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Abstract. Security proofs are an essential part of modern cryptography.
Often the challenge is not to come up with appropriate schemes but rather
to technically prove that these satisfy the desired security properties.
We provide for the first time techniques for proving asymptotically optimal
preimage resistance bounds for block cipher based double length, double
call hash functions. More precisely, we consider for some ` > n compression
functions H : {0, 1}`+n → {0, 1}2n using two calls to an ideal block cipher
with an n-bit block size. Optimally, an adversary trying to find a preimage
for H should require Ω(22n) queries to the underlying block cipher. As a
matter of fact there have been several attempts to prove the preimage
resistance of such compression functions, but no proof did go beyond the
Ω(2n) barrier, therefore leaving a huge gap when compared to the optimal
bound.
In this paper, we introduce two new techniques on how to lift this bound
to Ω(22n). We demonstrate our new techniques for a simple and natural
design of H, being the concatenation of two instances of the well-known
Davies-Meyer compression function.

Keywords: Proof of Security, Hash Function, Preimage Resistance, Block
Cipher, Beyond Birthday Bound, Foundations

1 Introduction

Motivation. Proofs of security are an important and technically challenging type
of result in modern cryptography. The basic principle is to show that breaking the
considered scheme would violate a certain underlying assumption. For example,
this allows for assessing the security of more involved designs based on simpler
primitives.

One prominent example is the evaluation of hash functions based on block
ciphers. Generally speaking, a cryptographic hash function maps an input of ar-
bitrary length to an output of fixed length and is one of the most important
primitives in cryptography [11]. The typical way a hash function is created is by
iterating a fixed-input length compression function.

Block cipher based compression functions turn a block cipher into a one-way
compression function. These primitives have been designed for more than 30 years



and are still in the focus of cryptographic research (for example, see the current
SHA-3 contest for a new hash function standard). The security of such compres-
sion functions is usually evaluated in the ideal cipher model. This means that

– the block cipher EK(X) := E(K,X) : {0, 1}` × {0, 1}n −→ {0, 1}n included
in the construction is supposed to be ideal in the sense that, from the per-
spective of the attacker, {EK(·),K ∈ {0, 1}`} is a collection of randomly and
independently chosen permutations over {0, 1}n and

– the adversary is an oracle Turing machine which is allowed to pose oracle
queries of type EK(X) (encryption query) and E−1K (Y ) (decryption query),
X,Y ∈ {0, 1}n, K ∈ {0, 1}`, and

– the adversary’s resources are measured by the number of oracle queries.

Regarding the security, the common notions refer to collision attacks (finding
two inputs that map to the same output), preimage attacks (given an output, find
a matching input), and second-preimage attack s (given an input-output pair, find
another different input that maps to the same output).

Recall that for an ideal compression or hash function, i.e. a random function
with output length v bits, the effort for finding a collision is in Θ(2v/2) and for
finding a preimage or second-preimage is in Θ(2v). Thus, the security of construc-
tions should be measured in comparison to these bounds.

In a pioneering work, Preneel et al. [14] investigated single output length block
cipher based compression functions of type H(M,V ) = EK(X)⊕U , where E is a
block cipher and K,X,U ∈ {0,M, V,M ⊕ V }. They showed attacks on 52 out of
the 43 = 64 possibilities, leaving the security of the 12 remaining candidates as an
open question. Almost 10 years later, Black et al. [2] introduced new techniques
for a formal and quantitative treatment of those 64 constructions and proved that,
in the ideal-cipher model, the 12 schemes singled out by Preneel et al. in fact are
secure including the Davies-Meyer compression function H(K,X) = EK(X)⊕X
(cf. [17]), which will play a crucial role also in the context of this paper. Till today,
any proof of security for block-cipher based hash functions is, in principle, built
around the techniques provided by Black et al.

Summarizing, on can say that for single length simple compression functions
designs are known that achieve optimal or near-optimal security bounds (regard-
ing collision, preimage and 2nd-preimage resistance)

However because of the short output length of most practical block ciphers,
e.g., n = 128-bit, one is interested in sound design principles for double length
(DL) hash functions. Such constructions usually use one block cipher with n-bit
output as the building block by which messages are projected to a fixed 2n-
bit string. Here, the current state of knowledge is much less mature. Although
several promising DL constructions are known where (near-)optimal preimage
bounds might hold, no techniques are known for assessing these questions. Several
authors, [5, 6, 10, 12, 7, 8] have tried to analyze preimage resistance, but none could
make any statements if the number of queries exceeds the birthday bound 2n.
Due to the lack of alternatives, all known attempts were using the Black et al.
techniques. Not surprisingly, several authors, e.g., [5, 6, 10], called the challenge of
finding more satisfying preimage bounds as one of the important open problems
in the field of block cipher based hash functions.
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Contribution. In this paper, we present two new techniques for deriving preim-
age resistance bounds for block cipher based double length cryptographic hash
functions in the ideal cipher model. These techniques allow not only for the first
time results far beyond the birthday barrier but also prove asymptotically opti-
mal bounds. We demonstrate these by analyzing the following natural compression
functions, using twice the Davies-Meyer compression function,

H1(K,X) =
(
EK||0(X)⊕X,EK||1(X)⊕X

)
where K denotes the bit-by-bit complement of K and ’||’ the concatenation of
bit strings. Note that, in the ideal cipher model, the ciphers EK||0 and EK||1 are
independent. Using our new techniques, we are able to prove the following:

1. No adversary can find a preimage with probability greater than 1/2 with less
than 2−5 · 22n queries.

2. For greedy adversaries, i.e., adversaries that make only queries for which the
success probability of finding a preimage is non-zero, we prove with another
technique a bound of 2−9 · 22n queries.

Note that both techniques deliver an asymptotically optimal bound. The intro-
duced techniques are based on studying the complexity of a more general algo-
rithmic problem: the computation of a common fixed point of two independently
chosen random permutations3. Therefore, the proof techniques developed in this
paper might be also interesting for a broader community.

For similar reasons, we present the second technique here as well, although
it achieves a somewhat weaker result (lower bound for a restricted class of ad-
versaries) for H1. It might well be that the situation is the other way around
for other constructions. More precisely, there exist important constructions like
Tandem-DM where the first technique is not directly applicable. Therefore, we
consider it being highly important that for analyzing other constructions, several
techniques are known.

Outline. In Section 2, we provide the definitions and statements used in this
paper. Section 3 gives a lower bound of preimage resistance of 2−5 · 22n queries
for H1. Using a completely different technique, for greedy adversaries, a bound
of 2−9 · 22n queries is given in Section 4. In Section 5 we discuss our results and
conclude the paper.

2 Preliminaries

General Notations. An (r, n)-block cipher is a keyed family of permutations
consisting of two paired algorithms E : {0, 1}` × {0, 1}n → {0, 1}n and E−1 :
{0, 1}` × {0, 1}n → {0, 1}n both accepting a key of size ` bits and an input block

3 For two permutations π, π′ defined on the same domain D, a common fixed point is
a value x ∈ D s.t. π(x) = π′(x) = x.
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of size n bits for some ` > n. For positive n, Block(`, n) is the set of all (`, n)-
block ciphers. For any E ∈ Block(`, n) and any fixed key K ∈ {0, 1}`, decryption
E−1K := E−1(K, ·) is the inverse function of encryption EK := E(K, ·), so that
E−1K (EK(X)) = X holds for any input X ∈ {0, 1}n. In the ideal cipher model
[2, 4, 9] E is modeled as a family of random permutations {EK} whereas the
random permutations are chosen independently for each key K, i.e., formally E
is selected randomly from Block(`, n). We use the convention to write oracles, that
are provided to an algorithm, as superscripts. For example AE is an algorithm A
with oracle access to E to which A can request forward and backward queries. For
ease of presentation, we identify the sets {0, 1}a+b and {0, 1}a×{0, 1}b. Similarly
for A ∈ {0, 1}a and B ∈ {0, 1}b, the concatenation of these bit strings is denoted
by A||B ∈ {0, 1}a+b = {0, 1}a × {0, 1}b.

Preimage Resistance. Insecurity is quantified by the success probability of
an optimal resource-bounded adversary. The resource is the number of queries
(forward and backward) to the block cipher E. An adversary is a computationally
unbounded but always-halting algorithm A with access to E ∈ Block(`, n). The
adversary may make a forward query (K,X) to discover the corresponding value
Y = EK(X), or a backward query (K,Y ), so as to learn the corresponding value
X = E−1K (Y ) such that EK(X) = Y . Either way, the result of the query is
stored in a triple (Ki, Xi, Yi) := (K,X, Y ) and the query history Q is the tuple
(Q1, . . . , Qq) where Qi = (Ki, Xi, Yi) and q is the total number of queries made by
the adversary. Without loss of generality, we assume that A asks at most once on
a triplet of a key Ki, a plaintext Xi and a ciphertext Yi obtained by a query and

the corresponding reply. For a set S, let z
$← S represent random sampling from

S under the uniform distribution. For a probabilistic algorithm M, let z
$← M

mean that z is an output ofM and its distribution is based on the random choices
of M.

A preimage finding adversary is an algorithm whose goal is to find a preimage
of a specific compression function. There are several approaches known on how
to define this notion [15]. We opt for the (Pre) notion of preimage resistance,
which intuitively states that a function is a one-way function4. This notion does
imply weaker notions as, e.g., everywhere preimage resistance (ePre) and always
preimage resistance (aPre).

Definition 1. (Preimage Resistance Pre [15]) Let H be a block cipher based
compression function, H : {0, 1}m+l → {0, 1}l. Fix an adversary A with access to
oracles E,E−1. The advantage of A to invert H is the real number

AdvPreH (A) = Pr[E
$← Block(`, n);A

$← {0, 1}m+l;B
$← H(A);

A′
$← AE(B) : H(A′) = B].

4 A cryptographic one-way function is a function that is easy to evaluate but practically
hard to invert.
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Again, for q ≥ 1, we write

AdvPreH (q) = max
A
{AdvPreH (A)}

where the maximum is taken over all adversaries that ask at most q oracle queries.

Online/offline model. With respect to the operation mode of the ideal ci-
pher oracle, there exists two variants: In the offline version, the oracle in advance
chooses the random (r, n)-block cipher E. In the online version, for each new
query, the oracle chooses the answer at random with respect to the uniform dis-
tribution from the set of possible answers. Although both versions are equivalent
from an adversaries’ perspective, adopting one or the other model can help for
more compact arguments. In that sense the bound in the following Section 3 is
derived with respect to the the offline version of the E-oracle, while the bound of
Section 4 is based on the online version.

3 A Technique for proving a Preimage Resistance Bound
in Ω (22n) for Arbitrary Adversaries

3.1 Preliminaries

In this section we prove an Ω(22n) lower bound on the number of queries necessary
for finding a preimage with a chance of success of at least 1/2. Although an
adversary can pose, by definition, arbitrary queries to the E-oracle, certain pairs
of queries can be naturally grouped to ”meta queries”. For example, asking in the
H1 case for the value EK||0(X) is not sufficient for deciding whether a preimage
has been found without asking (or knowing) the value EK||1(X). Therefore, we

consider meta queries instead which are selected by the following criteria: (i) One
meta query/response pair should provide all information necessary for deciding
whether the asked parameters yield a preimage. (ii) The set of meta queries should
not restrict the set of possible E-queries. That is, for each possible values X,
Y , and K, there should exist meta queries that provide the value EK(X) resp.
E−1K (Y ). Based on these considerations, we use the following meta queries:

Type-I: Query Q = (I,X,K). Response: Y = EK||0(X) and Y ′ = EK||1(X).)

Type-II: Query Q = (II, Y,K). Response X = E−1K||0(Y ) and Y ′ = EK||1(X).)

Type-III: Query Q = (III, Y,K). Response X = E−1
K||1(Y ′) and Y = EK||0(X).)

The 5-tuple (T,X, Y, Y ′,K), T ∈ {I, II, III}, is called the query-response pair
(Q,R(Q)). We remark that our analysis is based on the number of meta-queries
an adversary has to ask.

We continue with an important observation on H1.

Lemma 1 (Reduction to (0, 0)-Case). For any (U, V ) ∈ {0, 1}2n, the com-
plexity of finding a preimage to the hash value (U, V ) w.r.t. H1 is the same as the
complexity of finding a preimage to the hash value (0, 0) w.r.t. H1.
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Proof. Finding a preimage to the image (U, V ) ∈ {0, 1}2n is equivalent to finding

a key-prefix K ∈ {0, 1}`−1 and an input X ∈ {0, 1}n such that ẼK||0(X) =

ẼK||1(X) = X, where the (`, n)-block cipher Ẽ is defined as follows: For any key

κ = (κ1, · · · , κ`) and any X ∈ {0, 1}n let Ẽκ(X) := Eκ(X) ⊕ U if κ` = 0 and
Ẽκ(X) := Eκ(X)⊕ V if κ` = 1.

Note that assigning Ẽ to E defines a bijective mapping over Block(`, n). The
outputs of E and Ẽ are uniformly distributed. Consequently, the effort for finding
a preimage to the image (U, V ) is the same as of finding a preimage to the image
(0, 0). ut

In other words, finding a preimage is in this case equivalent to finding a common
fixed point (CFP) for the two permutations EK||0 and EK||1, that is a value

X ∈ {0, 1}n such that EK||0(X) = X and EK||1(X) = X. This lemma naturally
implies the following definition:

Definition 2 (Successful Queries and Rank). Let Q = (Q1, · · · , Qq) be
an arbitrarily fixed sequence of q queries, i.e., Qi = (Ti, Zi,Ki), where Ti ∈
{I, II, III}, Zi ∈ {0, 1}n, Ki ∈ {0, 1}`−1.

We say that the i-th query Qi = (Ti, Zi,Ki) is successful, if the corresponding
query-response pair (Qi, R(Qi)) := (Ti, Xi, Yi, Y

′
i ,Ki) satisfies Xi = Yi = Y ′i . We

denote this event by Succ(Qi).
Analogously, we say Q is successful, iff at least one query in Q is successful.

This event will be denoted by Succ(Q).
For all i, 1 ≤ i ≤ q, let rankQ(i) denote the number of queries Qj =

(Tj , Zj ,Kj) with 1 ≤ j ≤ i and key Kj = Ki. We say that query Qi has rank r if
rankQ(i) = r.

3.2 Main Result

Our aim is to derive a lower bound of the minimal number q of rounds for achieving
a success probability of at least 1/2, where the probability space is given by
the uniform distribution over Block(`, n) and the internal randomization of the
adversary. In particular, we prove

Theorem 1. For each adversary A the following is true: A has to pose at least
1/32 · N2 = 22n−5 queries for achieving a success probability of 1/2 in finding a
preimage of (0, 0).

We will prove the theorem by considering a friendly (E,S)-oracle, where S
is a parameter fulfilling S < N/3 which will be determined later. A friendly
(E,S)-oracle answers queries Q = (T,Z,K) in principle in the same way as the
”normal” E-oracle but with the difference that in some situations, the friendly
oracle provides additional information.

The additional information are as follows:

– If Q is a query of rank 1 and K ∈ K≥2(E) then the oracle outputs in addition
one common fixed point.
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– If Q is a query of rank S and K ∈ K0(E) then the oracle’s response contains
in addition the information that K ∈ K0(E), that is that no common fixed
point does exist under K.

– If Q is a query of rank S and K ∈ K1(E) then the oracle outputs in addition
the unique common fixed point.

Clearly, each adversary A′ communicating with an E-oracle can be simulated
by an adversary A communicating with a friendly (E,S)-oracle, and for each
number of rounds, the success probability of A is not smaller than the success
probability of A′. Thus, it suffices to lower bound the success probabilities of an
arbitrarily fixed adversary A communicating with a friendly (E,S)-oracles. Note
that we can suppose that A does not pose queries of rank greater than S.

Let Succ(q) denote the event that A is successful after q queries, and let Si
(resp.¬Si) denote the event that the i-th query is successful (resp. unsuccessful).
Note that the event Succ(q) implies the existence of some round i, 1 ≤ i ≤ q,
such that the i-th query is successful but queries 1, · · · , i− 1 are not, i.e.,

Pr[Succ(q)] ≤
q∑
i=1

Pr[Si ∧ ¬S1 ∧ · · · ∧ ¬Si−1]

≤
q∑
i=1

Pr[Si|¬S1 ∧ · · · ∧ ¬Si−1] · Pr[¬S1 ∧ · · · ∧ ¬Si−1]

≤
q∑
i=1

Pi,

where we denote Pi = Pr[Si|¬S1 ∧ · · · ∧ ¬Si−1].
After posing i− 1 unsuccessful queries the adversary has three possibilities:

(1) Take a new key prefix K and pose a query of Rank 1.
(2) Take a key prefix K for which already r − 1, 1 ≤ r ≤ S − 2, unsuccessful

queries have been posed and pose a query of rank r, 1 < r < S.
(3) Take a key prefix K for which already S − 1 unsuccessful queries have been

posed and pose a query of rank S

Let P 1
i , P 2

i (r) and P 3
i (S) denote the probabilities Pi under the additional con-

dition that the adversary chooses possibility (1),(2), or (3), respectively. We prove
or result by deriving appropriate upper bounds Q1(N), Q2(N,S), and Q3(N,S)
for the probabilities P 1

i , P 2
i (r) and P 3

i (S), respectively.
Let Ij ⊆ [q], 1 ≤ j ≤ 3, denote the indices where A did choose possibility j.

It follows that

Pr[Succ(q)] ≤
q∑
i=1

Pi ≤
∑
i∈I1

Q1(N) +
∑
i∈I2

Q2(N,S) +
∑
i∈I3

Q3(N,S)

≤ q ·Q1(N) + q ·Q2(N,S) + q/S ·Q3(N,S)

Note that Pr[Succ(q)] ≥ 1/2 implies that at least one of the inequalities
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(4) q ·Q1(N) ≥ 1/6
(5) q ·Q2(N,S) ≥ 1/6
(6) q/S ·Q3(N,S) ≥ 1/6

has to be fulfilled. Let us denote by Pr[K0] (resp. Pr[K1] resp. Pr[K≥2]) denote
the probability that a uniformly distributed pair (π, π′) of permutations over [N ]
does not have any common fixed point (resp. has exactly one CFP, resp. has more
than one CFP).

We overestimate the probabilities P 1
i , P 2

i (r) and P 3
i (S) by estimating the

probabilities Pr[K0], Pr[K1], and Pr[K≥2]). In the case of P 1
i this is quite obvi-

ous. A rank 1 query corresponding to a key prefix K is successful if K ∈ K≥2(E)
or if K ∈ K1(E) and the query is successful in picking the unique CFP of
(EK||0, EK||1), i.e., for all i ≥ 1

P 1
i = Pr[K≥2] + 1/N · Pr[K1]. (1)

Before asking a query of rank r > 1 (with key prefix K) the adversary has the
following information. He knows the values of EK||0 and EK||1 on a set I ⊆ [N ]

of size r − 1. Moreover, he knows that K 6∈ K≥2(E) and that I does not contain
a CFP of (EK||0, EK||1). For estimating the probabilities P 2

i and P 3
i we have to

consider the following definitions. Given a subset I ⊆ [N ] and injective mappings
c, c′ : I −→ [N ], let us denote by Pr[K0|c, c′] (resp. Pr[K1|c, c′] resp. Pr[K≥2|c, c′])
the probability that a uniformly distributed pair (π, π′) of permutations over [N ]
does not have any common fixed point (resp. has exactly one CFP, resp. has
more than one CFP) under the condition that π|I = c and π′|I = c′. Finally
let Pr[K1|c, c′,K0 ∪K1] denote the probability that a uniformly distributed pair
(π, π′) of permutations over [N ] has exactly one CFP, under the conditions that
π|I = c and π′|I = c′ and that (π, π′) ∈ K0 ∪K1.

Lemma 2. For all i ≥ 1 and all r, 2 ≤ r ≤ S − 1, there is some set I ⊆ [N ],
|I| = r − 1, and a CFP-free pair of injective mappings c, c′ : I −→ [N ] such that

P 2
i (r) = Pr[K1|c, c′,K0 ∪K1] · 1/(N − |A|),

where A = I ∪ c(I) ∪ c′(I).

Proof: In the situation that the adversary asks a query of rank r, 1 < r < S,
w.r.t. to a key prefix K it is clear that the pair of permutations EK,0, EK,1 has at
most one CFP. The success probability is nonzero only under the condition that
EK,0, EK,1 has exactly one CFP. Under the condition that there is exactly one
CFP w.r.t. EK||0, EK||1 the adversary’s chance to pick the CFP is 1/(N −|A|), as

[N ]\A coincides with the set of all candidates for being a CFP w.r.t. EK||0, EK,||.
2

By similar arguments one can show that

Lemma 3. For all i ≥ 1 there is some set I ⊆ [N ], |I| = S − 1, and a CFP-free
pair of injective mappings c, c′ : I −→ [N ] such that

P 3
i (S) = Pr[K1|c, c′,K0 ∪K1]. 2
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We derive the upper bounds Q1(N), Q2(N,S), and Q3(N,S) by using the
following technical lemma:

Lemma 4. (i) It holds Pr[K1] < 1/N and Pr[K≥2] < 1/N2.
(ii) For all t, 2 ≤ t ≤ S − 1, sets I ⊆ [N ], |I| = t and CFP-free pairs of injective

mappings c, c′ : I −→ [N ] it holds that

Pr[K1|c, c′,K0 ∪K1] <
N − t

(N − t)2 − 1
≤ 1

N − S

Proof. Regrading (i) observe that

Pr[K1] <
∑
x∈[N ]

Pr[(π(x) = π′(x) = x)] = N · 1

N2
,=

1

N
.

and that

Pr[K≥2] <
∑

1≤x<x′≤N

Pr[(π(x) = π′(x) = x) ∧ (π(x′) = π′(x′) = x′)]

=

(
N

2

)
· 1

(N(N − 1))2
=

1

2N(N − 1)
<

1

N2
. 2(i)

Regarding (ii) observe first that

Pr[K1|c, c′,K0 ∪K1] =
Pr[K1|c, c′]

1− Pr[K≥2|c, c′]
. (2)

Further observe that

Pr[K1|c, c′] ≤
∑

x∈[N ]\A

Pr[π(x) = π′(x) = x] ≤ (N − t) · 1

(N − t)2
=

1

N − t
. (3)

(As above let A = I∪c(I)∪c′(I) and note that |[N ]\A| ≥ N− t.) Finally observe
that

Pr[K≥2|c, c′] ≤
∑

x<x′∈[N ]\A

Pr[(π(x) = π′(x) = x) ∧ (π(x′) = π′(x′) = x′)] ≤

≤
(
N − t

2

)
1

(N − t)2(N − t− 1)2
=

1

2(N − t)(N − t− 1)
<

1

(N − t)2
(4)

Putting relations (2), (3), (4) together we obtain

Pr[K1|c, c′,K0 ∪K1] ≤ 1/(N − t)
1− (1/(N − t)2)

=
N − t

(N − t)2 − 1

<
N − t+ 1

(N − t)2 − 1
=

1

N − t− 1
.

As t ≤ S − 1 we can write

Pr[K1|c, c′,K0 ∪K1] ≤ 1

N − S
. 2
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Together with equation (1) and Lemma 4, inequality (4) yields the inequality

q · 2

N2
≥ 1/6, (5)

i.e. q ≥ N2/12.
Let us suppose that q < N2/12, then Pr[Succ(q)] ≥ 1/2 implies that inequality

(5) or inequality (6) have to be valid. Note that together with Lemma 2 and
Lemma 4 inequality (5) implies that

q ·B2(N,S) ≥ 1/6,

where B2(N,S) = 1
N−S ·

1
N−3S .

Moreover, together with lemma 4 inequality (6) implies that

q ·B3(N,S) ≥ 1/6,

where B3(N,S) = 1
N−S ·

1
S .

Observe that these conditions must hold for any choice of S and that B2(N,S)
increases with S while B3(N,S) decreases. Therefore, we are interested into the
value maxS(min(B2(N,S), B3(N,S)) which is achieved if B2(N,S) = B3(N,S).
This is the case for S = N/4. Consequently, let us fix S to be N/4. We obtain
that Pr[Succ(q)] ≥ 1/2 and q < N2/12 implies that

q · 1

3/4 ·N
· 4

N
≥ 1/6,

which implies that

q ≥ 1

32
·N2. 2

4 A Technique for proving a Preimage Resistance Bound
in Ω (22n) for Greedy Adversaries

4.1 Preliminaries

Now we present another techniques for estimating the preimage resistance of H1.
This technique if fundamentally different to the technique given in Sec.3. However,
we have to restrict to the reasonable class of ”greedy” adversaries. ”Greedy”
means that no queries are made for which it is known in advance that the success
probability of finding the preimage is zero. We make this formal in the following
definition:

Definition 3 (Disjoint Query). Let Q = (Q1, · · · , Qq) be a sequence of queries.
Let Qi = (Ti, Zi,Ki) for i = 1, · · · , q and (Qi, R(Qi)) = (Ti, Xi, Yi, Y

′
i ,Ki) be the

according query-response pair. For a fixed key K, we consider the set A(Q,K) ⊆
{0, 1}n of all inputs and outputs that occurred so far with respect to the same key,
i.e.,

A(Q,K) :=
⋃

1≤i≤q:Ki=K

{Xi, Yi, Y
′
i }. (6)

We call a new query Q = (T,Z,K) to be disjoint to Q, if Z 6∈ A(Q,K).
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The reason for considering disjoint queries is that they characterize the only
queries with a non-zero success probability:

Lemma 5. Let Fail(Q) denote the event that making queries Q = (Q1, · · · , Qq)
was not successful. For a single query Q = (T,Z,K), let Pr[Q|Fail(Q)] denote
the probability that Q is successful under the condition that all queries in Q have
not been successful before. We abbreviate N = 2n. It holds

Pr[Q|Fail(Q)] ≤
{

1/(N − q)2 , Q disjoint to Q
0 , else.

(7)

Proof: We assume the online mode for the E-oracle. Note that the fact that
Q is not successful implies that Xi 6= Yi or Xi 6= Y ′i for all i = 1, · · · , q. Fur-
thermore, if Z ∈ A(Q,K), i.e., the query is not disjoint, then there exists an
index i ∈ {1, . . . , q} such that Xi = Z, Yi = Z, or Y ′i = Z. Taking both together
immediately shows that Z cannot be a common fixed point.

Let us now suppose that Q is disjoint to Q. We estimate Pr[Q|Fail(Q)] under
the condition that T = I. For the other two cases T ∈ {II, III}, the proof can
be done in a similar way. The fact that Q is disjoint to Q implies that Z 6∈
{X1, . . . , Xq} and likewise Z 6∈ {Y1, . . . , Yq} and Z 6∈ {Y ′1 , . . . , Y ′q}. Consequently,
the probability that EK||0(Z) = Z and the probability that EK||1(Z) = Z are

both ≤ 1/(N − q). As both events are independent, the success probability of Q
is ≤ 1/(N − q)2. ut

Definition 4 (Sequence of Disjoint Queries). We call Q a sequence of dis-
joint queries if for all i, 1 ≤ i ≤ q − 1, query Qi+1 is disjoint to Q≤i :=
{Q1, . . . , Qi}.

By Lemma 5, we know that this is the only kind of queries that have a non-
zero success probability. Although it seems to be plausible that this strategy is
optimal, we do not have a proof for this assumption. In other words, we cannot
exclude that strategies might exist where asking some queries with zero success
probability can yield globally a better success probability.

Definition 5 (Accepting Computation). A sequence of queries Q is called
an accepting computation (or, for short, Q is accepting) iff

(1) Q is a sequence of disjoint queries.
(2) For all i, 1 ≤ i ≤ q − 1, query Qi = (Ti, Zi,Ki) is not successful, i.e., Zi is

not a common fixed point, and
(3) query Qq = (Tq, Zq,Kq) is successful, i.e., EKq||0(Zq) = EKq||1(Zq) = Zq.

4.2 Main Result

The main technical result of this section is the following estimation of the proba-
bility Pr[Q accepting] that Q is an accepting computation.

Theorem 2. Consider a sequence Q = (Q1, · · · , Qq) of queries and set N := 2n.

11



(i) It holds Pr[Q accepting] ≤ 1
(N−q)2 .

(ii) If q ≥ 15/16 ·N then Pr[Q accepting] ≤ e−1/32·N .

Proof: The proof of part (i) is an straightforward consequence of Lemma 5.
The proof of part (ii) is postponed to subsection 4.3. ut

We show now how Theorem 2 can be used to derive a nearly maximal lower
bound on the preimage resistance of H1. Let q ≤ N2 and Q = (Q1, · · · , Qq)
denote an arbitrarily fixed sequence of disjoint queries asked by the adversary
with Qi = (Ti, Zi,Ki) for 1 ≤ i ≤ q.

We call Q to be successful if at least one of the queries Qi in Q is successful,
i.e., EKi||0(Zi) = EKi||1(Zi) = Zi. This implies that for at least one query Qi ∈ Q
it holds that Q≤i is an accepting computation. Consequently,

Pr [Succ(Q)] ≤
q∑
i=1

Pr [Q≤i accepting] . (8)

Observe that the first claim of Theorem 2 does not make any useful statements
beyond the birthday bound ≥ 2n. Indeed, the idea is now to split the set of
queries into two sets, according to the statements given in Theorem 2. Let r1 :=
{i, rankQ(i) > 15

16N} and r2 := {i, rankQ(i) ≤ 15
16N}. Theorem 2 and Relation

(8) yield

Pr [Succ(Q)] ≤
∑
i∈r1

Pr [Q≤i accepting] +
∑
i∈r2

Pr [Q≤i accepting] (9)

≤ |r1| · e−1/32·N + |r2| ·
1

(N − 15/16 ·N)2
(10)

≤ q · 256 ·N−2 (11)

if N ≥ 256. We have proved

Theorem 3. For achieving a success probability of 1/2 in finding a preimage, a
greedy adversary has to ask at least 1/512 · 22n = 22n−9 queries. ut

4.3 The Proof of Part (ii) of Theorem 2

Let q = 15/16 · N and Q = (Q1, · · · , Qq+1) be an arbitrarily fixed sequence

of q + 1 queries w.r.t. the same key K ∈ {0, 1}`−1. Let Qi = (Ti, Zi,K) for
i = 1, · · · , q + 1. We derive an upper bound for the probability Pr[Q accepting].
For this purpose, we assume that Q contains only disjoint queries as this can only
increase Pr[Q accepting].

While asking Q1, · · · , Qq+1, the adversary generates sets Xi = {X1, · · · , Xi},
Yi = {Y1, · · · , Yi}, and Y ′i = {Y ′1 , · · · , Y ′i } of size i. Let Ai := Xi ∪ Yi ∪ Y ′i. One
sees easily that |Ai| + 1 ≤ |Ai+1| ≤ |Ai| + 3 for i = 0, · · · , q. (Let A0 = ∅). As
Q is a sequence of disjoint queries, it must hold that the input Zq+1 is outside of
Aq and in particular |Aq| < N . This implies that

Pr[Q accepting] ≤ Pr[|Aq| < N ]. (12)
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We show that the latter event is rather unlikely by taking a closer look on the size
of A` for some smaller index ` < q. Fix ` = N/8. Because of |Ai+1| ≥ |Ai| + 1,
one has |Aq| − |A`| ≥ q − ` = 15/16N − 2/16N = 13/16N . This implies that

|A`| ≤ |Aq| − 13/16N < N − 13/16N = 3/16N. (13)

It follows that
Pr[|Aq| < N ] ≤ Pr[|A`| ≤ 3/16N ] =: p∗. (14)

We show that p∗ ≤ e−1/32·N which yields the initial claim by Eqs. (12) and (14).
For this purpose, we introduce a set of independent random Bernoulli variables

and make use of Chernov’s Inequality [1, Appendix A, pp. 233-240]. We recall
it here shortly: Let ν1, · · · , νn be independent random Bernoulli variables. Let
σ = 1/n ·

∑n
i=1 νi be the (normed) sum of these variables and E(σ) = 1/n ·∑n

i=1 Pr[νi = 1] its expectation value. Then, for all δ > 0 it holds that Pr[E(σ)−
σ > δ] < e−2δ

2n.
For defining the Bernoulli variables, we take a closer look on what happens

during asking a query Qi. Each query Qi is composed of two separate queries Q0
i

and Q1
i to the E-oracle. In sub-query Q0

i , the adversary asks an input Z0
i and gets

a response R0
i = EKi

(Zi) if a forward query has been made or R0
i = E−1Ki

(Zi) in

the case of a backward query. Likewise, for the other sub-query Q1
i she requests

an input Z1
i and gets an answer R1

i .
For b ∈ {0, 1} denote by Rbi the set of possible answers for query Qbi . Note that

|Rbi | = N − (i − 1) as i − 1 responses out of N are already taken.5 Note further
that for i ≤ ` = N/8 it holds that

|Ai| ≤ 3i < 1/2 · (N − (i− 1)) = 1/2 · |Rbi |. (15)

We now introduce subsets of R0
i and R1

i and consider the probability that R0
i

and R1
i fall into these sets, respectively. The reasons are twofold: first, it allows

for deriving a lower bound on |A`|, and second do they imply Bernoulli variables
ν0i and ν1i as explained above which allow for using Chernov’s Inequality. These
variables are defined as follows. Suppose that for i = 1, · · · , `, in addition to asking
Q0
i and Q1

i , the adversary does the following.

– Before asking Q0
i she fixes a set R̃0

i ⊆ R0
i \ (Ai−1 ∪ {Zi}) of size d|R0

i |/2e,
and

– before asking Q1
i she fixes a set R̃1

i ⊆ R1
i \ (Ai−1 ∪ {Zi, Z ′i}) of size d|R1

i |/2e.

Inequality (15) guarantees that this is always possible. For i = 1, · · · , s let ν0i ∈
{0, 1} denote the random Bernoulli variable taking 1 iff R0

i ∈ R̃0
i , and analogously

let ν1i ∈ {0, 1} denote the random Bernoulli variables taking value 1 iff R1
i ∈ R̃1

i .
As we are considering the ideal cipher model, ν0i and ν1i are independent

random Bernoulli variables. Let σ = 1
2` ·
∑`
i=1(ν0i + ν1i ) the normed sum. We can

apply Chernov’s Inequality which tells that Pr[E(σ)− σ > δ] < e−2δ
2n.

5 Note that R0
i = {0, 1}n \ Xi−1 for Ti ∈ {I, II} and R0

i = {0, 1}n \ Yi−1 if Ti = I.
Note further that R1

i = {0, 1}n \ Y ′i−1 for Ti ∈ {I, II} and R1
i = {0, 1}n \ Xi−1 for

Ti = III.
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As each variable takes 1 with a probability ≥ 1/2, one sees easily that that
E(σ) ≥ 1/2 and in particular 1/4 ≤ E(σ) − 1/4. Furthermore, let σ∗ := 2` · σ =∑`
i=1(ν0i + ν1i ). Observe that |Ai+1| ≥ |Ai|+ 1 + ν0i + ν1i and hence |A`| ≥ `+σ∗.

Thus, |A`| ≤ 3/16N implies ` + σ∗ ≤ 3/16N ⇔ σ∗ ≤ 1/16N as ` = 1/8N by
definition.

Putting everything together gives

p∗ ≤ Pr[σ∗ < 1/16 ·N ] = Pr[2` · σ < 1/16 ·N ] (16)

= Pr[σ < 1/4] ≤ Pr[σ < E(σ)− 1/4] = Pr[E(σ)− σ > 1/4] (17)

< e−2/16·2s = e−1/32·N . (18)

Remark 1. Observe that one key ingredient of the proof was to show that with
a high probability, the number of disjoint queries cannot grow above 15/16N .
Intuitively, one might expect that this bound is highly overrated. Indeed, com-
puter simulations indicated that on average, only about N/2 disjoint queries are
possible. If this bound holds in general (which is currently an open question),
this would imply a lower bound of 2−3 · 22n queries, being better than the bound
derived with the technique discussed in Sec. 3.

5 Discussion and Conclusion

We developed and applied new techniques for determining lower bounds with
respect to preimage resistance that make it possible, for the first time, to prove
security bounds way beyond the birthday barrier for double length compression
functions. This is a major breakthrough, especially when one considers that the
first double length compression functions have been published about 20 years ago
and taking into account that a lot of researchers have tried – but failed – in
delivering beyond birthday bounds.

Although this result is a significant step forward, there are still a lot of chal-
lenges open in the field of block cipher based double length hashing. For example,
is it possible to prove bounds with a better constant? Can the second technique
be extended to any adversary and/or the conjecture stated in Remark 1 shown to
be true? More general, can our techniques be adapted for assessing other known
constructions like Abreast-DM or Tandem-DM or are other interesting general-
izations possible? Closely related is the question of how these techniques can be
applied to single call double length hash functions, e.g. [16].
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