round keys are the only modification to the
key schedule of AES-128. Figure 1 shows structure of key schedule of Square.

Let rk0, rk1, · · · , rk8 be nine 128-bit round keys the first round key rk0 be
the master key K. Each i-th round key rki(i = 0, 1, · · · , 8) is regarded as a 4×4
byte array and let rkij represent the j-th row of i-th round key. The round key
generation function ψ generates each row of the (i + 1)-th round key from the
i-th round key as follows.

rki+1
0 = rki0 ⊕ rotl(rki3)⊕ Ci,

rki+1
1 = rki1 ⊕ rki+1

0 ,

rki+1
2 = rki2 ⊕ rki+1

1 ,

rki+1
3 = rki3 ⊕ rki+1

2 .

The byte rotation function, rotl : GF(28)4 → GF(28)4 is defined by

rotl[a0, a1, a2, a3] = [a1, a2, a3, a0],
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rotl C0

C1

C2

                                                  
       
 
 
 
  

rotl

rotl

K = rk0

rk1

rk2

rk3

Fig. 1. Key schedule of Square

and each Ci is a constant generated from the previous constant Ci−1 by the
relation Ci = 2× Ci−1, where C0 = 1 over GF(28). Therefore, the block cipher
Square is represented by the following composition of functions.

SquareK(X) = ρrk8 ◦ ρrk7 ◦ ρrk6 ◦ ρrk5 ◦ ρrk4 ◦ ρrk3 ◦ ρrk2 ◦ ρrk1 ◦σrk0 ◦ θ−1(X).

3 Local Collision of SQUARE

The idea of local collision property is firstly used for cryptanalysis of hash func-
tions [7] and it has been used to attack block ciphers in the related-key attack
model [5].

We find a family of related-key differentials of block cipher Square in which
a local collision occurs as described in Figure 2. Let a symbol represent an

s q g p s

Key schedule round  y

2-28

Fig. 2. A local collision in Square

one byte difference value, then symbols and denote the values 2· and 3·
over GF(28), which are defined by the linear function θ, respectively. Note that
the blank box implies one byte difference whose value is 0.
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By a differential property of the S-box, there are 22 out of 255 possible
nonzero differences , which satisfy the related-key differential depicted in Fig-
ure 2. The following set is the collection of all 22 possible differences in hexadec-
imal forms.

A = {0a, 11, 17, 1d, 20, 3b, 4d, 53, 73, 76, 7c, 87, 9d, a4, a8, ae, c6, d2, d5, e0, ee, fc}.

Throughout this paper, we let denote one byte difference value 0x0a, because
each probability of differential in Figure 2, where each element in the set A
regarded as , is all equal to 2−28. Note that symbols and are calculated
as 0x14 and 0x1e by the matrix M, respectively.

Let Ci be a composition of σ function of i-th round and three following round
functions such as

Ci = ρrki+3 ◦ ρrki+2 ◦ ρrki+1 ◦ σrki .

Then we can construct a trail of 3-round related-key differential denoted by Ci
as described in Figure 3.

In Figure 3, an input difference of Ci is canceled by i-th round key difference
∆rki so that the input difference of the next round function ρrki+2 becomes to
equal to ∆rki+1.

During the procedure that ∆rki+1 is transformed into ∆rki+2 with proba-
bility 1 by the function ψ, ∆rki+1 is transformed into ∆rki+2 with probability
2−28 via the other way induced from the functions θ, γ, and π.

Therefore, the probability of the related-key differential trail of Ci is 2−28, and
it is easy to check that the probability of the the same trail in reverse direction
is also 2−28.

s q g p s

y

2-28

q g ps q g p s

y y

Drki Drki+1 Drki+2 Drki+3

Fig. 3. A 3-round related-key differential trail for Ci

Using the related-key differential trail described above, we construct a 7-
round related-key distinguisher with probability greater than 2−128.

4 Related-key Boomerang Attack

In this section, related-key boomerang attack is explained in briefly together
with additional techniques, such as local amplification and ladder switch.
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4.1 Boomerang Distinguisher and Related-Key Attack Model

A block cipher EK : {0, 1}n → {0, 1}n with an arbitrary key K can be repre-
sented by a composition of two sub-ciphers E0K and E1K , where EK = E1K ◦
E0K . If there exist both differentials (∆P → ∆Y ) for E0K and (∆Y → ∆P ) for
E0−1

K with probability p, and a differential (∇C → ∇Y ) for E1−1
K with proba-

bility q. Then, for a chosen plaintext pair (P1, P2) such that P1 ⊕ P2 = ∆P , the
corresponding plaintext pair (Q1, Q2) calculated by

Q1 = E−1
K (EK(P1)⊕∇C),

Q2 = E−1
K (EK(P2)⊕∇C),

satisfies Q1 ⊕Q2 = ∆P with the boomerang probability p2q2.
In the related-key attack model, attackers need to know or choose relations

between several keys. The relation between keys for this attack is simply differ-
ence. Since the structure of the key schedule of Square is fully linear or affine,
each operation for key schedule preserves difference properties. So, no matter
what a key differential trail is assumed to be used, its probability is always 1.

The related-key boomerang attack uses 2 or more related-keys, and we con-
sider 4 related-keys K1, K2, K3, and K4 for our attack which have the following
relations,

∆K = K1⊕K2 = K3⊕K4,
∇K = K1⊕K3 = K2⊕K4.

The related-key boomerang distinguisher with above related-keys is described
as follows. Assume that both the probabilities of related-key differential (∆P →
∆Y ) for E0∆K and of (∆Y → ∆P ) for E0−1

∆K are p, and the probability of a
related-key differential (∇C → ∇Y ) for E1−1

∇K is q, where the notation E∆K im-
plies a pair of encryption E with related-key pair whose difference is ∆K. Then,
for a chosen plaintext pair (P1, P2) such that P1 ⊕ P2 = ∆P , the corresponding
plaintext pair (Q1, Q2) calculated by

Q1 = E−1
K3(EK1(P1)⊕∇C),

Q2 = E−1
K4(EK2(P2)⊕∇C),

satisfies Q1 ⊕ Q2 = ∆P with the boomerang probability p2q2. Boomerang dis-
tinguisher is a special case of related-key boomerang distinguisher with ∆K =
∇K = 0.

4.2 Additional Techniques

A boomerang distinguisher enables us to estimate the lower bound of probability
that we successfully observe the distinguishing property. We can estimate the
lower bound more precisely by using the following techniques.
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Local Amplification. In E1, contrary to plain boomerang distinguisher, both
output differences E1−1

K1(C1)⊕E1−1
K3(C1⊕∇C) and E1−1

K2(C2)⊕E1−1
K4(C2⊕∇C)

do not need to be equal to a value ∇Y , it is enough that they are equal to each
other to satisfy the following equation,

E1−1
K3(C1 ⊕∇C)⊕ E1−1

K4(C2 ⊕∇C) = ∆Y. (1)

Suppose that E1 is a composition of two sub-functions e0 and e1 such that
E1 = e1 ◦ e0 and there exists a related-key differential trail (∇C → ∇D → ∇Y )
for E1−1

∇K with probability q. Let q̃ denote the probability of differential (∇C →
∇D) for e−1

1 and let r denote the probability of differential (∇D → ∇Y ) for
e−1
0 . Then the probability of differential trail (∇C → ∇D → ∇Y ) is bounded

below by q = q̃ × r.
If there exist other ∇Y0,∇Y1, · · · ,∇Yn−1 with corresponding nonzero proba-

bilities ri(i = 0, 1, · · · , n−1) of differentials (∇D → ∇Yi)(i = 0, 1, · · · , n−1) for
e−1
0 , then we can denote each probability of differential trail (∇C → ∇D → ∇Yi)

by qi = q̃ × ri for i = 0, 1, · · · , n − 1. So the probability that the equation (1)
holds is estimated by the sum of all q2i for i = 0, 1, · · · , n− 1 and we denote this
probability by

q̂2 =
n−1∑
i=0

q2i = q̃2 ×
n−1∑
i=0

r2i .

Therefore, we have the following probability of locally amplified boomerang dis-
tinguisher,

p2q̂2 = p2 × q̃2 ×
n−1∑
i=0

r2i . (2)

Ladder Switch. Briyukov et. al have proposed a technique in [5] which mini-
mizes the number of active S-boxes in a boomerang distinguisher.

They use the parallelism of S-box operations so that some of S-boxes can be
regarded as parts of E0 and the others as parts of E1.

If there exist an S-box which is active when it is regraded as a part of E1,
but not a part of E0, then we define E0 by the previous functions of the substi-
tution layer and the target S-box. And also we define E1 by the rest of S-boxes
other than the target S-box and functions after the substitution layer. Then the
probability of the boomerang distinguisher is independent with the target S-box.

5 The Trails and Related-Key Boomerang Distinguisher

5.1 Related-key differential trails for E0 and E1

A related-key boomerang distinguisher of our attack consists of two similar
related-key differential trails E0 and E1 depicted in Figure 4 and Figure 5.
E0 and E1 are divided so as to apply the ladder switch technique as follows. Let
Si,j be the i-th S-box of the j-th column, where γ is considered as a 4× 4 array
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of S-boxes. In γ of 5-th round, only one S-box S0,1 is included in E0 and others
are included E1, because in the related-key differentials of E0 and E1 that we
use, S0,1 of 5-th round is active in E1 but not active in E0. So we do not pay
probability 2−7 for S0,1 of 5-th round by including the S-box in E0.

We define E0 by S0,1 ◦ θ ◦C1 and we know that the probability of related-key
differential C1 is 2−28. The first row (0x0a, 0x00, 0x00, 0x0a) of output difference
of C1 is transformed into (0x1e, 0x00, 0x14, 0x0a) by the matrix M thus S0,1 of
the last round in E0 is not an active S-box. Therefore, the probability of related-
key differential trail of E0 is still 2−28(see Figure 4), and the probability p in
equation (2) is 2−28. Note that the symbols indicate 8-bit difference values
which is not critical for this attack.

S0,1

1

q

2-28 

C1

DX DY

Fig. 4. related-key differential trail of E0

2-28 

C5g\S0,1 p

ri

e1
ÑCÑDÑYi

Ñyi

Fig. 5. related-key differential trail of E1

Let E1 = C5 ◦π ◦ (γ \S0,1), and e0 = π ◦ (γ \S0,1). Then, we consider E1 as a
composition of two sub-functions e0 and C5 so we apply the local amplification
to calculate the differential probability of E1. Differential trail of E1 proceeds in
reverse direction(see Figure 5). The probability of related-key differential trail
for C−1

5 is 2−28, and we let q̃ be 2−28. We let ∇yi(i = 0, 1, · · · , 255) be the values
of each byte difference for . Since there is only one active S-box S−1

0,0 in e−1
1 ,

the probability of differential trail for e−1
0 equals to the differential probability

of S−1
0,0 . The probabilities of differential (0x0a → ∇yi) by S−1

0,0 are 0 for 128
values of yi, 2−7 for 126 values of ∇yi, and 2−6 for 1 value of ∇yi. If we let
the probability of related-key differential (0x0a→ ∇yi) by ri for each ∇yi then
probability of related-key differential trail from ∇C to ∇Yi by E1−1

∇K is

qi = 2−28 × ri.
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5.2 7-Round related-key Boomerang Distinguisher

As discussed above, p = 2−28 and qi = 2−28 × ri for each ∇Yi. The probabil-
ity which a pair (X1, X2) with difference ∆X is transformed into the output
pair (X3, X4) whose difference is ∆X, through the related-key boomerang dis-
tinguisher depicted in Figure 6 is

p2q̂2 = p2 × q̃2 ×
n−1∑
i=0

r2i = 2−28×2 × 2−28×2 ×
n−1∑
i=0

r2i = 2−112 ×
n−1∑
i=0

r2i .

There are 127 values for∇Yi which have nonzero probabilities ri and among these
∇Yi, 126 values have the probability 2−7 and one value has the probability 2−6.
Therefore, the related-key boomerang quartet (X1, X2, X3, X4) which satisfies
all trails of distinguisher, occurs with the probability

p2q̂2 = 2−112 ×
126∑
i=0

r2i = 2−112 × (2−12 + 126× 2−14) ≥ 2−119,

and we call this quartet as right quartet.

E0K4E0K3

E1K3

X1 X2

X3 X4

C1 C2

C3 C4

Y1 Y2

Y3 Y4

DX

DX

DY

DY

ÑC ÑC

ÑYi ÑYi

p=2-28

p=2-28

q=2-28 q=2-28

E0K1 E0K2

E1K4

E1K2

ri=2-7 ri=2-7

E1K1

TK1

P1

TK2

P2TK3

P3

TK4

P4

~ ~

ÑD ÑD

DP

DQ

Fig. 6. A 7-round related-key boomerang distinguisher and additional round T

TK in the Figure 6 is going to be discussed in the following section.
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5.3 Additional Round T

As depicted in Figure 6, an additional round T , before E0 is need to make
E1 ◦ E0 ◦ T to be full round Square. Let us define T as follows.

T = π ◦ γ ◦ θ ◦ σrk0 ◦ θ−1.

By the linearity of θ, σ, and ψ, T can be represented by

T = π ◦ γ ◦ σθ(rk0).

For this attack, related-key differential trail of the additional round T in
Figure 7 is used. T contains S-box layer γ which has 2 active S-boxes in it, so
the probability of this differential trail is strictly smaller than 1. However, we
can construct a structure(set of pairs) such that a fixed portion of plaintext
pairs always satisfy the trail. In T , if we consider a set of plaintext pairs with
differences ∆P , where ∆P is an arbitrary element of the set P defined by

P = {(α, β, 0a, 1e, 00, 00, 00, 00, 14, 0a, 0a, 1e, 00, 00, 00, 00)|α, β ∈ GF(28)}.
(3)

Then, output differences of all pairs must be ∆X with ratio 2−16.

g ps

q(DK)

DP DX

DK

q

2-16

Fig. 7. related-key differential trail of additional round T

5.4 Differential trails of round keys

As we pointed out above, the round function ψ of key schedule of Square
preserves XOR operation, so a master key difference generates only one key dif-
ferential trail with probability 1. Two key differential trails derived from master
key differences ∆K and ∇K for our attack are depicted in Figure 8. Note that
the gray parts of the key differential trails are not used for this attack. The trail
derived from ∆K is for sub-cipher E0 and from ∇K is for E1, and these key
differential trails occur local collisions both in E0∆K and E1∇K .
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Drk8

y

ÑK=Ñrk0 Ñrk1 Ñrk2 Ñrk3 Ñrk4 Ñrk5 Ñrk6 Ñrk7 Ñrk8

y y y y y y y

DK=Drk0 Drk1 Drk2 Drk3 Drk4 Drk5 Drk6 Drk7

y y y y y y y

y

Fig. 8. Round key differential trails

6 Attack on Full Round SQUARE

6.1 Structure

We consider a fixed difference value ∆S defined by

∆S = (00, 00, 0a, 1e, 00, 00, 00, 00, 14, 0a, 0a, 1e, 00, 00, 00, 00).

In order to generate each structure S, we choose arbitrary 8-bit constants ci ∈
GF(28) for i = 0, 1, · · · , 13, and define the following sets of plaintexts, P1 and
P2

P1 = {(α, β, c0, c1, · · · , c13)|α, β ∈ GF(28)},
P2 = {P ⊕∆S|P ∈ P1}.

The set P1 is a collection of 216 plaintexts where all bytes are fixed except for
the first two bytes. The set P2 is the collection of 216 plaintexts generated by
exclusive OR for each element in P1 with ∆S.

Note that the number of elements of both P1 and P2 are 216. We define a set
S of 233 ordered pairs as the following,

S = {(P1, P2)|P1 ∈ P1, P2 ∈ P2} ∪ {(P2, P1)|P1 ∈ P1, P2 ∈ P2}.

In S, there are 233−16 = 217 pairs which satisfy the related-key differential trail
for T as described in Figure 7, and we expect one right quartet per 2119−17 = 2102

structures. Let 2m be the number of structures, then m > 102 for this attack.

6.2 Attack Procedure

Let us define the ciphertext difference ∇C by

∇C = (0a, 00, 0a, 00, 00, 00, 00, 0a, 0a, 00, 00, 00, 00, 00, 00, 0a).

The attack is done by the following steps for 2m structures specified above.

1. Generate a structure S as described above.
2. For every element (P1, P2) in S, do the following steps.

(a) Calculate C1 = EK1(P1) and C2 = EK2(P2).
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(b) Calculate P3 = E−1
K3(C1⊕∇C), P4 = E−1

K4(C2⊕∇C), and ∆Q = P3⊕P4.
(c) If∆Q /∈ P for P defined in (3), filter out out the quartet ((P1, P2), (P3, P4))

(112-bit filter).
(d) If first two bytes difference of ∆Q can not be derived from 0x0a and

0x0a by inverse S-box operations, and exclusive OR with 0x14 and 0x0a
respectively, then filter out the quartet(2-bit filter).

3. If every quartet is filtered out, return to step 1.
4. For every candidate for the first two bytes of θ(K3), do the following steps.

(a) Calculate each candidate for the first two bytes of θ(K1), θ(K2), and
θ(K4).

(b) For every remained quartet, partially encrypt first two bytes of P3 and
P4 with θ(K3) and θ(K4) for T . If the first two bytes of output difference
of T are 0x0a and 0x0a, do the following step.
– Partially encrypt first two bytes of P1 and P2 with θ(K1) and θ(K2)

for T . If the first two bytes of output difference of T are 0x0a and
0x0a, then increase counter for the θ(K3).

After this procedures for 2m structures, mostly counted 16-bit value is regarded
as the first two bytes of θ(K3).

6.3 Attack Analysis

To prepare m = 104 structures for 4 right quartets, we need 2104+17 = 2121

plaintexts and 2 encryptions and 2 decryptions for each plaintexts, so the data
complexity of this attack is 2123. We expect that 2104+33−114 = 223 quartets are
left after filtering, and for each 216 guessed partial keys, 4 times of 1/32 partial
encryptions are needed for each quartet, so number of encryption for this attack
does not exceed 223+16+2−5 = 236.

A pair (P3, P4) after filtering, proposes 4 candidates of 16-bit key informa-
tion for first two bytes of both θ(K3) and θ(K4) and their related-key bytes
are counted by pair (P1, P2) with probability 2−16, so a quartet after filtering
proposes one candidate of 16-bit key information with probability 2−14. We have
216 candidates for first two bytes of each θ(K1), θ(K2), θ(K3), and θ(K4), and
223 pairs after filtering, thus every single candidate except for right key is pro-
posed with probability 223−14−16 = 2−7 compare to 4 for right key. Therefore,
we regard this ratio as the signal to noise ratio as follows,

S/N =
2m+33−119−16

2m−81−14−16
=

2m−102

2m−111
=

22

2−7
= 29 > 1.

After this attack, we have the first two bytes of θ(K1), θ(K2), θ(K3), and
θ(K4). Other bytes of each key can be recovered exhaustive search for 2112 keys.
Therefore, we can find a secret key of block cipher Square faster than exhaustive
search in related-key attack model.
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Fig. 9. A related-key boomerang attack of Square
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7 Conclusions

We present a related-key boomerang attack on the full round Square. We find
a 3-round related-key differential trail with high probability by local collision
finding technique and construct 7-round boomerang distinguisher with them.
Also, to estimate the distinguisher’s probability more close to the real probabil-
ity, we introduce local amplification technique and apply ladder switch. Even if
this attack is not practical, considering similarity between Square and AES-128
including key schedule, security of AES-128 against related-key attack model is
still open.
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