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Abstract

The assumption of the availability of tamper-proof hardware tokens has been used extensively
in the design of cryptographic primitives. For example, Katz (Eurocrypt 2007) suggests them
as an alternative to other setup assumptions, towards achieving general UC-secure multi-party
computation. On the other hand, a lot of recent research has focused on protecting security of
various cryptographic primitives against physical attacks such as leakage and tampering.

In this paper we put forward the notion of Built-in Tamper Resilience (BiTR) for crypto-
graphic protocols, capturing the idea that the protocol that is encapsulated in a hardware token
is designed in such a way so that tampering gives no advantage to an adversary. Our definition is
within the UC model, and can be viewed as unifying and extending several prior related works.
We provide a composition theorem for BiTR security of protocols, impossibility results, as well
as several BiTR constructions for specific cryptographic protocols or tampering function classes.
In particular we achieve general UC-secure computation based on a hardware token that may
be susceptible to affine tampering attacks. We also present BiTR proofs for identification and
signature schemes in the same tampering model. We next observe that non-malleable codes are
sufficient (but not necessary) as state encodings to imply the BiTR property and we show new
positive results for deterministic non-malleable encodings (as opposed to probabilistic that were
previously known) for various classes of tampering functions.

1 Introduction

Security Against Physical Attacks. Traditionally, cryptographic schemes have been analyzed
assuming that an adversary has only black-box access to the underlying functionality, and no way to
manipulate the internal state. For example, traditional security definitions for encryption schemes
address an adversary who is given the public key — but not the private key — and tries to guess
something about the plaintext of a challenge ciphertext, by applying some black-box attack (e.g.,
CPA or CCA). In practical situations, however, an adversary can often do more. For example,
when using small portable devices such as smart-cards or mobile-phones, an adversary can take
hold of the device and apply a battery of attacks. One class of attacks are those that try to recover
information via side channels such as power consumption [KJJ99], electromagnetic radiation [QS01],
and timing [BB05]. To address these attacks, starting with the work of [ISW03, MR04] there has
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been a surge of recent research activity on leakage-resilient cryptographic schemes. For example,
refer to [SMY09, AGV09, DKL09, Pie09, NS09, ADW09, KV09, FKPR10, DGK+10, FRR+10,
BG10, DP10, JV10, GR10, LW10, BKKV10, P11, MTVY11, HL11].

The present work addresses tampering attacks, where an adversary can modify the secret data by
applying various physical attacks (c.f., [AK96, BDL01, BS97, SA02, Sko05, BECN+04]). Currently,
there are only a few results in this area [GLM+04, IPSW06, DPW10].

Hardware Tokens. As discussed above, cryptographic primitives have traditionally been
assumed to be tamper (and leakage) proof. In the context of larger cryptographic protocols,
there have been many works that (implicitly or explicitly) used secure hardware as a tool to
achieve security goals that could not be achieved otherwise. The work most relevant to ours is
that of Katz [Kat07], who suggests to use tamper-proof hardware tokens to achieve UC-secure
[Can01] commitments. This allows achieving general feasibility results for UC-secure well-formed
multi-party computation, where the parties, without any other setup assumptions, send each other
tamper-proof hardware tokens implementing specific two-party protocols. There were several follow-
up works such as [MS08, CGS08, DNW08, GIS+10, Kol10, GIMS10, DKM11], all of which assume
a token that is tamper proof.

Given the wide applicability of tamper-proof tokens on one hand, and the reality of tampering
attacks on the other, we ask the following natural question:

Can we relax the tamper-proof assumption, and get security using tamperable hardware
tokens?

Clearly, for the most general interpretation of this question, the answer is typically negative. For
example, if the result of [Kat07] was achievable with arbitrarily-tamperable hardware token, that
would give general UC-secure protocols in the “plain” model, which is known to be impossible
[CF01]. In this work we address the above question in settings where the class of possible tampering
functions and the class of protocols we wish to put in a token and protect are restricted.

1.1 Our Contributions

BiTR Definition. We provide a definition of Built-in Tamper Resilience (BiTR) for two party
cryptographic protocols, capturing the idea that the protocol can be encapsulated in a hardware
token, whose state may be tamperable. Our definition is very general, compatible with the UC
setting [Can01], and implies that any BiTR protocol can be used as a hardware token within
larger UC-protocols. Our definition may be viewed as unifying and generalizing previous defini-
tions [GLM+04, IPSW06, DPW10] and bringing them to the UC setting, as well as bringing aspects
of notions such as related key security for PRFs [BK03] to the setting of any cryptographic primitive
(see Section 1.2).

BiTR is a property of a cryptographic protocol M , which roughly says the following. Any
adversary that is able to apply tampering functions from the class T on a token running M , can
be simulated by an adversary that has no tampering capability, independently of the environment
in which the tokens may be deployed.

The strongest result one would ideally want is a general compiler that takes an arbitrary proto-
col and transforms it to an equivalent protocol that is BiTR against arbitrary tampering functions,
without having to encode the state into a larger one, and without requiring any additional ran-
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domness.1 Since such a strong result is clearly impossible, we provide several specific results that
trade off these parameters (see below), as well as the following composition theorem.

BiTR Composition. As BiTR is a protocol centric property, the natural question that arises
is whether it is preserved under composition. A useful result for a general theory of BiTR cryptog-
raphy would be a general composition theorem which allows combining a BiTR protocol calling a
subroutine and a BiTR implementation of that subroutine into one overall BiTR protocol. To this
end, we characterize BiTR composition of protocols by introducing the notion of modular-BiTR
which captures the property of being BiTR in the context of a larger protocol. We then prove
that the property of modular-BiTR is necessary and sufficient for construction of composite BiTR
protocols. At the same time we also derive a negative result, namely that modular-BiTR protocols
that preserve the BiTR property in any possible context (something we term universal-BiTR) are
unattainable assuming the existence of one-way functions, at least for non-trivial protocols. These
results thus settle the question of BiTR composability.

BiTR Constructions without State Encoding. We describe results for BiTR primitives that
require no state encodings. It may come as a surprise that it is possible to prove a cryptographic
protocol BiTR without any encoding and thus without any validation of the secret protocol state
whatsoever. This stems from the power of our definitional framework for BiTR and the fact that it
is can be achieved for specially selected and designed protocols and classes of tampering functions.
We define the class Taff = {fa,b | a ∈ Z∗q , b ∈ Zq, fa,b(v) := av + b mod q}. That is, the adversary
may apply a modular affine function of his choice to tamper the state. Affine tampering is an
interesting class to consider as it has as special cases multiplication (e.g., shifting — which may be
the result of tampering shift-register based memory storage), or addition (which may be result of
bit flipping tampering).

We prove three protocols BiTR with respect to this class, where the tamper resilience is really
“built-in” in the sense that no modification of the protocol or encoding of the state are necessary.
The first one is Schnorr’s identification (two-round) protocol [Sch91]. The second is Okamoto’s sig-
nature scheme [Oka06]. Both protocols are interesting on their own (e.g., previous work [GLM+04]
focused mostly on signature schemes), but the latter is also useful for the third protocol we prove
affine-BiTR, described next.

UC-Secure Computation from tamperable tokens. Katz’s approach [Kat07] for building UC-secure
computation using hardware tokens allows a natural generalization that involves a commitment
scheme with a special property, we call a dual-mode parameter generation (DPG) — depending
on the mode of the parameter, the commitment scheme is either statistically hiding or a trapdoor
commitment. We then observe that any DPG-commitment is sufficient for providing UC-secure
multi-party computation assuming tamper proof tokens. Following this track, we present a new
DPG-commitment scheme that is BiTR against affine tampering functions, that relies on discrete-
log based primitives including the digital signature scheme of Okamoto [Oka06]. Thus, we obtain
UC-secure general computation using hardware tokens tamperable with affine functions. We also
examine a different class of tokens that implement a single OT [GKR08] and were utilized in
[GIS+10] for UC secure computation. We present tampering functions against which these tokens
are BiTR.

1If an encoding ψ of the state is required, it is desirable that it is deterministic (randomness may not be available
in some systems or expensive to generate), and that it has as high rate as possible. Ideally, an existing scheme can
be proven BiTR as-is, without any state encoding at all.
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BiTR Constructions with State Encoding. We next discuss how one can take advantage
of state consistency checks to design BiTR protocols. We observe first that non-malleable codes,
introduced by Dziembowski, Pietrzak and Wichs [DPW10] can be used as an encoding for proving
the BiTR property of protocols. This gives rise to the problem of constructing such codes. Existing
constructions [DPW10] utilize randomness in calculating the encoding; we provide new construc-
tions for such encodings focusing on purely deterministic constructions. In fact, when the protocol
uses no randomness (e.g., a deterministic signing algorithm) or a finite amount of randomness (e.g.,
a prover in the resettable zero-knowledge [CGGM00] setting), by using deterministic encodings the
token may dispense with the need of random number generation.

Our design approach takes advantage of a generalization of non-malleable encodings (called
δ-non-malleable), and we show how they can be constructible for any given set of tampering func-
tions (as long as they exist). Although inefficient for general tampering functions, the construction
becomes useful if each function in the class T works independently on small blocks (of logarithmic
size). In this case, we show that a non-malleable code for the overall state can be constructed effi-
ciently by first applying Reed-Solomon code to the overall state and then applying δ-non-malleable
codes for small blocks to the resulting codeword. We stress that this construction is intended as a
feasibility result.

1.2 Related Work

We briefly describe the most relevant previous works addressing protection against tampering. We
note that none of these works had addressed tampering in the context of UC-secure protocols.

Gennaro et al. [GLM+04] considered a device with two separate components: one is tamper-
proof yet readable (circuitry), and the other is tamperable yet read-proof (memory). They defined
algorithmic tamper-proof (ATP) security and explored its possibility for signature and decryption
devices. Their definition of ATP security was given only for the specific tasks of signature and
encryption. In contrast, our definition is simulation based, independent of the correctness or security
objectives of the protocol, and we consider general two-party protocols (and the implications in the
UC framework [Can01, Kat07]).

Ishai et al. [IPSW06] considered an adversary who can tamper with the wires of a circuit. They
showed a general compiler that outputs a self-destructing circuit that withstands such a tampering
adversary. Considering that memory corresponds to a subset of the wires associated with the
state in their model, the model seems stronger than ours (as we consider only the state, not the
computation circuit). However, the tampering attack they considered is very limited: it modifies
a bounded subset of the wires between each invocation, which corresponds to tampering memory
only partially.

Dziembowski et al. [DPW10] introduced the notion of non-malleable codes and tamper simu-
latability to address similar concerns as the present work. A distinguishing feature of BiTR security
from their approach is that BiTR is protocol-centric. As such, it allows arguing about tamper re-
silience by taking advantage of specific protocol design features that enable BiTR even without
any encodings. Moreover, the positive results of [DPW10] require the introduction of additional
circuitry or a randomness device; this may be infeasible, uneconomical or even unsafe in practice —
it could be introducing new pathways for attacks. In contrast, our positive results do not require
state encodings or when they do, they do not rely on randomness.

Bellare and Kohno defined security against related key attacks (RKA) for block ciphers [BK03],
and there has been follow-up work [BC10a, AHI11] (see also the references therein). Roughly
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speaking, RKA-security as it applies to PRFs and encryption is a strengthening of the security
definition of the underlying primitive (be it indistinguishability from random functions or semantic
security). RKA-security was only shown against tampering that included addition or multiplication
(but not both simultaneously). In fact, RKA-security for PRFs as defined in [BC10a] is different
from BiTR when applied to PRFs. A BiTR PRF is not necessarily RKA-secure since the BiTR
simulator is allowed to take some liberties that would violate key independence under tampering as
required by RKA-security. We do not pursue these relationships further here formally as it is our
intention to capture BiTR in a weakest possible sense and investigate how it captures naturally in
a simulation-based fashion the concept of tamper resilience for any cryptographic primitive.

2 BiTR Definitions

Ideal functionalities. Katz [Kat07] modeled usage of a tamper-proof hardware token as an
ideal functionality Fwrap in the UC framework. Here, we slightly modify the functionality so that it
is parameterized by an interactive Turing machine (ITM) M for a two-party protocol2 (see Fig. 1).
The modification does not change the essence of the wrapper functionality; it merely binds honest
parties to the use of a specific embedded program. Corrupted parties may embed an arbitrary
program in the token by invoking Forge.

We also define a new functionality Ftwrap similar to Fwrap but with tampering allowed. Let T
be a collection of (randomized) functions. Let ψ = (E,D) be an encoding scheme3. The essential
difference between Ftwrap and Fwrap is the ability of the adversary to tamper with the internal
state of the hardware token — a function drawn from T is applied on the internal state of the
hardware token. This (weaker) ideal functionality notion is fundamental for the definition of BiTR
that comes next.

BiTR Protocols. We define a security notion for a protocol M , called Built-in Tamper Resilience
(BiTR), which essentially requires that Ftwrap(M) is interchangeable with Fwrap(M). We adopt
the notations in the UC framework given by Canetti [Can01].

Definition 1 (BiTR protocol) The protocol M is (T , ψ)-BiTR if for any PPT A, there exists
a PPT S such that for any non-uniform PPT Z,

idealFtwrap(M,T ,ψ),A,Z ≈ idealFwrap(M),S,Z ,

where ≈ denotes computational indistinguishability.

In case ψ = (id, id) (i.e., identity functions), we simply write T -BiTR. Note that this definition
is given through the ideal model, which implies (by the standard UC theorem) that whenever a
tamper-proof token wrapping M can be used, it can be replaced by a T -tamperable token wrapping
M .4 As a trivial example, every protocol is {id}-BiTR.

2We will interchangeably use protocols and ITMs, if there is no confusion.
3We will sometimes omit ψ from Ftwrap when it is obvious from the context.
4One could also consider a definition that requires this in the context of a specific UC-protocol. We believe our

stronger definition, which holds for any UC-protocol using a token with M , is the right definition for built-in tamper
resilience.
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Fwrap(M) is parameterized by a polynomial p and a security parameter k. Fwrap proceeds as follows:

Create: Upon receiving 〈Create, sid, P, P ′,msg〉 from party P :

1. Let msg′ = (Initialize,msg). Run M(msg′) for at most p(k) steps.

2. Let out be the response of M (set out to ⊥ if M does not respond). Let s′ be the updated
state of M .

3. Send 〈Initialized, sid, P ′, out〉 to P , and 〈Create, sid, P, P ′, 1|s′|〉 to P ′ and the adversary.

4. If there is no record (P, P ′, ∗, ∗), then store (P, P ′,M, s′).

Forge: Upon receiving 〈Forge, sid, P, P ′,M ′, s〉 from the adversary, if P is not corrupted, do nothing.
Otherwise do:

1. Send 〈Create, sid, P, P ′, 1|s|〉 to P ′.

2. If there is no record (P, P ′, ∗, ∗), then store (P, P ′,M ′, s).

Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s). If there is no
such record, do nothing. Otherwise, do:

1. Run K(msg; s) for at most p(k) steps.

2. Let out be the response of K (set out to ⊥ if K does not respond). Let s′ be the updated
state of K. Send (sid, P, out) to P ′.

3. Update the record with (P, P ′,K, s′).

———————————————————————————————————————————

Ftwrap(M, T , ψ), also parameterized by p and k (and ψ = (E,D) is an encoding scheme), proceeds as
follows

Create: As in Fwrap(M) with the only change that state s′ is stored as E(s′) in memory.

Forge: As in Fwrap(M).

Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s̃). If there is no
such record, do nothing. Otherwise, do:

1. (Tampering) if P ′ is corrupted and a record 〈sid, P, P ′, τ〉 exists set s̃ = τ(s̃).

2. (Decoding) If P is corrupted, set s = s̃; otherwise, set s = D(s̃). If s = ⊥, send
(sid, P,⊥) to P ′ and stop.

3. Run K(msg; s) for at most p(k) steps.

4. Let out be the response of K (set out to ⊥ if K does not respond). Let s′ be the updated
state of K. Send (sid, P, out) to P ′.

5. (Encoding) If P is corrupted, set s̃ = s′; otherwise set s̃ = E(s′).

6. Update the record with (P, P ′,K, s̃).

Tamper: Upon receiving 〈Tamper, sid, P, P ′, τ〉 from the adversary A, if P ′ is not corrupted or
τ 6∈ T , do nothing. Otherwise make a record (sid, P, P ′, τ) (erasing any previous record of the
same form).

Figure 1: Ideal functionalities Fwrap(M) and Ftwrap(M, T , ψ)
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We note that the above definition is intended to capture in the weakest possible sense the fact
that a protocol is tamper resilient within an arbitrary environment. A feature of the definition is
that there is no restriction in the way the simulator accesses the underlying primitive (as long as no
tampering is allowed). This enables, e.g., a signature to be called BiTR even if simulating tampered
signatures requires untampered signatures on different chosen messages, or even on a larger number
of chosen messages. We believe that this is the correct requirement for the definition to capture
that “if the underlying primitive is secure without tampering, it is secure also with tampering”
(in the signature example, security is unforgeability against any polynomial time chosen message
attack). Nonetheless, it can be arguably even better to achieve BiTR security through a “tighter”
simulation, where the BiTR simulator is somehow restricted to behave in a manner that is closer to
the way A operates (except for tampering of course) or possibly even more restricted. For instance,
one may restrict the number of times the token is accessed by the simulator to be upper bounded
by the number of times A accesses the token. In fact all our positive results do satisfy this desired
additional tighter simulation property. Taking this logic even further, one may even require that
once tampering occurs the BiTR simulator can complete the simulation without accessing the token
at all — effectively suggesting that tampering trivializes the token and makes it entirely simulatable
(and that would be akin to related-key attack security). We believe that the ability of BiTR to be
readily extended to capture such more powerful scenarios highlights the robustness of our notion
and, even though these scenarios are not further pursued here, the present work provides the right
basis for such upcoming investigations.

2.1 Composition of BiTR ITMs

It is natural to ask if a modular design approach applies to BiTR protocols. To investigate this
question we need first to consider how to define the BiTR property in a setting where protocols are
allowed to call subroutines.

Consider an ITM M2 and another ITM M1 that calls M2 as a subroutine. We denote by
(M1;M2) the compound ITM. The internal state of (M1;M2) is represented by the concatenation
of the two states s1||s2 where s1 and s2 are the states of M1 and M2 at a certain moment of
the runtime respectively. Let Ftwrap(M1;M2, T1 × T2, ψ1 × ψ2) denote an ideal functionality that
permits tampering with functions from T1 for the state of M1 and from T2 for the state of M2 while
the states are encoded with ψ1 and ψ2 respectively. We can also consider a sequence of ITMs that
call each other successively M = (M1; . . . ;Mn). We next generalize the BiTR notion for an ITM
Mi employed in the context of M in a straightforward manner5.

Definition 2 (modular BiTR protocol) Given M = (M1; . . . ;Mn), T = T1 × . . . × Tn, and
ψ = ψ1 × . . .× ψn, for some i ∈ [n], we say that Mi is modular-(Ti, ψi)-BiTR with respect to M, T
and ψ if for any PPT A there exists a PPT S such that for any non-uniform PPT Z,

idealFtwrap(M,Ti,ψ),A,Z ≈ idealFtwrap(M,Ti+1,ψ),S,Z ,

where Ti = {id} × . . .× {id} × Ti × . . .× Tn.

Roughly speaking, this definition requires that whatever the adversary can do by tampering Mi

with Ti (on the left-hand side) should be also done without (on the right-hand side) in the context

5We also study the BiTR notion of an ITM Mi when it is universally composed. See later in this section.
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of M, T , ψ. For simplicity, if M, T , ψ are clear from the context, we will omit a reference to it and
call an ITM Mi simply modular-(Ti, ψi)-BiTR.

The composition theorem below confirms that each ITM being modular BiTR is a necessary
and sufficient condition for the overall compound ITM being BiTR.

Theorem 1 (BiTR Composition Theorem) Consider protocols M1, . . . ,Mn with M = (M1,
. . ., Mn) and T = T1 × . . .× Tn, and ψ = ψ1 × . . .× ψn. It holds that Mi is modular-(Ti, ψi)-BiTR
for i = 1, . . . , n, with respect to M, T , ψ if and only if (M1; . . . ;Mn) is (T , ψ)-BiTR.

Proof: We need to show that for any A there is an S for which it holds that for any Z

idealFtwrap(M,T ,ψ),A,Z ≈ idealFwrap(M),S,Z , (1)

First, due to the fact that M1 is modular BiTR, we obtain that there is an S1 for which it holds
that:

idealFtwrap(M,T ,ψ),A,Z ≈ idealFtwrap(M,T 2,ψ),S1,Z , (2)

Observe that we can advance to the next step by simply applying modular BiTR property
again for M2 and so on successively. This would complete the forward direction of the theorem’s
statement.

The reverse direction is simple given that all required simulators for showing that Mi is modular
BiTR can be instantiated by the simulator S that is guaranteed to exist since (M1; . . . ;Mn) is BiTR.

While the proof of the composition theorem above is straightforward itdoes highlight a strategy
for composing BiTR protocols provided that they are proven to be modular-BiTR with respect to
each other. It should be noted that the theorem does not provide the benefits of UC protocol com-
position that enables arguing about the security of the protocols individually and then arbitrarily
composing them. We refer to this issue as the context-sensitivity of the modular BiTR property
and we investigate it below. By showing a negative result, wedemonstrate thatit is unavoidable in
the context of BiTR security.

Context Sensitivity of Modular-BiTR Security. The modular-BiTR definition is context-
sensitive; an ITM may be modular BiTR in some contexts but not in others, in particular depending
on the overall compound token M . This naturally begs a question whether there is a modular-BiTR
ITM that is insensitive to the context. In this way, akin to a universally composable protocol, a
universally BiTR ITM could be used modularly together with any other ITM and still retain its
BiTR property. To capture this we formalize universal-BiTR security below, as well as a weaker
variant of it that is called universal-BiTR parent which applies only to ITMs used as the parent in
a sequence of ITMs.

Definition 3 (universal BiTR) If an ITM M is modular-(T , ψ)-BiTR with respect to any pos-
sible M, T , ψ then we call M universal-(T , ψ)-BiTR. If M is modular-(T , ψ)-BiTR whenever M is
used as the parent ITM then we call it universal-(T , ψ)-BiTR parent.

Not very surprisingly (and in a parallel to the case of UC protocols) this property is very difficult
to achieve. In fact, we show that if one-way functions exist then non-trivial universal-BiTR ITMs
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do not exist. We first define non-triviality: an ITM M will be called non-trivial if the set of its
states can be partitioned into at least two sets S0, S1 and there exists a set of inputs A that produce
distinct outputs depending when the ITM M is called and its internal state belongs to S0 or S1.
We call the pair of sets a state partition for M and the set A the distinguishing input-set. Note that
if an ITM is trivial then for any partition of the set of states S0, S1 and any set of inputs A, the
calling of the ITM M on A produces identical output. This effectively means that the ITM M does
not utilize its internal state at all and obviously is BiTR by default. Regarding non-trivial ITMs
we next prove that they cannot be (T , ψ)-BiTR for any tampering function τ that switches the
state between the two sets S0, S1, i.e., τ(S0) ⊆ S1, τ(S1) ⊆ S0. We call such tampering function
state-switching for the ITM M . If an encoding ψ is involved, we call τ state-switching for the
encoding ψ. We are now ready to prove our negative result.

Theorem 2 Assuming one-way functions exist, there is no non-trivial universal-(T , ψ)-BiTR ITM
M such that T contains a state-switching function for M and the encoding ψ.

Proof: Consider a protocol M ′ that initializes M as well as produces a (vk, sk) pair for a signature
scheme. M ′ ignores any input it is given and always calls M with an input that belongs to A, collects
the output z and then returns (z, σ) where σ = Sign(sk, z).

Now consider any simulator that tries to simulate a tampering attack against M . In the world
where tampering is allowed, after the tampering with the function τ takes place the adversary
possesses a signature σ′ = Sign(sk, z′) where z′ is the output of M but after the internal state
has been switched. The simulator on the other hand can only obtain signatures of the form
(z, Sign(sk, z)) where z 6= z′. Given that M ′ ignores its input there is no freedom for the simulator
to obtain any other signature and as a result under the security of the underlying signature no
simulator can succeed in simulating the world where tampering takes place (any successful simulator
would amount to a forgery against Sign(·)).

Roughly speaking, the theorem holds since a parent ITM M1 calling M2 can make the message
exchanges between them “non-malleable” by outputting a signature on these messages. In this
context, no non-trivial M2 can be modular-BiTR, and thus M2 is not universal-BiTR. We note that
the above theorem is quite final for the case of universal BiTR ITMs. It leaves only the possibility
of proving the universal-BiTR property for trivial ITMs (that by default satisfy the notion) or for
sets of functions that are not state-switching, i.e., essentially they do not affect the output of M
and therefore inconsequential. This state of affairs is not foreign to properties that are supposed
to universally compose. Indeed, in the case of UC-security large classes of functionalities are not
UC-realizable [CKL03]. To counter this issue, in the UC-setting one may seek setup assumptions
to alleviate this problem, but in our setting setup assumptions are to be avoided. For this reason,
proving the modular-BiTR property within a given context is preferable.

On the other hand, the universal-BiTR parent property turns out to be feasible, and thus this
leaves a context insensitive property to be utilized for modular design of BiTR protocols. We in
fact take advantage of this, and jumping ahead, the parent ITM in the compound ITM used to
achieve general UC-secure MPC in Section 4 satisfies this property and can be composed with any
child ITM.
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3 Affine BiTR Protocols without State Encoding

In this section, we show two protocols (for identification and signatures, respectively) that are BiTR
against certain tampering functions, without using any modification or encoding. Specifically, we
consider a tampering adversary that can modify the state of the hardware with affine functions.
Assuming the state of the hardware is represented by variables of Zq for some prime q, the adversary
can choose a tampering fa,b on a variable v, which will change v into fa,b(v) = av + b mod q. Let
Taff = {fa,b | a ∈ Z∗q , b ∈ Zq} and T 2

aff = Taff × Taff .

Schnorr Identification [Sch91]. The Schnorr identification is a two-round two-party protocol
between a prover and a verifier. The common input is y = gx, where g is a generator of a cyclic
group of size q, and the prover’s auxiliary input is x ∈ Zq. The protocol proceeds as follows:

1. The prover picks a random t ∈ Zq and sends z = gt to the verifier.

2. The verifier picks a random c ∈ Zq and sends c to the prover, which in turn computes
s = cx+ t mod q and sends s to the verifier. The verifier checks if zyc = gs.

We consider the ITM Msch on the prover side wrapped as a hardware token (see Figure 2).
This ITM is BiTR against affine functions. To see why it is BiTR, suppose that the adversary
tampers with the state changing x into ax + b for some a and b. In the second round, the BiTR
simulator — given c, from the adversary, that is supposed to go to Ftwrap(Msch; Taff) — has to find
out an appropriate c′ going to Fwrap(Msch) such that the simulator, on receiving s′ = c′x+ t from
Fwrap(Msch), can output c(ax+ b) + t that would come from Ftwrap(Msch; Taff). In summary, given
(a, b, c, s′), but not x or t, the simulator has to generate a correct output by controlling c′. It can
do so by choosing c′ = ac and outputting s′ + cb. Note that s′ + cb = c(ax+ b) + t.

Theorem 3 The ITM Msch in Fig. 2 is T 2
aff-BiTR without any encoding.

Proof: Let M be an ITM as described above and T = T 2
aff . We show that for any non-uniform

PPT Z and any PPT A, there exists a PPT S such that

idealFtwrap(M,T ,ψ),A,Z ≈ idealFwrap(M),S,Z .

Let (P, P ′) be the two party concerned with the token execution; one party generates the token and
the other executes it. Handling the case in which no party is corrupted and the case in which both

Msch: The description of a cyclic group of size q, including a generator g, is embedded in the program
as a public parameter. The state is (x, t) ∈ Z2

q.

Initialization
- Upon receiving a message (Initialize), choose x, t ∈R Zq and output gx.

Message Handling
- Upon receiving a message (Prove,⊥), output z = gt.
- Upon receiving a message (Prove, c), compute s = cx+ t mod q, pick t ∈R Zq, and output s.

Figure 2: ITM for Schnorr Identification Msch
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parties are corrupted is trivial. Now we consider the case in which only one party is corrupted.
Wlog, suppose that P ′ is corrupted.

Fix Z and A. For convenience, let Fwrap = Fwrap(M) and Ftwrap = Ftwrap(M, T ). In order
to keep the history of tamperings, S maintains two functions fx and ft, which are initialized with
identity functions. The simulator S proceeds as follows:

• S forwards all the messages between A and Z.

• Upon receiving Create or Forge message, S just relays the message exchanges between Fwrap
and P ′.

• Upon receiving 〈Tamper, sid, P, P ′, (fax,bx , fat,bt)〉 from A, Set fx = fx ◦ fax,bx and ft =
ft ◦ fat,bt .

• Upon receiving 〈Run, sid, P,msg〉 from A on behalf of P ′:

If msg = (Prove,⊥), S calls Fwrap with 〈Run, sid, P,msg〉. Let 〈sid, P, z〉 be the output
from Fwrap. S forwards the output A and sets ft to the identity function.

If msg = (Prove, c), let w and v (resp., a and b) be the coefficients of fx (resp., ft),
that is, fx : z 7→ wz + v and ft : z 7→ az + b. S computes c′ = wc/a and calls Fwrap
with 〈Run, sid, P, (Prove, c′)〉. Let 〈sid, P, s′〉 be the output from Fwrap. S computes
s = as′ + cv + b and sends 〈sid, P, s〉 to A. Set ft to the identity function.

Note that

s = as′ + cv + b = a(c′x+ t) + cv + b = a(wcx/a+ t) + cv + b

= wcx+ at+ cv + b = (wx+ v)c+ (at+ b).

Therefore, the above simulation is perfect.

Signature Scheme due to Okamoto [Oka06]. The digital signature scheme of Okamoto
[Oka06] was employed in the context of designing blind signatures. Here we show that it is BiTR
against affine functions. We give a brief description next. Let (G1,G2) be a bilinear group as
follows: (1) G1 and G2 are two cyclic groups of prime order q possibly with G1 = G2; (2) h1
and h2 are generators of G1 and G2 respectively; (3) ψ is an isomorphism from G2 to G1 such
that ψ(h2) = h1; (4) e is a non-degenerate bilinear map e : G1 × G2→GT where |GT | = p,
∀u ∈ G1 ∀v ∈ G2 ∀a, b ∈ Z : e(ua, ub) = e(u, v)ab.

The signature scheme below is secure against a chosen message attack under the Strong Diffie-
Hellman assumption [Oka06].

• Key Generation: Randomly select generators g2, u2, v2 ∈ G2 and compute g1 = ψ(g2), u1 =
ψ(u2), and v1 = ψ(v2). Choose a random x ∈ Z∗q and compute w2 = gx2 . Verification key is
(g1, g2, w2, u2, v2). Signing key is x.

• Signature of a message m ∈ Z∗q : Choose random r, s ∈ Z∗q . The signature is (σ, r, s) where

σ = (gm1 u1v
s
1)1/(x+r) and x+ r 6= 0 (mod q).

• Verification of (m,σ, r, s): Check that m, r, s,∈ Z∗q , σ ∈ G1, σ 6= 1, and e(σ,w2g
r
2) =

e(g1, g
m
2 u2v

s
2).
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Moka: The description of G1, G2, g2, u2, v2, and a collision-resistant hashing function H : {0, 1}n→Z∗q
are embedded in the program as a public parameter. The state is x ∈ Zq.

Initialization
- Upon receiving a message (Initialize), choose x ∈R Zq, and g2, u2, v2 ∈R G2 and output
(g2, w2, u2, v2).

Message Handling
- Upon receiving a message (Sign,m), Choose random r, s ∈ Z∗q such that x + r 6= 0 (mod q).

Compute σ = (g
H(m)
1 u1v

s
1)1/(x+r) and output (σ, r, s).

Figure 3: Okamoto signature Moka

The signature token is described in Fig. 3. Similarly to the ITM for Schnorr signature scheme,
this token can be shown to be BiTR against affine functions.

Theorem 4 ITM Moka in Fig. 3 is Taff-BiTR.

Proof: Let M = Moka and T = Taff . We show that for any non-uniform PPT Z and any PPT A,
there exists a PPT S such that

idealFtwrap(M,T ,ψ),A,Z ≈ idealFwrap(M),S,Z .

Let (P, P ′) be the two party concerned with the token execution; one party generates the token and
the other executes it. Handling the case in which no party is corrupted and the case in which both
parties are corrupted is trivial. Now we consider the case in which only one party is corrupted.
Wlog, suppose that P ′ is corrupted. Fix Z and A. For convenience, let Fwrap = Fwrap(M) and
Ftwrap = Ftwrap(M, T ). In order to keep the history of tamperings, S maintains a function f ,
which is initialized with the identity function. Wlog, assume the message to be signed is in Z∗q .
The simulator S proceeds as follows:

• S forwards all the messages between A and Z.

• Upon receiving Create or Forge message, S just relays the message exchanges between Fwrap
and P ′.

• Upon receiving 〈Tamper, sid, P, P ′, f ′〉 from A, set f = f ◦ f ′.

• Upon receiving 〈Run, sid, P,msg〉 from A on behalf of P ′:

Let msg = (Sign,m). S calls Fwrap with 〈Run, sid, P,msg〉. Let 〈sid, P, (σ′, r′, s′)〉 be
the output from Fwrap. Let a and b be the coefficients of f , (i.e., f : z 7→ az + b). S
computes σ = σ′1/a, r = ar′ − b mod q and s = s′, and sends 〈sid, P, (σ, r, s)〉 to A.

Note that

σ = σ′1/a = (gm1 u1v
s′
1 )1/a(x+r

′) = (gm1 u1v
s
1)1/(ax+r

′a) = (gm1 u1v
s
1)1/((ax+b)+r)

and (r, s) is uniformly distributed in (Z∗q)2. Therefore the distribution of (σ, r, s) from S is identical
to the distribution from Ftwrap.
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Commitment Phase:

1. Each of the sender and the receiver calls Fwrap(M) with a Create message.

2. Each party executes the procedure dual-mode parameter generation with the Fwrap(M). Let
pS be the parameter the receiver obtained, and pR be one the sender obtained. The parameters
pR and pS are exchanged.

3. The sender commits to a message m by sending 〈C1, C2, π〉, where C1 is a commitment to m
based on the parameter pS, C2 is a statistically-binding commitment to m, and π is WI proof
that (1) C1 and C2 commits to the same message, or (2) pR was generated in the extraction
mode.

Opening Phase:

1. The sender reveals 〈m,π′〉, where m is the committed message, π′ is WI proof that (1) C2

commits to m, or (2) pR was generated in the extraction mode.

Figure 4: A UC Commitment that uses a DPG-commitment scheme Π with protocol M in the
Fwrap(M)-hybrid model.

4 UC Secure Computation from Tamperable Tokens

In this section we examine the problem of achieving UC-secure computation relying on tamperable
(rather than tamper-proof) tokens. Our starting point is the result of Katz [Kat07], obtaining a UC
commitment scheme (and general UC-secure computation) in the Fwrap(M)-hybrid for an ITM M ,
which unfortunately, is not BiTR. However, we managed to change M so that the modified ITM M ′

is BiTR against affine functions, thus obtaining a UC commitment in the Ftwrap(M ′)-hybrid. Along
the way, we present a generalization of Katz’s scheme for building commitment schemes which we
call commitments with dual-mode parameter generation. Finally, we examine the OTM (one-time
memory) token that was introduced by [GKR08] and used by [GIS+10] to achieve unconditional
UC-secure computation. We characterize the BiTR properties of this token.

4.1 Katz’s Commitment Scheme and its Generalization.

Intuitively, the UC-secure commitment scheme given by Katz [Kat07] uses the tamper-proof hard-
ware token to give the simulator the advantage over the adversary to force the commitment scheme
to become extractable (in case the sender is corrupted) or equivocal (in case the receiver is cor-
rupted). In spirit, this idea can be traced to mixed commitment schemes introduced in [DN02],
although the two results differ greatly in techniques.

We abstract the approach of [Kat07] to build UC commitments in Fig. 4. The UC commitment
scheme is based on a primitive that we call commitment with dual-mode parameter generation
(DPG-commitment for short).

A DPG-commitment is a commitment scheme whose parameter is generated by an interactive
protocol M that is wrapped in a hardware token. Formally we define the following:

Definition 4 (DPG-Commitment scheme) A commitment scheme Π = (Com,Decom) that
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is parameterized by p, has a dual mode parameter generation (DPG-commitment) if there are ITMs
M and P that form a two party protocol 〈P,M〉 and have the following properties:

• (Normal mode) For any PPT P ∗, with overwhelming probability, the output of 〈P ∗,M〉 sat-
isfies that if it is not ⊥ then it contains a parameter p over which the commitment scheme Π
is unconditionally hiding.

• (Extraction mode) For any M∗ with the same I/O as M , there is a PPT S that returns (p, t)
such that the commitment scheme Π with the parameter p is a trapdoor commitment scheme
with trapdoor t and the parameter generated by S is computationally indistinguishable from
the parameter generated by 〈P,M∗〉.

It is worth noting that DPG-commitments are very different from the mixed commitments of
[DN02]. For one thing, contrary to mixed commitments, DPG-commitments do not have equivocal
parameters. Moreover, mixed commitments have parameters that with overwhelming probability
become extractable based on a trapdoor hidden in the common reference string. In contrast, DPG-
commitments become extractable due to the manipulation of the parameter generation protocol M
(e.g., the ability of the simulator to rewind it). Now using the same arguments as in [Kat07] it is
possible to show that the commitment scheme in figure 4 is a UC-commitment provided that the
underlying scheme used for C1 is a DPG-commitment. We briefly sketch the proof argument. When
the sender is corrupted, the simulator has to extract the committed message. This can be done by
making pS extractable. Then, given a commitment 〈C1, C2, π〉 from the adversary, the simulator
can extract the message committed to from C1 using the trapdoor of pS. When the receiver is
corrupted, the simulator can make the commitment equivocal by causing pR to be extractable.
Using the trapdoor for pR as witness, the simulator can generate a WI proofs π and π′ with respect
to the condition (2) and thus open the commitment to an arbitrary message.

We next briefly argue that the construction suggested in [Kat07] amounts to a DPG-commitment
scheme. The token operates over a multiplicative cyclic group G of prime order q defined by a safe
prime p = 2q + 1. In the first round, a party generates a cyclic group and sends to the token
the group description and random elements g and h of the group; then, the token sends back a
Pedersen [Ped91] commitment c = com(g1, g2) to random elements g1, g2 from the group.6 In the
second final round, the party sends a random h1, h2, and then the token opens the commitment
c and outputs the signature on (g, h, ĝ1, ĝ2) where ĝ1 = g1h1 and ĝ2 = g2h2. With parameter
(g, h, ĝ1, ĝ2), the commitment C1 to a bit b is defined as (gr1hr2 , ĝ1

r1 ĝ2
r2gb) for randomly-chosen

r1, r2 ∈ Zq. It is well-known (and easy to check) that if the parameter is a Diffie-Hellman (DH)
tuple and r = logg ĝ1 = logh ĝ2 is known, then b can be efficiently extracted from the commitment.
On the other hand, if it is a random tuple, this commitment scheme is perfectly hiding. Extraction
mode is achieved by rewinding the code of a malicious token M∗. Specifically for a given M∗, the
simulator S proceeds by picking a random DH tuple (g, h, ĝ1 = gt, ĝ2 = ht) and running M∗ once
to reach a successful termination and learn the values g1, g2. Subsequently, it rewinds M∗ right
before the second round and selects h1 = ĝ1/g1 and h2 = ĝ2/g2. This will result in the parameter
produced by M∗ to be equal to the DH tuple, i.e., a parameter that is extractable with trapdoor t.

6We use a slightly different notation compared to [Kat07] to unify the presentation with our BiTR token that is
shown later. Note also that in order to make the committed message lie in the appropriate space, we use a bijection
X : G→[q] to encode an element in G, where X (α) = α if α ≤ q or p − α otherwise. The function X is a bijection,
since |G| = q and for any β ∈ [q], either β or p− β belongs to G (as a quadratic residue).

14



Let G be the cyclic multiplicative group of size q defined by a safe prime p = 2q + 1 and g be a
generator of G. The description of G is embedded in the program. The state is (r1, r2, s1, s2) ∈ Z4

q. It
uses a signature ITM K as a subprotocol.

Initialization

- Upon receiving a message (Initialize), call K with (Initialize), sets the state to all 0s and output
whatever K outputs.

Message Handling

- Upon receiving a message h0: Check h0 is a generator of G. If the checking fails, output ⊥.

Otherwise, pick ri, si ∈R Zq and compute Pedersen commitments comi = gsih
X (gi)
0 for i = 1, 2,

where gi = gri and X is defined as: X (α) = α if α ≤ q, or p− α otherwise. Output (com1, com2).

- Upon receiving a message (h, h1, h2, x1, x2): Check h, h1, h2 ∈ G, x1, x2 ∈ Z∗q . If the checking
fails, output ⊥. Otherwise, let gi = gri and compute ĝi = gxi

i hi for i = 1, 2. Call K with
(Sign, (P, P ′, p, g, h, ĝ1, ĝ2)) to get a signature σ. Output (g1, g2, s1, s2, σ). Pick ri, si ∈R Zq for
i = 1, 2.

Figure 5: Dual parameter generating ITM Mdpg that is universal-BiTR parent.

4.2 UC-Secure Commitment Scheme from a Tamperable Token

It is easy to see that the following result holds using the BiTR security properties.

Corollary 5 If an ITM M , achieving parameters for DPG-commitment scheme, is T -BiTR, then
there exists a UC-secure commitment scheme in the Ftwrap(M, T )-hybrid model.

Therefore, if the token used in [Kat07] is Taff-BiTR, then we obtain a UC-secure commitment
scheme in the Ftwrap(M, Taff)-hybrid model. Unfortunately, the token is not Taff-BiTR. We explain
the issue below. Recall that in the first round the token sends a commitment to g1, g2. Suppose
that g1 = gr1 and g2 = gr2 and that the values r1 and r2 are stored as state in the token after the
first round. Suppose in addition that by tampering with an affine function the adversary causes
the state to become (ar1 + b, r2) for some a and b. Then, in the second round, the simulator
— given h1 and h2 from the adversary — has to send Fwrap appropriate messages h′1 and h2 so
that it can manipulate the output from Fwrap as if the result is from Ftwrap. Here the signature
on (g, h, ĝ1, ĝ2) is a critical obstacle, since the simulator cannot modify it (otherwise, it violates
unforgeability of signature schemes). This means that for simulation to be successful it should hold
that ĝ1 = gar1+bh1 = gr1h′1, i.e., the simulator should select h′1 = g(a−1)r1+bh1. Unfortunately, the
simulator does not know r1 when it is supposed to send h′1.

By slightly changing the token above, however, we manage to obtain a DPG-achieving ITM
Mdpg that is BiTR against affine tampering functions. Its description is given in Fig. 5. First,
we show Mdpg achieves parameters for DPG-commitment. Roughly speaking, the protocol in the
normal mode generates a random tuple (g, h, ĝ1, ĝ2), by multiplying random numbers g1 and g2
(from Mdpg) and random numbers h1 and h2 (from the party). Therefore, the probability that
the tuple (g, h, ĝ1, ĝ2) is a DH tuple is negligible since ĝ1 and ĝ2 are uniformly distributed. In the
extraction mode, however, the simulator emulating Fwrap can rewind the ITM to cause (g, h, ĝ1, ĝ2)
to be a DH tuple. Specifically, the simulator picks a random DH tuple (g, h, ĝ1, ĝ2) and, after finding
out the values g1, g2, rewinds the machine right before the second round and sends hi = ĝi/g

xi
i for
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i = 1, 2. Under the DDH assumption, parameters from the normal mode and from the extraction
mode are indistinguishable.

More importantly, Mdpg is BiTR against affine tampering functions. To achieve BiTR security,
we introduce x1 and x2. As before, suppose that the state for g1 is changed from r1 to ar1 + b. In
the second round, the simulator — given h1 and x1 — has to send appropriate h′1 and x′1 to Fwrap
such that ĝ1 = g(ar1+b)x1h1 = gr1x

′
1h′1. This means that h′1 = gzh1 where z = (ar1x1 + bx1 − r1x′1).

The good news is that although the simulator does not know r1, it does know how to pick x′1
to satisfy the equation: x′1 = ax1. The value h′1 can be computed subsequently from the above
equation.

Theorem 6 The ITM Mdpg in Fig. 5 is T 4
aff-BiTR.

Proof: Let M = Mdpg. We show that for any non-uniform PPT Z and any PPT A, there exists
a PPT S such that

idealFtwrap(M,T ,ψ),A,Z ≈ idealFwrap(M),S,Z .

Let (P, P ′) be the two party concerned with the token execution; one party generates the token and
the other executes it. Handling the case in which no party is corrupted and the case in which both
parties are corrupted is trivial. Now we consider the case in which only one party is corrupted.
Wlog, suppose that P ′ is corrupted. Fix Z and A. For convenience, let Fwrap = Fwrap(M)
and Ftwrap = Ftwrap(M, T ). In order to keep the history of tamperings, S maintains functions
{(f ri , fsi ) | i = 1, 2}, which are initialized with identity functions. The simulator S proceeds as
follows:

• S forwards all the messages between A and Z.

• Upon receiving Create or Forge message, S just relays the message exchanges between Fwrap
and P ′.

• Upon receiving 〈Tamper, sid, P, P ′, (fr1 , fr2 , fs1 , fs2)〉 from A, set f ri = f ri ◦fri and fsi = f si ◦fsi
for i = 1, 2.

• Upon receiving 〈Run, sid, P,msg〉 from A on behalf of P ′:

– If msg = h0, S calls Fwrap with 〈Run, sid, P, h0〉 to get output 〈sid, P, (com1, com2)〉. S
sends the output to A and sets f ri and fsi to identity functions for i = 1, 2.

– If msg = (h, h1, h2, x1, x2), let wi and vi be the coefficients of f ri (i.e., f ri : z 7→ wiz+ vi)
for i = 1, 2. S computes

h′i = hi · gvixi , x′i = wixi mod q,

for i = 1, 2 and sends (h, h′1, h
′
2, x
′
1, x
′
2) to Fwrap. Upon receiving 〈sid, P, (g′1, g′2, s′1, s′2, σ)〉

from Fwrap, S computes gi = (g′i)
wi · gvi and si = f si (s′i) for i = 1, 2 and sends

〈sid, P, (g1, g2, s1, s2, σ)〉 back to A. Set f ri and fsi to identity functions for i = 1, 2.

Note that for i = 1, 2

ĝi = (gi)
xihi = ((g′1)

wi · gvi)xih′i · g−vixi = (g′1)
x′ih′i.
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Therefore the σ is a valid signature on the message (P, P ′, g, h, ĝ1, ĝ2). The above simulation is
perfect.

Furthermore, the way the ITM Mdpg uses a signature scheme is simple enough (it simply passes
through whatever it receives from the signature token) and we can easily extend the above lemma
to prove that Mdpg is universal BiTR parent. We also show that the ITM for the Okamoto signature
scheme Moka is modular-Taff-BiTR when used with Mdpg.

Lemma 7 ITM Moka in Fig. 3 is modular-Taff-BiTR with respect to (Mdpg;Moka).

Proof: Let M1 = Mdpg, M2 = Moka and T2 = Taff . To show that M2 is modular BiTR, we need
to show for any A, there is an S such that for all non-uniform Z it holds that

idealFtwrap(M1;M2,{id}×T2,{id}×{id}),A,Z ≈ idealFwrap(M1;M2),S,Z .

Let (P, P ′) be the two party concerned with the token execution; one party generates the token
and the other executes it. Handling the case in which no party is corrupted and the case in which
both parties are corrupted is trivial. Now we consider the case in which only one party is corrupted.
Wlog, suppose that P ′ is corrupted. Fix Z and A. Let Soka be the BiTR simulator for Moka.

• S forwards all the messages between A and Z.

• Upon receiving Create or Forge message, S just relays the message exchanges between Fwrap
and P ′.

• Upon receiving Tamper message, it forwards the tampering function to Soka.

• Upon receiving Run message, S forwards it to Fwrap and gets the message. If the reply has a
signature part, S uses Soka to get the modified signature with the tampered state.

Note that Mdpg just passes through the signature part. Also, note that Soka passes through the
input message and change only the resulting signature later. Therefore, the signature in the output
of Mdpg can be handled by Soka.

Applying the composition theorem (Theorem 1) along with Theorem 6 and Lemma 7 to the
above scheme, we obtain a BiTR token that gives a UC commitment based on corollary 5.

Corollary 8 (Mdpg;Moka) is T 5
aff-BiTR.

4.3 BiTR One-Time Memory (OTM) Tokens

Following [Kat07], several works based UC-secure computation on tamper-proof hardware tokens,
in various settings. In [GIS+10] Goyal et. al. show (among other things) protocols for general UC-
secure computation in the Fwrap(OTM)-hybrid model. This hardware token implements a single
OT execution, and was introduced by Goldwasser, Kalai, and Rothblum [GKR08] in the context
of one-time programs. Specifically, OTM consists of two k-bit strings7 {s0, s1}. Upon receiving an
input bit b, it outputs sb and updates the state to consist of ⊥ (“self-destruct”).

7For the [GIS+10] result k = 1 (namely two bits) is sufficient.
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Theorem 9 The k-bit OTM protocol is T -BiTR if T can be written as T = (T0(sj0), T1(sj1))
where Ti : {0, 1}k→{0, 1}k and j0, j1 ∈ {0, 1}. That is, each of Ti depends only on one of the
secrets.

Proof: Let M be an OTM as described and T = (T1, T2) with j0 and j1. We show that for any
non-uniform PPT Z and any PPT A, there exists a PPT S such that

idealFtwrap(M,T ,ψ),A,Z ≈ idealFwrap(M),S,Z .

Let (P, P ′) be the two party concerned with the token execution; one party generates the token and
the other executes it. Handling the case in which no party is corrupted and the case in which both
parties are corrupted is trivial. Now we consider the case in which only one party is corrupted.
Wlog, suppose that P ′ is corrupted. Fix Z and A. For convenience, let Fwrap = Fwrap(M) and
Ftwrap = Ftwrap(M, T ). The simulator S proceeds as follows:

• S forwards all the messages between A and Z.

• Upon receiving Create or Forge message, S just relays the message exchanges between Fwrap
and P ′.

• Upon receiving 〈Tamper, sid, P, P ′, (t0, j0, t1, j1)〉 from A, S records (t0, j0, t1, j1).

• Upon receiving 〈Run, sid, P,msg〉 from A on behalf of P ′:

Let msg = b ∈ {0, 1}. If tampering is not recorded, S calls Fwrap with 〈Run, sid, P,msg〉
and forwards the output from Fwrap to A. Otherwise, let (t0, j0, t1, j1) be the recorded
tampering. S calls Fwrap with 〈Run, sid, P, jb〉. Let 〈sid, P, z〉 be the output from Fwrap.
S sends 〈sid, P, tb(z)〉 to A.

It is easy to check tb(z) = tb(sjb) is equal to the tampered state s′b.

5 BiTR Protocols against General Classes of Tampering Functions

5.1 BiTR Protocols from Non-Malleable Codes

In this section we will see how the BiTR property can be derived by implementing an integrity
check in the form of an encoding ψ. A useful tool for this objective is the notion of non-malleable
codes [DPW10]. A pair of procedures (E,D) is a non-malleable code with respect to tampering
functions T , if there is an algorithm S that detects whether the state becomes invalid, given only
the tampering function t. In particular, S should satisfy the following properties for all x ∈ {0, 1}n
and t ∈ T :

• If x = D(t(E(x))) (i.e., x stays the same even after applying the tampering t), it holds that
S(t) = ok with overwhelming probability.

• Otherwise, S(t) is statistically (or computationally) close to D(t(E(x))).

By encoding the state of a protocol with a non-malleable code it is possible to show the following
restatement of Theorem 6.1 of [DPW10] under the BiTR security framework.

18



Theorem 10 ([DPW10]) Let T be a class of tampering functions over {0, 1}m and (E,D,S) be
a non-malleable code with respect to T , where E : {0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n and S
are efficient procedures. Let M be any ITM whose state is of length n. Then M is (T , ψ)-BiTR
where ψ = (E,D).

The above theorem suggests the importance of the problem of constructing non-malleable codes
for a given class of tampering functions T . Some positive answers to this difficult question are given
in [DPW10] for a class of tampering functions that operate on each one of the bits of the state
independently; they also provide a general feasibility result for tampering families of bounded size
(with an inefficient construction); an important characteristic of those solutions is relying on the
randomness of the encoding. Here we show a different set of positive results by considering the case
of deterministic non-malleable codes, i.e., the setting where (E,D) are both deterministic functions.

In our result we will utilize a relaxation of non-malleable codes: (E,D,Predict) is called a
δ-non-malleable code with distance ε if for any x ∈ {0, 1}n and t ∈ T , the following holds:

(i) D(E(x)) = x.

(ii) The probability that D(t(E(x))) is neither x nor ⊥ is at most δ,8 and

(iii) Predict(·) outputs either ok or ⊥; moreover, |Pr[D
(
t(E(x))

)
= x]−Pr[Predict(t) = ok]| ≤ ε.

It is easy to see that if ε and δ are negligible the resulting code is non-malleable: given that δ
is negligible, property (ii) suggests that D will return either the correct value or fail, and thus in
case it fails, Predict(·) will return ⊥ with about the same probability due to (iii). We call δ the
crossover threshold and ε the predictability distance.

Note that a δ-non-malleable code with only a negligible ε is not sufficient by itself in simulating
tampering attacks since the Predict(·) algorithm can only guess whether the decoding algorithm
will succeed (but is not capable of extracting the proper decoding in case a crossover happens).
As we show next this is a very useful relaxation that can be taken advantage of when designing
deterministic non-malleable codes.

5.2 Constructing Deterministic Non-Malleable Codes

We now consider the problem of constructing a δ-non-malleable code E : {0, 1}n→{0, 1}m for a
given class of tampering functions and parameters δ, ε. We will only consider the case when δ > ε
as the other case is not useful. We note that the construction is inefficient for large m and n, but
it becomes efficient for logarithmic values of m,n. Following this we utilize it in the construction
of deterministic non-malleable codes.

Graph Theoretic Construction. For a given t ∈ T consider the graph G that is defined
with vertex set V = {0, 1}m with each edge (u1, u2) having weight wt(u1, u2) = Pr[t(u1) = u2].

9

Finding a good δ-non-malleable code amounts to finding a partition S, S = V \ S of G satisfying
the following properties that for each t ∈ T :

8The tampering t may change the codeword x into another valid codeword.
9In the above description, we assumed the probabilities Pr[t(c) = u] are known. If they are not known, they can be

estimated using standard techniques. In particular, to evaluate the probability of an event A, repeat k independent
experiments of A and denote the success ratio of the k experiments as p̂. Let Xi be the probability that the i-th
execution of the event A is successful. The expected value of Y =

∑k
i=1Xi is k · p. Using the Chernoff bound it

follows that |p̂− p| ≤ 1/N with probability 1− γ provided that k = Ω(N2 ln(γ−1)).
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(1) For all u ∈ S, it holds that
∑

v∈S\{u}wt(u, v) ≤ δ.

(2) One of the following is true.

(a) For all u ∈ S,
∑

v∈S wt(u, v) ≥ 1− ε.
(b) For all u ∈ S,

∑
v∈S wt(u, v) ≤ ε.

Given that the partition S meets the condition (2) for all functions in T , we will say that S is
a repeller (resp., an attractor) for a given t ∈ T if S satisfies condition (a) (resp., condition (b))
for t. We remark that when t makes S a repeller for it, the condition (1) becomes obsolete since
the condition (a) requires the probability of moving from S to S to be very high (i.e., this will
immediately force the δ crossover bound).

Note that we are interested in the largest such S since this provides best encoding rate, since
we can construct a non-malleable code from S as follows:

Set C ⊆ V = {0, 1}m and n = blog2 |C|c. The encoding function E : {0, 1}n → {0, 1}m
is an arbitrary injection from {0, 1}n to C. The decoding D is defined as the inverse
of E when restricted on C, and ⊥ everywhere else. On input t, the Predict algorithm
outputs ok if C is an attractor for t; otherwise output ⊥ (i.e., if C is an repeller for t).

Difficulty of Constructing δ-Non-Malleable Codes. We show that the problem of construct-
ing optimal non-malleable codes is NP-hard and even hard to approximate. In particular, we show
a reduction from the maximum independent set problem to this problem. We will only consider
the problem of finding the optimal S that satisfies condition (a). Consider an undirected connected
graph G = (V,E). Let M = |V |. We construct a directed weighted graph G∗ = (V,E∗, w) as
follows:

Define E∗ = {(u, v) : u, v ∈ V and u 6= v}. The weight function w(u, v) is defined as
follows:

w(u, v) =

{
1
M2 if (u, v) 6∈ E
cu if (u, v) ∈ E

where cu is a fixed value (depending only on u) that makes
∑

v w(u, v) = 1. In particular,
letting Nu = |{v : (u, v) ∈ E}| and N ′u = |{v : (u, v) 6∈ E}|, the value cu is computed

as 1
Nu
· (1− N ′u

M2 ).

Note that it holds that for any u ∈ V

cu =
1

M
· M −N

′
u/M

Nu
>

1

M
· M −N

′
u

Nu
=

1

M
· Nu + 1

Nu
>

1

M
.

We next consider any δ-non-malleable code S for the tampering function that is defined by the
graph G∗ parameterized with δ = 1/M and ε = 1/M−1/M2. If the set S is an attractor this means
that for all u ∈ S,

∑
v∈S w(u, v) ≤ ε = 1/M − 1/M2. Therefore, it holds that for any (u, v) with

u ∈ S and v ∈ S, we have (u, v) 6∈ E; otherwise, we will have
∑

v∈S w(u, v) ≥ cu >
1
M , which is a

contradiction. However, this implies that in the original graph G, any node u ∈ S is disconnected
from any node v ∈ S, which is a contradiction to that G is a connected graph.

Thus, we are left necessarily with the case that the δ-non-malleable code S is a repeller. In
this case, it holds that for all u ∈ S,

∑
v∈S w(u, v) ≥ 1− ε and as a result

∑
v∈S\{u}w(u, v) ≤ ε <
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δ = 1/M . Now observe that if (u, v) ∈ E, then in the graph G∗, we have w(u, v) = cu > 1/M .
As a result, for any (u, v) ∈ E with u ∈ S, it must be the case v ∈ S̄. This means that S is an
independent set.

Based on the above it follows immediately that finding the maximum independent set reduces
to finding the optimal code for a suitably defined tampering function (a single function is sufficient).
We conclude the following:

Proposition 11 The problem of finding an optimal δ-non-malleable code given T , δ, ε is NP-hard.

Heuristic Construction. We next provide a simple heuristic that is guaranteed to produce a
code of non-zero rate if such exists. It operates as follows: as before consider the graph G defined by
the tampering function t ∈ T . We consider all pairs of vertices {u1, u2} and classify them according
to whether they are repellers or attractors with parameters δ, ε. Note that testing whether these
sets are repellers or attractors requires poly(|V |) steps. We perform the same for all tampering
functions t ∈ T and then consider only those sets that appear in the list of all tampering functions.
Finally, we improve the size of such a selected pair by moving vertices from S to S provided that the
repeller or attractor property is maintained. We note that this approach will enable us to reach a
local maximum code nevertheless it is not guaranteed to find an optimal code (something expected
in light of the proposition above).

The rate of the constructed code is n/m, while the time-complexity of constructing the code is
2O(n)|T |. The size of the circuit evaluating each one of these functions is respectively 2n, 2m, |T |.
The proof of the following theorem follows easily from the fact that our construction above considers
all possible pairs and as such it is guaranteed to find at least one that works for all tampering
functions if one exists.

Theorem 12 Fix any class of functions T . If there exists a code (E,D,Predict) with rate > 0
that is δ-non-malleable w.r.t. T and distance ε, then such a code is produced by the above procedure.

Despite the weak message-rate preservation achieved in the theorem above, we demonstrate later
in this section how the theorem is a sufficient building block for obtaining efficient constructions of
deterministic non-malleable codes for a large class of tampering functions.

When Does a Deterministic Non-Malleable Code Exist? The basic idea of the construction
above was to search for sets of codewords that are either attractors or repellers in the graphs that
are defined by the tampering functions. The necessity of finding such subsets follows from the fact
that any set of vertices that is neither an attractor or a repeller will fail to provide a δ-non-malleable
code since the Predict(·) function will be impossible to define in this case correctly. Specifically,
if the set S is neither a repeller nor an attractor it holds that there is some codeword u ∈ S and
tampering function t for which ε < Pr[t(u) 6∈ S] < 1− ε. It follows that when provided t, Predict(·)
will fail to give the proper response as required by the specification. As a result a δ-non-malleable
code will exist for a family T provided that there is a set S for which it holds that is either a
repeller or attractor for each t ∈ T .

Explicit Constructions. We next provide two illustrative examples and discuss the existence
(and rate) of explicit deterministic non-malleable encodings for them.

Example 1: Set Functions. If T contains a function t that sets the i-th bit of u ∈ {0, 1}m to 0, it
follows that the code C we construct must obey that either all codewords have the i-th bit set to 0
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or all of them have the bit set to 1 due to the crossover requirement. This means that the inclusion
of any bit setting function in T cuts the size of the code |C| by half. There is no non-malleable
code when the collection T contains Set functions for every bit position (this is consistent with
the impossibility result of [GLM+04] for algorithmic tamper proof security when Set functions are
allowed for tampering).

Example 2: Differential Fault Analysis [BDL01]. Consider a single function t which flips each 1-bit
to a 0-bit with probability β. Consider a code C ⊆ {0, 1}m for which it holds that all codewords in
C have Hamming distance at least r between each other and 0m ∈ C. Then it is easy to see that δ,
the probability of crossover, is at most βr. Further, now suppose that t is applied to an arbitrary
codeword u in C other than 0m. We observe that the number of 1’s in u is at least r (otherwise
it would have been too close to 0m). It follows that t will change some of these 1’s to 0’s, with
probability at least 1− (1−β)r. It follows that we can predict the effect of the application of t with
this probability when we restrict to codewords in C \ {0m}. In summary, any code C over {0, 1}m
with minimum distance r that contains 0m allows for a βr-non-malleable code with (1 − β)r for t
using the code C \ {0m}.

We can extend the above to the case when multiple applications of t (say up to a times) are
allowed before running the next round of the protocol with the token. Note that a sequence of a
applications of t will flip each 1-bit to a 0-bit with probability β + (1− β)β + . . .+ (1− β)a−1β =
1−(1−β)a. The encoding now has crossover (1−(1−β)a)r ≤ e−(1−β)ar. Thus, from e−(1−β)

ar ≤ δ,
we obtain r ≥ (1/(1− β))a ln(1/δ), i.e., when β is bounded away from 1, the minimum distance of
the code grows exponentially with a.

Efficient Construction for any T that is localized. Now, we show a simple way to use
the (inefficient) construction of the beginning of the section with constant rate and any crossover
δ < 1/2, to achieve an efficient construction with negligible crossover (and thus, BiTR security
for any protocol M whose state is encoded with the resulting code), when the class contains only
functions that can be split into independent tampering of local (i.e., logarithmically small) blocks.
Here we consider a tampering class T of polynomial size. Roughly speaking, the construction is
achieved first by applying a Reed-Solomon code to the overall state and then by applying the δ-
non-malleable code to the resulting codeword in small blocks. Let T ` denote T × · · · × T (with `
repetitions).

Theorem 13 Let k be a security parameter. Let T be a class of functions over {0, 1}m with
m = O(log k) for which a δ-non-malleable code exists and is efficiently constructible with rate r.
Then there is an efficiently constructible deterministic non-malleable code w.r.t. T ` for any rate
less than (1− δ)r provided `/ log ` = ω(log k).

Proof: We first utilize the construction of the beginning of the section to obtain a δ-non-malleable
code E : {0, 1}n → {0, 1}m, D,Predict(·) for which it holds that ε is negligible. We note that this
is feasible in polynomial time in k.

Using this code, we construct a non-malleable code w.r.t. T ` as follows.

Encoding. We show a construction of an encoding function E′ : {0, 1}nq→{0, 1}m`. The parameter
q will be determined later according to the desired rate of the code. Given an input x ∈ {0, 1}nq,
the encoding proceeds as follows:

1. Parse the given input x ∈ {0, 1}nq as (x1, . . . , xq) ∈ {0, 1}n×q. Apply a Reed-Solomon code
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to (x1, . . . , xq) and obtain a codeword y = (y1, . . . , y˜̀) ∈ {0, 1}ñ×
˜̀
:

yj =

q−1∑
i=0

(αj)
ixi+1,

where ñ is the multiple of n with 2ñ > ˜̀, and α1, . . . , α˜̀ are distinct elements (such elements

exist given that 2ñ > ˜̀).

2. Parse y as (u1, . . . , u`) ∈ {0, 1}n×` such that n` = ñ˜̀. For j = 1, . . . , `, encode each uj to
zj = E(uj). The overall encoding is defined as (z1, . . . , z`).

Observe that the rate of this encoding E′ is ζr where ζ = q/`.

Decoding. To decode a codeword (z1, . . . , z`), compute ui = D(zi) for i = 1, . . . , `, where D is
the decoding function of the δ-non-malleable code w.r.t. T . If one of those individual decodings

fails then decoding fails. Otherwise, parse (u1, . . . , u`) ∈ {0, 1}n×` into (y1, . . . , y˜̀) ∈ {0, 1}ñ×
˜̀
, and

check if the points {(αi, yi)}
˜̀
i=1 lie on a polynomial of degree less than q. If this is the case output

the polynomial’s coefficients (x1, . . . , xq); otherwise the decoding fails.

Now, consider the family of tampering functions T `. We show the crossover parameter of
the above construction is negl(k). Given that the action in each coordinate is independent, the
probability of crossover is the probability of switching ` − q + 1 = (1 − ζ)` + 1 coordinates. This
probability is negligibly small under the conditions that δ < 1 − ζ and `/ log ` = ω(log k), via
Chernoff Bound. Predictability is easily satisfied by checking if the output of Predict for each block
is 1.
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