On Securing Communication From Profilers

Sandra Diaz-Santiago, Debrup Chakraborty

Department of Computer Science, CINVESTAV IPN
Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco. México, D.F., 07360
sdiaz@computacion.cs.cinvestav.mx, debrup@cs.cinvestav.mx

Abstract. A profiling adversary is an adversary which aims to classify
messages into pre-defined profiles and thus gain useful information re-
garding the sender or receiver of such messages. Usual chosen-plaintext
secure encryption schemes are capable of securing information from pro-
filers, but these schemes provide more security than required for this
purpose. In this paper we study the requirements for an encryption algo-
rithm to be secure only against profilers and finally give a precise notion
of security for such schemes. We also present a full protocol for secure
(against profiling adversaries) communication, which neither requires a
key exchange nor a public key infrastructure. Our protocol guarantees se-
curity against non-human profilers and is constructed using CAPTCHAs
and secret sharing schemes.

1 Introduction

Informally a spam email is an email which is not of interest to the receiver.
Everyday almost every one of us finds hundreds of such spam emails waiting
in our in-boxes. A spammer (who sends spam emails) generally has a business
motive and most spam emails try to advertise a product, a web-page or a service.
If the spam emails can be sent in a directed manner, i.e., if a spammer can send a
specific advertisement to a user who would be interested in it, then the motive of
the spammer would be successful to a large extent. Thus, one of the important
objectives of a spammer would be to know the preferences or interests of the
users to whom it is sending the un-solicited messages.

In today’s connected world we do a lot of communication through emails
and it is not un-realistic to assume that a collection of email messages which
originate from a specific user U carries information about the preferences and
interests of U. Based on this assumption a spammer can collect email information
originating from different users and based on these emails try to make a profile
of each user (based on their preferences or interests), and later use this profile
for directed spamming.

Here we assume that given a message space an adversary aims to map each
message in the message space into certain classes of its interest. Using this clas-
sification of messages the adversary can try to conclude which user is associated
with which class and this is expected to reveal information regarding the profile

of a given user. Thus, in the scenario of our interest we consider an adversary
that classifies messages into pre-defined classes. Such an adversary would be
further called as a profiler.

Other than directed spamming, there may be other motives for user profiling.
Currently there has been a paradigm shift in the way products are advertised in
the internet. In one of the popular new paradigm of online behavioral advertising
(OBA) [14], internet advertising companies display advertisements specific to
user preferences. This requires profiling the users. To support this big business of
internet advertising, innovative techniques for user profiling have also developed.
It is known that some internet service providers perform a procedure called deep
packet inspection on all traffic to detect malware etc., but this technique has
been used to generate user profiles from the information contents of the packets
received or sent by an user, and this information is later sold to advertising
companies [14]. This currently has led to many policy related debates, and it
has been asked whether such practices should be legally allowed [11].

In the context of emails, a solution to the problem of profiling attacks would
be encrypting the communications so that the contents of the emails are not
available to the profiler. Or to make the communications anonymous so that
given a message it would not be possible for a profiler to trace the origin of the
message. In this paper we ask the following question: What would be the exact
security requirements for an encryption scheme which can protect the commu-
nication from profilers? Intuitively a cipher obtained from a secure encryption
algorithm should not reveal any information regarding the plaintext which was
used to produce the cipher. Hence, a secure encryption algorithm should surely
resist attacks by profilers. But, as the goal of a profiler is only to classify the
messages, it is possible that an encryption algorithm which provides security in
a weaker sense would be enough to resist profilers. We explore in this direction
and try to fix the appropriate security definition of an encryption scheme which
would provide security against profilers.

Using any encryption scheme involves the complicated machinery of key ex-
change (for symmetric encryption) or a public key infrastructure (for asymmetric
encryption). When the goal is just to protect information against profilers the
heavy machinery of key exchange or public key infrastructure may be unnec-
essary. Keeping in mind security against profilers we propose a new protocol
which does not require explicit key exchange. To do this we use the notion of
CAPTCHASs, which are programs that can distinguish between humans and ma-
chines by automated Turing tests which are easy for humans to pass but difficult
for any machine. The use of CAPTCHAs makes our protocol secure from non-
human profilers, but the protocol is still vulnerable to human adversaries. In the
context that we see the activity of profiling, it would be only profitable if a large
number of users can be profiled and this goal is infeasible if human profilers are
employed for the task.

To our knowledge the only prior works on the issue of securing email commu-
nication from profilers have been reported in [5]. In [5] it was pointed out that
an encryption scheme secure against profilers can be much weaker than normal

encryption algorithms, and thus using a normal encryption algorithm can be an
overkill. The solution in [5] hides the semantic of the plaintext by converting an
English text into another English text with the help of a key. In their protocol
also they do not need explicit key exchange or a public key infrastructure. The
key is derived from the email header by using a hash function with a specific
property. The hash function they use is a ”slow one-way hash function”, which
was first proposed in [3]. Such hash functions are difficult to compute, i.e., may
take a few seconds to get computed and are hard to invert. This high computa-
tional cost for the hash function prevents a profiler to derive the key for a large
number of messages. Our method is fundamentally different from [5] in its use of
CAPTCHAs. Slow hash functions which were proposed long ago have not seen
much use, and its suitability is not well tested. But CAPTCHASs are ubiquitous
in today’s world and had been used successfully in diverse applications. Also, our
work presents a theoretical analysis of the problem, and provides the security
definitions which to our knowledge is new to the literature.

2 Preliminaries

2.1 Notations

The set of all n bit strings would be denoted by {0,1}". For a string x, |z| will
denote the length of x and for a finite set A, |A| would denote the cardinality of

A. For a finite set S, x & S will denote to be an element selected uniformly at
random from S. In what follows, by an adversary we shall mean a probabilistic
algorithm which outputs an integer or a bit. A(z,y) = b, will denote the fact
that an adversary A given inputs x,y outputs b. In general an adversary would
have other sorts of interactions, maybe with other adversaries and/or algorithms
before it outputs, these would be clear from the context. In what follows by
E: K x M — C would denote an encryption scheme with I, M, C as the key
space, message space and cipher space respectively. For m € M and k € K we
shall usually write Ej(m) instead of E(k,m).

2.2 Indistinguishability in the Presence of an Eavesdropper

Security of encryption schemes is best defined in terms of indistinguishability.
Here we consider indistinguishability in presence of an eavesdropping adversary.
This security notion, would be called as IND-EAV security. It considers that an
adversary chooses a pair of plaintext messages and then ask for the encryption
of those messages. The challenger provides the adversary with the encryption of
one of the messages chosen by the adversary. The adversary is considered to be
successful if it can correctly guess which message of its choice was encrypted.
More formally, to define the security of an encryption algorithm F : K x M — C,
we consider the interaction of an adversary 4 with a challenger in the experiment
below:

Experiment Exp-IND-EAVA

1. The challenger selects K uniformly at random from /C.

2. The adversary A selects two messages mg, m; € M,
such that |mg| = |my|.

3. The challenger selects a bit b uniformly at random
from {0,1}, and returns ¢ - Ex(mp) to A.

4. The adversary A outputs a bit b’.

5. If b =1’ output 1 else output 0.

Definition 1. Let E : K x M — C be an encryption scheme. The IND-EAV
advantage of an adversary A in breaking E is defined as

i 1
AdvileV(4) = Pr[Exp-IND-EAVA = 1] — 5

Moreover, E is (e,t) IND-EAV secure if for all adversaries A running for time
at most t, Adv%ld'ea’v(A) <e. O

The IND-EAV security as defined above is used only for one time encryption
and it is different from the most used security notion for symmetric encryption
which is indistinguishability under chosen plaintext attack (IND-CPA). In an
IND-CPA attack the adversary is given access to the encryption oracle and thus
can consult this oracle before it chooses the messages, and has the option of
asking encryption of multiple pairs of messages before it outputs. IND-EAV
notion is strictly weaker than the IND-CPA notion of security. All IND-CPA
secure encryption schemes are also IND-EAV secure.

A related notion of security is that of semantic security. Informally a sym-
metric encryption scheme is called semantically secure if an adversary is unable
to compute any function on the plaintext given a ciphertext.

Definition 2. Let E : K x M — C be an encryption scheme. E is called (e, t)
SEM-EAV secure, if for all functions f and for all adversaries running for time
at most t

| PrA(Ek (z)) = f(2)] — maxPrlA'(.) = f(2)]] < e (1)

where the running time of A’ is polynomially related to t, and x is chosen uni-
formly at random from M. &

Note, in the above definition, by A’(.) we mean that the adversary is given no
input, i.e., A’ is trying to predict f(x) without seeing Ex (x). And in the second
term of Equation (1) the maximum is taken over all adversaries A’ which runs
for time at most poly(t), for some polynomial poly(). Thus, if F is EAV-SEM
secure then no adversary can do better in predicting f(z) from Ex(x) than an
adversary who does so without seeing Ex (). It is well known that IND-EAV
security implies SEM-EAV security (for example see Claim 3.11 in [9]).

2.3 Captcha

A CAPTCHA is a computer program designed to differentiate a human being
from a computer. The fundamental ideas for such a program were first proposed
in an unpublished paper [10] and then these ideas were formalized in [15], where
the name CAPTCHA was first proposed. CAPTCHA stands for Completely
Automated Public Turing test to tell Computers and Humans Apart. In fact, a
CAPTCHA is a test which is easy to pass by a human user but hard to pass by
a machine. One of the most common CAPTCHASs are distorted images of short
strings. For a human it is generally very easy to recover the original string from
the distorted image, but it is difficult for state of the art character recognition
algorithms to recover the original string from the distorted image. Other types of
CAPTCHASs which depend on problems of speech recognition, object detection,
classification etc. have also been developed.

Recently CAPTCHASs have been used in many different scenarios for identi-
fication of humans, like in chat rooms, online polls etc. Also they can be used
to prevent dictionary attacks on the password based systems [12], and more
recently for key establishment [4].

A CAPTCHA is a randomized algorithm G, which given a input string from
a set of strings STR produces the CAPTCHA G(z). A CAPTCHA G is called
(«, B) secure, if for any human or legitimate solver S

Prlz & STR: S(G(x)) = x] > a,
and for any efficient machine C'
Pr[z & STR: C(G(z)) = x] < B,

For a CAPTCHA to be secure it is required that there is a large gap between
«a and (. In section 4, we will propose an alternative security definition for
CAPTCHAs.

2.4 Secret Sharing Schemes

A secret sharing scheme is a method designed to share a secret between a group of
participants. These schemes were first proposed by Shamir in 1979 [13]. Although
there have been improvements to these kind of schemes, here we will use the
basic construction due to Shamir. In a (u,w) threshold secret sharing scheme a
secret K is divided into w pieces called shares. These w shares are given to w
participants. To recover the secret, at least u < w of the w shares are required.
And it is not possible to recover the secret with less than u shares.

We describe a specific construction proposed by Shamir. To construct a (u, w)
secret sharing scheme we need a prime p > w + 1 and the operations take place
in the field Z,. The procedure for splitting a secret K into w parts is depicted
in the algorithm below:

SHARE,, ., (K)?P
1. Choose w distinct, non-zero elements of Z,, denote them
asz;, 1 <1< w.
2. Choose u — 1 elements of Z, independently at random. Denote them

asS A1y ..., Qy—1-
u—1
3. Let, a(z) = K + Zaj:rJ mod p, and y; = a(x;), 1 <i < w.
j=1

4. Output § = {(z1,¥1), .-, (Tw, Yw)} as the set of w shares.

The secret K can be easily recovered using any B C S such that |B| > u, but
if |B| < u then K cannot be recovered. To see this, observe that the polynomial
used in step 3 to compute the y;s is a u — 1 degree polynomial. Thus using u
pairs of the type (x;,y;) one can generate u linear equations, each of the type
v = K+ a1x; + ---au_lx?_l. Using these equations the value of K can be
found. It can be shown that this set of u equations would always have a unique
solution.

3 Profiling Adversaries

Let M be a message space and P = {1,2,...,k} be a set of labels for different
possible profiles. We assume that each message x in M can be labeled by a
unique j € P. Thus, there exists a function f : M — P, which assigns a label
to each message in the message space. In other words, we can assume that the
message space can be partitioned into disjoint subsets as M = My UMsU- - -UMj,
and for every x € M, f(z) =i if and only if z € M;.

We call f as the profiling function or a classifier. Thus, in this setting we are
assuming that each message in the message space M represents some profile,
and messages in M;(1 < i < k) correspond to the profile i. The function f is
a classifier which given a message can classify it into one of the profiles. We
also assume that the function f is efficiently computable for every x € M, in
particular, we assume that for any x € M, f(z) can be computed in time at
most p, where p is a constant.

The function f is public, thus given x € M any adversary can efficiently
compute f(z). We want to define security for an encryption scheme which is
secure against profiling adversaries, i.e., we want that when a message from M
is encrypted using the encryption algorithm no efficient adversary would be able
to profile it.

3.1 PROF-EAV Security

Here we propose a definition for encryption schemes secure against profiling
adversaries.

Definition 3. [PROF-EAV security] Let M be a message space and f :
M — P be a profiling function. Let E : M x IC — C be an encryption algorithm.
We define the advantage of an adversary A in the PROF-EAV (read profiling
under eavesdropping) sense in breaking E as

AT ()
= PrlA(Bic(w)) = f(@)] = maxPrlA'() = f(2)), 2)

where K & K,z & M and A’ is an adversary whose running time is a polyno-
mial of the running time of A. An encryption algorithm E : M x K — C is called
(e,t) PROF-EAV secure for a given profiling function f, if for all adversaries A

running in time at most t, Advg?f_e&w(A) <e. O

In the definition above, we want to capture the notion that for a PROF-EAV
secure encryption scheme, an adversary A trying to find the profile of a message
seeing its cipher cannot do much better than the best adversary A’, who tries
to guess the profile without seeing the ciphertext.

This definition is in accordance with the definition of semantic security as
discussed in Section 2.2. Recall that an encryption scheme is called semantically
secure if no adversary can efficiently compute any function of the plaintext given
its ciphertext. But in the PROF-EAV definition we are interested only with a
specific function f. Thus, PROF-EAV security is strictly weaker than semantic
security. Semantic security trivially implies PROF-EAV security but PROF-
EAV security does not imply IND-EAV security, we give a concrete example to
illustrate this.

Ezample 1. Let M ={0,1}"™ = M; U M5 be a message space, where
My = {x € M : first bit of z is 0},

and My = M\ My, and f be the profiling function such that f(x) =1 iff x € M.
Let E°™® be an encryption scheme which uses a one bit key & (chosen uniformly
from {0, 1}) and given a message x € M it xors k with the first bit of z. It is easy
to see that an adversary trying to guess the profile of a message given E"¢(x)
cannot do better than with probability half, and this success probability can be
achieved even without seeing the ciphertext, as here |M;| = |Ms|. Hence E°M€
is PROF-EAV secure, but trivially not secure in the IND-EAV sense.

4 Encryption Protocol Secure Against Profiling
Adversaries

In this section we describe a complete protocol which would be secure from
profiling adversaries. As mentioned in the introduction here we care about ad-
versaries who are not humans. Our motivation is to prevent communications

getting profiled in large scale mechanically. The protocol is not secure from hu-
man adversaries, and we do not care much about that as we hope that it would
be economically and otherwise infeasible to employ a human for large scale pro-
filing.

The protocol P consists of the following entities:

— The message space M, the cipher space C.

— The set of profiles P and the profiling function f associated with M.
— A set STR which consists of short strings over a specified alphabet.
— An encryption scheme F : K x M — C.

— A hash function H : STR — K.

— A CAPTCHA generator G which takes inputs from STR.

Given a message x € M, P produces a ciphertext as shown in Figure 1. In the

Protocol P(z)

1. k& STR;

2. k' + G(k);

3. K « H(k);
4. ¢+ Ex(z);
5. return (c, k')

Fig. 1. The protocol P.

protocol as described in Figure 1, k, an element of STR is hashed to form the key
K and k is also converted into a CAPTCHA and transmitted along with the ci-
phertext. The only input to P is the message and the key generation is embedded
in the protocol. It resembles the scenario of hybrid encryption [1], which consists
of two mechanisms called key encapsulation and data encapsulation where an
encrypted version of the key is also transmitted along with the cipher. For a
human decryption is easy, as given a ciphertext (¢, k') a human user can recover
k from k' by solving the CAPTCHA and thus compute E;I%k) (¢) to decipher.

4.1 Security of P

The security of a protocol P against profilers is defined in the same way as in
Definition 3.

Definition 4. The advantage of an adversary attacking protocol P is defined as
£
Advl' P (A)
= Pr{A(P(z)) = f(2)] = max Pr[A() = f(2)),

where © & M and A is an adversary whose running time is a polynomial of
the running time of A. Additionally P is called (e,t) secure in the PROF sense

if for all adversaries running in time at most t, AdvgrOf(.A) < €. &

The above definition is different from Definition 3 by the fact that it does not
mention the key explicitly, as key generation is embedded in the protocol itself.
To prove that P is secure in the PROF sense we need an assumption regarding
the CAPTCHA G and the hash function H. We state this next.

Definition 5. [The Hash-Captcha assumption] Let G be a CAPTCHA gen-
erator, let £ be a number, let H : STR — {0,1}* be a hash function, and let A
be an adversary. We define the advantage of A in violating the Hash-Captcha
assumption as

Advg?H(A) = Prlz & STR: A(G(z), H(z)) = 1]
—Prfz & STR, z & {0,1}: A(G(x), 2) = 1].

Moreover, (G, H) is called (e,t) HC secure if for all adversaries A running in
time at most t, Advlcl;(fH(A) <e. %

This definition says that the pair formed by a CAPTCHA generator G and a
hash function H is secure, if an adversary A is unable to distinguish between a
(G(z), H(z)), where z is some string, and (G(x), z), where z is a random string.
This security notion of a CAPTCHA inspired by the notion of indistinguishability
is quite different from the («, 8) security notion as described in Section 2.3. Here
the adversary has some more information regarding = through the value H(z). If
the adversary can efficiently solve the CAPTCHA G then it can break (G, H) in
the HC sense irrespective of the hash function. Given the CAPTCHA is secure,
i.e., no efficient adversary can find z from G(z) still an adversary may be able
to distinguish H(z) from a string randomly selected from the range of H.

If we consider a keyed family of hash functions H = {Hy}ser, such that for
every £ € L, Hy : D — R for some sets D and R. Then H is called a entropy
smoothing family if for any efficient adversary it is difficult to distinguish between
(¢, Hy(z)) and (¢, z), where ¢, x, z are selected uniformly at random from £, D
and R respectively. An entropy smoothing hash along with a secure captcha can
resist HC attacks. Entropy smoothing hashes can be constructed from universal
hash functions using the left over hash lemma [7], but the parameter sizes which
would be required for such provable guarantees can be prohibitive. We believe
that using ad-hoc cryptographic hashes like the ones from the SHA family can
provide the same security. In our definition we do not use a keyed family of hash
functions, but such a family can be easily used in the protocol P, and in that
case the hash key will also be a part of the ciphertext.

With these discussions we are now ready to state the theorem about security
of P.

Theorem 1. Let P be a protocol as in Figure 1 and A is an adversary attacking
P in the PROF sense. Then there exist adversaries B and B’ such that

AdvEPH(A) < AdvES, (B) + AdvBOFe (),
And, if A runs for time t, both B and B’ runs for time O(t).

Proof. Let A be an adversary attacking the protocol P in Figure 1. We construct
an adversary B attacking the hash-captcha, using A as follows.

Adversary B(G(k), z)
ppia M,
Send (E.(z),G(k)) to A;
A returns j;
if f(x) = J;
return 1;
else return 0;

SO =

As B is an adversary attacking the hash-captcha assumption, hence there are
two possibilities regarding the input (G(k), z) of B, z can either be H(k) or a
uniform random element in K, and the goal of B is to distinguish between these
two possibilities.

Considering the first possibility that z is H(k), the way the adversary B is
defined, A gets a valid encryption of the message (which is a random element
in the message space) according to the protocol P. Hence we have

Pr[k & K B(G(k), H(k)) = 1]
—Prfk & K2 & M ABpp (2),Gk) = f(@)]
=Prlz & M : A(P(2)) = f(x)]. (3)

Similarly, for the second possibility, i.e., when the input z to B is an element
chosen uniformly at random from K, we have

Pr[k, K & K : B(G(k),K) = 1]
= Prlz & M A(Bk(2),G(k)) = f(z)). (4)

In Equation (4), k and K are chosen independently uniformly at random from
K. Thus, the adversary A has as input Ex (z) and G(k), where k is independent
of K, thus G(k) carries no information about K. Hence A cannot do better than
some PROF-EAV adversary B’ who has only Ex(x) as its input, and runs for
same time as that of A. Thus

Pr[z & M : A(Ex(2),G(k)) = f(z)]
<Prfz & M : B/(Ex(2)) = f(2)] (5)

From definition of PROF-EAV advantage of B’ we have

Prfz & M : B (Eg(2)) = f(x)]
= AdvDORe () 4 max PrLA'(.) = /()] (6)

Thus, using Equations (4), (5) and (6) we have

Pr[k, K & K : B(G(k), K) = 1]
< AdvDOF () 4 max Pr(A'() = f(a)] (7)

Finally, from Equations (3) and (7) and Definitions 5 and 4 we have
AdvEN(A) < AdvES, (B) + AdvROR (),

as desired. a
Some remarks about security of P: We defined the security of the protocol
P for only a fixed profiling function f, but note that we can modify the definition
for any arbitrary function f which would give us a security definition equivalent
to SEM-EAV (discussed in Section 2.2). If the encryption algorithm F used
within the protocol is SEM-EAV secure then using the same proof we can obtain
SEM-EAV security for P.

5 A Practical Instantiation

A very common problem using CAPTCHAs is that sometimes even humans
may fail to solve them. As in the protocol P if a human user fails to solve
the CAPTCHA then (s)he will not be able to decipher and there is no way
to repeat the test (as is done in normal CAPTCHA usage), hence this stands
as a serious weakness of the proposed protocol P. A solution to this problem
can be attempted by providing some redundancy in the CAPTCHASs so that a
valid user can have more chance in solving the CAPTCHA. As a solution we
propose that the initial string k& chosen by the protocol be broken into w shares
such that with ¢ or more of the shares would be enough to generate k. These w
shares are converted into CAPTCHAs and sent along with the ciphertext. To
incorporate this idea we changed the initial protocol P to P’. The protocol P’ is
a specific instantiation, thus before we describe the protocol we fix some details
of its components, in particular for P’ we would require an encoding mechanism
ENCD which we discuss first.

Let AL ={A,B,...,Z} U{a,b,...,2} U{0,1,...,9} U {+, /}, thus making
|AL| = 64. We define an arbitrary (but fixed) bijection p : AL — {0,1,...,63},
and for any o € AL and n > 6, bin,, (¢) will denote the n bit binary representation
of p(o). Note that for all o € AL, at most 6 bits are required to represent p(o).
If 4 is a binary string, then let tolnt(¢)) be the positive integer corresponding

to 1, similarly for a positive integer v < 2™, toBin,,(v) denotes the n bit binary
representation of v. We fix a positive integer m and let STR be the set of all
m character strings over the alphabet AL. Let p be the smallest prime greater
than 2™ and let d = p — 25™. Let ENCD : STR x {0,1,...,d} — Z, be defined

as follows

ENCD(s, \)

1. Parse s as ool|o1]] - .. ||om, where each o; € AL;
2. ¢« bing(00)][. .. ||bing (om);

3. v + tolnt(¢));

4. return v + \;

And let ENCD™! : Z, — STR x {0,1,...,d} be defined as

ENCD(y)
1. if y > 26m

2 Ay —20m 1,

3. oy 26m 1,

4. else A < 0;

5. z + toBingn,(v);

6. Parse z as zg||21]| . . . ||zm, where |z;| = 6;
7. 5 < p~t(tolnt(z0))]| ... [|p~(tolnt(2));
8. return (s, \);

The modified protocol P’ is shown in Figure 2. It uses the encoding function
ENCD and the secret sharing scheme as depicted in Section 2.4. For P’ we assume
that STR contains all m character strings over the alphabet AL, and p is the
smallest prime greater than 26™, these can be considered the fixed and public
parameters for . The encoding mechanism is specifically designed to convert a
string in STR to an element in Z,, so that Shamir’s secret sharing can be suitably
used.

To decrypt a cipher produced by P’ a human user must solve at least some u
of w CAPTCHAs. Using these u solutions together with x;, k£ can be recovered.
A specific recommendation for SHARE can be Shamir (2,5)-threshold scheme.
Thus the user would have much flexibility on solving the CAPTCHAs.

5.1 Security of P’

The security of P’ can be easily proved in the sense of Definition 4 in a similar way
as we prove Theorem 1 if we make a new assumption regarding the CAPTCHA
as follows :

Definition 6. [The Hash-MultiCaptcha assumption] Let G be a CAPTCHA
generator, let £ be a number, let H : STR — {0,1} be a hash function, and let
A be an adversary. Also, let x = g(x1,...2w) be such that if at least u out of w

Protocol P'(x)

1. k& STR;

2. k' + ENCD(k,0);
3. {(z1, k1), ..., (Tw, kW) } < SHAREE ,(K');
4. fori=1to w;
5. (ki, \;) < ENCD™*(E});
6. C; < G(kl),
7. end for

8. K «+ H(k);

9. C + EK(:E);
10.return [C, {(z1,c1, A1), -, (Tw, Cw, Aw)}]

Fig. 2. The protocol P’ which uses a secret-sharing scheme.

of x1,...,%y are known then x can be recovered. We define the advantage of A
in violating the Hash-MultiCaptcha assumption as

AdvIIC(A) = PrlA(G(z1), . .. G(zy), H(z)) = 1]
—Pr[z & {0,1}Y: A(G(z1),...G(20), 2) = 1].

where x & STR. Moreover, (G, H) is called (e,t) HMC secure if for all adver-
saries A running in time at most t, Advg}}f(fl) <e. &

As in the definition of Hash-Captcha assumption, in this definition if the adver-
sary can efficiently solve at least u of w CAPTCHAS, then it can break (G, H)
in the HMC sense irrespective of the hash function. If this assumption is true,
then we can show the security of protocol P just as we did for protocol P.

A CAPTCHA is an example of a weakly-verifiable puzzle [2], since a legiti-
mate solver S may not be able to verify the correctness of its answer. For this
kind of puzzles, it has been proved [6] that if it is difficult for an attacker to solve
a weakly-verifiable puzzle P, then trying to solve multiple instances of a puzzle
in parallel is harder. Most recently, Jutla found a better bound to show how
hard it is for an attacker to solve multiple instances of weakly-verifiable puzzles
[8]. The next theorem is based on the main theorem proposed by Jutla, but it
has been adapted to CAPTCHAS, which are of our interest in this work.

Theorem 2. Let G be a CAPTCHA generator which is (o, 8) secure. Let k € N,
d=1—03and vy (0 << 1) be arbitrary. Let A be an arbitrary polynomial time
adversary, which is given as input k CAPTCHAs (G(x1),...,G(xy)) and outputs
a set X of solutions of the k CAPTCHAs. If InCorr(X) denotes the number of
incorrect solutions in X, then

Pr[InCorr(X) < (1 — v)dk] < o~ (1=7)7?0k/2

This theorem establishes that for any adversary if the probability of failure in
solving a CAPTCHA is at least J, then the probability of failing on less than
(1 —)k out of k puzzles, is at most e~ (A=M7*8k/2,

Based on this fact, it may be possible to show that for any arbitrary adversary
A attacking the HMC assumption, there exists a HC adversary B such that
Advglgf(A) < Adng)H(B). This would imply that the HC assumption implies
the HMC assumption. But, for now we are not sure whether such a result holds.

5.2 Discussions

— About the encryption scheme: In this work we have not said anything
about the encryption scheme to be used in the protocol. We only said that we
require our encryption scheme to be PROF-EAV secure and any IND-EAV
secure encryption scheme can provide such security. Thus most symmetric
encryption schemes which are usually in use like CBC mode, counter mode
etc. (which provide security in the IND-CPA sense) can be used for the
encryption function F in ’. A more efficient scheme which provides security
only in the PROF-EAV sense would be much interesting, we would like to
explore in this direction.

— Key sizes: Another important thing to consider is that the effective size
of a key for the protocol is dictated by the parameter m, i.e., the size of
each string in STR. This value cannot be made arbitrarily large as solving
big CAPTCHASs for human beings may be tiresome, a usual CAPTCHA
length is five to eight characters. If we use eight character strings from the
alphabet AL then the effective size of the key space would be 2%%. Increasing
the alphabet size is also not feasible as we need un-ambiguous printable
characters to make CAPTCHAs. Thus, the key space is not sufficiently large
for a modern cryptographic application, but for the application which we
have in mind this may be sufficient, as we do not expect that a profiler
would be ready to use so much computational resource for profiling a single
message.

6 Final Remarks

In this paper we did a theoretical analysis of profiling adversaries and ultimately
described a protocol which is secure against profiling adversaries. Our proto-
col does not require any key exchange or public key infrastructure and uses
CAPTCHASs and secret sharing schemes in a novel way.

Encryption may not be the only way to protect a user from profilers. As
profilers can use many different techniques which cannot be stopped using en-
cryption. For example it is possible to track the web usage of a specific user and
profile him/her on that basis. Here (probably) encryption has no role to play,
or at least cannot be used in the way we propose in our protocol. Anonymity is
probably the correct direction to explore in solving such problems. Also, as user
profiling is a big business, and some think that the free content in the web is only

possible due to online advertisements, so putting a total end to user profiling
may not be desirable. So there have been current attempts to develop systems
which would allow targeted advertisements without compromising user security
[14]. These issues are not covered in our current work.

References

1.

10.

11.

12.

13.
14.

15.

M. Abdalla, M. Bellare, and P. Rogaway. The oracle diffie-hellman assumptions
and an analysis of DHIES. In D. Naccache, editor, CT-RSA, volume 2020 of Lecture
Notes in Computer Science, pages 143-158. Springer, 2001.

R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable
puzzles. In J. Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 17-33. Springer, 2005.

C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. F.
Brickell, editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages
139-147. Springer, 1992.

S. Dziembowski. How to pair with a human. In J. A. Garay and R. D. Prisco,
editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages 200—218.
Springer, 2010.

P. Golle and A. Farahat. Defending email communication against profiling attacks.
In V. Atluri, P. F. Syverson, and S. D. C. di Vimercati, editors, WPES, pages 39—
40. ACM, 2004.

R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product theo-
rems. J. Cryptology, 22(1):75-92, 2009.

R. Impagliazzo and D. Zuckerman. How to recycle random bits. In FOCS, pages
248-253. IEEE, 1989.

C. S. Jutla. Almost optimal bounds for direct product threshold theorem. In
D. Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science,
pages 37-51. Springer, 2010.

. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/

CRC, 2008.

M. Naor. Verification of a human in the loop or identification via the turing test,
1997. http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.pdf.

NYT. Congress begins deep packet inspection of internet
providers, 2009. http://bits.blogs.nytimes.com/2009/04/24/
congress-begins-deep-packet-inspection-of-internet-providers/.

B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In
V. Atluri, editor, ACM Conference on Computer and Communications Security,
pages 161-170. ACM, 2002.

A. Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. Privacy
preserving targeted advertising. In Proceedings of annual network and distributed
systems security symposium, 2010. http://www.isoc.org/isoc/conferences/
ndss/10/pdf/05.pdf.

L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. Captcha: Using hard ai
problems for security. In E. Biham, editor, FUROCRYPT, volume 2656 of Lecture
Notes in Computer Science, pages 294-311. Springer, 2003.

