A j-lanestree hashing mode and j-lanes SHA-256

Shay Gueroh?

! Department of Mathematics, University of Haifaaks
2 Intel Corporation, Israel Development Center, Hddaael

August 21, 2012

Abstract. j-lanes hashing is a tree mode that splits an imassage tp slices,
computeg independent digests of each slice, and outputhdkbk value of their
concatenation. We demonstrate the performance taty@mfj-lanes hashing
on SIMD architectures, by coding 4lanes-SHA-256 implementation and
measuring its performance on the latet Generation Int& Core". For
message ranginkB to 132KB in length, thed-lanes SHA-256 is betwedn5

to 1.97 times faster than the fastest publicly availabiplementation (that we
are aware of), and betweef2 to ~2.5 times faster than OpenSSL 1.0.1c. For
long messages, there is no significant performaiifference between different
choices ofj. We show that thd-lanes SHA-256 is faster than the two SHA3
finalists (BLAKE and Keccak) that have a publishezetmode implementation.
We explain whyj-lanes hashing will be even faster on the futureXg&v
architecture witt256 bits registers. This suggests that standardizimgeamode
for hash functions (SHA-256 in particular) would lider significant
performance benefits for a multitude of algorithemsl usages.

Keywords: Tree mode hashing, SHA-256, SHA3 competition, SIMD
architecture, Advanced Vector Extensions architestuAVX, AVX2.

1 Introduction

The performance of hash functions plays an imporale in various situations (e.g.,
for SSL/TLS connections that use HMAC for autheattiéd encryption). In particular,
the performance of SHA-256 on high end processoasgerformance baseline for the
SHAS3 competition [1].

Recently, [2] published a “Simultaneous Hashing"HASH) method, for using
SIMD architectures to speed up the computatiorSHtA-256 (and other hashes) over
multiple messages. In this paper, we apply thibrtgpie to accelerate SHA-256 for a
single message, using a tree mode that wejdatles hashing. We show that the
resulting “j -lanes SHA-256" is significantly faster than thearstard (“linear”
hereafter) SHA-256. This demonstrates the perfoomdnenefits of standardizing tree
modes for hash functions (in particular, SHA-256 &HA-512). It is interesting to
compare our results to the two SHAS3 finalists thlatady have &lanes tree mode
implementation (see [3]): BLAKEj$2 andj=4) and Keccak j€2). We offer this
comparison in Section 4.

2 Shay Gueron

2 j-lanes hashing and the special case of 4-lanes SHA-256

Tree hashing is a well known concept for speedindhash functions computations,
and is an efficient way for updating the hash valigen only a portion of the
message is changed. Some relevant references] afg][46], [7], [8]. We focus here

on a specific tree construction, which is definedhe following section.

21 j-laneshashing

Definition 1 (message j-Slicing): given a messag®, its associate@Sliced message

is the permutation (not necessarily concatenatidrgisjoint slices ofm, namelym=
permutation(my | my | mz I... I m) under some agreed convention on how each slice is
defined (for simplicity assume thathas at leagtbits, to avoid empty string slices).

Definition 2 (j-lanes-hash): Leth = h (MESSAGIbe a hash function. Its associated
j-lanes-hash, is a hash scheme that operates asgollo

1. j-Slicing the message to= permutation(my | my I mg [... 1 m).

2. Computingt; = h (my), L =h (my), ..., f=h(m).

3. Computingt*=h (ty 1tz 1 ...1t).

4. Returning the digegt.
(hereafter we call Step 3 the “Wrapping” step).

j-lanes-hash is a special form of a tree mode (fmbary tree), where the number
of nodes ig+1 and the height of the tree 2s As a special case of a tree mode, the
security properties of this construction follow fiche more general theory on tree
hashing (e.g., [5] and [6] discuss the securitypprtes of a tree hash in the context of
indifferentiability from an ideal hash function).

Note that the definition covers several setups. @rample is “interleaving”
segments of a given message (which we use heralirfectly taking advantage of
SIMD architectures). Another case is when the dataonsumed fronj locations
(e.g.,j pointers) of a message. This can occur in an egtin that hashes a file
system (or a directory) whejes the number of files (and each file is a nod¢he
tree). We assume hereafter that the processed gessaege sufficiently long to gain
performance advantage of thianes tree mode (and ignore trivially short mesgage

2.2 Applying j-lanes hashing to derive a 4-lanes SHA-256

We use SHA-256 as the underlying hash algorithnd, generate &j -lanes SHA-
256". Our motivation is the potential performanadvantage that stems from the
parallelization offered by SIMD architectures (oultithreaded implementations).

By splitting the message intpindependent slices, the hash computations are
reduced to the problem of hashing multiple indeahdnessages, supplemented by
the fixed-cost Wrapping step. Techniques for usatiglD architectures for hashing
multiple independent messages (of different lengtasd the resulting performance
speed-ups, are described in detail in [2]. We hesd techniques here.

A j-lanes tree hashing mode and j-lanes SHA-256 3

SHA-256 operates oB82-bit words. Therefore, on processors that suppuet t
AVX (or SSE) architecture that has 128-bit regstand the necessary integer
instructions, a natural choice fptanes (SHA-256) hashing js4, with the obvious
convention for slicing the message: conseculi2&bit chunks of the message are
treated agl consecutive82-bit words, each one of a different slice. Thdsgords fit
in as4 “elements” of a single AVX registexifin), and the SHA-256 computations
can therefore be parallelized using the SIMD aectiitre (see [2] for details).

If the byte-length of the message is divisible2®, the slices have equal lengths.
Otherwise, (at least) one of slice has a diffelength, and this situation requires
different handling in the last Update (with negdtigi performance cost).

j-lanes hashing involves some overhead, and thexefioe performance gains are
expected to be (fully) manifested only for suffitiy long messages.

To illustrate, we note that the performance of SEF% is closely proportional to
the number of invocations of its compression furti{*Update” hereafter). Consider
a message whose byte-lengih divisible by 256, and write= 256x for some integer
X. Hashing (with SHA-256) such a message requpesl Updates, where the last
one due to the padding block. On the other hdrddnes SHA-256 for this message
requires4 (x+1) + 3 Updates, accounting fdr padding block for each slice, aid
Updates for the Wrapping step which requires haghih a 128 bytes message.
Comparing the linear (i.e., serial) SHA-256 to thlanes SHA-256, we see that the
latter involvess additional Updates. However, from the totaklgf7 Updatesdx can
be parallelized, in particular by using the AVX latecture. This is the reason why
the overall performance is expected to improve.

3 Performance studies

This section discusses some performance studiesffptanes SHA-256. We first
describe the measurement methodology.

e Each measured function was isolated, run 25,00@sti(fmwarm-up), followed by
100,000 iterations that were timed (using the RDTi®&@ruction) and averaged.

e To minimize the effect of background tasks runniog the system, each
experiment was repeated five times, and the minimesult was recorded.

e All the runs were carried out on a system where ltitel® Hyper-Threading
Technology, the Int& Turbo Boost Technology, and the Enhanced Intel
Speedsteh Technology, werelisabled

e The runs were executed on th& Generation Int&l Core" i7-3770 processor
(previously known as “Architecture Code name Ivydge”).

¢ In all cases, the reported performance numbersuatdor the full computations
(i.e., including the padding and, when relevarg.fthal hashing of thgdigests).

In our studies, we used two SHA-256 and thirdenes-SHA-256 j€4, 8, 16
implementations as follows:

e OpenSSL (1.0.1c) linear: standard hashing usingh©gé function.
e 4-SMS linear: standard hashing using thEMS (=4) method (see [9], [10]; we
used here an improved version of this implementitio

N

Shay Gueron

e j-lanes using OpenSSL: using OpenSSL'’s (1.0.1c) 88&function to implement
j-lanes-SHA-256.

¢ j-lanes using th@-SMS: using the»-SMS SHA-256 implementation ([9], [10]) to
implementj-lanes SHA-256.

e AVX j-lanes hashing{lanes hashing for short): an optimized implemeéotedf j-
lanes SHA 256, using the S-HASH implementation 2f, [and the AVX
architecture.

The results are illustrated in Figures 1-3.

Figure 1 compares the different implementations&oniB8KB message ang-4.
Without parallelizing the hashing of the slices {ag-lanes using OpenSSL aid
lanes using then-SMS), the 4-lanes SHA-256 is slower than the linear
implementation. This is due to the overheads ofjilames method. For example,
OpenSSL (1.0.1¢) usd9 Updates and performs &2.87 Cycles/Bye, while thd-
lanes SHA-256 implementation that simply calls @eenSSL functions, use35
Updates, and performs &8.57 Cycles/Bye. On the other hand, the optimized @sin
AVX) 4-lanes SHA-256 implementation2s45times faster than OpenSSL.

14 12:87 13.57

12 - 10.81
10.18
g -
6 - 5.46
4 -
2 -
0 - . . T T

OpenSSL n-SMS 4-lanes 4-lanes 4-lanes

=
o
I

Cycles per byte

(linear) (linear) using using n- hashing
OpenSSL SMS
8,192 bytes message

Fig. 1. Performance of different implementations of 4elsu$HA-256, compared to linear
SHA-256, for a 8192- bytes message. Measuremekds tan the 3rd Generation Intel®
Core™ Processor.

Figure 2 illustrates the effect of the choicg ¢f 4, 8, 1§. Obviously, increasing
involves additional overhead to thdanes hashing. For examplks-lanes SHA-256
for an 8KB message involve$53 Updates, and is therefore slower than 4Hanes
SHA-256 that uses onl{35 Updates (see top panel). However, b®thnes and 16-
lanes SHA-256 are still significantly faster thahet best performing linear

A j-lanes tree hashing mode and j-lanes SHA-256 5

implementation. For long messages (see bottom paiine relative impact of the
overheads decreases, and we obtain roughly the parftemance foy = 4, 8, 16

14 1Z2.67

12 A
10.18

[y
o
!

m j=4

mj=8

Cycles per byte

"j-16

OpenSSL (linear) n-SMS (linear) j-lanes hashing
8,192 bytes message

14 12,78

12 A
10.09

10 A

u j=4

mj=8

Cycles per byte

"j-16

OpenSSL (linear) n-SMS (linear) 4-lanes hashing
131,072 bytes message

Fig. 2. Performance gflanes-SHA-256 foj=4, 8, 16 compared to linear SHA-256. The
message length is 8,192 bytes (top panel)1&id072bytes (bottom panel). Measurements
taken on the'8 Generation Intel® Core™ Processor.

Figure 3 shows the performance advantage ofitlames SHA-256 for messages
of lengths varying fron2KB to 128<B: 4-lanes SHA-256 is between55to 2 times

6 Shay Gueron

faster than the best serial implementation (&8 - 2.53 times faster than OpenSSL
1.0.1c).

14
12
10

M OpenSSL (linear)

Cycles per byte

B n-SMS (linear)

O N A O

4-lanes hashing

) © 4%) S © v
v S L SR

Message length (in bytes)

Fig. 3. Performance of-lanes SHA-256, compared to linear SHA-256, fofedént message
lengths. Measurements taken on tffeGneration Int& Core” Processor.

4 Conclusion

We demonstrated the performance gaing-lahes hashing, using SHA-256 as the
underlying hash algorithm. On th& &eneration Int&l Core™ Processor (with AVX
architecture) selectingr4, gives speedup factors betwek®5xto 2x, compared to
the best available implementation (up2t&3xwhen comparing to OpenSSL 1.0.1c).
We focused onj=4, as the natural choice for the current AVX (andEBS
architectures. Interestingly, although4 yields the best results (the Wrapping
overhead is the smallest among the tested cases)ote that the performance with
all the studies choicgs4, 8, 16is roughly the same for long messages.

We also comment that with the near future AVX2 @ediure [11], a natural
choice would bg=8 for SHA-1, SHA-256 and=4 for SHA-512, and thg-lanes
implementations will be significantly faster. Thine, if aj-lanes hashing mode is
adopted, and the ecosystem would prefer to supmbyta single value gf(to reduce
the interoperability complexities), it seems thalestingj=8 would be a good choice.

In general, thg-lanes-hash can be useful in other scenarios, atid different
values ofj. One example mentioned about is hashing a filéesyswhergj is the
number of files (and each file is a node in thee)réSuch computations can be
accelerated not only by using SIMD architecturas, dlso by using the processing
power of multi-cores systems.

We conclude that thglanes-hash could alleviate computational bottlesgand
recommend that this mode (or a general tree madsjandardized. To this end, we
comment that standardization ofj-4anes (or any tree) mode should also properly
define different initialization vectors (dependiatso on the value gf) in order to

A j-lanes tree hashing mode and j-lanes SHA-256

distinguish the resulting digests from outputstef tinear SHA-256 (analogously to
the how a digest truncation (e.g., SHA224) is dsfin

41 A comment on the SHA3 finalists

We expect that the SHA3 finalists [1] could alséngaom using thg-lanes-hash,
at least to some extent, and the performance gailhdurther increase when the
AVX2 architecture becomes available. However, & point, it is hard to tell if these
algorithms would outperform thglanes-SHA-256 and/grlanes-SHA-512, and by
what margin.

Since the two finalists BLAKE and Keccak alreadyvédnaa tree mode
implementationje2 andj=4 for BLAKE, andj=2 for Keccak; see [3]), we show the
performance comparisons of SHA-256, BLAKE, and Kédcm linear and in-lanes
mode in Figure 4.

14
12

Cycles per byte
O N b O 8
- srot

© © © © o >
\o)) o) \o) N (2
R AR N
S N K N AN N N
5% &) & D < R Q)% U N
ef& "’Q & § & e(‘&

8,192 bytes message

Fig. 4. Performance of SHA-256, BLAKE256, BLAKE512, and Kecca “linear” mode and
in tree mode (for a 8,192 bytes message). Measutsrtgken on the'3Generation Intél
Core" Processor.

As expected, thglanes (tree mode) implementation improves thegpetéance of
all three algorithms. The results show thatjttenes SHA-256 implementation is the
fastest one of these three.

Recalling that SHA-256 (and SHA-512) is the perfante baseline for SHA3, we
conclude (from the currently available informatidhat considering thglanes mode
still does notoffer a performance advantage for SHA3 over SHA:2%his is
consistent with the findings of [6]: migration tonew SHA3 standard could not be
motivated by performance advantages on the higtptfbrms.

7

Shay Gueron

5 Acknowledgements

I thank Jean-Philippe Aumasson, Bart Preneel arsbeJ&Valker for helpful
discussions.

6 References

[1]
(2]
g
[5]
(6]

[7]
(8]
9]

NIST, cryptographic hash Algorithm Comepetition.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.htm

Gueron, S., Krasnov, V.: Simultaneous hashing ofitipla messages (2012),
http://eprint.iacr.org/2012/371.pdf
SUPERCOPAttp://bench.cr.yp.to/supercop.htmi

Bertoni, G., Daemen, J, Peeters, M, Van AsscheK&:cak sponge function family
main document. Submission to NIST; updated (200%ktp://cuda-
keccak.googlecode.com/svn/trunk/docs/Keccak-mairpdf

Bertoni, G., Daemen, J, Peeters, M, Van AsscheSdficient conditions for sound
tree and sequential hashing modes (20@9)//eprint.iacr.org/2009/210

Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indiffetiability of Permutation-Based
Compression Functions and Tree-Based Modes of Operatiith Applications to
MD6. Proceedings of FSE 2009, Lecture Notes in Cderp8cience, 5665 104-121
(2009).

Merkle, R. C.: A certified digital signature. Advasc@ Cryptology, Proceedings of
CRYPTO '89, Lecture Notes in Computer Science, 438:238 (1990).

P. Sarkar, P. Schellenberg, P. J.: A parallelzalgsign principle for cryptographic
hash functions. Cryptology ePrint Archive (200&}p://eprint.iacr.org/2002/031
Gueron, S., Krasnov, V.. Parallelizing message dales to accelerate the
computations of hash functions (2012fp://eprint.iacr.org/2012/067.pdf

[10] Gueron, S., Krasnov, V.. [PATCH] Efficient implematibns of SHA256 and

SHA512, using the Simultaneous Message Scheduling ethad,
http://rt.openssl.org/Ticket/Display.html?id=2784dar=guest&pass=guest

[11] Intel (M. Buxton): Haswell New Instruction Descrigtis Now Available!

http://software.intel.com/en-us/blogs/2011/06/18¥ell-new-instruction-
descriptions-now-available/

Filename: jlanes_hash_2012_08_20_v01.docx

