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Abstract

A number of works have investigated using tamper-proof hardware tokens as tools to achieve a variety of cryp-
tographic tasks. In particular, Goldreich and Ostrovsky considered the goal of software protection via oblivious
RAM. Goldwasser, Kalai, and Rothblum introduced the concept of one-time programs: in a one-time program,
an honest sender sends a set of simple hardware tokens to a (potentially malicious) receiver. The hardware tokens
allow the receiver to execute a secret program specified by the sender’s tokens exactly once (or, more generally,
up to a fixed t times). A recent line of work initiated by Katz examined the problem of achieving UC-secure
computation using hardware tokens.

Motivated by the goal of unifying and strengthening these previous notions, we consider the general question
of basing secure computation on hardware tokens. We show that the following tasks, which cannot be realized
in the “plain” model, become feasible if the parties are allowed to generate and exchange tamper-proof hardware
tokens.

• Unconditional non-interactive secure computation. We show that by exchanging simple stateful hard-
ware tokens, any functionality can be realized with unconditional security against malicious parties. In the
case of two-party functionalities f(x, y) which take their inputs from a sender and a receiver and deliver
their output to the receiver, our protocol is non-interactive and only requires a unidirectional communica-
tion of simple stateful tokens from the sender to the receiver. This strengthens previous feasibility results
for one-time programs both by providing unconditional security and by offering general protection against
malicious senders. As is typically the case for unconditionally secure protocols, our protocol is in fact UC-
secure. This improves over previous works on UC-secure computation based on hardware tokens, which
provided computational security under cryptographic assumptions.

• Interactive Secure computation from stateless tokens based on one-way functions. We show that state-
less hardware tokens are sufficient to base general secure (in fact, UC-secure) computation on the existence
of one-way functions. One cannot hope for security against unbounded adversaries with stateless tokens
since an unbounded adversary could query the token multiple times to “learn” the functionality it contains.

• Non-interactive secure computation from stateless tokens. We consider the problem of designing non-
interactive secure computation from stateless tokens for stateless oblivious reactive functionalities, i.e.,
reactive functionalities which allow unlimited queries from the receiver (these are the only functionalities
one can hope to realize non-interactively with stateless tokens). By building on recent techniques from re-
settably secure computation, we give a general positive result for stateless oblivious reactive functionalities
under standard cryptographic assumption. This result generalizes the notion of (unlimited-use) obfuscation
by providing security against a malicious sender, and also provides the first general feasibility result for
program obfuscation using stateless tokens.



1 Introduction

A number of works (e.g. [GO96, CP92, Bra93, CP93, ISW03, GLM+04, HMqU05b, MN05, Kat07, CGS08, MS08,
DNW08, GKR08]) have investigated using tamper-proof hardware tokens1 as tools to achieve a variety of crypto-
graphic goals. There has been a surge of research activity on this front of late. In particular, the recent work of
Katz [Kat07] examined the problem of achieving UC-secure [Can01a] two party computation using tamper-proof
hardware tokens. A number of follow-up papers [CGS08, MS08, DNW08] have further investigated this problem.
In another separate (but related) work, Goldwasser et al. [GKR08] introduced the concept of one-time programs: in
a one-time program, a (semi-honest) sender sends a set of very simple hardware tokens to a (potentially malicious)
receiver. The hardware tokens allow the receiver to execute a program specified by the sender’s tokens exactly once
(or, more generally, up to a fixed t times). This question is related to the more general goal of software protec-
tion using hardware tokens, which was first addressed by Goldreich and Ostrovsky [GO96] using the framework of
oblivious RAM.

This work is motivated by the observation that several of these previous goals and concepts can be presented in
a unified way as instances of one general goal: realizing secure computation using tamper-proof hardware tokens.
The lines of work mentioned above differ in the types of functionalities being considered (e.g., non-reactive vs.
reactive), the type of interaction between the parties (interactive vs. non-interactive protocols), the type of hardware
tokens (stateful vs. stateless, simple vs. complex), and the precise security model (standalone vs. UC, semi-honest
vs. malicious parties). This unified point of view also gives rise to strictly stronger notions than those previously
considered, which in turn give rise to new feasibility questions in this area.

The introduction of tamper-proof hardware tokens to the model of secure computation, as formalized in [Kat07],
invalidates many of the fundamental impossibility results in cryptography. Taking a step back to look at this general
model from a foundational perspective, we find that a number of natural feasibility questions regarding secure
computation with hardware tokens remain open. In this work we address several of these questions, focusing on
goals that are impossible to realize in the plain model without tamper-proof hardware tokens:

• Is it possible to achieve unconditional security for secure computation with hardware tokens? We note
that this problem is open even for stand-alone security, let alone UC security, and impossible in the plain
model [CK91]. While in the semi-honest model this question is easy to settle by relying on unconditional
protocols based on oblivious transfer (OT) [Rab81, EGL85, Kil88, IPS08], this question appears to be much
more challenging when both parties can be malicious. (See Section 4.1 for relevant discussion.) In the case of
stateless tokens, which may be much easier to implement, security against unbounded adversaries cannot be
generally achieved, since an unbounded adversary can “learn” the entire description of the token. A natural
question in this case is whether stateless tokens can be used to realize (UC) secure computation based on
the assumption that one-way functions exist.

Previous work on secure two-party computation with hardware tokens [Kat07, CGS08, MS08] relied either
on specific number theoretic assumptions (DDH) or the existence of oblivious transfer protocols in the plain
model.

A related question is: is it possible to achieve unconditionally secure one-time programs for all polynomial-
time computable functions? The previous work of [GKR08] required the existence one-way functions in
order to construct one-time programs.

• Is it possible to achieve non-interactive secure two-party computation with hardware tokens? Again, this
problem is open even for stand-alone security, and impossible in the plain model. The work of Goldwasser et
al. [GKR08] constructs (non-interactive) one-time programs using hardware tokens, however in their model,

1Informally, a tamper-proof hardware token provides the holder of the token with black-box access to the functionality of the token. We
will often omit the words “tamper-proof” when referring to hardware tokens, but all of the hardware tokens referred to in this paper are
assumed to be tamper-proof.
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the sender is semi-honest2. Thus an equivalent question is: is it possible to achieve one-time programs toler-
ating a malicious sender? We note that [GKR08] make partial progress towards this question by constructing
one-time zero knowledge proofs, where the prover can be malicious. However, in the setting of hardware to-
kens, the GMW [GMW87] paradigm of using zero knowledge proofs to compile semi-honest protocols into
protocols tolerating malicious behavior does not apply, since one would potentially need to prove statements
about hardware tokens (as opposed to ordinary NP statements).

• What are the simplest kinds of tamper-proof hardware tokens needed to achieve UC-secure two-party
computation? For example, Goldwasser et al. [GKR08] introduce a very simple kind of tamper-proof hard-
ware token that they call an OTM (one-time memory) token.3 An OTM token stores two strings s0 and s1,
and takes a single bit b as input, then outputs sb and stops working (or self-destructs). In other words, an OTM
token implements the one-out-of-two string OT functionality. (For this reason, we will call such tokens OT
tokens.) An even simpler version of such a token would be one where the strings s0 and s1 are replaced with
single bits, corresponding to the one-out-of-two bit OT functionality (we would call such a token a bit OT
token). Is it possible that we can get UC-secure two-party computation using only bit OT tokens? We
note that previous works on UC-secure two-party computation with hardware tokens [Kat07, CGS08, MS08]
all make use of more complicated hardware tokens.

• Which notions of software obfuscation be realized using hardware tokens? Again, this problem can
be captured in an elegant way within the framework of secure two-party computation, except that here we
need to consider reactive functionalities which may take a single input from the “sender” and a sequence
of (possibly adaptively chosen) inputs from the “receiver”. Obfuscation can be viewed as a non-interactive
secure realization of such functionalities. While this general goal is in some sense realized by the construction
of oblivious RAM [GO96] (which employs stateful tokens), several natural questions remain: Is it possible
to achieve obfuscation using only stateless tokens? Is it possible to offer a general protection against
a malicious sender? To illustrate the motivation for the latter question, consider the goal of obfuscating a
poker-playing program. The receiver of the obfuscator program would like to be assured that the sender did
not violate the rules of the game (and in particular cannot bias the choice of the cards).

1.1 Our Results

We show that the following tasks, which cannot be realized in the “plain” model, become feasible if the parties are
allowed to generate and exchange tamper-proof hardware tokens. We stress that in all results below, the code of our
hardware tokens is independent of all parties’ inputs4.

• Unconditional non-interactive secure computation. We show that by exchanging stateful hardware tokens,
any functionality can be realized with unconditional security against malicious parties. In the case of two-
party functionalities f(x, y) which take their inputs from a sender and a receiver and deliver their output to the
receiver, our protocol is non-interactive and only requires a unidirectional communication of simple stateful
tokens from the sender to the receiver (in case an output has to be given to both parties, adding a reply from
the receiver to the sender is sufficient). This strengthens previous feasibility results for one-time programs
both by providing unconditional security and by offering general protection against malicious senders and by
using only “bit-OTM” tokens.

2In the model of [GKR08], the sender is allowed to arbitrarily specify the functionality of the one-time program, and the receiver knows
nothing about this functionality except an upper bound on its circuit size. (Thus, the issue of dishonest senders does not arise in their
model.) In this work, by a one-time program tolerating a malicious sender, we mean that the receiver knows some partial specification of the
functionality of the one-time program – modeled in the usual paradigm of secure computation.

3Goldwasser et al. [GKR08] additionally show that their constructions using OTM tokens are leakage resilient in a very strong sense; a
feature our constructions using such tokens inherit as well.

4Thus, the tokens could theoretically be “mass-produced” before being used in any particular protocol with any particular inputs.
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As is typically the case for unconditionally secure protocols, our protocol is in fact UC-secure. This improves
over previous works on UC-secure computation based on hardware tokens, which provided computational
security under cryptographic assumptions.

See Sections 4.1 and 4.2 for details of this result and a high level overview of techniques.

• Interactive secure computation from stateless tokens based on one-way functions. We show that stateless
hardware tokens are sufficient to base general secure (in fact, UC-secure) computation on the existence of
one-way functions. One cannot hope for security against unbounded adversaries with stateless tokens since
an unbounded adversary could query the token multiple times to “learn” the functionality it contains. See
Section 5 for details.

• Non-interactive secure computation from stateless tokens. We consider the problem of designing non-
interactive secure computation from stateless tokens for stateless oblivious reactive functionalities, i.e., re-
active functionalities which allow unlimited queries from the receiver (these are the only functionalities one
can hope to realize non-interactively with stateless tokens). By building on recent techniques from resettably
secure computation [GS09], we give a general positive result for stateless oblivious reactive functionalities
under standard cryptographic assumption. We are not able to optimize the cryptographic assumptions because
of inherent usage of non-black-box simulation and connections to other such problems. This result generalizes
the notion of (unlimited-use) obfuscation by providing security against a malicious sender, and also provides
the first general feasibility result for program obfuscation using stateless tokens. As a side result, we also
propose constructions of non-interactive secure computation for general reactive functionalities with stateful
tokens. See Section 6 for details.

We stress that in contrast to some previous results along this line (most notably, [GO96, GKR08]), our focus is al-
most entirely on feasibility questions, while only briefly discussing more refined efficiency considerations. However,
in most cases our stronger feasibility results can be realized while also meeting the main efficiency goals pursued in
previous works. We leave a more detailed discussion of efficiency issues to the final version of this paper.

The first two results above are obtained by utilizing previous works [Kil88, IPS08] showing how to achieve
secure computation based on OT, and thus a main ingredient in our constructions is showing how to securely imple-
ment OT using hardware tokens5. Note that in the case of non-interactive secure computation, additional tools are
needed since the protocols of [Kil88, IPS08] are (necessarily) interactive.

Related Work. The use of tamper-proof hardware tokens for cryptographic purposes was first explored by Gol-
dreich and Ostrovsky [GO96] in the context of software protection (one-time programs [GKR08] is a relaxation of
this goal, generally called program obfuscation [BGI+01]), and by Chaum, Pederson, Brands, and Cramer [CP92,
Bra93, CP93] in the context of e-cash. Ishai, Sahai, and Wagner [ISW03] and Ishai, Sahai, Prabhakaran and Wag-
ner [IPSW06] consider the question of how to construct tamper-proof hardware tokens when the hardware itself does
not guarantee complete protection against tampering. Gennaro, Lysyanskaya, Malkin, Micali, and Rabin [GLM+04]
consider a similar question, when the underlying hardware guarantees that part of the hardware is tamper-proof but
readable, while the other part of the hardware is unreadable but susceptible to tampering. Moran and Naor [MN05]
considered a relaxation of tamper-proof hardware called “tamper-evident seals”, and given number of constructions
of graphic tasks based on this relaxed notion. Hofheinz, Müller-Quade, and Unruh [HMQU05a] consider a model
similar to [Kat07] in the context of UC-secure protocols where tamper-proof hardware tokens (signature cards) are
issued by a trusted central authority. The model that we primarily build on here is due to Katz [Kat07], where
users can create and exchange tamper-proof hardware tokens, in the context of implementing UC-secure proto-
cols. [Kat07] shows how to implement UC-secure two-party computation using stateful tokens, under the DDH
assumption. Chandran, Goyal, Sahai [CGS08] implement UC-secure two-party computation using stateless tokens,

5Note that for out first two results, the fact that we rely on OT immediately gives us the feature that the code of our hardware tokens can
be made independent of all parties’ inputs. This is simply because OT with random sender strings is (non-interactively) equivalent to OT with
chosen sender strings [BG89].
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under the assumption that oblivious transfer protocols exist in the plain model. Aside from just considering state-
less tokens, [CGS08] also introduce a variant of the model of [Kat07] that allows for the adversary to pass along
tokens, and in general allows the adversary not to know the code of the tokens he produces. We do not consider
this model here. Moran and Segev [MS08] also implement UC-secure two-party computation under the same as-
sumption as [CGS08], but using stateful tokens, and only requiring tokens to be passed in one direction. Damgård,
Nielsen, and Wichs [DNW08] show how to relax the “isolation” requirement of tamper-proof hardware tokens, and
consider a model in which tokens can communicate a fixed number of bits back to its creator. Hazay and Lindell
[HL08] propose construction of truly efficient protocols for various problems of interest using trusted smartcards.
Goldwasser, Kalai, and Rothblum [GKR08] introduced the notion of one-time programs, and showed how to achieve
it under the assumption that one-way functions exist, as we have already discussed. They also construct one-time
zero-knowledge proofs under the same assumption. Their results focus mainly on achieving efficiency in terms of
the number of tokens needed, and a non-adaptive use of the tokens by the receiver. Finally in a seemingly unrelated
work, motivated by quantum physics, Buhrman et al. [BCU+] consider the application of non-local boxes to cryptog-
raphy. Using non-local boxes, Buhrman et al. show an unconditional construction for secure two-party computation
in the interactive setting. A non-local box implements a trusted functionality taking input and giving output to both
the parties (as opposed to OTM tokens which could be prepared maliciously). However, we observe that the key
problem faced by Buhrman et al. is similar to a problem we face as well: delayed invocation of the non-local box
by a malicious party. Indeed, we can give a simple protocol (omitted here) that shows how to (interactively) build
a trusted non-local-box using OTM tokens, giving an alternative to our “warm-up” construction (see Section 4.1)
of unconditional secure computation from hardware tokens. However, this alternative construction does not seem
useful as a building block to our first main result: non-interactive unconditional secure computation.

2 Preliminaries

In this section we briefly discuss some of the underlying definitions and concepts, and fix notation.

Definition 1. (Computational Indistinguishability) Two distribution ensemblesX := {Xn }n∈N and Y := {Yn }n∈N
are computationally indistinguishable (written as X ∼ Y ) if for every probabilistic polynomial-time algorithm D,
every positive polynomial p(·), and all sufficiently large n’s,

|Pr [D(Xn, 1n) = 1 ]− Pr [D(Yn, 1n) = 1 ] | ≤ 1
p(n)

.

The statistical difference between two distribution ensembles X := {Xn }n∈N and Y := {Yn }n∈N is defined
by

∆(n) =
1
2

∑
α

|Pr [Xn = α ]− Pr [ Yn = α ] |.

Ensembles X and Y are statistically close if the their statistical difference is negligible in n.
Now we define the next-message function of an interactive TM P :

Definition 2. (Next Message Function) Let P be an interactive TM. The next message function for round i of P is
the function P x,ri (), which on input (m1, . . . ,mi, si−1), outputs (m̂i, si), where m̂i is the message output by P on
input x and random input r, after receiving m1, . . . ,mi in previous rounds, and si−1 and si contain auxiliary state
information for rounds i− 1 and i respectively.

Commitments. We will use the two-round statistically binding commitment scheme com ([Nao91]). To recall, to
commit to bit b, the first message in Naor’s scheme is a random string r from receiver to sender. Then the sender
responds with either G(s) or G(s) ⊕ r depending of whether b = 0 or b = 1, where G(·) is a pseudo-random
generator, and s is a randomly chosen seed. To decomit, the sender sends (b, s) to the receiver. We observe that
Naor’s scheme has the property that the same r can be used for committing to (polynomially) many bits. Thus, once
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the receiver’s string has been initially exchanged, we essentially have a non-interactive commitment function. For
receiver’s message r, denote sender’s response by comr(b), where b is the bit being committed. Abusing terminology,
we will call comr(b) the commitment to bit b. When the randomness used in the first message is clear from the
context, we will drop the subscript r, and will denote the committed string by com(b). The opening of a commitment
α is denoted by open(α) and consists of the committed bit b and seed s (the randomness r is implicit).

Unconditional One-Time MAC. By (MAC,V F ), we will denote an unconditional one-time message authenti-
cation scheme, whereMACk(m) represents tagging messagemwith key k, and V Fk(m,σ) denotes the verification
algorithm, which returns 1 if σ is the correct tag ofm under key k. An example of such a MAC is as follows: the key
k is a pair of κ length strings (a, b) (where κ is the security parameter). The tag of message m with key k = (a, b)
is a ·m+ b, where all operations are in GF (2κ).

2.1 The Model

We use the UC-framework of Canetti [Can01b] to capture the general notion of secure computation of (possibly
reactive) functionalities. Our main focus is on the two-party case. We will usually refer to one party as a “sender”
and to another as a “receiver”. A non-reactive functionality may receive an input from each party and deliver output
to each party (or only to the receiver). A reactive functionality may have several rounds of inputs and outputs,
possibly maintaining state information between rounds. We begin by defining protocol syntax, and then informally
review the UC-framework. For more details, see [Can01b].

Protocol syntax. Following [GMR89] and [Gol01], a protocol is represented as a system of probabilistic interac-
tive Turing machines (ITMs), where each ITM represents the program to be run within a different party. Specifically,
the input and output tapes model inputs and outputs that are received from and given to other programs running on
the same machine, and the communication tapes model messages sent to and received from the network. Adversarial
entities are also modeled as ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first, an ideal functionality is defined,
which is a “trusted party” that is guaranteed to accurately capture the desired functionality. Then, the process of
executing a protocol in the presence of an adversary and in a given computational environment is formalized. This
is called the real-life model. Finally, an ideal process is considered, where the parties only interact with the ideal
functionality, and not amongst themselves. Informally, a protocol realizes an ideal functionality if running of the
protocol amounts to “emulating” the ideal process for that functionality.

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe the ideal and real world execu-
tions.

The real-life model. The real-life model consists of the two parties P1 and P2, the environment Z , and the adver-
saryA. AdversaryA can communicate with environment Z and can corrupt any party. WhenA corrupts party Pi, it
learns Pi’s entire internal state, and takes complete control of Pi’s input/output behaviour. The environment Z sets
the parties’ initial inputs. Let REALΠ,A,Z be the distribution ensemble that describes the environment’s output when
protocol Π is run with adversary A.

The ideal process. The ideal process consists of two “dummy parties” P̂1 and P̂2, the ideal functionality F , the
environment Z , and the ideal world adversary S, called the simulator. In the ideal world, the uncorrupted dummy
parties obtain their inputs from environment Z and simply hand them over to F . As in the real world, adversary S
can corrupt any party. Once it corrupts party P̂i, it learns P̂i’s input, and takes complete control of its input/output
behaviour. Let IDEALFS,Z be the distribution ensemble that describes the environment’s output in the ideal process.

Definition 3. (Realizing an Ideal Functionality) Let n ∈ N. Let F be an ideal functionality, and Π be a protocol.
We say Π realizes F if for any real-world adversaryA, there exists an ideal process adversary S such that for every
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environment Z ,
IDEALFS,Z ∼ REALΠ,A,Z .

3 Modeling Tamper-Proof Hardware

Our model for tamper-proof hardware is similar to that of Katz ([Kat07]). However, as we consider both state-
ful and stateless tokens, we define different ideal functionalities for the two. Here, we formally define the ideal
functionalities Fsinglewrap , for single use stateful tokens, and Fstatelesswrap for stateless tokens.

The functionality Fsinglewrap is used to model hardware tokens that can be executed only once. Thus, the only state
these tokens keep is a flag which indicates whether the token has been run or not. To model this behaviour, Fsinglewrap

deletes the token from its memory after it has been run once. The formal description of Fsinglewrap is presented in
Figure 1.

Functionality Fsinglewrap

Fsinglewrap is parameterized by a polynomial p(·) and an implicit security parameter κ.

Create Upon receiving (create, sid, Pi, Pj ,mid,M) from Pi, where M is a Turing machine and
mid is machine id, do:

1. Send (create, sid, Pi, Pj ,mid) to Pj .

2. Store (Pi, Pj ,mid,M).

Execute Upon receiving (run, sid, Pi,mid,msg) from Pj , find the unique stored tuple
(Pi, Pj ,mid,M) (if no such tuple exists, do nothing). Choose random r ← { 0, 1 }p(k). Run
M(msg; r) for at most p(k) steps, and let out be the response (out =⊥ if M does not halt in p(k)
steps). Send (sid, Pi,mid,out) to Pj , and delete (Pi, Pj ,mid,M).

Figure 1: Ideal functionality for single-use stateful tokens

Next, we define the functionality Fstatelesswrap that models stateless tokens. The idea of Fstatelesswrap , described in
Figure 2, is to model the following real-world functionality: party Pi sends a stateless token M to party Pj . Since
the token is stateless, Pj can run M multiple times on inputs of its choice. Thus, Fstatelesswrap saves the description of
the Turing machines it gets from a party in create messages, and lets the other party run them multiple times. Each
machine is uniquely identified by a machine identifier mid.

One can also consider a variant of Fstatelesswrap which allows a malicious sender to generate stateful tokens. Our
protocols which use stateless tokens are secure in this more adversarial setting as well. (This is automatically the
case in all protocols for which an honest receiver makes only a single use of each token.)

We are interested in non-interactive protocols in which the communication involves a single batch of tokens sent
from a “sender” to a “receiver”. (One could also allow the sender to send a message to a receiver; however, from a
feasibility point of view this could also be done in the simpler model in which only tokens are sent.)

Definition 4. (Non-Interactive Protocols in the Tamper-Proof Hardware Model) A two-party protocol Π = (P1, P2)
is non-interactive if the only messages sent by P1 are create messages to Fsinglewrap (or Fstatelesswrap ) and the only
messages sent by P2 are run messages to Fsinglewrap (or Fstatelesswrap ).
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Functionality Fstatelesswrap

Fstatelesswrap is parameterized by a polynomial p(·) and an implicit security parameter κ.

Create Upon receiving (create, sid, Pi, Pj ,mid,M) from Pi, where M is a Turing machine, do:

1. Send (create, sid, Pi, Pj ,mid) to Pj .

2. Store (Pi, Pj ,mid,M).

Execute Upon receiving (run, sid, Pi,mid,msg) from Pj , find the unique stored tuple
(Pi, Pj ,mid,M). If no such tuple exists, do nothing. Run M(msg) for at most p(k) steps, and
let out be the response (out =⊥ if M does not halt in p(k) steps). Send (sid, Pi,mid,out) to Pj .

Figure 2: Ideal functionality for stateless tokens

3.1 One-Time Programs

Informally, a one-time program (OTP) [GKR08] for a function f lets a party evaluate f on only one input chosen
by that party at run time. The intuitive security goal is that no efficient adversary, after evaluating the one-time
program on x, can learn anything about f(y) for some y 6= x, other than what can be inferred from f(x). In our
constructions, OTPs will be used within other protocols, thus it would be convenient for us to view them as two-party
non-interactive protocols in the hardware token model, which are secure against malicious receivers. We thus view
OTP as implementing a two-party functionality f(·, ·) (where the description of f is known to both parties), where
the first (secret) input is fixed by the sender during construction.

Figure 3 defines the ideal functionality for a one-time program for function f(·, ·).

Functionality FOTPf

Create Upon receiving (create, sid, Pi, Pj , x) from Pi, where x is a string, do:

1. Send (create, sid, Pi, Pj) to Pj .

2. Store (Pi, Pj , x).

Execute Upon receiving (run, sid, Pi, y) from Pj , find the stored tuple (Pi, Pj , x) (if no such
tuple exists, do nothing). Send f(x, y) to Pj and delete tuple (Pi, Pj , x).

Figure 3: Ideal functionality for One-time Program for function f(·, ·).

Now we define OTPs in the Fsinglewrap -hybrid model.

Definition 5. (One-Time Program for f(·, ·)) A one-time program for function f(·, ·) is a two-party non-interactive
protocol Π = (P1, P2) in the Fsinglewrap -hybrid model, such that for every probabilistic polynomial time adversary A
corrupting P2, there exists a probabilistic polynomial time ideal-world adversary S called the simulator, such that
for every environment Z ,

IDEAL
FOTP

f

S,Z ∼ REALΠ,A,Z .
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One way of implementing OTPs using hardware tokens is to construct stateful hardware tokens that contain
the entire code of the function f(x, ·). However, like in [GKR08] we would like to use only the simplest kind of
hardware tokens in our protocols. To this end, we focus on using one-time-memory (OTM) tokens only. OTM tokens
realize the ideal functionality defined in Figure 5.

3.2 Flavors of OT

The ideal OT functionality required by unconditionally secure protocols in the OT-hybrid model [Kil88, IPS08] is
denoted by FOT and is formally defined in Figure 4.

Functionality FOT

On input (Pi, Pj , sid, id, (s0, s1)) from party Pi, send (Pi, Pj , sid, id) to Pj and store the tuple
(Pi, Pj , sid, id, (s0, s1)).
On receiving (Pi, sid, id, c) from party Pj , if a tuple (Pi, Pj , sid, id, (s0, s1)) exists, return
(Pi, sid, id, sc) to Pj , send an acknowledgment (Pj , sid, id) to Pi, and delete the tuple
(Pi, Pj , sid, id, (s0, s1)). Else, do nothing.

Figure 4: Ideal functionality for OT

Following [GKR08], we refer to simple hardware tokens that implement a single OT call as OTM (one-time-
memory) tokens. We give the formal definition of OTM tokens here, and discuss these tokens in detail in Section 4.1.
OTM tokens are defined in Figure 5.

Functionality OTM

On input (Pi, Pj , sid, id, (s0, s1)) from party Pi, send (Pi, Pj , sid, id) to Pj and store the tuple
(Pi, Pj , sid, id, (s0, s1)).
On receiving (Pi, sid, id, c) from party Pj , if a tuple (Pi, Pj , sid, id, (s0, s1)) exists, return
(Pi, sid, id, sc) to Pj and delete the tuple (Pi, Pj , sid, id, (s0, s1)). Else, do nothing.

Figure 5: Ideal functionality for OTM tokens

We also define a parallel version of the OTM functionality, denoted pOTM, which allows the receiver to make
several parallel OTM choice. Note that unlike a direct implementation using separate OTM tokens, this functionality
requires the receiver to make all its choices at once, and does not allow a malicious receiver to determine its choice
bits in an adaptive fashion. The ideal functionality for pOTM is defined in Figure 6.

Functionality pOTM

pOTM is parameterized by an integer k.
On input (Pi, Pj , sid, id, ((s1

0, s
1
1), . . . , (sk0, s

k
1)))) from partyPi, send (Pi, Pj , sid, id) toPj and store

the tuple (Pi, Pj , sid, id, ((s1
0, s

1
1), . . . , (sk0, s

k
1)))).

On receiving (Pi, sid, id, (c1, . . . , ck)) from party Pj , if a tuple
(Pi, Pj , sid, id, ((s1

0, s
1
1), . . . , (sk0, s

k
1))) exists, return (Pi, sid, id, (s1

c1 , . . . , s
k
ck

)) to Pj and delete
the tuple (Pi, Pj , sid, id, ((s1

0, s
1
1), . . . , (sk0, s

k
1))). Else, do nothing.

Figure 6: Ideal functionality for parallel-OTM.

8



Finally, the ExtOTM functionality differs from OTM in that it takes an additional input r from the sender, and
delivers this input to the receiver together with its chosen string sc. This functionality is described in Figure 7. It is
easy to see that a protocol for the ExtOTM functionalities allows us to realize the FOTfunctionality as required by
[Kil88, IPS08].

Functionality ExtOTM

On input (Pi, Pj , sid, id, ((s0, s1), r)) from party Pi, send (Pi, Pj , sid, id) to Pj and store the tuple
(Pi, Pj , sid, id, ((s0, s1), r)).
On receiving (Pi, sid, id, c) from party Pj , if a tuple (Pi, Pj , sid, id, ((s0, s1), r)) exists, return
(Pi, sid, id, sc, r) to Pj and delete the tuple (Pi, Pj , id, ((s0, s1), r)). Else, do nothing.

Figure 7: Ideal functionality for ExtOTM

4 Unconditional Non-Interactive Secure Computation Using Stateful Tokens

In this section we establish the feasibility of unconditionally non-interactive secure computation based on stateful
hardware tokens. As is typically the case for unconditionally secure protocols, our protocols are in fact UC secure.

This section is organized as follows. In Subsection 4.1 we present as a “warmup” an interactive protocol for
arbitrary functionalities, which requires the parties to engage in multiple rounds of interaction. This section will
introduce some useful building blocks that are used in the next subsection. This gives an unconditional version of
previous protocols for UC-secure computation based on hardware tokens [Kat07, CGS08, MS08], which all relied
on computational assumptions.6

In Subsection 4.2 we consider the case of secure evaluation of two-party functionalities which deliver output to
only one of the parties (the “receiver”). We strengthen the previous result in two ways. First, we show that in this case
interaction can be completely eliminated: it suffices for the sender to non-interactively send tokens to the receiver,
without any additional communication. Second, we show that even very simple, constant-size stateful tokens are
sufficient for this purpose. This strengthens previous feasibility results for one-time programs [GKR08] by providing
unconditional security (in fact, UC-security) and by offering general protection against malicious senders.

4.1 Warmup: The Interactive Setting

Unconditionally secure two-party computation is impossible to realize for most nontrivial functionalities, even with
semi-honest parties [BOGW88, Kus92]. However, if the parties are given oracle access to a simple ideal functionality
such as Oblivious Transfer (OT) [Rab81, EGL85], then it becomes possible not only to obtain unconditionally secure
computation with semi-honest parties [GV87, GHY87, Gol04], but also unconditional UC-security against malicious
parties [Kil88, IPS08]. This serves as a natural starting point for our construction.

In the OT-hybrid model, the two parties are given access to the following ideal OT functionality: the input of
P1 (the “sender”) consists of a pair of k-bit strings (s0, s1), the input of P2 (the “receiver”) is a choice bit c, and
the receiver’s output is the chosen string sc. The natural way to implement a single OT call using stateful hardware
tokens is by having the sender send to the receiver a token which, on input c, outputs sc and erases s1−c from its
internal state. The use of such hardware tokens was first suggested in the context of one-time programs [GKR08].
Following the terminology of [GKR08], we refer to such tokens as OTM (one-time-memory) tokens. OTM tokens
were formally defined in Section 3.2.

An appealing feature of OTM tokens is their simplicity, which can also lead to better resistance against side-
channel attacks (see [GKR08] for discussion). This simplicity feature served as the main motivation for using OTM

6The work of [MS08] realizes an unconditionally UC-secure commitment from stateful tokens. This does not directly yield protocols for
secure computation without additional computational assumptions.
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tokens as a basis for one-time programs. Another appealing feature, which is particularly important in our context, is
that the OTM functionality does not leave room for bad sender strategies: whatever badly formed token a malicious
sender may send is equivalent from the point of view of an honest receiver to having the sender send a well-formed
OTM token picked from some probability distribution. (This is not the case for tokens implementing more complex
functionalities, such as 2-out-of-3 OT or the extended OTM functionality discussed below, for which badly formed
tokens may not correspond to any distribution over well-formed tokens.)

Given the above, it is tempting to hope that our goal can be achieved by simply taking any unconditionally secure
protocol in the OT-hybrid model, and using OTM tokens to implement OT calls. However, as observed in [GKR08],
there is a subtle but important distinction between the OT-hybrid model and the OTM-hybrid model: while in the
former model the sender knows the point in the protocol in which the receiver has already made its choice and
received its output, in the latter model invoking the token is entirely at the discretion of the receiver. This may give
rise to attacks in which the receiver adaptively invokes the OTM tokens “out of order,” and such attacks may have a
devastating effect on the security of protocols even in the case of unconditional security.7

Attacks on simple solution ideas. A natural way to handle the above type of attacks is by having the sender pick
a secret key r for each OTM and append this key to both strings (s0, s1) it stores in the OTM. Then, to emulate a
single call to an OT oracle, the sender sends such an OTM token to the receiver, and expects the receiver to send
back r before proceeding with the protocol. This approach can indeed be used to protect a semi-honest sender from
out-of-order token invocations by a malicious receiver. However, it completely exposes the receiver to an attack by
a malicious sender who puts a pair distinct strings (r1, r2) in the same OTM. Note that in the context of one-time
programs where the sender is semi-honest, a variant of this approach [GKR08] does suffice to solve the problem.
However, in the context of malicious senders that we consider here, the approach of [GKR08] does not suffice.

A more subtle attack, known as selective abort, arises if one tries to fix the problem above in naı̈ve ways such as
asking the sender to send a randomized hash of r, and then instructing the receiver to abort if the sender’s message
is different from the hash of the r that it received from the OTM. This would allow a malicious sender to cause the
receiver to abort based on its private choice bit, which is not allowed by the ideal OT functionality (and can lead to
real attacks on secrecy).
Extending the OTM functionality. To fix the above idea, we will realize an extended OTM functionality which
takes from the sender a pair of strings (s0, s1) along with an auxiliary string r, takes from the receiver a choice bit c,
and delivers to the receiver both sc and r. We denote this functionality by ExtOTM (see Figure 7). What makes the
ExtOTM functionality nontrivial to realize using hardware tokens is the need to protect the receiver from a malicious
sender who may try to make the received r depend on the choice bit c while at the same time protecting the sender
from a malicious receiver who may try to postpone its choice c until after it learns r.

Using the ExtOTM functionality, it is easy to realize a UC-style version of the OT functionality which not only
delivers the chosen string to the receiver (as in the OTM functionality) but also delivers an acknowledgment to the
sender. This flavour of the OT functionality, which we denote by FOT(see Figure 4), can be realized by having
the sender invoke ExtOTM with (s0, s1) and a randomly chosen r, and having the receiver send r to the sender. In
contrast to OTM, the FOTfunctionality allows the sender to force any subset of the OT calls to be completed before
proceeding with the protocol. This suffices for instantiating the OT calls in the unconditionally secure protocols
from [Kil88, IPS08]. We refer the reader to Appendix ?? for a UC-style definition of the OTM, ExtOTM, and
FOTfunctionalities.
Realizing ExtOTM using general8 stateful tokens. As discussed above, we cannot directly use a stateful token for
realizing the ExtOTM functionality, because this allows the sender to correlate the delivered r with the choice bit c.

7To illustrate the effect of such attacks, consider the following functionality f . The functionality takes from the sender a pair of k-bit
strings (x1, x2) and from the receiver a k-bit string y. If y = x1, the functionality delivers (x1, x2) to the receiver, otherwise it delivers only
x1. Now, let Π be any OT-based protocol for f which consists of only one round of OTs from the sender to the receiver, where the receiver’s
OT choices are its input bits. (A simple protocol of this type with perfect security against a malicious receiver and a semi-honest sender is
given in [Kil88] for any f in NC1.) Modify Π into a new protocol Π′ in which the sender, following the round of OT calls, reveals x1 to the
receiver. The protocol Π′ is still perfectly secure against a malicious receiver in the OT-hybrid model, but if OT calls are realized by sending
OTM tokens, the new protocol allows the receiver to always learn x2 by first observing x1 and then invoking the OTM tokens with y = x1.

8Here, we make use of general tokens. Later in this section, we will show how to achieve the ExtOTM functionality (and in fact every
poly-time functionality) using only very simple tokens – just bit OTM tokens.
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On the other hand, we cannot allow the sender to directly reveal r to the receiver, because this will allow the receiver
to postpone its choice until after it learns r. In this subsection, we present our protocol for realizing ExtOTM using
stateful tokens. This protocol is non-interactive (i.e., it only involves tokens sent from the sender to the receiver)
and will also be used as a building block towards the stronger results in the next subsection. We start with a detailed
discussion of the intuition of the protocol and its security proof.

As mentioned above, at a high level, the challenge we face is to prevent unwanted correlations in an information-
theoretic way for both malicious senders and malicious receivers. This is a more complex situation than a typical
similar situation where only one side needs to be protected against (c.f. [Kil90, LP07]). To accomplish this goal, we
make use of secret-sharing techniques combined with additional token-based “verification” techniques to enforce
honest behavior.

Our ExtOTM protocol ΠExtOTM starts by having the sender break its auxiliary string r into 2k additive shares
ri, and pick 2k pairs of random strings (qi0, q

i
1). (Each of the strings qib and ri is k-bit long, where k is a statistical

security parameter.) It then generates 2k OTM tokens, where the i-th token contains the pair (qi0 ◦ ri, qi1 ◦ ri).
Note that a malicious sender may generate badly formed OTM tokens which correlate ri with the i-th choice of the
receiver; we will later implement a token-based verification strategy that convinces an honest receiver that the sender
did not cheat (too much) in this step.

Now the receiver breaks its choice bit c into 2k additive shares ci, and invokes the 2k OTM tokens with these
choice bits. Let (q̂i, r̂i) be the pair of k-bit strings obtained by the receiver from the i-th token. Note that if the
sender is honest, the receiver can already learn r. We would like to allow the receiver to learn its chosen string sc
while convincing it that the sender did not correlate all of the auxiliary strings r̂i with the corresponding choice bits
ci. (The latter guarantee is required to assure an honest receiver that r̂ =

∑
r̂i is independent of c as required.)

This is done as follows. The sender prepares an additional single-use hardware token which takes from the
receiver its 2k received strings q̂i, checks that for each q̂i there is a valid selection ĉi such that q̂i = qiĉi (otherwise
the token returns ⊥), and finally outputs the chosen string sĉ1⊕...⊕ĉ2k . (All tokens in the protocol can be sent
to the receiver at one shot.) Note that the additive sharing of r in the first 2k tokens protects an honest sender
from a malicious receiver who tries to learn sĉ where ĉ is significantly correlated with r, as it guarantees that
the receiver effectively commits to c before obtaining any information about r. The receiver is protected against
a malicious sender because even a badly formed token corresponds to some (possibly randomized) ideal-model
strategy of choosing (s0, s1).

Finally, we need to provide to the receiver the above-mentioned guarantee that a malicious sender cannot corre-
late the receiver’s auxiliary output r̂ =

∑
r̂i with the choice bit c. To explain this part, it is convenient to assume that

both the sender and the badly formed tokens are deterministic. (The general case is handled by a standard averaging
argument.) In such a case, we call each of the first 2k tokens well-formed if the honest receiver obtains the same ri

regardless of its choice ci, and we call it badly formed otherwise. By the additive sharing of c, the only way for a
malicious sender to correlate the receiver’s auxiliary output with c is to make all of the first 2k tokens badly formed.
To prevent this from happening, we require the sender to send a final token which proves that it knows all of the 2k
auxiliary strings r̂i obtained by the receiver. This suffices to convince the receiver that not all of the first 2k tokens
are badly formed. Note, however, that we cannot ask the sender to send these 2k strings ri in the clear, since this
would (again) allow a malicious receiver to postpone its choice c until after it learns r.

Instead, the sender generates and sends a token which first verifies that the receiver knows r (by comparing the
receiver’s input to the k-bit string r) and only then outputs all 2k shares ri. The verification step prevents correlation
attacks by a malicious receiver. The final issue to worry about is that the string r received by the token (which may
be correlated with the receiver’s choices ci) does not reveal to the sender enough information to pass the test even if
all of its first 2k tokens are badly formed. This follows by a simple information-theoretic argument: in order to pass
the test, the token must correctly guess all 2k bits ci, but this cannot be done (except with 2−Ω(k) probability) even
when given arbitrary k bits of information about the ci. We describe the protocol formally now.

Protocol ΠExtOTM.

• Input: P1 gets as input k-bit strings (s0, s1, r), and P2 gets as input a bit c.
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• Specified Output: P2 should receive (sc, r).

1. P1 chooses 4k distinct strings of length k, ((s1
0, s

1
1), . . . , (s2k

0 , s
2k
1 )). Now P1 chooses another 2k − 1

strings of length k, (ρ1, . . . , ρ2k−1), and sets ρ2k such that
⊕2k

i=1 ρ
i = r. Then,

(a) For 1 ≤ i ≤ 2k, send (create, sid, P1, P2,mid,M i) toFsinglewrap , whereM i implements the following
functionality: on input bit ci, output (si

ci
, ρi).

(b) P1 constructs and sends an unconditional OTP for the following functionality F1:
. Receive input (ŝ1, . . . , ŝ2k). For 1 ≤ i ≤ 2k, let ĉi ∈ { 0, 1 } be such that ŝi = si

ĉi
. If no such

ĉis exist, output ⊥. Else output sĉ1⊕...⊕ĉ2k .
(c) P1 constructs and sends an unconditional OTP for the following functionality F2:

. On input ρ ∈ { 0, 1 }k, check if ρ =
⊕2k

i=1 ρ
i. If not, output ⊥. Else, output ρ1 ◦ . . . ◦ ρ2k.

2. P2 picks random bits c1, . . . , c2k−1, and sets c2k such that c =
⊕2k

i=1 c
i. For 1 ≤ i ≤ 2k, P2 runs M i

with input ci and obtains (ŝi, ρi). It runs the OTP for F1 on input (ŝ1, . . . , ŝ2k) and obtains string s. If
the OTP aborts, then P2 sets s = 0k. Next, P2 runs OTP for F2 on input

⊕2k
i=1 ρ

i, and obtains string ρ.
If ρ 6= ρ1 ◦ . . . ◦ ρ2k, P2 aborts. Else, it outputs (s,

⊕2k
i=1 ρ

i).

Claim 6. Protocol ΠExtOTM realizes ExtOTM with statistical UC-security in the OTM-hybrid model.

Proof First consider the case of malicious sender. Let A be an adversary controlling P1, and let Z be any environ-
ment. We define the simulator SExtOTM1 as follows:

Simulator SExtOTM1

1. Receive input (s0, s1, r) from Z for A. Start internal simulation of A with the given input.

2. Receive TMs M1, . . . ,M2k, and OTPs for functionalities F1 and F2 from A.

3. For 1 ≤ i ≤ 2k, run M i with input 0 to obtain (si0, ρ
i
0). Now rewind M i and run it with input

1 to obtain (si1, ρ
i
1). If for every 1 ≤ i ≤ 2k, ρi0 6= ρi1, abort.

4. Choose 2k − 1 random bits c1, . . . , c2k−1, and set c2k such that
⊕2k

i=1 c
i = 1. Then,

(a) If for any index i, si
ci

= ⊥, abort. Run the OTP corresponding to F1 with input
(s1
c1 , . . . , s

2k
c2k) to obtain s1. Let j be the index such that ρj0 = ρj1. Run F1 again with in-

put (s1
c1 , . . . , s

j−1
cj−1 , s

j
cj⊕1

, sj+1
cj+1 , . . . , s

2k
c2k) to obtain s0. If the OTP aborts in either case,

set that string to the default value, 0k.

(b) Set r =
⊕2k

i=1 ρ
i
ci

. Run OTP for F2 with input r and obtain string ρ. If ρ 6= ρ1
c1 ◦ . . . ◦

ρ2k
c2k, abort. Else, send (s0, s1, r) to ExtOTM.

We proceed to show that REALExtOTM,A,Z and IDEALExtOTM
SExtOTM

1 ,Z are statistically close. Consider the following
hybrids:

Hybrid H0: In this experiment, Z interacts with simulator SextOT1 only. The simulator receives inputs (s0, s1, r)
forA on one hand, and bit c for P2 on the other. It then internally simulates a real execution of the protocol between
A and P2, and outputs whatever the simulated P2 outputs. Clearly,H0 is identical to REALExtOTM,A,Z .

Hybrid H1: In this experiment, SextOT1 runs M1 with input 0, and then rewinds M1 and runs it with input 1 to
obtain both the outputs s1

0 ◦ ρ1
0 and s1

1 ◦ ρ1
1. Let c1 be P2’s query to M1. Then, instead of running M1, the simulator

responds with (s1
c1 , ρ

1
c1) (if M1 outputs ⊥ on input bit c1, then SextOT1 returns ⊥ to P2).

Note that in bothH0 andH1, P2 receives the same value when it queries M1. Thus,H0 andH1 are identical.
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HybridsH2 . . .H2k: In hybridHi for 2 ≤ i ≤ 2k, the simulator extracts both the values of M i. When P2 queries
M i, the simulator responds without running M i again, as it did in the case of M1 inH1. As above, all these hybrids
are identical.

HybridsH2k+1: If for all i, 1 ≤ i ≤ 2k, ρi0 6= ρi1, simulator aborts.
If for each i the ρis are different, then F2 must guess a 2k length binary string. However, its input is only of

length k, and thus with probability negligibly close 1, F2 will output the wrong sequence of ρis, causing P2 to abort
inH2k. Thus,H2k andH2k+1 are statistically close.

Hybrid H2k+2: SextOT1 chooses 2k − 1 random bits c1, . . . , c2k−1, and sets c2k such that c2k =
⊕2k−1

i=1 ci. If for
any index i, si

ci
= ⊥, the simulator aborts. Else, it runs F1 with input (s1

c1 , . . . , s
2k
c2k), and obtains s0. Let j be the

index such that ρj0 = ρj1. Now SextOT1 runs F1 with input (s1
c1 , . . . , s

j−1
cj−1 , s

j
cj⊕1

, sj+1
cj+1 , . . . , s

2k
c2k) and obtains s1. If

F1 aborts in either execution, it sets the corresponding string to the default value 0k. Then it runs F2 with input
r :=

⊕2k
i=1 ρ

i
ci

, and obtains output ρ. If ρ 6= ρ1
c1 ◦ . . .◦ρ

2k
c2k , simulator aborts. Finally, SextOT1 ignores P2 and outputs

(sc, r) as P2’s output.
Note that P2’s input bits to the M is are 2k − 1-wise independent. Thus, as there is at least one M i which does

not abort on either input, the probability that P2 aborts inH2k+1 (before querying F1) is the same as the probability
that SextOT1 aborts inH2k+1 (before running F1).

Next, consider the joint distribution of inputs to F1 and F2. Since ρj0 = ρj1, the joint distribution of inputs to F1

and F2 is identical in H2k+1 and H2k+2. Thus, the joint distribution of outputs from F1 and F2 is identical in the
two experiments. Thus, the output of P2 is distributed identically inH2k+1 andH2k+2.

Hybrid H2k+3: This is the ideal world experiment. The simulator SextOT1 extracts (s0, s1, r) as above, and sends
it to the ideal functionality. The output of P2 in this case is exactly the output in H2k+2. Thus, this experiment is
identical toH2k+2.

Now we handle the case of malicious P2. Let A be an adversary controlling P2, and let Z be an environment.
Let SF1 and SF2 be the simulators for the OTPs for F1 and F2 respectively. The ideal-world adversary SExtOTM2 is
defined as follows:

13



Simulator SExtOTM2

1. Receive input bit c from Z for A. Start internal simulation of A with given input.

2. For 1 ≤ i ≤ 2k, send (create, sid, P1, P2,midi) to A. Also, run simulators SF1 and SF2 and
convey their messages to A.

3. Answer token-queries from A as follows:

(a) Let (run, sid, P1, P2,midil , cil) be a query to one of the M is. For all but the last such
query, answer with a random sil , and a random ρil . When A asks the last query, set
c′ =

⊕2k
j=1 c

j . Send c′ to ExtOTM and obtain (s, r). Set ρi2k = r ⊕
⊕2k−1

l=1 ρil .
Choose a random si2k , and reply with (si2k , ρi2k).

(b) For queries to OTPs for F1 and F2, forward them to SF1 and SF2 , and pass their re-
sponses back to A.

4. Let (ŝ1, . . . , ŝ2k) be SF1’s query to the ideal functionality for F1’s OTP. If this query occurs
before all M is have been queried, return ⊥. For 1 ≤ j ≤ 2k, check if ŝj = sj . If not, return
⊥. Else, return s.

5. Let ρ be SF2’s query to the ideal functionality for F2’s OTP. If this query occurs before all
M i’s have been queried, or if ρ 6= r, return ⊥. Else, return ρ1 ◦ . . . ◦ ρ2k to SF2 .

We proceed to show that REALExtOTM,A,Z and IDEALExtOTM
SExtOTM

2 ,Z are statistically close. Consider the following
hybrids:

Hybrid H0: In this experiment, Z interacts with simulator SextOT2 only. The simulator receives inputs (s0, s1, r)
for P1 on one hand, and bit c forA on the other. It then internally simulates a real execution of the protocol between
P1 and A, and outputs whatever the simulated A outputs. Clearly,H0 is identical to REALExtOTM,A,Z .

Hybrid H1: SextOT2 runs the simulator SF1 for F1, and passes its messages to A. When SF1 queries its ideal
functionality, SextOT2 runs the correct OTP for F1 sent by P1, and returns the output to SF1 . It follows from the
security of OTPs thatH1 andH0 are identical.

HybridH2: If A queries the OTP for F1 without querying all the M is, SextOT2 causes SF1 to abort.
Let M j be a token not queried by A before querying F1. Unless A guesses one of the outputs of M j , F1 will

output ⊥. Thus,H1 andH2 are statistically close.

Hybrid H3: SextOT2 runs the simulator SF2 for F2, and passes its messages to A. When SF2 queries its ideal
functionality, SextOT2 runs the correct OTP for F2 sent by P1, and returns the output to SF2 . It follows from the
security of OTPs thatH2 andH3 are identical.

HybridH4: If A queries F2 without querying all the M is, SextOT2 causes SF2 to abort.
Let M j be a token not queried byA before querying F1. UnlessA guesses one the output of M j , F1 will output

⊥. Thus,H1 andH2 are statistically close.
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Hybrid H5: For each i, 1 ≤ i ≤ 2k, let ĉi be A’s query to M i, and let si
ĉi
◦ ρi be its response. Let (ŝ1, . . . , ŝ2k)

be SF1’s query to its ideal functionality. SextOT2 checks, for all 1 ≤ i ≤ 2k, if ŝi = si
ĉi

. If not, it returns ⊥ to SF1 .
Else, it returns sĉ1⊕...⊕ĉ2k .

If si
ĉi

= ŝi for all i, then H4 and H5 are identical. If not, then there exists index j, such that ŝj is not the value
A received from M j . UnlessA is able to guess the other output of M j , F1 aborts. Thus,H4 andH5 are statistically
close.

Hybrid H6: For each i, 1 ≤ i ≤ 2k, let ĉi be A’s query to M i, and let si
ĉi
◦ ρi be its response. Let ρ be SF2’s

query to its ideal functionality. SextOT2 checks, if ρ = r. If not, it returns ⊥ to SF2 . Else, it returns ρ1 ◦ . . . ◦ ρ2k to
SF2 . This is exactly what F2 does, therefore,H5 andH6 are identical.

Hybrid H7: Let (ĉi1 , . . . , ĉi2k) be A’s queries to the M is, and let sij
ĉij
◦ ρij , 1 ≤ j ≤ 2k − 1 be the first (2k − 1)

responses. For the final query, instead of running M i2k , simulator chooses random k-bit string ti2k , and sets γi2k =
r ⊕

⊕2k−1
j=1 ρij . When SF1 queries its ideal functionality, SextOT2 checks if ŝi2k = ti2k and ŝij = s

ij

ĉij
for ij 6= i2k.

If all coordinates match, SextOT2 returns sĉ1⊕...⊕ĉ2k to SF1 .
As SextOT2 picks ti2k uniformly at random, ti2k and si2k

ci2k
are identically distributed. Also, as γi2k⊕

⊕2k−1
j=1 ρij =

r, γi2k and ρi2k are identically distributed. Thus, the output of A is identically distributed in experiments H6 and
H7.

Hybrids H8 . . .H2k+6: In each of these hybrids H6+l, 2 ≤ l ≤ 2k, the simulator SextOT2 replaces the outputs of
M i2k−l+1 with random outputs, as inH7. By the same argument, these hybrids are identical.

HybridH2k+7: This is the ideal world experiment. For the first 2k− 1 queries to M is, cij , SextOT2 responds with
random values sij ◦ ρij . For the last query, SextOT2 queries the ideal functionality with bit

⊕2k
i=1 c

i, and obtains
(sc, r). Then it sets ρi2k = r ⊕

⊕2k−1
j=1 ρij . This is identical toH2k+6.

�

We are now ready to prove the main feasibility result of this subsection.

Theorem 7. (Interactive unconditionally secure computation using stateful tokens.) Let f be a (possibly re-
active) polynomial-time computable functionality. Then there exists an efficient, statistically UC-secure interactive
protocol which realizes f in the Fsinglewrap -hybrid model.

Proof We compose three reductions. The protocols of [Kil88, IPS08] realize unconditionally secure two-party (and
multi-party) computation of general functionalities using FOT. A trivial reduction described above reduces FOT to
ExtOTM. Finally, Claim 6 reduces ExtOTM to Fsinglewrap .

�

While our main focus here is on feasibility questions, a couple of remarks about efficiency are in place. First,
the protocol ΠExtOTMuses stateful tokens of size poly(k), where k is a statistical security parameter. In the next
subsection we will show that the tokens can be further simplified to OTM tokens, each containing a pair of bits.
Second, the number of stateful tokens employed by the above protocol is proportional to the computational com-
plexity of f . This seems unavoidable given the current state of the art in the area of unconditionally secure MPC.
However, if one is willing to settle for computational UC-security based on one-way functions, Beaver’s OT exten-
sion technique [Bea96] can be used to reduce the number of tokens to poly(k), independently of the complexity of
f . Moreover, all of these poly(k) tokens can be sent at one shot in the beginning of the protocol. We defer a more
detailed discussion of these optimizations to the final version.
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4.2 The Non-Interactive Setting

In this subsection we restrict the attention to the case of securely evaluating two-party functionalities f(x, y) which
take an input x from the sender and an input y from the receiver, and deliver f(x, y) to the receiver. We refer
to such functionalities as being sender-oblivious. Note that here we consider only non-reactive sender-oblivious
functionalities, which interact with the sender and the receiver in a single round. The reactive case will be discussed
in Section 6.

Unlike the case of general functionalities, here one can hope to obtain non-interactive protocols in which the
sender unidirectionally send tokens (possibly along with additional messages9) to the receiver.

For sender-oblivious functionalities, the main result of this subsection strengthens the results of Section 4.1 in
two ways. First, it shows that a non-interactive protocol can indeed realize such functionalities using stateful tokens.
Second, it pushes the simplicity of the tokens to an extreme, relying only on OTM tokens which contain pairs of bits.

4.2.1 One-time programs.

Our starting point is the concept of a one-time program (OTP) [GKR08]. A one-time program can be viewed in our
framework as a non-interactive protocol for f(x, y) which uses only OTM tokens, and whose security only needs
to hold for the case of a semi-honest sender (and a malicious receiver).10 The main result of [GKR08] establishes
the feasibility of computationally-secure OTPs for any polynomial-time computable f , based on the existence of
one-way functions. The construction is based on Yao’s garbled circuit technique [Yao86]. Our initial observation is
that if f is restricted to the complexity class NC1, one can replace Yao’s construction by an efficient perfectly secure
variant (cf. [IK02]). This yields perfectly secure OTPs for NC1. We now present a general construction of a OTP
from any “decomposable randomized encoding” of f . This can be used to derive perfectly secure OTPs for larger
classes of functions (including NL) based on randomized encoding techniques from [FKN94, IK02].

The construction uses randomized encodings for functions:

Definition 8. (Perfect Randomized Encodings [AIK06]) Let f : { 0, 1 }n → { 0, 1 }l be a function. We say that a
function f̂ : { 0, 1 }n × { 0, 1 }m → { 0, 1 }s is a perfect randomized encoding of f , if it satisfies the following:

• Correctness There exists a deterministic algorithm Df̂ , called a ‘decoder’, such that for every input x ∈

{ 0, 1 }n, Pr
[
Df̂ (f̂(x,Um)) 6= f(x)

]
= 0.

• Privacy There exists a randomized algorithm Sf̂ , called the ‘simulator’, such that for every x ∈ { 0, 1 }n,

δ(Sf̂ (f(x)), f̂(x,Um)) = 0.

A perfect randomized encoding is called ‘efficient’ if f̂ can be computed in time polynomial in the length of x. A
perfect randomized encoding is called ‘decomposable’ if every output bit of f̂ depends upon a single bit of x.

We note that the Correctness and Privacy conditions can be relaxed to obtain computational and statistical ran-
domized encodings.

We will need the following theorem on randomized encodings for NC1 functions:

Theorem 9. ([Kil88], [IK02]) Let f be an NC1 function. Then there exists an efficient, perfect decomposable
randomized encoding for f .

Let f(·, ·) be any function admitting a decomposable randomized encoding. We now construct an OTP for f(·, ·)
in the pOTM-hybrid model.

Protocol Π1. (One-Time Program for f )
9Since our main focus is on establishing feasibility results, the distinction between the “hardware” part and the “software” part is not

important for our purposes.
10The original notion of OTP from [GKR08] is syntactically different in that it views f as a function of the receiver’s input, where a

description of f is given to the sender. This can be captured in our framework by letting f(x, y) be a universal functionality.
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• Input: P1 has input x ∈ { 0, 1 }n.

• Output: P2 should receive f(x, y), for y ∈ { 0, 1 }n.

• The Protocol:

1. P1 constructs a decomposable randomized encoding f̂(·, ·) of the function f . Let f̂x be the restriction
of the encoding to x. Choose random string r, and let f̂x(y, r) = (f1(y1, r), . . . , fn(yn, r)). Send
(create, sid, P1, P2,mid, ((f1(0, r), f1(1, r)), . . . , (fn(0, r), fn(1, r)))) to pOTM.

2. P2 sends (run, sid, P1, P2,mid, (y1, . . . , yn)) to pOTM and obtains s := f̂x(y, r). Let Df̂ (·) be the

decoder for f̂(·, ·). Party P2 outputs Df̂ (s).

�

We now show that the above construction is indeed an OTP for f .

Claim 10. For any PPT adversary A corrupting P2, there exists a PPT Simf , such that for every environment Z ,

IDEAL
FOTP

f

Simf ,Z = REALΠ1,A,Z .

Proof We construct the ideal world simulator Simf as follows:

Simulator Simf

1. Send (create, sid, P1, P2,mid) to A.

2. Receive (run, sid, P1, P2,mid, (y1, . . . , yn)) from P2. Send y = y1 . . . yn to FOTPf and
obtain f(x, y). Let Sf̂ (·) be the simulator for the randomized encoding f̂ . Run Sf̂ (f(x, y))
to obtain (ρ1, . . . , ρn). Send (ρ1, . . . , ρn) to A.

It directly follows from Theorem 9 that IDEAL
FOTP

f

Simf ,Z = REALΠ1,A,Z .

�

Implementing Parallel-OT tokens by simple OT tokens. The above protocol uses parallel-OT tokens. Now we
construct a non-interactive protocol in the OTM-hybrid model that realizes pOTM.

Protocol Π2 .

• Input: P1’s input is a tuple of n-bit strings ((s1
0, s

1
1), . . . , (sk0, s

k
1)). Party P2’s input is a tuple of bits

(c1, . . . , ck).

• Output: P2 should receive (s1
c1 , . . . , s

k
ck

).

• The Protocol:

1. P1 chooses k random strings ri, for 1 ≤ i ≤ k. Let r = r1 ◦ . . . ◦ rk. Now P1 additively shares r
into k random shares ρ1, . . . , ρk. For 1 ≤ i ≤ k, party P1 sends (create, sid, P1, P2,midi, ((si0 ⊕ ri) ◦
ρi, (si1 ⊕ ri) ◦ ρi)) to OTM.
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2. For 1 ≤ i ≤ k, party P2 sends (run, sid, P1, P2,midi, ci) to OTM and obtains ai ◦ bi. Now party P2

computes r′ =
∑k

i=1 bi. Let r′1, . . . , r
′
k be successive n-bit substrings of r′. Party P2 outputs (a1 ⊕

r′1, . . . , ak ⊕ r′k).

�

Claim 11. For any PPT adversary A corrupting P2 there exists a PPT SpOTM2 , such that for every environment Z ,

IDEALpOTM

SpOTM
2 ,Z

= REALΠ2,A,Z .

Proof We define the ideal world adversary SpOTM2 as follows.

Simulator SpOTM2

1. For 1 ≤ i ≤ k, send (create, sid, P1, P2,midi) to A.

2. On input (run, sid, P1, P2,midi, cj) from A, do

(a) if this is not the kth query from A, choose random strings aj ∈ { 0, 1 }n and bj ∈
{ 0, 1 }kn, and return aj ◦ bj to A.

(b) if this is the kth query from A, send (c1, . . . , ck) to pOTM and obtain (s1
c1 , . . . , s

k
ck

).
Choose a random aj ∈ { 0, 1 }n. For 1 ≤ i ≤ k, set ri = ai ⊕ si

ci
. Set

bj =
∑k

i=1,i 6=j bi + r1 ◦ . . . ◦ rk. Send aj ◦ bj .

We proceed to show that for every environment Z , IDEALpOTM

SpOTM
2 ,Z

= REALΠ2,A,Z by considering the following

intermediate hybrids. In the following, the symbolsH0,H1, . . . will be used to denote both the random variable that
defines the output of environment Z in the experiments described, and the experiments themselves.

HybridH0: In this experiment,Z interacts with SpOTM2 only. Simulator SpOTM2 receives inputs ((s1
0, s

1
1), . . . , (sk0, s

k
1))

for P1, and inputs (c1, . . . , ck) for P2 from Z . Now SpOTM2 internally simulates a real execution by running P1 and
A on their respective inputs, and simulating OTM. This is clearly identical to REALΠ2,A,Z .

Hybrid H1: This experiment is the same as above, except for A’s final query to (simulated) OTM. Let the final
query be (run, sid, P1, P2,midj , cj). Let { ai ◦ bi } i=1,...k

i6=j
be OTM’s responses to A so far. Instead of sending

it to OTM, simulator SpOTM2 answers the last query as follows: choose random string âj ∈ { 0, 1 }n. Then, for
1 ≤ i ≤ k, compute r′i = ai ⊕ sici , and set b̂j =

∑k
i=1,i 6=j bi + r′1 ◦ . . . ◦ r′k. Return âj ◦ b̂j to A.

Note that A’s view before the last query is uniformly distributed. Also,
∑k

i=1,i 6=j bi + b̂j = r′1 ◦ . . . ◦ r′k, and for
1 ≤ i ≤ k, ai ⊕ r′i = si

ci
. Thus,H0 andH1 are identical.

HybridH2: This experiment is the same as above, except for the first and last queries byA. Let (run, sid, P1, P2,midl1 , c
l1)

be the first query byA to OTM. Instead of forwarding this query to OTM, simulator SpOTM2 chooses random strings
âl1 ∈ { 0, 1 }n and b̂l1 ∈ { 0, 1 }kn and responds with âl1 ◦ b̂l1 . For the last query, SpOTM2 responds as in H1, using
âl1 ◦ b̂l1 as the response to the first query. All other queries are handled honestly

As before, A’s view before the final query is uniformly distributed. Thus,H1 andH2 are identical.
. . .
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Hybrid Hk: This experiment is similar to previous ones, except that SpOTM2 fakes the second-last query also.
Thus, in Hn, simulator SpOTM2 answers the first k − 1 queries by responding with random strings. Then, in the last
query, it uses (s1

c1 , . . . , s
k
ck

) to correct its previous responses. By the same argument as before, Hk is identical to
Hk−1.

Hybrid Hk+1: This is the ideal-world experiment. The simulator SpOTM2 proceeds as in Hk till the last query.
At this point, it sends (c1, . . . , ck) to pOTM and obtains (s1

c1 , . . . , s
k
ck

). Then it performs corrections to previous
responses as the simulator inHk.

Note that inHk, simulator SpOTM2 does not need use P1’s input till after the last query. Thus,Hk+1 andHk are
identical. This completes the proof.

�

A next natural step is to construct unconditionally secure OTPs for any polynomial-time computable function f .
In Appendix B we describe a direct and self-contained construction which uses the perfect OTPs for NC1 described
above to build a statistically secure construction for any f . However, this result will be subsumed by our main result,
which can be proved (in a less self-contained way) without relying on the latter construction.

4.2.2 The Protocol

As in Section 4.1, the main ingredient in our solution is an interactive secure protocol Π for f . To explain the idea
it is convenient to first assume that Π is secure in the plain model, without any oracles or setup. In such a case,
we could obtain a non-interactive protocol for f which emulates Π by having the sender generate and send a one-
time token which computes the sender’s next message function for each round of Π. We need to guarantee that the
receiver executes the tokens in the correct order, and also let the receiver pass the sender’s state information from one
token to the other without revealing this information to the sender. This can be done via a standard authentication
mechanism: each token i outputs an (unconditionally secure) authenticated encryption of the sender’s internal state
in the end of Round i, and this information should be supplied by the receiver as an additional input to the token
implementing Round i+ 1. If the authentication fails, the token outputs ⊥.

The above procedure transforms Π into a non-interactive protocol Π′ which uses very complex one-time tokens
(for implementing the next message functions of Π). The next idea is that we can break each such complex token
into simple OTM tokens by just using a one-time program realization of each complex token. This yields a new
non-interactive protocol Π′′. The main observation here is that the one-time programs are already secure against
a malicious receiver, and any strategy a malicious sender may use in generating badly-formed OTPs corresponds
to legitimate strategy for attacking Π′ (which in turn corresponds to a legitimate strategy for attacking Π). Note
that since the next message function of Π can be assumed wlog to be in NC1 (possibly breaking each round into
multiple mini-rounds), and since unconditionally secure authenticated encryption can also be realized in NC1, we
may assume that each one-time token in Π′ realizes an NC1 function. This allows us to apply the unconditional OTP
construction for NC1 described above.
From the plain model to the OT-hybrid model. Recall that so far we assumed the protocol Π to be secure in the
plain model. This rules out unconditional security as well as UC-security, which are our main goals in this section.
A natural approach for obtaining unconditional UC-security is to extend the above compiler to protocols in the OT-
hybrid model. This introduces a subtle difficulty which was already encountered in Section 4.1: the sender cannot
directly implement the OT calls by using OTM tokens, because this would give the receiver an advantage it does not
have in Π. Namely, the receiver will be able to defer the invocation of the OTM tokens to the end of the protocol,
thereby correlating some of its inputs with partial information obtained from the sender. (The same problem persists
even if one applies to Π a standard transformation which guarantees that all OT calls are done in the beginning of
the protocol and use random choice bits ci which are independent of the receiver’s inputs.) A natural approach to
solve this problem that does not work in our context, which was applied in the context of OTPs in [GKR08], is to let
the sender secret-share a key between the OTMs which is then used to encrypt all subsequent interaction. However,
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this gives rise to correlation attacks by a malicious sender, as discussed in Section 4.1. Fortunately, we can use the
(non-interactive) ExtOTM protocol from Section 4.1 to realize the approach of [GKR08] while resisting attacks by
a malicious sender. The complex tokens required by the ExtOTM protocol can be themselves implemented using
one-time programs, thereby eliminating the need for any tokens more complex than simple OTM tokens. We are
ready to present our protocol formally now.

Protocol Π′. (non-interactive protocol for computing f(x, y)):

• Input: P ′1 has input x ∈ { 0, 1 }n, and P ′2 has input y ∈ { 0, 1 }n.

• Specified Output: P ′2 should receive f(x, y).

• The protocol:

1. P ′1 constructs its first message as follows:

(a) P ′1 uniformly chooses random tape r for P1. For 1 ≤ i ≤ l, P ′1 chooses keys ki1 for message
authentication scheme MAC(·). Also, for 1 ≤ i ≤ l, P ′1 chooses random strings ki0, where the
length of ki0 is the length of the state output by gx,ri (·, ·).

(b) P ′1 runs P1 on x and r, and obtains the initial OT values (r1
0, r

1
1), . . . , (rt0, r

t
1). P ′1 also chooses

random strings ρ1, . . . , ρt.
(c) For each 1 ≤ i ≤ l, P ′1 constructs an unconditional one-time program for the following functionality

Gi:
0. (Only for i=1) Obtain input (m1, s0). If s0 6= ρ1 ◦ . . . ◦ ρt, output ⊥. Else, set s0 = null and

proceed to step (ii) below.
i. Receive input (mi, c

i−1
0 , ci−1

1 ). Check V Fki−1
1

(ci−1
0 , ci−1

1 ) = 1. If not, output ⊥. Else, set

si−1 = ci−1
0 ⊕ ki−1

0 .
ii. Compute gx,ri (mi, si−1) to obtain P1’s ith message m, and state si.

iii. Output (m, si ⊕ ki0,MACki
1
(si ⊕ ki0)).

(d) Finally, P ′1’s first message comprises of:
i. Tokens for initial OTs: for 1 ≤ i ≤ t, P ′1 sends (P ′1, P

′
2, idi, ((r

i
0, r

i
1), ρi)) to FExtOTM .

ii. Unconditional OTPs G1, . . . , Gl.

2. Output: P ′2 uniformly chooses random tape r′ for P2. Now, P ′2 runs P2 and executes all initial OTs.
Then, for each 1 ≤ i ≤ l, P ′2 does the following:

(a) Run P2 and obtain its message mi for the ith round.
(b) Run the ith one-time program on input (mi, c

i−1
0 , ci−1

1 ) (or (mi, s0) if i = 1), and obtain (m, ci0, c
i
1)

as output.
(c) Forward m to P2.

Finally, P ′2 outputs P2’s output.

Theorem 12. Protocol Π′ UC-realizes functionality f in the (OTM,FExtOTM )-hybrid model.

Proof

Security against malicious P ′1. Let A be an adversary corrupting P ′1. We construct an adversary SP ′1 such that,
for every environment Z , REALΠ′,A,Z = REALΠ,SP ′1

,Z , i.e., no environment can distinguish between an execution

of Π′ with adversary A and an execution of Π with adversary SP ′1 .
The adversary SP ′1 is defined as follows: start internal simulation of adversary A with input y received from

the environment. For each j, 1 ≤ j ≤ t, obtain (rj0, r
j
1, ρj). Use (rj0, r

j
1) as the input for the jth OT, and set

s0 := ρ1 ◦ . . . ◦ ρt. For each i, 1 ≤ i ≤ l, obtain OTP for Gi. Now run protocol Π with the external P2: in round
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i, receive message mi from P2. Run OTP for Gi with input (mi, c
i−1
0 , ci−1

1 ) (for i = 1, run OTP for G1 with input
(m1, s0)). Obtain Gi’s response, (mi, ci0, c

1
i ). Store (ci0, c

i
1) for the next round, and forward mi externally to P2.

Note that in both the executions ((SP ′1 , P2) and (A, P ′2)), the (joint) distribution of inputs to the one time pro-
grams is identical. Thus, the outputs of the OTPs are identically distributed, and the output of P ′2 in Π′ and P2 in Π
are identically distributed.

Security against malicious P ′2. Let A be an adversary corrupting P ′2, and Z be any environment. The adversary
SP ′2 must play the part of P2 in Π. Adversary SP ′2 proceeds as follows: it takes input y from the environment Z
and internally simulates A on input y. For each 1 ≤ i ≤ l, adversary SP ′2 invokes the OTP simulator of Claim 10,
SimGi and sends these simulated OTP G̃i to the internal simulation of A. To evaluate G̃i, A issues OT queries to
SP ′2 . When A asks the last input OT query for G̃i, A’s complete input to G̃i is determined, and SimGi queries the
functionality for the correct output. Now SP ′2 externally forwards this to the real P1, and obtains its response m,
which it forwards to SimGi as answer to its query.

However, the adversary A can query the OTs in any order and with arbitrary interleaving between OTs of
different OTPs. This is a problem for SP ′2 . Call the ith OTP fixed if all but one of its input OTs have been queried.
Thus, when the next input OT request comes, A’s input to this OTP will be fully specified. Now, let k < i, and
consider the stage where the ith OTP is fixed, while not all OTs for kth OTP have been executed (that is,A’s input to
kth OTP is still not fully specified). Now, supposeA queries the final input OT for ith OTP, thereby fully specifying
its input to this OTP. Now, SP ′2 can not forward this message to P1, as P1 is waiting for a previous response.

To handle this problem, whenever SP ′2 detectsA attempting to execute OTP i out of order, it makes it abort; that
is, when SimGi queries the ideal functionality, SP ′2 returns ⊥. Details follow.

Adversary SP ′2
1. Construction phase:

(a) For 1 ≤ i ≤ l, choose keys k0
i , k

1
i , like P ′1.

(b) For 1 ≤ i ≤ l, run SimGi(κ) and send its output to A

2. Execution phase: SP ′2 handles A’s queries as follows:

(a) Initial OTs. On receiving (P ′1, P
′
2, idi, ci) from A (for 1 ≤ i ≤ t), forward c to the

external OT, and obtain rici . Choose a random ρ̂i, and return (rici , ρ̂i) to A.

(b) On receiving OT queries from A for unconditional OTP Gi forward the queries to
SimGi , and return the response to A.

(c) For SimGi’s query to its ideal functionality, do,

i. if ith OTP is fixed, and there exists i′ < i such that i′ is not fixed, return ⊥.
ii. else,

A. if i = 1 and all initial OTs have not been queried, then return⊥. Else, let σ1 be
A’s input to G1. Interpret σ1 as (m1, s0). If s0 6= ρ̂1 ◦ . . . ◦ ρ̂t, return ⊥. Else,
forward m1 externally to P1, and obtain response m̃1. Choose random state w,
and return (m̃1, w ⊕ k1

0,MACk1
1
(w ⊕ k1

0)).

B. else, let σi be A’s input to Gi. Interpret σi as (mi, c
i−1
0 , ci−1

1 ). Verify
V Fki−1

1
(ci−1

0 , ci−1
1 ) = 1. If not, return ⊥ to SimGi . Else, externally for-

ward mi to P1, and obtain response m̃i. Choose random state w, and forward
(m̃i, w ⊕ ki0,MACki

1
(w ⊕ ki0)) to SimGi .

Finally, output A’s output.
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We proceed to show that the random variables REALΠ′,A,Z and REALΠ,SP ′2
,Z are statistically close. Consider

the following hybrids:

Hybrid H0: This distribution is the output of the following experiment: the environment Z interacts with adver-
sary SP ′2 only. SP ′2 receives input x from Z for P ′1 and input y from Z for P ′2. Now it internally simulates a real
execution of honest P ′1 and A on inputs x and y respectively. Clearly,H0 is identical to REALΠ′,A,Z .

HybridH1: The adversary SP ′2 proceeds as above, except for handling the first initial OT. On receiving (P ′1, P
′
2, idi1 , ci1)

fromA, it sends obtains (ri1ci1 , ρi1) from (simulated)FExtOTM . Then, it chooses a random ρ̂i1 , and returns (ri1ci1 , ρ̂i1)
to A.

Note that the distributions of ρ̂i1 inH1 and ρi1 inH0 are identical. Thus,H0 andH1 are identical.

Hybrids H2 . . .Ht: In each hybrid Hj , 2 ≤ j ≤ t, adversary SP ′2 replaces ρij with a random ρ̂ij . As above, all
these hybrids are identical.

Hybrid Ht+1: Same as above, except adversary SP ′2 replaces the lth OTP with a simulated OTP. That is, SP ′2
honestly constructs one-time programs for the first l− 1 next message functions. But for the last one, it runs SimGl

.
When A completely specifies its input to the last OTP by querying the last input OT for G̃l, adversary SP ′2 replies
with the correct response of the lth next message function.

HybridHt+2 . . .Ht+l: In each hybridHt+j , for 2 ≤ j ≤ l, SP ′2 replaces the l − j + 1 OTP with SimGl−j+1
.

Before proceeding further, we show that the random variables Ht+1 and Ht+l are statistically close. For any
1 ≤ i < l consider any two adjacent hybrids Ht+i and Ht+i+1. Observe that the only difference between the two
is that in Ht+i, the (l − i)th OTP is real, while in Ht+i+1 the (l − i)th OTP is simulated. But by Claim 10, these
distributions are statistically close. Thus,Ht+i andHt+i+1 are statistically close, for all 1 ≤ i < l.

HybridHt+l+1: Same asHt+l, but now if A queries the OTP for G1 before executing all initial OTs, SP ′2 returns
⊥ to SimG1 .

Note that the OTP for G1 takes as input ρ1 ◦ . . .◦ρt. Thus, ifA tries to query G1 OTP before executing all initial
OTs, with probability negligibly close to 1, the OTP for G1 will abort.

Hybrid Ht+l+2: Same as before, but now if A tries to query OTPs out of order, then instead of obtaining the
honest output from P1, SP ′2 causes the relevant OTP simulator to output ⊥.

Note that, in Ht+l+1, adversary A can succeed in out of order querying with probability at most the probability
of generating a forged MAC, which is negligible. Thus it follows from the security of the unconditional one-time
signature scheme that the two distributions are statistically close.

Hybrid Ht+l+3: This experiment is the real execution of Π with (P1, SP ′2), where SP ′2 interacts with the real P1.
Observe that in Ht+l+2, the adversary does not use P1’s real next message function for construction of any OTPs.
Instead, it only uses them to obtain P1’s responses. Ht+l+3 is exactly the same except here SP ′2 gets P1’s responses
directly from P1 rather than using its next message functions. Thus, the two distributions are identical.

�
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Using bit-OT tokens. In all our constructions so far, the size of the output of our tokens is polynomially related to
the input size and the security parameter. Ideally, we would only like to use hardware that handles strings of small
size. For example, in the case of OT tokens, we would like to use only bit OT tokens. To this end, one can use
a known perfectly secure reduction from string OT to bit OT [BCS96]. This reduction reduces OT on `-bit strings
to O(`) parallel instances of bit OT. While in our case we need the reduction to be UC-secure against a receiver
who may invoke the bit OTs in an arbitrary adaptive fashion, the reduction from [BCS96] can indeed be shown to
satisfy this stronger notion of security. This is a natural consequence of the perfect security of the reduction and
an efficient conditional sampling property. In the appendix, we briefly sketch an alternative construction and proof
using a coding argument. Further details will be provided in the final version. Combining this final reduction with
the previous results, we get an unconditionally-secure, non-interactive, UC-secure protocol for a circuit C which
uses O(|C|·poly(κ)) bit OT tokens. In Appendix A we sketch a simpler and self-contained alternative derivation of
this reduction.

This yields the following main result of this section:

Theorem 13. (Non-interactive unconditionally secure computation using bit-OTM tokens.) Let f(x, y) be a
non-reactive, sender-oblivious, polynomial-time computable two-party functionality. Then there exists an efficient,
statistically UC-secure non-interactive protocol which realizes f in the Fsinglewrap -hybrid model in which the sender
only sends bit-OTM tokens to the receiver.

5 Two-Party Computation with Stateless Tokens

In this section, we again address the question of achieving interactive two-party computation protocols, but asking
the following questions: (1) Can we achieve interactive two-party computation protocols without requiring that the
number of tokens increase with the complexity of the function being computed, as was the case in the previous
section, and (2) Can we achieve two-party computation protocols using stateless tokens? We show how to positively
answer both questions: We use stateless tokens, whose complexity is polynomial in the security parameter, to imple-
ment the OT functionality. We assume only the existence of one-way functions. Since (as discussed earlier), secure
protocols for any two-party task exist given OT, this suffices to achieve the claimed result. Our construction for the
OT functionality (and thus for general two-party computation) is UC secure.

Before turning to our protocols, we make a few observations about stateless tokens to set the stage. First, we
observe that with stateless tokens, it is always possible to have protocols where tokens are exchanged only at the
start of the protocol. This is simply because each party can create a “universal” token that takes as input a pair (c, x),
where c is a (symmetric authenticated/CCA-secure) encryption11 of a machine M , and outputs M(x). Then, later
in the protocol, instead of sending a new token T , a party only has to send the encryption of the code of the token,
and the other party can make use of that encrypted code and the universal token to emulate having the token T . The
proof of security and correctness of this construction is straightforward, and omitted for the sake for brevity.
Dealing with dishonestly created stateful tokens. The above discussion, however, assumes that dishonest players
also only create stateless tokens. If that is not the case, then re-using a dishonestly created token may cause problems
with security. If we allow dishonest players to create stateful tokens, then a simple solution is to repeat the above
construction and send separate universal tokens for each future use of any token by the other player, and honest
players are instructed to only use each token once. Since this forces all tokens to be used in a stateless manner,
this simple fix is easily shown to be correct and secure; however, it may lead to a large number of tokens being
exchanged. To deal with this, as was discussed in the previous section, we observe that by Beaver’s OT extension
result [Bea96] (which requires only one-way functions), it suffices to implement O(k) OT’s, where k is the security
parameter, in order to implement any polynomial number of OT’s. Thus, it suffices to exchange only a linear number
of tokens even in the setting where dishonest players may create stateful tokens.
Convention for intuitive protocol descriptions. In light of the previous discussions, in our protocol descriptions,
in order to be as intuitive as possible, we describe tokens as being created at various points during the protocol.

11An “encrypt-then-MAC” scheme would suffice here.
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However, as noted above, our protocols can be immediately transformed into ones where a bounded number of
tokens (or in the model where statelessness is guaranteed, only one token each) are exchanged in an initial setup
phase.

5.1 Protocol Intuition

We now discuss the intuition behind our protocol for realizing OT using stateless tokens; due to the complexity of
the protocol, we do not present the intuition for the entire protocol all at once, but rather build up intuition for the
different components of the protocol and why they are needed, one component at a time. For this intuition, we will
assume that the sender holds two random strings s0 and s1, and the receiver holds a choice bit b. Note that OT of
random strings is equivalent to OT for chosen strings [BG89].
The Basic Idea. Note that, since stateless tokens can be re-used by malicious players, if we naively tried to create
a token that output sb on input the receiver’s choice bit b, the receiver could re-use it to discover both s0 and s1. A
simple idea to prevent this reuse would be the following protocol, which is our starting point:

1. Receiver sends a commitment c = com(b; r) to its choice bit b.

2. Sender sends a token, that on input (b, r), checks if this is a valid decommitment of c, and if so, outputs sb.

3. Receiver feeds (b, r) to the token it received, and obtains w = sb

Handling a Malicious Receiver. Similar to the problem discussed in the previous section, there is a problem that
the receiver may choose not to use the token sent by the sender until the end of the protocol (or even later!). In our
context, this can be dealt with easily. We can have the sender commit to a random string π at the start of the protocol,
and require that the sender’s token must, in addition to outputting sb, also output a valid decommitment to π. We
then add a last step where the receiver must report π to the sender. Only upon receipt of the correct π value does the
sender consider the protocol complete.
Handling a Malicious Sender. While this protocol seems intuitive, we note that it is actually insecure for a fairly
subtle reason. A dishonest sender could send a token that on input (b, r), simply outputs (b, r) (as a string). This
means that at the end of the protocol, the dishonest sender can output a specific commitment c, such that the receiver’s
output is a decommitment of c showing that it was a commitment to the receiver’s choice bit b. It is easy to see that
this is impossible in the ideal world, where the sender can only call an ideal OT functionality.

To address the issue above, we need a way to prevent the sender from creating a token that can adaptively decide
what string it will output. This has to be done in a way to enable our simulator to extract the inputs of the malicious
sender. Thinking about it in a different way, we want the sender to “prove knowledge” of two strings before he sends
his token. We can accomplish this by adding the following preamble to the protocol above:

1. Receiver chooses a pseudo-random function (PRF) fγ : {0, 1}5k → {0, 1}k, and then sends a token that on
input x ∈ {0, 1}5k, outputs fγ(x).

2. Sender picks two strings x0, x1 ∈ {0, 1}5k at random, and feeds them (one-at-a-time) to the token it received,
and obtains y0 and y1. The sender sends (y0, y1) to the receiver.

3. Sender and receiver execute the original protocol above with x0 and x1 in place of s0 and s1. The receiver
checks to see if the string w that it obtains from the sender’s token satisfies fγ(w) = yb, and aborts if not.

The crucial feature of the protocol above is that a dishonest sender is effectively committed to two values x0 and
x1 after the second step (and in fact the simulator can use the PRF token to extract these values), such that later on
it must output xb on input b, or abort.

Note that a dishonest receiver may learn k bits of useful information about x0 and x1 each from its token, but
this can be easily eliminated later using the Leftover Hash Lemma (or any strong extractor).
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Preventing correlated aborts. A final significant subtle obstacle remains, however. A dishonest sender can still
send a token that causes an abort to be correlated with the receiver’s input, e.g. it could choose whether or not to
abort based on the inputs chosen by the receiver12.

To prevent a dishonest sender from correlating the probability of abort with the receiver’s choice, the input b of
the receiver is additively shared into bits b1, . . . , bk such that b1 + b2 + · · ·+ bk = b. The sender, on the other hand,
chooses strings z1, . . . , zk and r uniformly at random from {0, 1}5k. Then the sender and receiver invoke k parallel
copies of the above protocol (which we call the Quasi-OT protocol), where for the ith execution, the sender’s inputs
are (zi, zi + r), and the receiver’s input is bi. Note that at the end of the protocol, the receiver either holds

∑
zi if

b = 0, or r +
∑
zi if b = 1.

Intuitively speaking, this reduction (variants of which were previously used by, e.g. [Kil90, LP07]) forces the
dishonest sender to make one of two bad choices: If each token that it sends aborts too often, then with overwhelming
probability at least one token will abort and therefore the entire protocol will abort. On the other hand, if few of
the sender’s tokens abort, then the simulator will be able to perfectly simulate the probability of abort, since the bits
bi are (k − 1)-wise independent (and therefore all but one of the Quasi-OT protocols can be perfectly simulated
from the receiver’s perspective). We make the receiver commit to its bits bi using a statistically hiding commitment
scheme (which can be constructed from one-way functions [HR07]) to make this probabilistic argument go through.

Now we are ready to present our protocol formally.

5.1.1 Preliminaries

Statistically Hiding Commitment Schemes We will use the statistically hiding commitment scheme of [HR07].
The receiver’s transcript of commitment to bit b when the sender uses randomness r will be denoted by scom(b, r).
The decommitment phase consists of the sender simply sending its randomness r along with bit b, and the receiver
verifies if (r, b) is consistent with the transcript scom(b, r).

Definition 14. (Pairwise Independent Hash Functions ([CW79])) LetH be a family of functions mapping strings of
length l(n) to strings of length m(n). Then, H is an efficient family of pairwise independent hash functions if the
following hold:

Samplable. H is polynomially samplable in n.

Efficient. There exists a polynomial time algorithm that given x ∈ { 0, 1 }l(n) and a description of h ∈ H outputs
h(x).

Pairwise Independence. For every distinct x1, x2 ∈ { 0, 1 }l(n), and every y1, y2 ∈ { 0, 1 }m(n), we have:

Pr
h←H

[ h(x1) = y1 ∧ h(x2) = y2 ] = 2−2m(n).

It is known ([CW79]) that there exists an efficient family of pairwise independent hash functions for every l and m
whose element description size is O(max(l(n),m(n))).

Let X be a random source with min-entropy k.

Theorem 15. (Leftover Hash Lemma ([HILL99])) If the family H of hash functions h : { 0, 1 }n → { 0, 1 }l is
pairwise independent, where l = k−2log(1/ε)−O(1), thenExt(X,h) := (h, h(X)) is a strong (k, ε/2)-extractor.

12At first glance, this may not seem like a problem, since we can treat an abort as a special output string ⊥, which the sender could have
anyway provided as one his inputs to the OT. But the adaptive decision of whether or not to abort is actually a problematic additional “axis”
of control that the sender has in addition to the allowed choice of strings depending on the receiver’s bit. We now elaborate with an example:

A concrete “problem case” is to consider a commitment algorithm in which the first bit c1 of the commitment to a bit b is set equal to
r ⊕ b, where r is a randomly chosen bit. Now, a dishonest sender can send a token such that when it is fed the decommitment information, it
decides to abort iff r = 1. Let r′ = 1 iff the honest receiver sees the token abort and thus aborts. In real life executions of the protocol, we
will always have the invariant that c1 = r′⊕ b. However the natural simulator for this protocol, in which the simulator (which does not know
b), chooses a commitment to a random b′, would lead to ideal world executions in which c1 6= r′ ⊕ b with probability 1/2.
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5.1.2 The Protocol

Let k be the security parameter. Let H be an efficient family of pairwise hash functions mapping strings of length
5k to k. Let F be a family of pseudo-random functions mapping strings of length 5k to k.

Protocol. (Quasi OT.)

• Input: P1 has two strings (s0, s1) ∈ { 0, 1 }k, P2 has a selection bit b.

• Common input: An index j.

• Protocol:

1. P2 chooses a random PRF key γ for family F , and sends (create, sid, P2, P1,midj,1,M1), where M1

implements the following functionality:

• On input string x ∈ { 0, 1 }5k, output fγ(x).

P2 also sends to P1 a randomly chosen string r, which serves as the first message of the (statistically
binding) commitment scheme com.

2. P1 chooses two strings x0 and x1 uniformly from { 0, 1 }5k, and a random string π ∈ { 0, 1 }k. P1

sends (run, sid, P2, P1,midj,1, xi) to obtain yi, for i ∈ { 0, 1 }. Now P2 chooses a random hash function
h ∈ H, and sends (y0, y1, h, α = com(π)) to P2.

3. Now P2 commits to its input bit b using the commitment scheme scom. That is, P2 and P1 run the
statistically hiding commitment protocol scom, with P2 acting as the sender in the commitment protocol
with input bit b. Let α̂ be P1’s transcript (view) of the commitment phase, and let r̂ be the randomness
used by P2 in the commitment protocol.

4. If the commitment phase succeeds, P1 sends (create, sid, P1, P2,midj,2,M2), where M2 implements
the following functionality:

• Obtain randomness r̂ and bit b, and verify that this is a valid decommitment (with respect to com-
mitment transcript α̂). If so, output xb and β = open(α). Else, output ⊥.

5. P2 sends (run, sid, P1, P2,midj,2, (r̂, b)) and obtains xb and β. It then checks if fγ(xb) = yb. If not, it
aborts. Then it checks if β is a valid opening of α. If not, it aborts. Else, let π′ be the revealed string. P2

sends π′ to P1.

6. P1 receives string π′ from P2, and checks if π = π′. If not, it aborts. Else, it sends (s′0 = s0⊕h(x0), s′1 =
s1 ⊕ h(x1)).

7. P2 receives (s′0, s
′
1), and outputs s′b ⊕ h(xb).

As mentioned before, this protocol does not realize the OT functionality, as a malicious sender can selectively
abort based on receiver’s input. Now we present a protocol that uses QuasiOT as a subroutine and realizes OT in the
Fstatelesswrap -hybrid model.

Protocol. (OT in Fstatelesswrap -hybrid model.)

• Input: P1 has two strings (s0, s1) ∈ { 0, 1 }k × { 0, 1 }k, P2 has selection bit b.

• Output: P2 outputs sb.

• Protocol:

1. P1 chooses z1, . . . , zk, r ∈ { 0, 1 }k uniformly at random. P2 chooses k − 1 random bits b1, . . . , bk−1,
and sets bk such that b =

⊕k
j=1 bj . Now P1 and P2 execute in parallel, k copies of QuasiOT . For

1 ≤ j ≤ k, the inputs to the jth copy of QuasiOT are (zj , zj ⊕ r) and bj .
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2. If all k copies ofQuasiOT finish without aborts, then P1 sends to P2 the pair (s′0 = s0⊕
⊕k

j=1 zj , s
′
1 =

s1 ⊕
⊕k

j=1 zj ⊕ r).

3. For 1 ≤ j ≤ k, let aj be the string received by P2 at the end of the jth invocation of QuasiOT . Then,
P2 outputs s′b ⊕

⊕k
j=1 aj .

5.1.3 Security Proof

Theorem 16. Protocol 5.1.2 UC-realizes OT in the Fstatelesswrap -hybrid model.

Proof We first consider the case of malicious sender. Let A be an adversary corrupting P1, and let Z be any
environment. For each j, 1 ≤ j ≤ k, we first present a sub-routine Ŝ1,j that will be used by the ideal-world
simulator S1.

Subroutine Ŝ1,j

1. Send (create, sid, P2, P1,midj,1) to A. Also send a random string r.

2. For each query x to midj,1, Ŝ1,j checks if A queried the midj,1 on x before. If it did, return
the previous response. Else, return a randomly chosen k-bit string y. The simulator keeps a
list of A’s queries to midj,1 and its responses.

3. When Ŝ1,j receives (y0, y1, h, α) from A, it checks the list of responses, and obtains the
strings x0 and x1 to which it responded with y0 and y1 respectively. If for any yi, i ∈ { 0, 1 },
no such xi exists, set xi = ⊥.

4. Ŝ1,j picks a random bit b, and runs the commitment protocol scom withA, with b as its input.

5. When Ŝ1,j receives (create, sid, P1, P2,midj,2,Mj,2), it honestly runs the decommitment
phase of scom, and obtains output (x̂b, β). If x̂b 6= xb, it aborts. If β is not the correct
opening of α, it aborts. Else, let π be the string revealed in the opening. Ŝ1,j returns π to A.

6. When Ŝ1,j obtains (s′j,0, s
′
j,1) from A, it returns (sj,0 = s′j,0 ⊕ h(x0), sj,1 = s′j,1 ⊕ h(x1)) to

S1.

Now we describe the the ‘outer’ simulator S1.

Simulator S1

1. Invoke adversary A, and pass messages from environment to P1 or A, to A and vice versa.

2. For each j, 1 ≤ j ≤ k, run Ŝ1,j , and pass messages between the subroutine and A. If no
subroutine Ŝ1,j aborts, for each j, obtain pair (sj,0, sj,1).

3. Let (s′0, s
′
1) be the final message from A. The simulator S1 picks two random bit-vectors

(b1, . . . , bk) and (b′1, . . . , b
′
k), such that

⊕k
j=1 bj = 0 and

⊕k
j=1 b

′
j = 1. Then it sets s0 =

s′0 ⊕
⊕k

j=1 sj,bj and s1 = s′1 ⊕
⊕k

j=1 sj,b′j . The simulator sends (s0, s1) to the ideal OT
functionality.

We prove indistinguishability of real and ideal worlds via the following series of hybrids. We denote the k
invocations of the QuasiOT subroutine by QOT1, . . . , QOTk.

HybridH0: This is the real execution.
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Hybrid H1,0: Same as above, except we modify the behaviour of QOT1 as follows: instead of answering A’s
queries by running M1,1, for each query x, we respond with a randomly chosen k-bit string. We record the queries
and our responses in a list. When A asks query x, we first check if A asked x before. If this is the case, we respond
with the same string as before.

Any environment that can distinguish between H1,0 and H0 can distinguish the PRF from a random function.
Thus, as the PRF key is never revealed, by the security of the PRF, hybridsH1,0 andH0 are indistinguishable.

Hybrid H1,1: Same as above, except now, as we record the responses in the list, we ensure that no two of A’s
queries have the same response. If there is a collision,H1,1 aborts.

Note that the probability of abort in H1,1 is at most the probability of finding a collision in a randomly chosen
function. Thus,H1,0 andH1,1 are statistically close.

Hybrid H1,2: This experiment is same as above, except the following: let (y0, y1, h, α) be A’s first message to
P2. We check the list of responses to find strings x0 and x1 such that y0 and y1 were the responses to x0 and
x1 respectively. Note that conditioned on the event that H1,1 does not abort, each y can be a response to at most
a single A query x. If for i ∈ { 0, 1 }, yi is not the response to any query, set xi = ⊥. Now, let (x̂b1 , β) be
M1,2’s output. If x̂b1 6= xb1 , hybrid H1,2 outputs ⊥. Else, let (s′1,0, s

′
1,1) be A’s final message. QOT1 returns

(s1,0 = s′1,0 ⊕ h(x0), s1,1 = s′1,1 ⊕ h(x1)) to S1, which forwards s1,b1 to the simulated P2.
If xb1 6= ⊥, the the probability that the images (under a random function) of x̂b1 and xb1 would be the same,

is negligible. If xb1 = ⊥, then the probability that A can guess the image (under a random function) of x̂b1 is
negligible. Thus,H1,1 andH1,2 are statistically close.

Hybrids H2,0, . . . ,Hk,2: For 2 ≤ j ≤ k and j′ ∈ { 0, 1, 2 }, hybrid Hj,j′ modifies the behaviour of QOTj in the
same way as H1,j′ modifies the behaviour of QOT1. By the same arguments as above, it follows that these hybrids
are indistinguishable.

HybridHk+1: Same as above, except instead of using ~v = (b1, . . . , bk) as the inputs toQOTjs, where
⊕k

j=1 bj =
b, we pick a random vector of bits ~v′, and use that as inputs to the QOTjs. Let (s′0, s

′
1) be the final message from

A. Now we randomly pick two k-bit vectors ~v0 = (b1, . . . , bk) and ~v1 = (b′1, . . . , b
′
k) such that

⊕k
j=1 bj = 0 and⊕k

j=1 b
′
j = 1. For each j, let (sj,0, sj,1) be the pairs of strings obtained from QOTjs. Set s0 = s′0⊕

⊕k
j=1 sj,bj and

s1 = s′1 ⊕
⊕k

j=1 sj.b′j . Finally, output sb as P2’s output.
Note that com is a statistically binding commitment scheme. Thus, with probability negligibly close to 1, α has

a single opening. Next, observe that the only difference between Hk,2 and Hk+1 is in the inputs to the OT boxes
(that is, inputs to the tokens Mj,2). Also note that in Hk,2, each token Mj,2, outputs either the correct string xj,bj ,
or ⊥. Thus, the only difference in the two hybrids is the probability of abort. We now show that the probabilities of
abort are negligibly close to each other.

Claim 17. Let p1 be the probability of abort inHk,2, and p2 be the probability of abort inHk+1. Then, |p1 − p2| ≤
2−k+1.

Proof For simplicity, we assume that the commitment scheme scom is perfectly hiding. In the end, we point out
how to extend the proof to the case of statistical hiding schemes.

We will condition the probability of abort on A’s transcripts of the commitments. Let ~v = (b1, . . . , bk) be a bit
vector, and let ~r = (r1, . . . , rk) be a vector of random strings. By scom(~v, ~r) = (α̂1, . . . , α̂k) we mean a vector
of transcripts, where for 1 ≤ j ≤ k, α̂j is the transcript of the receiver in the commitment scheme scom when the
sender commits bit bj using randomness rj (the randomness of the receiver is implicit).

Let ~c = (α̂1, . . . , α̂k) be a transcript vector. First, note that, because of the perfect hiding property of the
commitment scheme scom, the probability of occurrence of ~c in Hk,2 and Hk+1 is exactly the same. That is,
the number of randomness strings ~r that lead to transcript ~c is the same in the two hybrids. For ~c, fix a randomness
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vector ~r that can lead to ~c. For ~c and ~r, we analyze the behaviour of the tokensMj,2 in the following two experiments
corresponding to Hk,2 and Hk+1 respectively: in the first, ~v is chosen so that

⊕k
j=1 bj = b, and in the other, ~v is

randomly chosen. Note that fixing ~c and ~r fixes the output of token Mj,2: on on input bj , it either outputs xj,bj or ⊥.
Consider the following two cases:

Case 1. There exists j, 1 ≤ j ≤ k such that Mj,2 aborts neither on 0 nor on 1. In this case, as the inputs to the
Mj′,2s are (k − 1)-wise independent, the probability of abort is identical in the two cases.

Case 2. For all j, Mj,2 aborts on either 0 or 1. Then, the probability that Hk,2 aborts is at least 1 − 2−k+1. Thus,
in this case, the difference in the probability that Hk,2 aborts and the probability that Hk+1 aborts is at most
2−k+1.

Thus, the two hybrids are statistically close.
In the case of statistical hiding instead of perfect hiding, the probability that a transcript vector ~c occurs in the

two hybrids are not the same, but negligibly close. Thus, we must discard some randomness vectors ~r from the
analysis, but this changes the probabilities only be a negligible amount.

�

Hybrid Hk+2: This is the ideal world. Note that we only use P2’s selection bit b in the final step to determine its
output. As the ideal world P2 is honest, it queries the ideal functionality with bit b and obtains string sb. Thus,Hk+2

andHk+1 are identical.
Next, we handle the case of a malicious receiver. Let A be an adversary corrupting P2, and let Z be any

environment. We first present Ŝ2,j which will be used as a sub-routine by simulator S2.

Subroutine Ŝ2,j

1. Receive as input from S2 a pair of strings (sj,0, sj,1). Receive
(create, sid, P2, P1,midj,1,Mj,1) and random string r from A. Run Mj,1 on randomly
chosen 5k-bit strings xj,0 and xj,1 and obtain yj,0 and yj,1. Choose random πj ∈ { 0, 1 }k
and a random hash function hj ∈ H, and return (yj,0, yj,1, hj , αj = com(πj)) to A.

2. Run the statistical hiding commitment protocol with A. Let α̂j be the receiver’s transcript.

3. Send (create, sid, P1, P2,midj,2) to A. If A correctly decommits, then let bj be the revealed
bit. Send (xj,bj , βj = open(αj)) to A. If A ever decommits to both 0 and 1, output binding
abort and abort.

4. Receive π′ from A. If π′ 6= π, abort. If A returns the correct π without running Mj,2, output
hiding abort and abort. Else, set s′j,0 = sj,0 ⊕ hj(xj,0) and s′j,1 = sj,1 ⊕ hj(xj,1). Send
(s′j,0, s

′
,1) to A, and return bj to S2.

Now we present the ideal-world simulator S2.

Simulator S2

1. Choose z1, . . . , zk, r ∈ { 0, 1 }k uniformly at random. For each 1 ≤ j ≤ k, run Ŝ2,j with
input (zj , zj ⊕ r). If any subroutine aborts, abort. Else, let bj be the values returned by the
Ŝ2,js.

2. Send b =
⊕k

j=1 bj to the ideal OT functionality, and obtain sb. Choose random k-bit string
s1⊕b. Set s′b = sb ⊕

⊕k
j=1(zj ⊕ bj · r) (where bj · r is r if bj = 1, else 0) and s′1⊕b = s1⊕b.

Send (s′0, s
′
1) to A.
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We show indistinguishability of the real and ideal worlds via the following hybrids.

HybridH0: This is the real world execution.

Hybrid H1: Same as above, except we modify the behaviour of the QuasiOT protocols in the following way: if
for any j, A outputs the correct value πj without running Mj,2, then output hiding abort and abort.

We now show that the probability thatH1 outputs hiding abort is negligible.

Claim 18. Let ε be the probability thatH1 outputs hiding abort. Then, ε is negligible in k.

Proof We construct a non-uniform adversary Acom that breaks the hiding property of commitment scheme com
with probability ε. To show this, the adversary Acom must succeed with probability ε in the following game: Acom

interacts with an external party, called the challenger, and acts as the receiver in commitment scheme com. It sends
a random string r as the first message, and receives a commitment α̃ to a random k bit string π. The adversary
succeeds if it outputs π.

Let j be such that A outputs πj without running Mj,2 with probability at least ε. The adversary Acom works
as follows: it sends a random r to the challenger, and receives a commitment α̃ = com(π). Now Acom sets up
an execution of A and honest P1 with environment Z . For the jth copy of the QuasiOT subroutine, it uses α̃
as the commitment in P1’s first message to A. Thereafter, Acom proceeds with the rest of the execution without
modification. If A queries Mj,2 correctly, then Acom aborts. Otherwise, let π′ be A’s message to P1 in step 6 of the
jth QuasiOT subroutine. Adversary Acom outputs π′ as its guess of the string committed in α̃.

By the hypothesis, with probability ε, adversary A outputs the correct stri ng π in step 6 of the jth QuasiOT.
Thus, if the commitment scheme com is computationally hiding, ε must be negligible.

�

Hybrid H2: This is the same as above, except if for any j, adversary A provides two different openings to Mj,2,
thenH2 outputs binding abort and aborts.

We show that the probability thatH2 outputs binding abort is negligible.

Claim 19. Let ε be the probability that for some j, adversary A provides different openings to Mj,2. Then, ε is
negligible in k.

Proof We construct a non-uniform adversary Acom that breaks the binding property of commitment scheme scom
with probability ε. To show this, the adversary Acom must succeed with probability ε in the following game: Acom

interacts with an external party, called the challenger, and acts as the sender in commitment scheme scom. If the
commitment phase is successful, let α̂ be the transcript of the receiver in the commitment phase. The adversary
succeeds if it can produce (r, 0) and (r′, 1), both of which are valid decommitments with respect to α̂.

Let j be such that A queries Mj,2 twice on two distinct bits. The adversary Acom works as follows: it sets up an
execution between Z , A and honest P1 as in H2. Then it executes the jth copy of scom with the challenger. If A
queries Mj,2 only once, abort. Else, let (r, 0) and (r′, 1) be the two queries. Acom outputs (r, 0) and (r′, 1).

By the hypothesis, with probability at least ε, Acom outputs two different openings. As scom is computationally
binding, ε must be negligible in k.

�

Hybrid H3: Same as above, except we modify the last message of S2. We set s′b = sb
⊕k

j=1(zj ⊕ bj · r) and set
s′1⊕b to a random k-bit string.

We show that inH2, s′1⊕b is uniformly distributed in { 0, 1 }k given previous messages.
We first show that for every j, if bj is A’s input to Mj,1, then s′1⊕bj is uniformly distributed in { 0, 1 }k. Observe

that Mj,1 partitions the domain { 0, 1 }5k into 2k partitions S1, . . . , S2k , such that for all x, x′ ∈ Si, Mj,1(x) =
Mj,1(x′). For x ∈ { 0, 1 }5k, let S(x) be the partition that x belongs to. Call a partition Si “good” if |Si| ≥ 23k. We
have the following claim.
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Claim 20. If x is uniformly chosen in { 0, 1 }5k, then the probability that it belongs to a good partition is at least
1− 2−k.

Proof As there are only 2k partitions, we have, by the union bound,

Pr [ S(x) is bad ] <
2k · 23k

25k
= 2−k.

Thus, the probability that x lies in a good partition is at least 1− 2−k.

�

Thus, with probability negligibly close to 1, the random variable U5k|Mj,1(U5k) has min-entropy 3k. Thus, by
the leftover hash lemma, we have that,

∆((hj , hj(x1⊕bj )), (UH,Uk)) ≤ 2−k−1.

That is, hj(x1⊕bj ) is distributed close to randomly in { 0, 1 }k. Thus, for each j, A learns zj ⊕ b · r, while
zj ⊕ (1⊕ b) · r is completely random to it. Note that as s′0 = s0 ⊕

⊕k
j=1 zj and s′1 = s1 ⊕

⊕k
j=1 zj ⊕ r, A learns

only sb, while s1⊕b is complete random to it.

Hybrid H4: This is the ideal world. Note that H3 is exactly the simulator S2. The simulator extracts b as above,
sends it to the ideal OT functionality, and obtains sb. Then it sets s′b = sb

⊕k
j=1(zj ⊕ bj · r), and s′1⊕b to a random

value, and sends (s′0, s
′
1) to A. This hybrid is identical toH3.

�

Thus, we have the following main theorem for this section.

Theorem 21. (Interactive UC-secure computation using stateless tokens.) Let f be a (possibly reactive) polynomial-
time computable functionality. Then, assuming one-way functions exist, there exists a computationally UC-secure
interactive protocol which realizes f in the Fstatelesswrap -hybrid model. Furthermore, the protocol only makes a black-
box use of the one-way function.

6 Oblivious Reactive Functionalities in the Non-Interactive Setting

In this section, we generalize our study of non-interactive secure computation to the case of reactive functionalities.
Roughly speaking, reactive functionalities are the ones for which in the ideal world, the parties might invoke the ideal
trusted party multiple times and this trusted party might possibly keep state between different invocations. For the
interactive setting (i.e. when the parties are allowed multiple rounds of interaction in the Fwrap-hybrid models) there
are standard techniques using which, given protocol for non-reactive functionality, protocol for securely realizing
reactive functionality can be constructed. However, these techniques fail in the non-interactive setting. We study
what class of reactive functionalities can be securely realized in the non-interactive setting for the case of stateless as
well as stateful hardware token. For simplicity, we only focus on the standalone case and leave achieving Universal
Composability for future work.

6.1 Stateless Tamper-proof Hardware Token

We define stateless reactive functionalities in terms of the real/ideal worlds.
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Ideal World. The ideal world consists of a trusted party Ff and parties P1 and P2, where f(·, ·) is a two-party
functionality. An execution in the ideal world proceeds as follows: party P1 hands its input x to Ff . Then party
P2 queries Ff on an inputs yi of its choosing, to obtain f(x, yi). The functionality may maintain state from one
invocation to another. The functionality may allow the receiver to query it an unbounded polynomial number of
times, or might force a bound. Note that P2 may choose its queries adaptively, based on the responses to its previous
queries. For a given adversary S corrupting one of the parties in the ideal world and inputs x and y1 to P1 and P2

respectively, the output of the honest party along with the output of the adversary in the above process is denoted by
IDEALfS(x, y1).

Real World. In the real world, the honest party follows all instructions of the prescribed protocol, while an adver-
sarial party may behave arbitrarily. Let A be a real world adversary. We denote the honest parties output along with
the output of A on inputs x and y1 to P1 and P2 respectively, by REALA(x, y1).

Definition 22. (Secure Implementation of Stateless Reactive Functionality) A two-party protocol π = (P1, P2) is
said to be a secure implementation of the stateless reactive functionality f if for all probabilistic polynomial time
adversaries A corrupting one of the parties in the real world, there exists an expected polynomial time ideal world
adversary S, called the simulator, such that,

{ IDEALfS(x, y) }(x,y) ∼ {REALA(x, y) }(x,y).

In the following, we will often refer to P1 as the sender, and P2 as the receiver. A reactive functionality is
oblivious-sender, if the sender does not get any output, and sends only one input.

We make distinction between stateful and stateless reactive functionalities: in the former, the functionality does
not keep state over multiple calls, while in the latter the functionality can keep state.

6.2 Realizing Stateless Oblivious Reactive Functionalities with Semi-Honest Sender (Program Ob-
fuscation with Stateless Tokens)

We first consider the case of stateless oblivious reactive functionalities with semi-honest senders. Recall that stateless
reactive functionalities don’t keep state over invocations, except the input of the sender.

We observe that in the non-interactive setting where the sender simply sends a package (constructed using only
stateless tokens) to the receiver, the receiver can not be prevented from running this package multiple times with
different inputs. Hence, we restrict our attention to only reactive functionalities where: (a) the receiver can query
the ideal trusted party an unbounded polynomial number of times with adaptively chosen inputs of its choice, (b)
the sender provides only one input and gets no output (i.e., the functionality is sender oblivious), and, (c) the only
state maintained by the ideal trusted party between different invocation is the sender’s input. We show how to
construct protocol to securely realize such reactive functionalities (called stateless oblivious reactive functionality)
under standard cryptographic assumptions.

Following the paradigm in Section 3, we first consider the case of semi-honest sender. We first observe that
the task of constructing protocol for stateless oblivious reactive functionalities with semi-honest sender exactly
coincides with the task of constructing a secure obfuscation scheme with a stateless tamper proof hardware. While
the problem of constructing obfuscation scheme with tamper proof hardware has been studied before ([GO96],
[GKR08], [And08]), all existing constructions crucially rely on the ability of such hardware to maintain state. These
constructions do not directly extend to the case of stateless hardware.

6.2.1 Overview

We start by informally describing some intuition behind our construction and the main subtleties that result from the
hardware token being stateless. To obfuscate the given the circuit C, the first step is to use a universal circuit U of
appropriate size such that U(x,C) = C(x). This reduces the problem of hiding the circuit to hiding the input to
the universal circuit U . Next, we encrypt each bit of C (when represented as an input string to U ) with a secret key
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S of a non-malleable symmetric key encryption scheme. The encrypted bits, along with a description of U , can be
given to the user as the obfuscated program. To run the program on input x, the user encrypt each bit of x using the
hardware token (which knows the secret key K). Thus, the user now has the description of the circuit U as well as
an encryption of all its input bits (i.e., the circuit C and the user input x). The user can now evaluate the circuit gate
by gate: for each gate, the user would query with the encrypted values on the two input wires and get the encrypted
value on the output wire in response from the token.

The above (rough) approach is problematic when the receiver is an active adversary. While the circuit U is being
evaluated, he can change the value on any wire (by just encrypting the desired value from scratch with the public
key and using that for all future queries). Furthermore, he could replace the encrypted value on one wire with the
value on another, or, could launch ciphertext malleability attack to try to change the value on the wire. Fortunately,
such problems can be solved by a careful usage of standard techniques. For example by, having a secret obfuscation
identity (a random nonce selected while preparing the obfuscated circuit) encrypted along with each wire value (so
that the adversary cannot reencrypt the desired bit from scratch), having a unique number for each wire in U (so that
the adversary cannot replace value on one wire which that on another), also encrypting the description of circuit U
in some way (so that the adversary cannot modify the unique wire numbers), etc.

While the “fixes” suggested above do appear in our final solution, they are not sufficient by themselves to obtain
a secure construction. The main problem is an adversary using an encrypted wire value obtained in one execution
of U to modify the corresponding wire value in another execution. We illustrate this problem with the following
example. Consider a circuit C which has a secret signing key inbuilt inside. C takes as input a string m of some
fixed size and outputs a signature on it iff m is an even number (C outputs ⊥ otherwise). The circuit C has two
parts. The first one checks whether the input is even and sets a “flag” wire to be 1 if so. The second part uses this
flag value and outputs a signature iff it is 1. Now, we would like to obfuscate such a circuit C.

Clearly, in the ideal world, an adversary can produce a signature on an odd number only with negligible proba-
bility. However, in the real world, the adversary can first execute the circuit with an even number as input and store
the encrypted wire values. Next, the adversary executes the circuit with an odd number. Indeed, the first part will
execute and set the value on the flag wire to be 0. However at this point, the adversary can use the encrypted wire
values obtained in the previous execution (where the flag was 1) to try to modify the wire values in the current exe-
cution. Thus, if the adversary is successful in changing the flag value coming from the first part, the second part of C
will output a signature on the odd number. While this toy example already illustrates the problem, we remark that an
adversary can even launch more sophisticated attacks in which he iteratively changes the wire values and observes
the output. In fact, it can be shown that it is possible to completely recover a source code (or the description of a
circuit), whose input/output behavior is consistent with the input/output behavior of C observed so far.

The above problem can be fixed with a stateful token as follows. The token will additionally insert a nonce
(randomly generated once for each execution) in all the encrypted wire values for an execution. The token will
answer a query iff the encrypted wire values specified in the request have the right nonce. Now, since except
with negligible probability, two different executions of the obfuscated circuit will have different nonce values, the
encrypted wire values obtained in one execution are not useful in another. Unfortunately, such an option is not
available in our setting. Our stateless token treats all queries uniformly and is oblivious to which queries belong to
which execution, how many executions are there, etc. To solve the above problem, we design and analyze a different
mechanism through which the (stateless) token is able to assign a single random nonce (called execution identity)
for an entire execution. We prove that our mechanism ensures that it is hard to have two “different executions” of
the circuit for the same execution identity. In other words, fixing the execution identity essentially fixes the value on
all the wires of the circuit being evaluated.

6.2.2 Our Construction

In this section, we present, for any two-party stateless oblivious-sender reactive functionality f(·, ·), a protocol
Π = (P1, P2) that securely implements f(·, ·) in the Fstatelesswrap -hybrid model.
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The Sender. Let C := Cκ be the circuit realizing f(·, ·) for security parameter κ. P1 creates token T which has
the following secrets inbuilt: the key S of a non-malleable secret key encryption scheme, the secret key K of a
cryptographic MAC scheme and a function G drawn from a pseudorandom function ensemble (for convenience, by
“P2 queries T on x”, we would mean that P2 sends a run query to Fstatelesswrap for token T with input x). The token
T handles five types of queries in total. We will describe the functionality of T in detail later as we go along.

Given circuit C, we now construct its obfuscation. Without loss of generality, let C consist only of fan-in 2
NAND gates. Let C implement the function C : {0, 1}m → {0, 1}n. Given the circuit C, we now construct a new
circuit OTC. Let U be a universal circuit implementing the function U : {0, 1}m × {0, 1}|C| → {0, 1}n such that
U(x,C) = C(x). We uniquely number all the wires (including the input and output wires) of the circuit U such
that the m + |C| input wires are assigned numbers from 1 to m + |C| and n output wires are assigned numbers
from m+ |C|+ 1 to m+ |C|+ n. The numbers assigned to the internal wires could be arbitrary as long as all the
wires in the circuit have unique numbers. In other words, a wire w is an input wire iff w ∈ [m+ |C|] and an output
wire iff w ∈ {m + |C| + 1, . . . ,m + |C| + n}. Select a random obfuscation identity OID such that |OID| is at
least super-logarithmic in the security parameter κ. Now for each gate g in the circuit U (defined by input wires a, b
and output wire c), compute the ciphertext Cg = EncS(a, b, c, OID) where EncS(m) represents a non-malleable
encryption of message m with the key S. For each wire w such that w ∈ {m + 1, . . . ,m + |C|}, compute the
ciphertext Cw = EncS(w,OID, bw) where bw is the (w −m)th bit of the circuit C (when represented as an input
string for the universal circuit U ). Finally, compute a “header” ciphertext Ch = EncS(OID,m, |C|, n).

The set of computed ciphertexts represent the obfuscated circuit OTC. The sender sends this circuit to the
receiver and the code of token T to Fstatelesswrap . This completes the description of the sender.

The Receiver. On receiving the obfuscated circuit OTC, the receiver P2 proceeds as follow on a given input
x ∈ {0, 1}m.s:

• Input Encryption Phase. For each i ∈ [m], compute:

Hi = H(Hi−1, xi, i)

Where H is a collision resistant hash function (CRHF), H0 is an all zero string of appropriate length and
xi is the ith bit of the string x. CRHFs are only assumed for simplicity. Later we sketch how to relax this
assumption to use only universal one-way hash functions (UOWHF). Now, make a query of type 1 to the token
T sending it the computed Hm and the header ciphertext Ch. Upon receiving a query of type 1, the token
T assigns an execution identity associated with this particular input x as follows. Token T first recovers the
values OID,m, |C| and n by decrypting Ch with the secret key S. T then selects a random execution identity
EID by applying the inbuilt pseudorandom function G on the string Hm||OID||m||(|C|)||n (where || denotes
concatenation). It computes Mm = EncS(Hm, EID, OID,m, |C|, n) and outputs Mm,MacK(Mm) where
MacK(m) represents a secure MAC of the message m computed with the key K.

Now for i ∈ {m, . . . , 1} the obfuscated circuitOTC makes a query of type 2 by sendingMi,MacK(Mi), Hi−1, xi, i
to the token T . A query of type 2 is used to generate the encryption of the input wires 1 tom as follows. Upon
receiving such a query, T first recovers Hi, EID, OID,m, |C|, n from Mi and verifies that (a) MacK(Mi) is
a valid MAC of Mi with the key K, (b) Hi = H(Hi−1, xi, i), and, (c) i ≤ m. T outputs ⊥ if any of these
checks fail. The token T then computes Ei = EncS(i, OID, EID, xi) and outputs Ei,MacK(Ei). If i > 1,
T further computes Mi−1 = EncS(Hi−1, EID, OID,m, |C|, n) and outputs Mi−1,MacK(Mi−1).

For i ∈ {m + 1, . . . ,m + |C|} the circuit OTC makes a query of type 3 by sending (Mm,MacK(Mm))
and Ci. A query of type 3 is used to generate the encryption of inputs wires from m + 1 to m + |C|. Upon
receiving such a query, T recovers EID, OID, bi from Mm and Ci and ensures that the associated MAC is
valid and that i ∈ {m + 1, . . . ,m + |C|}. The token T then computes Ei = EncS(i, OID, EID, bi) and
outputs Ei,MacK(Ei).
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Recall that the input to the universal circuit U is x′ = x||C. At the end of this phase, the circuit OTC has
computed Ei = EncS(i, OID, EID, x′i) and MacK(Ei) for each input wire i of the universal circuit U .

• Circuit Evaluation Phase. The evaluation of the universal circuit U is done gate by gate in the natural order
by issuing a query of type 4 to the token T for each gate g. For a gate g (defined by the incoming wires a, b
and the outgoing wire c), issue a query of type 4 sending Ea,MacK(Ea), Eb,MacK(Eb), Cg to T where
Ea = EncS(a,OID, EID, va) and Ec = EncS(b,OID, EID, vb). After appropriate checks, the token T
replies back with Ec = EncS(c,OID, EID, vc) where vc = va NAND vb.

At the end of this phase, the circuit OTC has computed Ei = EncS(i, OID, EID, vi) and MacK(Ei) for
each output wire i of the universal circuit U .

• Output Decryption Phase. The actual output is computed from the encrypted output wires by using queries
of type 5. For each output gate i, P2 issues a query of type 5 sendingEi = EncS(i, OID, EID, vi),MacK(Ei)
and Ch to the token T . T decrypts Ei and Ch, verifies that i is indeed an output wire (i.e., m+ |C|+ 1 ≤ i ≤
m+ |C|+ n), that the obfuscation identities in Ei and Ch match, and that the given MAC is valid and finally
outputs the output wire value vi.

Throughout the above, if an obvious cheating attempt is detected in a query by the token T , it outputs ⊥. This
completes the description of the receiver.

We now sketch the modifications required to relax the CRHF assumption. Similar to the techniques of Naor
and Yung [NY89], instead of letting the user choose the value on which H is being applied, the token can supply
a random string of its own to be hashed along with the user values. Thus, while constructing the hash chain, the
user would query the token with (Hi−1, xi, i) and get a random number to be hashed along with it to compute Hi

(this random number would be checked for correctness by the token during the hash chain “unwinding” process).
Using techniques from [NY89], it can be shown that the UOWHF property is sufficient for proving security of this
modified construction. UOWHF, in turn, are known to exist based on any OWF [Rom90].

6.2.3 Proof of Security

The core of our security analysis is the following technical lemma which roughly states that given an obfuscated
circuit and access to the token T , it is hard to have two “different executions” of the circuit for the same execution
identity EID. In other words, fixing EID (for an obfuscated circuit with obfuscation identity OID) essentially fixes
the value on all the wires of the universal circuit U .

Lemma 23. For a given circuit C, generate the corresponding obfuscated circuit OTC and token T . Let OID
denote the corresponding obfuscation identity. Then for every PPT algorithm A and every circuit C:

Pr[AT (OTC) = (F0,MacK(F0), F1,MacK(F1))] ≤ negl(κ)

where F0 = EncS(i, OID, EID, 0), F1 = EncS(i, OID, EID, 1) and i is the index number of a wire in the universal
circuit U .

Proof We prove the above lemma by contradiction. Assume there exists such an i. We first consider the case when
i is an input wire (i.e., i ∈ [m+ |C|]). We have the following two subcases:

Case 1: i ≤ m Examine the queries which the adversary makes. We first show that both F0 and F1 must have
been given out by the token in response to queries of type 2. This is because, if not, one of the following must be
true:

• Either F0 or F1 was not given out as response to any query at all. In this case, it is easy to see that the algorithm
A can be used to construct a forger for the MAC scheme.
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• Either F0 or F1 was given out as response to a query of type 3. That query request must have included a
header with obfuscation identity OID. Let that header be an encryption of OID,m′, |C|′, n′. Clearly m′ < i
(else the token would have replied with ⊥). Hence m′ 6= m. In this case, it can be shown that the attacker was
able to break the security of the non-malleable encryption scheme Enc (by malleating the header ciphertext
and producing a ciphertext of a related message).

• Either F0 or F1 was given out as response to a query of any other type. We first note that only type 4 queries
might give a MAC on the encryption of a message of this format. That query request (of type 4) must have
included a ciphertext of the formEncS(a, b, i, OID). However as part of obfuscated circuitOTC, the attacker
is only provided with ciphertexts of the formEncS(a, b, c, OID) where c is an internal wire (and hence c 6= i).
In this case again, it can be shown that the attacker was able to break the security of the encryption schemeEnc
(by malleating a ciphertext corresponding to a circuit gate and producing a ciphertext of a related message).

Hence, we have established that the attacker A must have received both F0 and F1 in response to queries of type
2. Now we consider the following subcases:

• The token T assigned the same execution identity EID for two different queries (of type 1) which included,
as part of the request, two different hash chain tips Hm and H ′m. Recall that the execution identity EID is
computed by applying the pseudorandom function on the received hash chain tip (and other strings). Since
EID is super logarithmic in the security parameter, the probability of these different inputs to the pseudoran-
dom function leading to the same output EID is negligible. Hence the probability of this case happening is
negligible in the security parameter.

• There exists only a single hash chain tip which, when included as part of the request to a query of type 1, leads
the token T to choose the execution identity EID. In this case, it can be shown that the attacker algorithm can
either be used to construct a forger for the MAC scheme or to compute collisions in the hash function H .

Case 2: m + |C| ≥ i > m We first show that both F0 and F1 must have been given out by the token in response
to queries of type 3. This is because, if not, one of the following must be true:

• Either F0 or F1 was not given out as response to any query at all. In this case, it is easy to see that the algorithm
A can be used to construct a forger for the MAC scheme.

• Either F0 or F1 was given out as response to a query of type 2. We look at all the ciphertexts of the form
Ei = EncS(i, OID, EID, xi) and the associated MACMacK(Ei) given out as part of the response to a query
of type 2. If i > m, it can be shown that the attacker algorithm can either be used to construct a forger for the
MAC scheme or to break the security of the non-malleable encryption scheme Enc.

• Either F0 or F1 was given out as response to a query of any other type. We first note that only type 4 queries
might give a MAC on the encryption of a message of this format. That query request (of type 4) must have
included a ciphertext of the formEncS(a, b, i, OID). However as part of obfuscated circuitOTC, the attacker
is only provided with ciphertexts of the formEncS(a, b, c, OID) where c is an internal wire (and hence c 6= i).
In this case again, it can be shown that the attacker was able to break the non-malleability of the encryption
scheme Enc (by malleating a ciphertext corresponding to a circuit gate and producing a ciphertext of a related
message).

Hence, we have established that the attacker A must have received both F0 and F1 in response to queries
of type 3. This means that there should exist two queries of type 3 with requests including EncS(i, OID, 0)
and EncS(i, OID, 1). However as part of obfuscated circuit OTC, the attacker is only provided with either
EncS(i, OID, 0) or EncS(i, OID, 1). Hence, it can be shown that the attacker was able to break the security of
the encryption scheme Enc (by malleating a ciphertext corresponding to a circuit wire and producing a ciphertext
of a related message).
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Now we consider the case when i is an not an input wire (i.e., i is either an internal or an output wire). We
first observe that both F0 and F1 must have been given out by the token in response to queries of type 4 (this can
be shown using techniques similar to the ones used before). Now examine all the queries of type 4 for obfuscation
identity OID and execution identity EID and record the value on wires of the universal circuit U . Note that each
query of type 4 that determines the value on three wires: two incoming and one outgoing. Clearly, there will be two
different values recorded for the wire i.

Consider a wire c such that two different values are recorded for it. Let g be the gate in the universal circuit U
such that c is its output wire. Let the input wires of g be denoted by a and b. It is easy to see that two different values
must have been recorded for at least one of the wires a or b (this is because, as we have shown before, for all c such
that two different values are recorded for c, the corresponding two ciphertexts must have been given out as responses
to queries of type 4). Applying this argument, iteratively, we get that two different values must have been accorded
for an input wire of the circuit U . This is in contradiction to the first part of the proof.

�

Theorem 24. Assuming the existence of one-way functions, the obfuscation scheme construction in section 6.2.2 is
a secure implementation of f(·, ·) in the Fstatelesswrap -hybrid model.

Proof We show the existence of a simulator Sim for every adversary A corrupting P2.

Description of the simulator Sim. The simulator generates token T as described. Let K,S denote the usual
strings generated as part of T .

Our simulator handles obfuscation of multiple circuits at the same time, and has access to the corresponding
ideal function for each of them. For each such function, as opposed to the description of the circuit C implementing
it, simulator is only given access to the ideal functionality C implementing this function (the ideal functionality)
and the size of the circuit |C|. To produce the simulated obfuscated code corresponding to the unknown circuit C,
simulator picks a random string S such that |S| = |C|. Simulator then returns an honestly constructed obfuscated
circuit OTS of S. However, the queries to T made by this obfuscated circuit are handled as follows. The simulator
handles all the queries of type 1-4 honestly. However, a query of type 5 (i.e., an output decryption query) is answered
in a special way as follows. Recover the values i, OID, EID, vi from the request (and apply the usual checks).

The simulator now looks at the queries of type 4 made so far with obfuscation identity OID and execution
identity EID and starts recording the value on the wires in the universal circuit U . Note that each query of type 4
determines the value on three wires: two input and one output wire. The simulator aborts if there exists a wire such
that two different values are recorded for it.

Define the i-useful set to be the set of all wires in the sub-circuit (of the universal circuit U ) which is useful in
computing the value on the output wire i. In other words, representing U as a directed graph, i-useful set is the set
of all wires whose starting vertex has a path to the starting vertex of wire i. The simulator aborts if there exists a
wire in the i-useful set of circuit U such that no value is recorded for it.

After successful completion of the above, the simulator has recorded the bits of the input x which are relevant
for computing the output bit i. If the simulator has not recorded the full input string x (i.e., there exist bits which are
not recorded and are not relevant to the output bit i), it sets the value of non-recorded bits to random. The simulator
then queries C with the resulting input x′ and obtains the output f(x′). The simulator hence has the correct value vi
of the wire i and gives it as response to the received type 5 query.

This completes the description of the simulator. We now show that the view of the adversary in the real execution
(with an honestly obfuscated code and honest token) is indistinguishable from that in the above simulated execution.
We show this by changing each execution of each obfuscated circuit (characterized by an execution identity EID
and an obfuscation identity OID) one by one from real to simulated and arguing that this does not change the view
of the adversary (in a computational sense). For a particular (OID, EID) tuple, the following set of hybrids show
the indistinguishability of the view of the adversary in the real and the simulated execution.
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Hybrid H0: This hybrid corresponds to the real execution. That is, the simulator has access to the description of the
circuit C. The simulator returns the honestly obfuscated circuit OTC and answers all the queries honestly.

Hybrid H1: This hybrid is identical to the previous one except for the following. The simulator looks at all the
queries of type 4 with obfuscation identity OID and execution identity EID and records the value on the wires of
the universal circuit U (see the description of the simulator). The simulator aborts the experiment if there exists a
wire in the circuit such that two different values are recorded for it. The indistinguishability of this hybrid from the
previous one follows directly from lemma 23.

Hybrid H2: This hybrid is identical to the previous one except for the following. The simulator analyzes the value
on the wires of the universal circuit U and aborts if one of these values is inconsistent with how the circuit should
be evaluated. More precisely, simulator aborts if there exists a gate g in U having a, b as its input wires and c as
its output wire such that vc 6= va NAND vb (where va, vb and vc are values on a, b and c respectively). To see the
indistinguishability of this hybrid from the previous one, assume that such a wire c is found. It can be seen that
there can not exist a query which gave out the encryption (and the associated MAC) for the wire c in question (as
a different value would have been recorded on either wire a or b). Thus, in this case, the attacker algorithm can be
used to construct a forger for the MAC scheme.

Hybrid H3: This hybrid is identical to the previous one except for the following. The simulator analyzes each
query of type 5 (i.e., an output decryption query) with obfuscation identity OID and execution identity EID. Upon
receiving such a query for the output wire i, the simulator aborts the experiment if there exists a wire in the i-useful
set of circuit U such that no value is recorded for it. To see the indistinguishability of this hybrid from the previous
one, assume that such a wire is found. Then there must exist a gate in U such that no value is recorded for at least
one of its input wires and a value is recorded for its output wire. However, there can not exist a query which give out
the encryption and the associated MAC for that output wire. Thus, in this case again, the attacker algorithm can be
used to construct a forger for the MAC scheme.

Hybrid H4: This hybrid is identical to the previous one except that the simulator now handles queries of type 5
for obfuscation identity OID and execution identity EID as follows. Upon receiving such a query for the output
wire i, the simulator retrieves the recorded the bits of the input x which are relevant for computing the output bit
i. If the simulator has not recorded the full input string x (i.e., there exist bits which are not recorded and are not
relevant to the output bit i), it sets the value of non-recorded bits to random. The simulator then queries the the ideal
functionality with the resulting input x′ and obtains the output f(x′) (P1’s input is implicit). The simulator hence
has the correct value vi of the wire i and gives it as response to the received type 5 query. This hybrid is identical to
the previous one since we have a guarantee that the values on all the wires of the circuit U are consistent with the
values that would have resulted from a real evaluation of the circuit.

Hybrid H5: This hybrid is identical to the previous one except for the following. The simulator now gives the simu-
lated obfuscated circuit OTS (as opposed to giving OTC). As in the previous hybrid, the simulator keeps handling
all queries of type 1 to 4 honestly and queries of type 5 using the ideal functionality. Observe that the only change
in this hybrid from the previous one is in the values of some bits which are encrypted. Hence, it can be shown that
the security of the encryption scheme Enc implies the indistinguishability of this hybrid from the previous one.

Observe that hybrid H5 is the same as our actual simulator. This shows the indistinguishability of the view of the
adversary in the real execution from that in the simulated execution.

�

Note that as explained earlier, the assumption that CRHF exist can be relaxed to obtain an improved version of the
above theorem .

38



6.3 Handling Malicious Senders with Stateless Tokens

Now we handle the case of malicious senders. Our starting point is a recent result by Goyal and Sahai ([GS09]). For
any two party functionality f(·, ·), they construct a stateless protocol Π = (P1, P2), where one of the parties does
not need to maintain any state information at all. In their model, in the ideal world, P1 sends its input x to the ideal
functionality for f(·, ·). Party P2 sends its input y1 to the ideal functionality and obtains f(x, y1). At any point, P2

can send the signal reset to the ideal functionality. In that case the trusted party sends reset to P1, which goes back
to its initial stage. Now P1 again sends an input to the trusted party. Now P2 can send possibly different input y2,
and obtain f(x, y2). For inputs x and y, and an ideal-world adversary S, let IDEALfS(x, y) denote the output of the
honest parties along with the output of the adversary in the ideal world.

In the real world, P1 is a stateless, and has a single next message function Gx1 for all rounds, and P2 has the
option of interacting with P1 any number of times. It is shown in [GS09] that such stateless protocols exist for all
funtionalities f(·, ·). For a real world adversary A, we let REALA(x, y) denote the output of the honest party along
with the output of the adversary in the real world. The following theorem is implicit in [GS09].

Theorem 25. (Stateless Protocol [GS09]) For any two-party functionality f(·, ·), there exists a stateless protocol
Π = (P1, P2) such that for every probabilistic polynomial time adversary A, there exists an expected polynomial
time ideal world adversary S, such that

{ IDEALfS(x, y) }(x,y) ∼ {REALA(x, y) }(x,y).

Let f(·, ·) be a stateless sender-oblivious two-party reactive functionality. Now we present a protocol Π′f =
(P ′1, P

′
2) that securely implements f(·, ·) in the Fstatelesswrap -hybrid model. Let κ be the security parameter. For the

purposes of this section only, let com be a non-interactive computationally binding and computationally hiding
commitment scheme.

Protocol Π′f . • Input: P ′1 gets input x ∈ { 0, 1 }κ.

• The Protocol:

1. P ′1 proceeds as follows:

(a) P ′1 chooses random string r and computes α = com(x; r).
(b) Let f̂α(·, ·) be the two-party functionality defined as follows:

• on input β from the first party, and y from the second party, check if β is a valid opening of α.
If not, output ⊥. Else, let x̂ be the revealed string. Output f(x̂, y).

Let π = (P1, P2) be a stateless protocol that implements f̂α, as guaranteed in Theorem 25. Let Gx1
be a circuit implementing P1’s next message function (recall that as P1 is stateless, it has a single
next message function for all rounds). Now P ′1 uses Theorem 24 and constructs obfuscated circuit
Ĝ for Gx1 .

(c) Finally, P ′1 sends the obfuscated circuit Ĝ and α to P ′2.

2. P ′2 internally runs party P2 of protocol π. When P2 outputs a message m for P1, party P ′2 sends the
message to the obfuscated circuit Ĝ and obtains response m̂. Then it sends m̂ to P2 as P1’s response in
π. Thus, P ′2 acts as a man-in-the-middle to Ĝ and the simulated P2. Finally, P ′2 outputs P2’s output.

�

6.3.1 Proof of Security

In this section, we briefly sketch the proofs of security. We handle the case of malicious sender and malicious
receiver separately.
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Malicious Sender. Let A be the adversary corrupting P ′1. We first construct a malicious sender A∗ that corrupts
P1 in π. The adversary A∗ runs A and receives the commitment α and Ĝ. Now it carries out the protocol π with
the real P2, passing messages from P2 to A and vice-versa. Let S1 be the ideal world simulator for A∗ guaranteed
by the security of protocol π. Now we construct the ideal world simulator S′1 for A. The simulator S′1 sets up an
internal execution between A, A∗ and S1. It passes messages from A to A∗ to S1 and back. Finally, S1 outputs
some string x̃. S′1 sends x̃ to the ideal functionality. It follows from the security of π that the ideal and real views
are indistinguishable.

Malicious Receiver. LetA be the adversary corrupting P ′2. We first construct a malicious receiverA∗ that corrupts
P2 in π. Let SO be the obfuscating simulator as in Theorem 24. The adversary A∗ picks random strings s and r,
and computes α = com(s; r), and sends α toA. Then, it internally runs an execution between SO andA. When SO
queries its ideal functionality with message m, A∗ sends m externally to P1 and receives response m̂. It sends m̂ to
SO as response to its query. Let S2 be the ideal world simulator forA∗ guaranteed by Theorem 24. Now we construct
the ideal world simulator S′2 for A. The simulator S′2 sets up an internal execution between A, A∗ and S2. It passes
messages from A to A∗ to S2 and back. When S1 outputs some string ỹ, S′1 sends ỹ to the ideal functionality and
returns the response to S2. It follows from the security of π that the ideal and real views are indistinguishable.

6.4 Stateful Tamper-proof Hardware

We first observe that the construction in Section 3 (in the non-interactive setting) can be extended in straightforward
way to obtain secure protocol for bounded reactive functionalities (where the ideal world trusted party forces an a
priori fixed bound on the number of times the receiver queries) in the non-interactive setting with stateful hardware.
This can also be viewed as a natural extension of the concept of t-time program ([GKR08]) to the malicious sender
case. We observe that such a bound is inherent with read-once tamper proof hardware tokens.

Protocols for general reactive functionalities with more complex stateful hardware tokens can be constructed
using standard techniques. Similar to before, we first focus on the semi-honest sender case. The task of constructing
secure protocols for the semi-honest sender case exactly coincides with the task of constructing secure stateful
obfuscation scheme with a stateful tamper-proof hardware token. We note that the notion of stateful obfuscation
(with a stateful hardware) is implicit in previous work in the literature ([GO96]). Such an obfuscation scheme
can be constructed using standard techniques in a straightforward way. Security against a malicious sender can be
achieved using the same high-level idea as in Section 3. The sender takes an interactive secure computation protocol
for the appropriate reactive functionality and sends the receiver an obfuscated program (with stateful tamper proof
hardware) for the next message function of this protocol.
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A Reduction from large to small tokens

Here, we give a very informal but self-contained discussion of a reduction from large to small OT tokens. Note that
no constants have been optimized here.

We first implement OT tokens for k-bit strings using smaller OT tokens on O(log k)-bit strings. Let (s0, s1) be
the two input strings of length k. The sender picks a finite field with 11k points α1, . . . , α11k. Next, the sender picks
two random polynomials f0 and f1 of degree 10k−1, such that f0 matches s0 at the first k points, and f1 matches s1

at the first k points (that is, f0(α1) = s0
1, . . . , f0(αk) = s0

k, and same for f1 and s1). The sender sends 10k tokens,
where, for 1 ≤ i ≤ 10k, token Mi implements the following functionality: on input bit b, output fb(αk+i). Let c be
the receiver’s selection bit. The honest receiver runs each tokenMi on c, and obtains fc(αk+1), . . . , fc(α10k). Using
Lagrange interpolation, the receiver reconstructs the polynomial and evaluates it on the first k points to obtain sc.

We briefly describe the simulators. First, assume that the receiver is malicious. Observe that if the receiver gets
less than 8k points for a polynomial f of degree 10k, then it learns nothing about the polynomial because of the
randomization. Now, the simulator must handle the token queries from the receiver. That is, for any 1 ≤ i ≤ 10k,
the receiver will send a bit ci to the simulator, and it must reply with a field element. For an initial number of queries,
say 4k, the simulator responds with random field elements. Let’s say that after the first 4k queries, the majority of
queries were for bit c. Now, the simulator sends c to the large string OT token, and obtains sc. Next, it picks a
polynomial of degree 10k that agrees with sc at the first k points, and the random values that the simulator picked
for queries corresponding to bit c among the first 4k queries. For the rest of the queries, 4k ≤ i ≤ 10k, if ci = c,
the simulator replies with fc(k + i), else reply with a random value. A dishonest receiver can get at most 8k points
for polynomial f1−c, and thus learns nothing.

Next consider the case that the sender is malicious. The simulator queries all the tokens with bit 1, reconstructs
the polynomial f1, and computes s1. Now, the simulator rewinds the tokens, and runs them with bit 0, reconstructs
f0, and obtains s0. Then it can construct the large string OT token using the strings (s0, s1). The reduction to bit OT
is similar, as the argument above can be generalized to any linear code with minimal relative distance at least 1/2.
Since the reduction above yields string OT’s with logarithmic length strings, we can use a Hadamard code instead of
a Reed-Solomon code as above, to complete the argument. We will give further details of this simple self-contained
UC-secure reduction in the full version of this paper.
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B Unconditional OTPs for Poly-Size Circuits - Alternate Construction

Here we briefly describe an alternate approach to construct unconditional OTPs for poly-size circuits. The con-
struction is similar to Yao’s garbled circuit construction ([Yao86]). In fact, our construction can be thought as an
unconditional analogue of Yao’s construction in the hardware token model. Let C be a polynomial size circuit, and
let κ be the security parameter. The unconditional garbled circuit G of C is constructed as follows: for each wire wi
of C, choose key pair (gk0

i , gk
1
j ) of length κ each. Intuitively, gk0

i represents bit 0 and gk1
i represents bit 1 on wire

wi. Let gi : { 0, 1 } × { 0, 1 } → { 0, 1 } be a gate in C, with input wires wj and wk, and output wire wl. Given keys
corresponding to the bit value of wj and wk, the correct key for the output wire is given by the following function:

fgi

gk0
j ,gk

1
j ,gk

0
k,gk

1
k
(gkσj

j , gk
σk
k ) = gk

gi(σi,σj)
l . (1)

This function can be implemented by log depth circuits, and thus can be realized by an unconditional one-time
program, as constructed in the previous sub-section. Let Gi be the unconditional OTP for gate gi. The unconditional
garbled circuit for C consists the |C| unconditional OTPs G1, . . . , G|C|. Now we present our unconditional OTP for
C.

Protocol. (One-Time Program for poly size circuit C)

• Input: P1 has input x ∈ { 0, 1 }n.

• Output: P2 should receive C(x, y), for y ∈ { 0, 1 }n.

• The Protocol:

1. P1 chooses n random strings s1, . . . , sn of length |C(1n, 1n)|, and constructs circuit C ′ such that
C ′(x, y) = C(x, y) ⊕ni=1 si. Then P1 constructs unconditional garbled circuit G for C ′ as above.
Let G1, . . . , G|C′| be the unconditional OTPs corresponding to gates of C ′. Let wout1, . . . , woutl be the
output wires of C ′. Finally, P1 sends (G1, . . . , G|C′|, (gk0

out1, gk
1
out1), . . . , (gk0

outl, gk
1
outl)) to P2.

2. Let u1, . . . , un and v1, . . . , vn be the input wires corresponding to P1 and P2’s inputs in C ′. Then,

(a) P1 sends gku1
x1
, . . . gkun

xn
to P2 in the clear.

(b) For 1 ≤ i ≤ n P1 sends (create, sid, P1, P2,midi, (gkvi
0 ◦ si, gk

vi
1 ◦ si)) to OTM.

3. P2 evaluates G gate by gate. For each gate gi of G, P2 executes the unconditional OTP for that gate, Gi
on the labels of the input wires. Let gkαi

outi be the value of wouti, for 1 ≤ i ≤ l. Set z = α1 ◦ . . . ◦ αl.
Finally, P2 outputs z

⊕n
i=1 si.

We informally argue the security of the above protocol. For further details, see the full version of this paper. We
begin by describing the construction of a fake garbled circuit G̃ for a circuit C ′ in the hardware-token model: for
each wire wi of C ′, choose pair of keys (gk0

i , gk
1
i ) as before. For each non-output gate gi, instead of implementing

the selection function as in Equation 1, construct unconditional OTP for the following function:

fg
gk0

j ,gk
1
j ,gk

0
k,gk

1
k
(gkσj

j , gk
σk
k ) = gk0

l .

Note that the output of the function is always gk0
l , irrespective of the value of input wires, or the type of gate.

Thus, the fake garbled circuit can always be made to output any fixed value z = α1 ◦ . . . ◦ αl (for αi ∈ { 0, 1 }) by
fixing the the output keys as above.

We now describe the simulator S. Simulator S constructs the fake garbled circuit as follows: for each gate
gi of C, simulator S runs the corresponding OTP simulator Simgi , and sends the simulated OTP to P2 (that is,
sends the corresponding create messages). Now P2 starts evaluating the circuit. First, P2 queries the initial OT
tokens to obtain keys corresponding to its (P2’s) input y = y1 . . . yn. For all but the last such query, S answers
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with gk0
i ◦ si, where si is a random string. Let (run, sid, P1, P2,midj , yj) be the last query. When P2 asks the final

query, its input y is completely determined. S sends y to the ideal functionality and obtains C(x, y). Now S sets
sj = C(x, y) ⊕ (

⊕n
i=1,i 6=j si), and sends gk0

j ◦ sj . Party P2 also evaluates the OTPs corresponding to the gates of
C. Simulator S forwards these queries to the corresponding OTP simulator.

The proof of security follows from a hybrid argument. We define hybrids H0, . . . ,H|C|. Hybrid H0 is the real
execution. We proceed gate by gate, and in each successive hybrid, the garbled circuit computing the gate table of
the next gate is replaced by the simulated garbled circuit. Thus, two successive hybrids Hi and Hi+1 differ only in
one unconditional OTP: in Hi, the garbled table of gate gi is implemented by the real unconditional OTP, while in
Hi+1, it is implemented by a simulated OTP. It is easy to see that if any two successive hybrids are statistically far
apart, then that contradicts Claim 10.

45


