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Abstract

Lewko and Waters [Eurocrypt 2010] presented a fully secure HIBE with short ciphertexts.
In this paper we show how to modify their construction to achieve anonymity. We prove the
security of our scheme under static (and generically secure) assumptions formulated in composite
order bilinear groups.

In addition, we present a fully secure Anonymous IBE in the secret-key setting. Secret-Key
Anonymous IBE was implied by the work of [Shen-Shi-Waters - TCC 2009] which can be shown
secure in the selective-id model. No previous fully secure construction of secret-key Anonymous
IBE is known.
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1 Introduction

Identity-Based Encryption (IBE) was introduced by [13] to simplify the public-key infrastructure.
An IBE is a public-key encryption scheme in which the public-key can be set to any string inter-
preted as one’s identity. A central authority that holds the master secret key can produce a secret
key corresponding to a given identity. Anyone can then encrypt messages using the identity, and
only the owner of the corresponding secret key can decrypt the messages. First realizations of IBE
are due to [2] which makes use of bilinear groups and to [8] which uses quadratic residues. Later, [9]
introduced the more general concept of Hierarchical Identity-Based Encryption (HIBE) issuing a
partial solution to it. An HIBE system is an IBE that allows delegation of the keys in a hierarchical
structure. To the top of the structure there is the central authority that holds the master secret
key, then several sub-authorities (or individual users) that hold delegated keys which can be used
to decrypt only the messages addressed to the organization which the sub-authority belongs.

In this paper we are interested in Anonymous HIBE that are a special type of HIBE with the
property that ciphertexts hide the identity for which they were encrypted. Interest in Anonymous
IBE and HIBE was spurred by the observation that it can be used to build Public-Key Encryption
with Keyword Search [1]. As noticed by [4], the first construction of Anonymous IBE was implicit
in [2] whose security relied on the random oracle assumption. Boneh and Waters [5] constructed
Anonymous HIBE in the selective-id model. Recently, Lewko and Waters [11] used the Dual
System Encryption methodology introduced by [16] to construct the first fully secure HIBE system
with short ciphertexts. The construction given by [11] seems inherently non-anonymous. Another
construction of Anonymous HIBE was given by [12] but their security proof is in the selective-ID
model.

We show that a slight modification of the HIBE of [11] gives the first fully secure Anonymous
HIBE. Our construction has, like the non-anonymous one of [11], short ciphertexts; that is, a
ciphertext consists of a constant (that is independent of the depth of the hierarchy) number of
elements from the underlying bilinear group. The full security of our construction is based on
static (that is, independent from the running time of the adversary and the size of hierarchy) and
generically secure assumptions.

Recently, a fully-secure hierarchical predicate encryption system has been given by [10]. Anony-
mous HIBE can be obtained as special case of the construction of [10] and, even though the con-
struction of [10] is based on prime order gropus, the ciphertexts of the resulting Anonymous HIBE
consist of O(`2) group elements and keys have O(`3) group elements. In [7] the authors constructed
an Anonymous HIBE scheme based on hard lattice problems; in this construction the size of a
ciphertext depends on the depth of the hierarchy.

We also study Secret-Key Anonymous IBE and show that if our public key construction is used
in the secret key setting (that is, the public key is kept secret) then the scheme enjoys the additional
property of key secrecy; that is, decryption keys for different identities are indistinguishable. We
stress that key secrecy cannot be obtained in the public key setting as an adversary can test if a
secret key Sk corresponds to identity ID by creating a cipertext Ct for ID (by using the public key)
and then trying to decrypt Ct by using Sk. We mention that the Secret-Key Predicate Encryption
Scheme of [14] has Secret-Key Anonymous IBE as a special case but its security is in the selective-id
model. To the best of our knowledge, the concept of Secret-Key Hierarchical IBE has not been
defined before and we defer its study to future work.

Organization of the work. In Section 2, we present a brief introduction of bilinear groups and state
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the complexity assumptions used to prove the security of our schemes. In Section 3 we present
definitions and our construction for Public-key Anonymous HIBE. Finally, in Section 4, we present
definitions and our construction for Secret-key Anonymous IBE. Due to lack of space the proof of
security of our assumptions in the generic group model is omitted and can be found in the extended
version [6].

2 Composite Order Bilinear Groups and Complexity Assumptions

Composite order bilinear groups were first used in cryptographic construction in [3]. We use groups
of order product of four primes and a generator G which takes as input security parameter λ and
outputs a description I = (N = p1p2p3p4,G,GT , e) where p1, p2, p3, p4 are distinct primes of Θ(λ)
bits, G and GT are cyclic groups of order N , and e : G × G → GT is a map with the following
properties:

1. (Bilinearity) ∀ g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We further require that the group operations in G and GT as well the bilinear map e are computable
in deterministic polynomial time with respect to λ. Also, we assume that the group descriptions of G
and GT include generators of the respective cyclic groups. Furthermore, for a, b, c ∈ {1, p1, p2, p3, p4}
we denote by Gabc the subgroup of order abc. From the fact that the group is cyclic it is simple
to verify that if g and h are group elements of different order (and thus belonging to different
subgroups), then e(g, h) = 1. This is called the orthogonality property and is a crucial tool in our
constructions. We now give our complexity assumptions.

2.1 Assumption 1

For a generator G returning bilinear settings of order N product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) by
running G(1λ) and then pick

g1, A1 ← Gp1 , A2, B2 ← Gp2 , g3, B3 ← Gp3 , g4 ← Gp4 , T1 ← Gp1p2p3 , T2 ← Gp1p3

and set D = (I, g1, g3, g4, A1A2, B2B3). We define the advantage of an algorithm A in breaking
Assumption 1 to be:

AdvAA1(λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|.

Assumption 1 We say that Assumption 1 holds for generator G if for all probabilistic polynomial-
time algorithms A AdvAA1(λ) is a negligible function of λ.

2.2 Assumption 2

For a generator G returning bilinear settings of order N product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) by
running G(1λ) and then pick

α, s, r ← ZN , g1 ← Gp1 , g2, A2, B2 ← Gp2 , g3 ← Gp3 , g4 ← Gp4 , T2 ← GT
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and set T1 = e(g1, g1)
αs and D = (I, g1, g2, g3, g4, gα1A2, g

s
1B2, g

r
2, A

r
2). We define the advantage of

an algorithm A in breaking Assumption 2 to be:

AdvAA2(λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|.

Assumption 2 We say that Assumption 2 holds for generator G if for all probabilistic polynomial
time algorithm A AdvAA2(λ) is a negligible function of λ.

2.3 Assumption 3

For a generator G returning bilinear settings of order N product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) by
running G(1λ) and then pick

r̂, s← ZN , g1, U,A1 ← Gp1 , g2, A2, B2, D2, F2 ← Gp2 , g3 ← Gp3 ,

g4, A4, B4, D4 ← Gp4 , A24, B24, D24 ← Gp2p4 , T2 ← Gp1p2p4

and set T1 = As1D24 and D = (I, g1, g2, g3, g4, U, U sA24, U
r̂, A1A4, A

r̂
1A2, g

r̂
1B2, g

s
1B24). We define

the advantage of an algorithm A in breaking Assumption 3 to be:

AdvAA3(λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|.

Assumption 3 We say that Assumption 3 holds for generator G if for all probabilistic polynomial
time algorithm A AdvAA3(λ) is a negligible function of λ.

3 Public-Key Anonymous HIBE

3.1 Hierarchical Identity Based Encryption

A Hierarchical Identity Based Encryption scheme (henceforth abbreviated in HIBE) over an al-
phabet Σ is a tuple of five efficient and probabilistic algorithms: (Setup, Encrypt, KeyGen, Decrypt,
Delegate).

Setup(1λ, 1`): takes as input security parameter λ and maximum depth of an identity vector ` and
outputs public parameters Pk and master secret key Msk.

KeyGen(Msk, ID = (ID1, . . . , IDj)): takes as input master secret key Msk, identity vector ID ∈ Σj

with j ≤ ` and outputs a private key SkID.

Delegate(Pk, ID, SkID, IDj+1): takes as input public parameters Pk, secret key for identity vector
ID = (ID1, . . . , IDj) of depth j < `, IDj+1 ∈ Σ and outputs a secret key for the depth j + 1
identity vector (ID1, . . . , IDj , IDj+1).

Encrypt(Pk,M, ID): takes as input public parameters Pk, message M and identity vector ID and
outputs a ciphertext Ct.

Decrypt(Pk,Ct, Sk): takes as input public parameters Pk, ciphertext Ct and secret key Sk and
outputs the message M . We make the following obvious consistency requirement. Suppose
ciphertext Ct is obtained by running the Encrypt algorithm on public parameters Pk, message
M and identity ID and that Sk is a secret key for identity ID obtained through a sequence
of KeyGen and Delegate calls using the same public parameters Pk. Then Decrypt, on input
Pk,Ct and Sk, returns M except with negligible probability.
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3.2 Security definition

We give complete form of the security definition following [15]. Our security definition captures
semantic security and ciphertext anonymity by means of the following game between an adversary
A and a challenger C.

Setup. The challenger C runs the Setup algorithm to generate public parameters Pk which it
gives to the adversary A. We let S denote the set of private keys that the challenger has
created but not yet given to the adversary. At this point, S = ∅.

Phase 1. A makes Create, Delegate, and Reveal key queries. To make a Create query, A specifies
an identity vector ID of depth j. In response, C creates a key for this vector by calling the
key generation algorithm, and places this key in the set S. C only gives A a reference to
this key, not the key itself. To make a Delegate query, A specifies a key SkID in the set S
and IDj+1 ∈ Σ. In response, C appends IDj+1 to ID and makes a key for this new identity
by running the delegation algorithm on ID, SkID and IDj+1. C adds this key to the set S and
again gives A only a reference to it, not the actual key. To make a Reveal query, A specifies
an element of the set S. C gives this key to A and removes it from the set S. We note that
A needs no longer make any delegation queries for this key because it can run delegation
algorithm on the revealed key for itself.

Challenge. A gives two pairs of message and identity (M0, ID
?
0) and (M1, ID

?
1) to C. We require

that no revealed identity in Phase 1 is a prefix of either ID?0 or ID?1. C chooses random
β ∈ {0, 1}, encrypts Mβ under ID?β and sends the resulting ciphertext to A.

Phase 2. This is the same as Phase 1 with the added restriction that any revealed identity vector
must not be a prefix of either ID?0 or ID?1.

Guess. A must output a guess β′ for β. The advantage of A is defined to be Prob[β′ = β]− 1
2 .

Definition 3.1 An Anonymous Hierarchical Identity Based Encryption scheme is secure if all
polynomial time adversaries achieve at most a negligible (in λ) advantage in the previous security
game.

3.3 Our construction

In this section we describe our construction for an Anonymous HIBE scheme.

Setup(1λ, 1`): The setup algorithm chooses random description I = (N = p1p2p3p4,G,GT , e) and
random Y1, X1, u1, . . . , u` ∈ Gp1 , Y3 ∈ Gp3 , X4, Y4 ∈ Gp4 and α ∈ ZN . The public parameters
are published as:

Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u`,Ω = e(Y1, Y1)
α).

The master secret key is Msk = (X1, α).
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KeyGen(Msk, ID = (ID1, . . . , IDj)): The key generation algorithm chooses random r1, r2 ∈ ZN and,
for i ∈ {1, 2}, randomRi,1, Ri,2, Ri,j+1, . . . , Ri,` ∈ Gp3 . The secret key SkID = (Ki,1,Ki,2, Ei,j+1,
. . . , Ei,`) is computed as

K1,1 = Y r1
1 R1,1, K1,2 = Y α

1

(
uID1
1 · · ·uIDjj X1

)r1
R1,2

E1,j+1 = ur1j+1R1,j+1, . . . , E1,` = ur1` R1,`,

K2,1 = Y r2
1 R2,1, K2,2 =

(
uID1
1 · · ·uIDjj X1

)r2
R2,2

E2,j+1 = ur2j+1R2,j+1, . . . , E1,` = ur2` R2,`.

Notice that, SkID is composed by two sub-keys. The first sub-key, (K1,1,K1,2, E1,j+1, . . . , E1,`),
is used by the decryption algorithm to compute the blinding factor, the second, (K2,1,K2,2, E2,j+1,
. . . , E2,`), is used by the delegation algorithm and can be used also to verify that the identity
vector of a given ciphertext matches the identity vector of the key.

Delegate(Pk, ID, SkID, IDj+1): Given a key SkID = (K ′i,1,K
′
i,2, E

′
i,j+1, . . . , E

′
i,`) for ID = (ID1, . . . , IDj),

the delegation algorithm creates a key for (ID1, . . . , IDj , IDj+1) as follows. It chooses random
r̃1, r̃2 ∈ ZN and, for i ∈ {1, 2}, random Ri,1, Ri,2, Ri,j+2, . . . , Ri,` ∈ Gp3 . The secret key
(Ki,1,Ki,2, Ei,j+2, . . . , Ei,`) is computed as

K1,1 = K ′1,1(K
′
2,1)

r̃1R1,1,K1,2 = K ′1,2(K
′
2,2)

r̃1(E′1,j+1)
IDj+1

(E′2,j+1)
r̃1IDj+1

R1,2,

E1,j+2 = E′1,j+2 · (E′2,j+2)
r̃1R1,j+2, . . . , E1,` = E′1,` · (E′2,`)r̃1R1,`.

and
K2,1 = (K ′2,1)

r̃2R2,1, K2,2 = (K ′2,2)
r̃2 · (E′2,j+1)

r̃2IDj+1R2,2,

E2,j+2 = (E′2,j+2)
r̃2R2,j+2, . . . , E2,` = (E′2,`)

r̃2R2,`.

We observe that the new key has the same distributions as the key computed by the KeyGen
algorithm on (ID1, . . . , IDj , IDj+1) with randomness r1 = r′1 + (r′2 · r̃1) and r2 = r′2 · r̃2.

Encrypt(Pk,M, ID = (ID1, . . . , IDj)): The encryption algorithm chooses random s ∈ ZN and ran-
dom Z,Z ′ ∈ Gp4 . The ciphertext (C0, C1, C2) for the message M ∈ GT is computed as

C0 = M · e(Y1, Y1)
αs, C1 =

(
uID1
1 · · ·uIDjj t

)s
Z, C2 = Y s

1 Z
′.

Decrypt(Pk,Ct, Sk): The decryption algorithm assumes that the key and ciphertext both corre-
spond to the same identity (ID1, . . . , IDj). If the key identity is a prefix of this instead, then
the decryption algorithm starts by running the key delegation algorithm to create a key with
identity matching the ciphertext identity exactly. The decryption algorithm then computes
the blinding factor as:

e(K1,2, C2)

e(K1,1, C1)
=

e(Y1, Y1)
αse

(
uID1
1 · · ·uIDjj X1, Y1

)r1s
e
(
Y1, u

ID1
1 · · ·uIDjj X1

)r1s = e(Y1, Y1)
αs.
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By comparing our construction with the one of [11], we notice that component t of the public
key and components C1 and C2 of the ciphertext have a Gp4 part. This addition makes the system
anonymous. Indeed, if we remove from our construction the Gp4 parts of t and C1 and C2 (and
thus obtain the scheme of [11]) then it is possible to test if ciphertext (C0, C1, C2) is relative to
identity (ID1, . . . , IDj) for public key (N,Y1, Y3, Y4, t, u1, . . . , u`,Ω) by testing e(C2, t ·(uID1

1 · · ·uID`` ))
and e(C1, Y1) for equality.

3.4 Security

Following Lewko and Waters [11], we define two additional structures: semi-functional ciphertexts
and semi-functional keys. These will not be used in the real scheme, but we need them in our
proofs.

Semi-functional Ciphertext. We let g2 denote a generator of Gp2 . A semi-functional ciphertext
is created as follows: first, we use the encryption algorithm to form a normal ciphertext (C ′0, C

′
1, C

′
2).

We choose random exponents x, zc ∈ ZN . We set:

C0 = C ′0, C1 = C ′1g
xzc
2 , C2 = C ′2g

x
2 .

Semi-functional Keys. To create a semi-functional key, we first create a normal key (K ′i,1,
K ′i,2, E

′
i,j+1, . . . , E

′
i,`) using the key generation algorithm. We choose random exponents z, γ, zk ∈

ZN and, for i ∈ {1, 2}, random exponents zi,j+1, . . . , zi,` ∈ ZN . We set:

K1,1 = K ′1,1 · g
γ
2 ,K1,2 = K ′1,2 · g

γzk
2 , (E1,i = E′1,i · g

γz1,i
2 )`i=j+1,

and
K2,1 = K ′2,1 · g

zγ
2 ,K2,2 = K ′2,2 · g

zγzk
2 , (E2,i = E′2,i · g

zγz2,i
2 )`i=j+1.

We note that when the first sub-key of a semi-functional key is used to decrypt a semi-functional
ciphertext, the decryption algorithm will compute the blinding factor multiplied by the additional
term e(g2, g2)

xγ(zk−zc). If zc = zk, decryption will still work. In this case, we say that the key is
nominally semi-functional. If the second sub-key is used to test the identity vector of the ciphertext,
then the decryption algorithm computes e(g2, g2)

xzγ(zk−zc) and if zc = zk, the test will still work.

To prove security of our Anonymous HIBE scheme, we rely on the static Assumptions 1, 2 and
3. For a probabilistic polynomial-time adversary A which makes q key queries, our proof of security
will consist of the following sequence of q + 5 games between A and a challenger C.

GameReal: is the real Anonymous HIBE security game.

GameReal′ : is the same as the real game except that all key queries will be answered by fresh calls
to the key generation algorithm, (C will not be asked to delegate keys in a particular way).

GameRestricted: is the same as GameReal′ except that A cannot ask for keys for identities which are
prefixes of one of the challenge identities modulo p2. We will retain this restriction in all
subsequent games.

Gamek: for k from 0 to q, we define Gamek like GameRestricted except that the ciphertext given to
A is semi-functional and the first k keys are semi-functional. The rest of the keys are normal.
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GameFinal0 : is the same as Gameq, except that the challenge ciphertext is a semi-functional encryp-
tion with C0 random in GT (thus the ciphertext is independent from the messages provided
by A).

GameFinal1 : is the same as GameFinal0 , except that the challenge ciphertext is a semi-functional
encryption with C1 random in Gp1p2p4 (thus the ciphertext is independent from the identity
vectors provided by A). It is clear that in this last game, no adversary can have advantage
greater than 0.

We will show these games are indistinguishable in the following lemmata.

3.4.1 Indistinguishability of GameReal and GameReal′

Lemma 3.2 For any algorithm A, AdvAGameReal
= AdvAGameReal′

.

Proof. We note that the keys are identically distributed whether they are produced by the
key delegation algorithm from a previous key or from a fresh call to the key generation algorithm.
Thus, in the attacker’s view, there is no difference between these games. 2

3.4.2 Indistinguishability of GameReal′ and GameRestricted

Lemma 3.3 Suppose that there exists a PPT algorithm A such that AdvAGameReal′
−AdvAGameRestricted

=
ε. Then there exists a PPT algorithm B with advantage ≥ ε

3 in breaking Assumption 1.

Proof. Suppose that A has probability ε of producing an identity vector ID = (ID1, . . . , IDk),
that is a prefix of one of the challenge identities ID? = (ID?1, . . . , ID

?
j ) modulo p2. That is, there

exists i and j ∈ {0, 1} such that that IDi 6= ID?j,i modulo N and that p2 divides IDi− ID?j,i and thus

a = gcd(IDi − ID?j,i, N) is a nontrivial factor of N . We notice that p2 divides a and set b = N
a . The

following three cases are exhaustive and at least one occurs with probability at least ε/3.

1. ord(Y1) | b.

2. ord(Y1) - b and ord(Y4) | b.

3. ord(Y1) - b, ord(Y4) - b and ord(Y3) | b.

Suppose case 1 has probability at least ε/3. We describe algorithm B that breaks Assumption
1. B receives (I, g1, g3, g4, A1A2, B2B3) and T and constructs Pk by running the Setup algorithm
with the only exception that B sets Y1 = g1, Y3 = g3, and Y4 = g4. Notice that B has the master
secret key Msk associated with Pk. Then B runs A on input Pk and uses knowledge of Msk to
answer A’s queries. At the end of the game, for all IDs for which A has asked for the key and for
ID? ∈ {ID?0, ID?1}, B computes a = gcd(IDi − ID?i , N). Then, if e ((A1A2)

a, B2B3) is the identity
element of GT then B tests if e(T b, A1A2) is the identity element of GT . If this second test is
successful, then B declares T ∈ Gp1p3 . If it is not, B declares T ∈ Gp1p2p3 . It is easy to see that if
p2 divides a and p1 = ord(Y1) divides b, then B’s output is correct.

The other two cases are similar. Specifically, in case 2, B breaks Assumption 1 in the same
way except that Pk is constructed by setting Y1 = g4, Y3 = g3, and Y4 = g1 (this has the effect of
exchanging the roles of p1 and p4). Instead in case 3, B constructs Pk by setting Y1 = g3, Y3 = g1,
and Y4 = g4 (this has the effect of exchanging the roles of p1 and p3). 2
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3.4.3 Indistinguishability of GameRestricted and Game0

Lemma 3.4 Suppose that there exists a PPT algorithm A such that AdvAGameRestricted
−AdvAGame0 = ε.

Then there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates GameRestricted or Game0 with
A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .
B sets the public parameters as follows. B chooses random exponents α, a1, . . . , a`, b, c ∈ ZN

and sets Y1 = g1, Y3 = g4, Y4 = g3, X4 = Y c
4 , X1 = Y b

1 and ui = Y ai
1 for i ∈ [`]. B sends

Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u`,Ω = e(Y1, Y1)
α) to A. Notice that B knows the master

secret key Msk = (X1, α) associated with Pk and thus can answer all A’s queries.
At some point, A sends B two pairs, (M0, ID

?
0 = (ID?0,1, . . . , ID

?
0,j)) and (M1, ID

?
1 = (ID?1,1, . . . , ID

?
1,j)).

B chooses random β ∈ {0, 1} and computes the challenge ciphertext as follows:

C0 = Mβ · e(T, Y1)
α, C1 = T a1ID

?
β,1+···+aj ID

?
β,j+b, C2 = T.

We complete the proof with the following two observations. If T ∈ Gp1p3 , then T can be writ-
ten as Y s1

1 Y s3
4 . In this case (C0, C1, C2) is a normal ciphertext with randomness s = s1, Z =

Y
s3a1ID

?
β,1+···+aj ID

?
β,j+b

4 and Z ′ = Y s3
4 . If T ∈ Gp1p2p3 , then T can be written as Y s1

1 gs22 Y
s3
4 and this

case (C0, C1, C2) is a semi-functional ciphertext with randomness s = s1, Z = Y
s3a1ID

?
β,1+···+aj ID

?
β,j+b

4 ,
Z ′ = Y s3

4 , γ = s2 and zc = a1ID
?
β,1 + · · ·+ aj ID

?
β,j + b. 2

3.4.4 Indistinguishability of Gamek−1 and Gamek

Lemma 3.5 Suppose there exists a PPT algorithm A such that AdvAGamek−1
−AdvAGamek

= ε. Then,
there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates Gamek−1 or Gamek with A
depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .
B sets the public parameters by choosing random exponents α, a1, . . . , a`, b, c ∈ ZN and setting

Y1 = g1, Y3 = g3, Y4 = g4, X4 = Y c
4 , X1 = Y b

1 and ui = Y ai
1 for i ∈ [`]. B sends the public parameters

Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u`, Ω = e(Y1, Y1)
α) to A. Notice that B knows the master

secret key Msk = (X1, α) associated with Pk. Let us now explain how B answers the i-th key query
for identity (IDi,1, . . . , IDi,j).

For i < k, B creates a semi-functional key by choosing random exponents r1, r2, f, z, w ∈ ZN
and, for i ∈ {1, 2}, random wi,2, wi,j+1, . . . , wi,` ∈ ZN and setting:

K1,1 = Y r1
1 · (B2B3)

f , K1,2 = Y α
1 · (B2B3)

w
(
u
IDi,1
1 · · ·uIDi,jj X1

)r1
Y
w1,2

3 ,

E1,j+1 = ur1j+1 · (B2B3)
w1,j+1 , . . . , E1,` = ur1` · (B2B3)

w1,` .

and
K2,1 = Y r2

1 · (B2B3)
zf , K2,2 = (B2B3)

zw
(
u
IDi,1
1 · · ·uIDi,jj X1

)r2
Y
w2,2

3 ,

E2,j+1 = ur2j+1 · (B2B3)
w2,j+1 , . . . , E2,` = ur2` · (B2B3)

w2,` .

By writing B2 as gφ2 , we have that this is a properly distributed semi-functional key with γ = φ · f
and γ · zk = φ · w.
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For i > k, B runs the KeyGen algorithm using the master secret key Msk = (X1, α).
To answer the k-th key query for IDk = (IDk,1, . . . , IDk,j), B sets zk = a1IDk,1 + · · ·+aj IDk,j + b,

chooses random exponents r′2 ∈ ZN and, for i ∈ {1, 2}, random wi,2, wi,j+1, . . . , wi,` ∈ ZN , and sets:

K1,1 = T, K1,2 = Y α
1 · T zkY

w1,2

3 , (E1,m = T amY
w1,m

3 )`m=j+1.

and
K2,1 = T r

′
2 , K2,2 = T r

′
2·zkY

w2,2

3 , (E2,m = T r
′
2·amY

w2,m

3 )`m=j+1.

We have the following two observations. If T ∈ Gp1p3 , then T can be written as Y
r′1
1 Y r3

3 and
(Ki,1,Ki,2, Ei,j+1, . . . , Ei,`) is a normal key with randomness r1 = r′1, r2 = r′1 · r′2 . If T ∈ Gp1p2p3 ,

then T can be written as Y
r′1
1 gs22 Y

r3
3 . In this case the key is a semi-functional key with randomness

r1 = r′1, r2 = r′1 · r′2, γ = s2 and z = r′2.
At some point, A sends B two pairs, (M0, ID

?
0 = (ID?0,1, . . . , ID

?
0,j)) and (M1, ID

?
1 = (ID?1,1, . . . , ID

?
1,j)).

B chooses random β ∈ {0, 1} and random z, z′ ∈ ZN and computes the challenge ciphertext as fol-
lows:

C0 = Mβ · e(A1A2, Y1)
α, C1 = (A1A2)

a1ID
?
β,1+···+aj ID

?
β,j+bY z

4 , C2 = A1A2Y
z′
4 .

This implicitly sets Y s
1 = A1 and zc = a1ID

?
β,1 + · · ·+aj ID

?
β,j + b (mod p2). Since IDk is not a prefix

of ID?β modulo p2, we have that zk and zc are independent and randomly distributed. We observe
that, if B attempts to test whether the k-th key is semi-functional by using the above procedure
to create a semi-functional ciphertext for IDk, then we will have that zk = zc and thus decryption
always works (independently of T ).

We can thus conclude that, if T ∈ Gp1p3 then B has properly simulated Gamek−1. If T ∈ Gp1p2p3 ,
then B has properly simulated Gamek. 2

3.4.5 Indistinguishability of Gameq and GameFinal0

Lemma 3.6 Suppose that there exists a PPT algorithm A such that AdvAGameq − AdvAGameFinal0
= ε.

Then there exists a PPT algorithm B with advantage ε in breaking Assumption 2.

Proof. B receives (I, g1, g2, g3, g4, gα1A2, g
s
1B2, g

r
2, A

r
2) and T and simulates Gameq or GameFinal0

with A depending on whether T = e(g1, g1)
αs or T is a random element of GT .

B sets the public parameters as follows. B chooses random exponents a1, . . . , a`, b, c ∈ ZN and
sets Y1 = g1, Y3 = g3, Y4 = g4, X4 = Y c

4 , X1 = Y b
1 , and ui = Y ai

1 for i ∈ [`]. B computes Ω =
e(gα1A2, Y1) = e(Y α

1 , Y1) and send public parameters Pk = (N,Y1, Y2, Y3, t = X1X4, u1, . . . , u`,Ω)
to A.

Each time B is asked to provide a key for an identity (ID1, . . . , IDj), B creates a semi-functional
key choosing random exponents r1, r2, z, z

′ ∈ ZN and, for i ∈ {1, 2}, random zi,j+1, . . . , zi,`,
wi,1, wi,2, wi,j+1, . . . , wi,` ∈ ZN and setting:

K1,1 = Y r1
1 · g

z
2 · Y

w1,1

3 , K1,2 = (gα1A2) · gz
′

2 ·
(
uID1
1 · · ·uIDjj X1

)r1
· Y w1,2

3 ,

E1,j+1 = ur1j+1 · g
z1,j+1

2 · Y w1,j+1

3 , . . . , E1,` = ur1` · g
z1,`
2 · Y w1,`

3 .

and
K2,1 = Y r2

1 · (g
r
2)z · Y w2,1

3 , K2,2 = Ar2 · (gr2)z
′ ·
(
uID1
1 · · ·uIDjj X1

)r2
· Y w2,2

3 ,
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E2,j+1 = ur2j+1 · g
z2,j+1

2 · Y w2,j+1

3 , . . . , E2,` = ur2` · g
z2,`
2 · Y w2,`

3 .

At some point, A sends B two pairs, (M0, ID
?
0 = (ID?0,1, . . . , ID

?
0,j)) and (M1, ID

?
1 = (ID?1,1, . . . , ID

?
1,j)).

B chooses random β ∈ {0, 1} and random z, z′ ∈ ZN and computes the challenge ciphertext as fol-
lows:

C0 = Mβ · T, C1 = (gs1B2)
a1ID

?
β,1+···+aj ID

?
β,j+b · Y z

4 , C2 = gs1B2 · Y z′
4 .

This implicitly sets zc = (a1ID
?
β,1 + · · · + aj ID

?
β,j + b) mod p2. We note that ui = Y ai mod p1

1 and

X1 = Y b mod p1
1 are elements of Gp1 , so when a1, · · · , a` and b are randomly chosen from ZN , their

value modulo p1 and modulo p2 are random and independent.
We finish by observing that, if T = e(g, g)αs, then the ciphertext constructed is a properly

distributed semi-functional ciphertext with message Mβ. If T instead is a random element of GT ,
then the ciphertext is a semi-functional ciphertext with a random message. 2

3.4.6 Indistinguishability of GameFinal0 and GameFinal1

Lemma 3.7 Suppose that there exists a PPT algorithm A such that AdvAGameFinal0
−AdvAGameFinal1

= ε.

Then there exists a PPT algorithm B with advantage ε in breaking Assumption 3.

Proof. First, notice that if exists an adversary A′ which distinguishes an encryption for an
identity vector ID?0 from an encryption for an identity vector ID?1, where ID?0 and ID?1 are chosen by
A′, then there exists an adversary A which distinguishes an encryption for an identity ID? chosen
by A from an encryption for a random identity vector. Hence, we suppose that we are simulating
the games for a such adversary.
B receives (I, g1, g2, g3, g4, U, U sA24, U

r̂, A1A4, A
r̂
1A2, g

r̂
1B2, g

s
1B24) and T and simulates GameFinal0

or GameFinal1 with A depending on whether T = As1D24 or T is random in Gp1p2p4 .
B sets the public parameters as follows. B chooses random exponents α, a1, . . . , a` ∈ ZN and

sets Y1 = g1, Y3 = g3, Y4 = g4, t = A1A4, ui = Uai for i ∈ [`], and Ω = e(Y1, Y1)
α. B sends the

public parameters Pk = (N,Y1, Y2, Y3, t, u1, . . . , u`,Ω) to A.
Each time B is asked to provide a key for an identity (ID1, . . . , IDj), B creates a semi-functional

key choosing random exponents r′1, r
′
2 ∈ ZN and, for ∈ {1, 2}, random zi,j+1, . . . , zi,`, wi,1, wi,2,

wi,j+1, . . . , wi,` ∈ ZN and setting:

K1,1 = (gr̂1B2)
r′1Y

w1,1

3 , K1,2 = Y α
1

((
U r̂
)a1ID1+···+aj IDj

(Ar̂1A2)

)r′1
Y
w1,2

3 ,

E1,j+1 =
(
U r̂
)r′1aj+1

Y
z1,j+1

2 Y
w1,j+1

3 , . . . , E1,` =
(
U r̂
)r′1a`

Y
z1,`
2 Y

w1,`

3 .

and

K2,1 = (gr̂1B2)
r′2Y

w2,1

3 , K2,2 =

((
U r̂
)a1ID1+···+aj IDj

(Ar̂1A2)

)r′2
Y
w2,2

3 ,

E2,j+1 =
(
U r̂
)r′2aj+1

Y
z2,j+1

2 Y
w2,j+1

3 , . . . , E2,` =
(
U r̂
)r′2a`

Y
z2,`
2 Y

w2,`

3 .

This implicitly sets the randomness r1 = r̂r′1 and r2 = r̂r′2. At some point, A sends B two
pairs, (M0, ID

? = (ID?1, . . . , ID
?
j )) and (M1, ID

? = (ID?1, . . . , ID
?
j )). B chooses random C0 ∈ GT and

computes the challenge ciphertext as follows:

C0, C1 = T (U sA24)
a1ID

?
1+···+aj ID?j , C2 = gs1B24.
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This implicitly sets x and zc to random values.
If T = As1D24, then this is properly distributed semi-functional ciphertext with C0 random and

for identity vector ID?. If T is a random element of Gp1p2p4 , then this is a semi-functional ciphertext
with C0 random in GT and C1 and C2 random in Gp1p2p4 .

Hence, B can use the output of A to distinguish between these possibilities for T . 2

3.4.7 GameFinal1 gives no advantage

Theorem 3.8 If Assumptions 1, 2 and 3 hold then our Anonymous HIBE scheme is secure.

Proof. If the assumptions hold then we have proved by the previous lemmata that the real secu-
rity game is indistinguishable from GameFinal1 , in which the value of β is information-theoretically
hidden from the attacker. Hence the attacker can obtain no advantage in breaking the Anonymous
HIBE scheme. 2

4 Secret-Key Anonymous IBE

4.1 Secret Key Identity Based Encryption

A Secret-Key Identity Based Encryption scheme (IBE) is a tuple of four efficient and probabilistic
algorithms: (Setup, Encrypt, KeyGen, Decrypt).

Setup(1λ): takes as input a security parameter λ and outputs the public parameters Pk and a
master secret key Msk.

KeyGen(Msk, ID): takes as input of the master secret key Msk, and an identity ID, and outputs a
private key SkID.

Encrypt(Msk,M, ID): takes as input the master secret key Msk, a message M , and an identity ID
and outputs a ciphertext Ct.

Decrypt(Ct, Sk): takes as input a ciphertext Ct and a secret key Sk and outputs the message M , if
the ciphertext was an encryption to an identity ID and the secret key is for the same identity.

4.2 Security definitions

We present the security of an Anonymous IBE scheme in secret key model. In this model, we have
two definition of security: ciphertext security and key security.

4.2.1 Ciphertext Security definition

Security is defined through the following game, played by a challenger C and an adversary A.

Setup. C runs the Setup algorithm to generate master secret key Msk which is kept secret.

Phase 1. A can make queries to the oracle Encrypt. To make a such query, A specifies a pair
(M, ID) and receives an encryption of this pair computed using the Encrypt algorithm with
Msk. A can make queries to the oracle KeyGen. To make a such query, A specifies an identity
ID and receives a key of this identity computed using the KeyGen algorithm with Msk.

13



Challenge. A gives to C two pair message-identity (M0, ID0) and (M1, ID1). The identities
must satisfy the property that no revealed identity in Phase 1 was either ID0 or ID1. C sets
β ∈ {0, 1} randomly and encrypts Mβ under IDβ. C sends the ciphertext to the adversary.

Phase 2. This is the same as Phase 1 with the added restriction that any revealed identity must
not be either ID0 or ID1.

Guess. A must output a guess β′ for β. The advantage of A is defined to be Prob[β′ = β]− 1
2 .

Definition 4.1 An Anonymous Identity Based Encryption scheme is ciphertext-secure if all poly-
nomial time adversaries achieve at most a negligible (in λ) advantage in the previous security game.

4.2.2 Key Security definition

Security is defined through the following game, played by a challenger C and an attacker A.

Setup. C runs the Setup algorithm to generate master secret key Msk which is kept secret.

Phase 1. A can make queries to the oracle Encrypt. To make a such query, A specifies a pair
(M, ID) and receives an encryption of this pair computed using the Encrypt algorithm with
the master secret key Msk. A can make queries to the oracle KeyGen. To make a such query,
A specifies an identity ID and receives a key of this identity computed using the KeyGen
algorithm with the master secret key Msk.

Challenge. A gives to C two identities ID0 and ID1. If in Phase 1 A did make a query (M, ID)
to the oracle Encrypt such that ID was either ID0 or ID1, then the experiment fails. C sets
β ∈ {0, 1} randomly and compute the secret key for IDβ. C sends the secret key to the
adversary.

Phase 2. This is the same as Phase 1 with the added restriction that if A did make a query
(M, ID) to the oracle Encrypt such that ID was either ID0 or ID1, then the experiment fails.

Guess. A must output a guess β′ for β. The advantage A is defined to be Prob[β′ = β]− 1
2 .

Definition 4.2 A Secret-Key Anonymous Identity Based Encryption scheme is key-secure if all
polynomial time adversaries achieve at most a negligible (in λ) advantage in the previous security
game.

Notice that no scheme with a deterministic KeyGen procedure can be key-secure.

4.3 Our construction

In this section we describe our construction for a Secret-key Anonymous IBE scheme which is
similar to its public key version from the previous sections.

Setup(1λ, 1`): The setup algorithm chooses random description I = (N = p1p2p3p4,G,GT , e) and
random Y1, X1, u ∈ Gp1 , Y3 ∈ Gp3 , X4, Y4 ∈ Gp4 and α ∈ ZN . The fictitious public parameters
are:

Pk = (N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)
α).

The master secret key is Msk = (Pk, X1, α).
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KeyGen(Msk, ID): The key generation algorithm chooses random r ∈ ZN and also random elements
R1, R2 ∈ Gp3 The secret key SkID = (K1,K2) is computed as

K1 = Y r
1 R1, K2 = Y α

1 (uIDX1)
rR2.

Encrypt(Msk,M, ID): The encryption algorithm chooses random s ∈ ZN and random Z,Z ′ ∈ Gp4

The ciphertext (C0, C1, C2) for the message M ∈ GT is computed as

C0 = M · e(Y1, Y1)
αs, C1 =

(
uIDt

)s
Z, C2 = Y s

1 Z
′.

Decrypt(Msk,Ct, Sk): The decryption algorithm assumes that the key and ciphertext both corre-
spond to the same identity ID. The decryption algorithm then computes the blinding factor
similarly to the decryption procedure of the public-key version. Specifically,

e(K2, C2)

e(K1, C1)
=

e(Y1, Y1)
αse

(
uIDX1, Y1

)rs
e (Y1, uIDX1)

rs = e(Y1, Y1)
αs.

4.4 Ciphertext Security

To prove ciphertext security of the Anonymous IBE scheme, we rely on the Assumptions 1, 2 and
3 used in the proof of the public-key scheme.

We make the following considerations. If we instantiate the previous scheme as a public-key
scheme by using the fictitious public-key parameter, it is identical to our public-key Anonymous
IBE scheme (i.e., it is used in the non-hierarchical version). Thus, it is immediate to verify that
from Assumptions 1, 2 and 3 the security proof follows nearly identically. Generally, if a public-
key IBE encryption scheme is semantically secure, its secret-key version is also semantically secure
because we can simulate the encryption oracle by using the public-key. Therefore, we have the
following theorem.

Theorem 4.3 If Assumptions 1, 2 and 3 hold, then our Secret-Key Anonymous IBE scheme is
ciphertext-secure.

4.5 Key Security

We will use semi-functional ciphertexts and semi-functional keys like defined previously. These will
not be used in the real scheme, but we need them in our proofs. We include them for completeness.

Semi-functional Ciphertext. We let g2 denote a generator of Gp2 . A semi-functional ciphertext
is created as follows: first, we use the encryption algorithm to form a normal ciphertext (C ′0, C

′
1, C

′
2).

We choose random exponents x, zc ∈ ZN . We set:

C0 = C ′0, C1 = C ′1g
xzc
2 , C2 = C ′2g

x
2 .
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Semi-functional Keys. To create a semi-functional key, we first create a normal key (K ′1,K
′
2)

using the key generation algorithm. We choose random exponents γ, zk ∈ ZN . We set:

K1 = K ′1g
γ
2 , K2 = K ′2g

γzk
2 .

We note that when a semi-functional key is used to decrypt a semi-functional ciphertext, the de-
cryption algorithm will compute the blinding factor multiplied by the additional term e(g2, g2)

xγ(zk−zc).
If zc = zk, decryption will still work. In this case, we say that the key is nominally semi-functional.

To prove the security of our scheme we rely on static Assumptions 1,2 and 3. For a PPT
adversary A which makes q ciphertext queries, our proof of security will consist of the following
q + 3 games between A and a challenger C.

GameReal: is the real key security game.

GameRestricted: is the same as GameReal except that A cannot ask for keys for identities which
are equal to one of the challenge identities modulo p2. We will retain this restriction in all
subsequent games.

Gamek: for k from 0 to q, Gamek is like GameRestricted, except that the key given to A is semi-
functional and the first k ciphertexts are semi-functional. The rest of the ciphertexts are
normal.

GameFinal: is the same as Gameq, except that the challenge key is semi-functional with K2 random
in Gp1p2p4 (thus the key is independent from the identities provided by A). It is clear that in
this last game, no adversary can have advantage greater than 0.

We will show these games are indistinguishable in the following lemmata.

4.5.1 Indistinguishability of GameReal and GameRestricted

Lemma 4.4 Suppose that there exists a PPT algorithm A such that AdvAGameReal
−AdvAGameRestricted

= ε.
Then there exists a PPT algorithm B with advantage ≥ ε

3 in breaking Assumption 1.

Proof. The proof is identical to that given in lemma 3.3. 2

4.5.2 Indistinguishability of GameRestricted and Game0

Lemma 4.5 Suppose that there exists a PPT algorithm A such that AdvAGameRestricted
−AdvAGame0 = ε.

Then there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates GameRestricted or Game0 with
A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .
B sets the fictitious public parameters as follows. B chooses random exponents α, a, b, c ∈ ZN

and sets Y1 = g1, Y3 = g3, Y4 = g4 X4 = Y c
4 , X1 = Y b

1 and u = Y a
1 . B uses Pk = (N,Y1, Y3, Y4, t =

X1X4, u,Ω = e(Y1, Y1)
α) to respond to the ciphertext queries issued by A. Notice that B knows

also the master secret key Msk = (Pk, X1, α) and thus can simulate all A’s key queries.
At some point, A sends B two identities, ID?0 and ID?1. B chooses random β ∈ {0, 1} and

computes the challenge key as follows:

K1 = T, K2 = Y α
1 T

aID?β+b.
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We complete the proof with the following two observations. If T ∈ Gp1p3 , then T can be written as

Y s1
1 Y s3

3 . In this case (K1,K2) is a normal key with randomness r = s1, R1 = Y s3
3 , R2 = (Y s3

3 )aID
?
β+b.

If T ∈ Gp1p2p3 , then T can be written as Y s1
1 gs22 Y

s3
3 and this case (K1,K2) is a semi-functional

key with randomness r = s1, R1 = Y s3
3 , R2 = (Y s3

3 )aID
?
β+b, γ = s2 and zc = aID?β + b. Thus, in

the former case we have properly simulated GameRestricted, and in the latter case we have simulated
Game0. 2

4.5.3 Indistinguishability of Gamek−1 and Gamek

Lemma 4.6 Suppose there exists a PPT algorithm A such that AdvAGamek−1
−AdvAGamek

= ε. Then,
there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates Gamek−1 or Gamek with A
depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .
B sets the fictitious public parameters by choosing random exponents α, a, b, c ∈ ZN and setting

Y1 = g1, Y3 = g4, Y4 = g3, X4 = Y c
4 , X1 = Y b

1 and u = Y a
1 . Notice that B knows the master secret

key Msk = (Pk, X1, α) with Pk = (N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)
α) and thus can respond

to all A’s key queries. Let us now explain how B answers the i-th ciphertext query for pair (M, ID).
For i < k, B creates a semi-functional ciphertext by choosing random exponents s, w1, w2 ∈ ZN

and setting:
C0 = Me(Y1, Y1)

αs, C1 = (uIDX1)
s(B2B3)

w1 , C2 = Y s
1 Y

w2
4

By writing B2 as gφ2 , we have that this is a properly distributed semi-functional ciphertext with
x = φ and zc = w1.

For i > k, B runs the Encrypt algorithm using the master secret key Msk = (Pk, X1, α).
To answer the k-th ciphertext query for (Mk, IDk), B sets zc = aIDk + b, chooses random

exponent w1, w2 ∈ ZN , and sets:

C0 = Mke(T, Y1)
α, C1 = T zcY w1

4 , C2 = TY w2
4

We have the following two observations. If T ∈ Gp1p3 , then T can be written as Y r1
1 Y r4

4 In this case
this is a properly distributed normal ciphertext with s = r1. If T ∈ Gp1p2p3 , then T can be written
as Y r1

1 gr22 Y
r4
4 and in this case it is a properly distributed semi-functional ciphertext with x = r2.

At some point, A sends B two identities, ID?0 and ID?1. B chooses random β ∈ {0, 1} and random
z, z′ ∈ ZN and computes the challenge key as follows:

K1 = (A1A2)Y
z
3 , K2 = Y α

1 (A1A2)
aID?β+bY z′

3

This implicitly sets Y r
1 = A1 and zk = aID?β + b mod p2. Since IDk is not equal to ID?β modulo p2,

we have that zk and zc are independent and randomly distributed.
We can thus conclude that, if T ∈ Gp1p3 then B has properly simulated Gamek−1. If T ∈ Gp1p2p3 ,

then B has properly simulated Gamek. 2

4.5.4 Indistinguishability of Gameq and GameFinal

Lemma 4.7 Suppose that there exists a PPT algorithm A such that AdvAGameq − AdvAGameFinal
= ε.

Then there exists a PPT algorithm B with advantage ε in breaking Assumption 3.
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Proof. First, notice that if exists an adversary A′ which distinguishes an encryption for an
identity ID?0 from an encryption for an identity ID?1, where ID?0 and ID?1 are chosen by A′, then there
exists an adversary A which distinguishes an encryption for an identity ID? chosen by A from an
encryption for a random identity. Hence, we suppose that we are simulating the games for a such
adversary.
B receives (I, g1, g2, g3, g4, U, U sA24, U

r̂, A1A4, A
r̂
1A2, g

r̂
1B2, g

s
1B24) and T and simulates Gameq

or GameFinal with A depending on whether T = As1D24 or T is random in Gp1p2p4 .
B chooses random exponents α ∈ ZN and sets Y1 = g1, Y3 = g4, Y4 = g3.
Each time B is asked to provide a ciphertext for an identity ID, B creates a semi-functional

ciphertext choosing random exponents r, w1, w2 ∈ ZN and sets

C0 = M · e(gr̂1B2, Y1)
αs, C1 = (Ar̂1A2)

rID(U r̂)rY w1
4 , C2 = (gr̂1B2)

rY w2
4

This implicitly sets the randomness of the ciphertext to r̂r, u = A1 and X1 = U .
Each time B is asked to provide a key for an identity ID, B creates a semi-functional key choosing

random exponents r, w1, w2 ∈ ZN and setting:

K1 = (gr̂1B2)
rY w1

3 , K2 = Y α
1 (Ar̂1A2)

rID(U r̂)rY w2
3 .

This implicitly sets the randomness of the secret key to r̂r.
At some point, A sends B two identities, ID?0 and ID?1. B chooses random w1, w2 ∈ ZN and

computes the challenge secret key as follows:

K1 = (gs1B24)Y
w1
3 , K2 = Y α

1 T
ID?β (U sA24)Y

w2
3 .

This implicitly sets γ and zk to random values.
If T = As1D24, then this is properly distributed semi-functional key for identity ID?β. If T is a

random element of Gp1p2p4 , then this is a semi-functional key with K2 random in Gp1p2p4 .
Hence, B can use the output of A to distinguish between these possibilities for T . 2

4.5.5 GameFinal gives no advantage

Theorem 4.8 If Assumptions 1, 2 and 3 hold then our Anonymous IBE scheme is both ciphertext
and key secure.

Proof. If the assumptions hold then we have proved by the previous lemmata that the real
security game is indistinguishable from GameFinal, in which the value of β is information-theoretically
hidden from the attacker. Hence the attacker can obtain no non-negligible advantage in breaking
the key security of the Secret-key Anonymous IBE scheme. We have showed previously that it is
also ciphertext-secure. 2

5 Conclusions and Open Problems

We constructed the first Fully Secure Anonymous HIBE system with short ciphertexts in the public
key model and the first fully secure IBE in the secret key model and proved their security in the
standard model from simple and non-interactive assumptions generically secure. A drawback of
our construction is that it uses bilinear groups of composite order. An open problem is to build
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such a scheme in symmetric bilinear groups of prime order. The general technique of Freeman [?]
does not seem to apply to our scheme.

We also stress that our decryption algorithm works if the key and the ciphertext correspond to
the same identity. It would be interesting to construct an anonymous HIBE in which the decryption
algorithm works providef that the identity of the key is a prefix of the identity of the ciphertext.

To the best of our knowledge, Secret-Key Hierarchical IBE has not been studied before and we
defer it to future work.
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A Generic Security of Our Complexity Assumptions

We now prove that, if factoring is hard, our three complexity assumptions hold in the generic
group model. We adopt the framework of [?] to reason about assumptions in bilinear groups
G,GT of composite order N = p1p2p3p4. We fix generators gp1 , gp2 , gp3 , gp4 of the subgroups
Gp1 ,Gp2 ,Gp3 ,Gp4 and thus each element of x ∈ G can be expressed as x = ga1p1 , g

a2
p2 g

a3
p3 g

a4
p4 for

ai ∈ Zpi . For sake of ease of notation, we denote element x ∈ G by the tuple (a1, a2, a3, a4).
We do the same with elements in GT (with the respect to generator e(gpi , gpi)) and will denote
elements in that group as bracketed tuples [a1, a2, a3, a4]. We use capital letters to denote random
variables and reuse random variables to denote relationships between elements. For example,
X = (X1, Y1, Z1,W1) is a random element of G, and Y = (X2, Y1, Z2,W2) is another random
element that shares the same Gp2 part.

We say that a random variableX is dependent from the random variables {Ai} if there exists λi ∈
ZN such that X =

∑
i λiAi as formal random variables. Otherwise, we say that X is independent

of {Ai}. We state the following theorems from [?].

Theorem A.1 (Theorem A.1 of [?]) Let N =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai} be random variables over G and {Bi}, T1 and T2 be random variables over
GT . Denote by t the maximum degree of a random variable and consider the following experiment
in the generic group model:

Algorithm A is given N, {Ai}, {Bi} and Tb for random b ∈ {0, 1} and outputs b′ ∈ {0, 1}. A’s
advantage is the absolute value of the difference between the probability that b = b′ and 1/2.

Suppose that T1 and T2 are independent of {Bi} ∪ {e(Ai, Aj)}. Then if A performs at most q
group operations and has advantage δ, then there exists an algorithm that outputs a nontrivial factor
of N in time polynomial in λ and the running time of A with probability at least δ −O(q2t/2λ).

Theorem A.2 (Theorem A.2 of [?]) Let N =
∏m
i=1 pi be a product of distinct primes, each

greater than 2λ. Let {Ai}, T1, T2 be random variables over G and let {Bi} be random variables over
GT , where all random variables have degree at most t.

Let N =
∏m
i=1 pi be a product of distinct primes, each greater than 2λ. Let {Ai}, T1 and T2 be

random variables over G and let {Bi} be random variables over GT . Denote by t the maximum
degree of a random variable and consider the same experiment as the previous theorem in the generic
group model.

Let S := {i | e(T1, Ai) 6= e(T2, Ai)} (where inequality refers to inequality as formal polynomials).
Suppose each of T1 and T2 is independent of {Ai} and furthermore that for all k ∈ S it holds
that e(T1, Ak) is independent of {Bi} ∪ {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=k and e(T2, Ak) is independent
of {Bi} ∪ {e(Ai, Aj)} ∪ {e(T2, Ai)}i 6=k. Then if there exists an algorithm A issuing at most q
instructions and having advantage δ, then there exists an algorithm that outputs a nontrivial factor
of N in time polynomial in λ and the running time of A with probability at least δ −O(q2t/2λ).

We apply these theorems to prove the security of our assumptions in the generic group model.

Assumption 1. We can express this assumption as:

A1 = (1, 0, 0, 0), A2 = (0, 0, 1, 0), A3 = (0, 0, 0, 1)

A4 = (X1, X2, 0, 0), A5 = (0, Y2, Y3, 0),
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and
T1 = (Z1, Z2, Z3, 0), T2 = (Z1, 0, Z3, 0).

It is easy to see that T1 and T2 are both independent of {Ai} because, for example, Z1 does not
appear in the Ai’s. Next, we note that for this assumption we have S = {4, 5}, and thus, considering
T1 first, we obtain the following tuples:

C1,4 = e(T1, A4) = [Z1X1, Z2X2, 0, 0], C1,5 = e(T1, A5) = [0, Z2Y2, Z3Y3, 0].

It is easy to see that C1,k with k ∈ {4, 5} is independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=k. An
analogous arguments apply for the case of T2. Thus the independence requirements of Theorem
A.2 are satisfied and Assumption 1 is generically secure, assuming it is hard to find a nontrivial
factor of N .

Assumption 2. We can express this assumption as:

A1 = (1, 0, 0, 0), A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0),
A4 = (0, 0, 0, 1), A5 = (A,X2, 0, 0), A6 = (S, Y2, 0, 0)
A7 = (0, X2R, 0, 0), A8 = (0, R, 0, 0),

and
T1 = [AS, 0, 0, 0], T2 = [Z1, Z2, Z3, Z4].

We note that Z1 does not appear in {Ai} and thus T2 is independent from them. On the other
hand, for T1, the only way to obtain an element of GT whose first component is AS is by computing
e(A5, A6) = [AS,X2Y2, 0, 0] but there is no way to generate an element whose second component is
X2Y2 and hence no way to cancel that term. Thus the independence requirement of Theorem A.1
is satisfied and Assumption 2 is generically secure, assuming it is hard to find a nontrivial factor
of N .

Assumption 3. We can express this assumption as:

A1 = (1, 0, 0, 0), A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0), A4 = (0, 0, 0, 1)
A5 = (U, 0, 0, 0), A6 = (US,W2, 0,W4), A7 = (UR, 0, 0, 0), A8 = (X1, 0, 0, X4)
A9 = (X1R,X2, 0, 0), A10 = (R, Y2, 0, 0), A11 = (S,D2, 0, Y4),

and
T1 = (X1S,Z2, 0, Z4), T2 = (Z1, Z2, 0, Z4).

It is easy to see that T1 and T2 are both independent of {Ai} because, for example, Z2 does not
appear in the Ai’s. Next we note that S = {1, 5, 6, 7, 8, 9, 10, 11}. Considering T1 first, we obtain
the following tuples:

C1,1 = e(T1, A1) = [X1S, 0, 0, 0], C1,5 = e(T1, A5) = [X1SU, 0, 0, 0],
C1,6 = e(T1, A6) = [X1S

2U,Z2W2, 0, Z4W4], C1,7 = e(T1, A7) = [X1SUR, 0, 0, 0],
C1,8 = e(T1, A8) = [X2

1S, 0, 0, Z4X4], C1,9 = e(T1, A9) = [X2
1SR,Z2X2, 0, 0],

C1,10 = e(T1, A10) = [X1SR,Z2Y2, 0, 0], C1,11 = e(T1, A11) = [X1S
2, Z2D2, 0, Z4Y4].

We start by observing that, for k = 9, 10, 11, C1,k is independent from {e(Ai, Aj)} ∪{e(T1, Ai)}i 6=k,
since it is the only to contain Z2X2 for k = 9, Z2Y2 for k = 10, and Z2D2 for k = 11. Similarly, C1,k
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for k = 6, 8 is independent since it contains Z4W4, for k = 6, and Z4X4, for k = 8. Furthermore,
for C1,1, we observe that the only way to obtain an element whose first component contains X1S
is by computing e(A8, A11) = [X1S, 0, 0, X4Y4] but then there is no way to generate an element
whose fourth component is X4Y4 and hence no way to cancel that term. Similarly for C1,5 and
C1,7. To obtain an element whose first component contains X1SU (resp. X1SUR) the only way is
by computing e(A8, A6) = [X1US, 0, 0, X4W4] (rasp. e(A6, A9) = [USX1R,X2W2, 0, 0]) but there
is no way to cancel the fourth (resp. second) component X4W4 (resp. X2W2).

Analogous arguments apply for the case of T2.
Thus the independence requirement of Theorem A.2 is satisfied and Assumption 3 is generically

secure, assuming it is hard to find a nontrivial factor of N .

Assumption 4. We can express this assumption as:

A1 = (1, 0, 0, 0), A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0), A4 = (0, 0, 0, 1)
A5 = (U,M2, 0, 0), A6 = (UR,N2, 0, 0), A7 = (X1, O2, 0, 0), A8 = (X1R,P2, 0, 0)
A9 = (R,Q2, 0, 0), A10 = (S, Y2, 0, 0), A11 = (X1S,W2, 0, 0),

and
T1 = (US,Z2, 0, 0), T2 = (Z1, Z2, 0, 0).

It is easy to see that T1 and T2 are both independent of {Ai} because, for example, Z2 does not
appear in the Ai’s. Next we note that S = {1, 5, 6, 7, 8, 9, 10, 11}. Considering T1 first, we obtain
the following tuples:

C1,1 = e(T1, A1) = [US, 0, 0, 0], C1,5 = e(T1, A5) = [U2S,Z2M2, 0, 0],
C1,6 = e(T1, A6) = [U2SR,Z2N2, 0, 0], C1,7 = e(T1, A7) = [USX1, Z2O2, 0, 0],
C1,8 = e(T1, A8) = [USX1R,Z2P2, 0, 0], C1,9 = e(T1, A9) = [USR,Z2Q2, 0, 0],
C1,10 = e(T1, A10) = [US2, Z2Y2, 0, 0], C1,11 = e(T1, A11) = [US2X1, Z2W2, 0, 0].

It is easy to see that C1,1 is independent from {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=1, since there is no way
to obtain an element whose first component contains US. Furthermore, for k = 5, 6, 7, 8, 9, 10, 11,
C1,k is independent from {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=k, since it is the only to contain the particular
Gp2 part.

Analogous arguments apply for the case of T2.
Thus the independence requirement of Theorem A.2 is satisfied and Assumption 5 is generically

secure, assuming it is hard to find a nontrivial factor of N .
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