An extended abstract of this paper is published in the proceedings of the 19th Annual International
Conference on the Theory and Application of Cryptology and Information Security — Asiacrypt 2013.
This is the full version.

Bounded Tamper Resilience:
How to go beyond the Algebraic Barrier

Ivan Damgérd!, Sebastian Faust?, Pratyay Mukherjee!, and Daniele Venturi®

'Department of Computer Science, Aarhus University
2Security and Cryptography Laboratory, EPFL
3Department of Computer Science, Sapienza University of Rome

February 18, 2015

Abstract

Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the
secret key and observe the effect of such changes at the output. The state of the art in RKA security
protects against an a-priori unbounded number of certain algebraic induced key relations, e.g., affine
functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond
the algebraic barrier and achieve security against arbitrary key relations, by restricting the number
of tampering queries the adversary is allowed to ask for. The latter restriction is necessary in case
of arbitrary key relations, as otherwise a generic attack of Gennaro et al. (TCC 2004) shows how to
recover the key of almost any cryptographic primitive. We describe our contributions in more detail
below.

1. We show that standard ID and signature schemes constructed from a large class of X-protocols
(including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily
tamper with the prover’s state a bounded number of times and obtain some bounded amount
of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering
with the public parameters.

2. We show a bounded tamper and leakage resilient CCA-secure public key cryptosystem based
on the DDH assumption. We first define a weaker CCA-like security notion that we can
instantiate based on DDH, and then we give a general compiler that yields CCA security with
tamper and leakage resilience. This requires a public tamper-proof common reference string.

3. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2.
above) to continuous tampering and leakage resilience, in the so-called floppy model where
each user has a personal hardware token (containing leak- and tamper-free information) which
can be used to refresh the secret key.

We believe that bounded tampering is a meaningful and interesting alternative to avoid known impos-
sibility results and can provide important insights into the security of existing standard cryptographic
schemes.
Keywords: related key security, bounded tamper resilience, public key encryption, identification
schemes

Contents

2.3 Signature Schemes| L
2.4 d-protocols| e e e
[2.5 True Stmulation Extractability| o
[2.6 A Note on Deterministic vs Probabilistic Tampering|.

chemes wit ecurity|

3.1 >-protocols are Tamper Resilient|
[3.2 Concrete Instantiation with more Tampering|

IND- PKE with BLT Security

.1 Restricted IND-CCA BLT Security|. o .
4.2 A General Transformationl

[Updating the Key in the i:Floppy Model|

5.1 ID Schemes in the iFloppy Model|
[5.2 PKE Schemes in the iFloppy Model|

[6 Tampering with the Computation in the iFloppy Model|

12
13
15
17
18

18
19
19
21
22

23
24
27

29

1 Introduction

Related key attacks (RKAs) are powerful cryptanalytic attacks against a cryptographic implementation
that allow an adversary to change the key, and subsequently observe the effect of such modification
on the output. In practice, such attacks can be carried out, e.g., by heating up the device or altering
the internal power supply or clock [8, [15], and may have severe consequences for the security of a
cryptographic implementation. To illustrate such key tampering, consider a digital signature scheme
Sign with public/secret key pair (pk, sk). The tampering adversary obtains pk and can replace sk with
T'(sk) where T is some arbitrary tampering function. Then, the adversary gets access to an oracle
Sign(T'(sk),), i.e., to a signing oracle running with the tampered key 7'(sk). As usual the adversary
wins the game by outputting a valid forgery with respect to the original public key pk. Notice that 7' may
be the identity function, in which case we get the standard security notion of digital signature schemes.

Bellare and Kohno [[12]] pioneered the formal security analysis of cryptographic schemes in the
presence of related key attacks. In their setting an adversary tampers continuously with the key by
applying functions 7" chosen from a set of admissible tampering functions 7. In the signature example
from above, each signing query for message m would be accompanied with a tampering function T’ € T
and the adversary obtains Sign(7'(sk), m). Clearly, a result in the RKA setting is stronger if the class
of admissible functions 7T is larger, and hence several recent works have focussed on further broadening
T . The current state of the art (see discussion in Section[I.2]) considers certain algebraic relations of the
key, e.g., T is the set of all affine functions or all polynomials of bounded degree. A natural question
that arises from these works is if we can further broaden the class of tampering functions — possibly
showing security for arbitrary relations. In this work, we study this question and show that under certain
assumptions security against arbitrary key relations can be achieved.

Is tamper resilience against arbitrary attacks possible? Unfortunately, the answer to the above
question in its most general form is negative. As shown by Gennaro et al. [46], it is impossible to protect
any cryptographic scheme against arbitrary key relations. In particular, there is an attack that allows to
recover the secret key of most stateless cryptographic primitives after only a few number of tampering
queries To prevent this attack the authors propose to use a self-destruct mechanism. That is, before
each execution of the cryptographic scheme the key is checked for its validity. In case the key was
changed the device self-destructs. In practice, such self-destruct can for instance be implemented by
overwriting the secret key with the all-zero string, or by switching to a special mode in which the device
outputs J_EI In this work, we consider an alternative setting to avoid the impossibility results of [46],
and assume that an adversary can only carry out a bounded number of (say ¢) tampering queries. To
explain our setting consider again the example of a digital signature scheme. In our model, we give the
adversary access to ¢ tampered signing oracles Sign(T;(sk), -), where T; can be an arbitrary adaptively
chosen tampering function. Notice that of course each of these oracles can be queried a polynomial
number of times, while ¢ is typically linear in the security parameter.

Is security against bounded tampering useful? Besides from being a natural and non-trivial security
notion, we believe that our adversarial model of arbitrary, bounded tampering is useful for a number of
reasons:

1. It is a natural alternative to continuous restricted tampering: our security notion of bounded,
arbitrary tampering is orthogonal to the traditional setting of RKA security where the adversary
can tamper continuously but is restricted to certain classes of attacks. Most previous work in
the RKA setting considers algebraic key relations that are tied to the scheme’s algebra and may

!"The impossibility result of [46]] leaves certain loopholes, which however seem very hard to exploit.
2We notice that the self-destruct has to be permanent as otherwise the attack of [46]] may still apply.

Tampering Model ID Schemes IND-CCA PKE

3-Protocols Okamoto BHHO
Secret Key v v v
Public Parameters n.a. v n.a.
Continuous Tampering iFloppy v v v
Key Length log | X| Llog p Llog p
Tampering Queries llog |X|/log|YV|] —2 £—2 -3

Table 1: An overview of our results for bounded leakage and tamper resilience. All parameters | X, |)|
£, p and n are a function of the security parameter k. For the case of 3-protocol, the set X is the set
of all possible witnesses and the set) is the set of all possible statements for the language; we actually
achieve a slightly worse bound depending on the conditional average min-entropy of the witness given
the statement (cf. Section [3).

)

not reflect attacks in practice. For instance, it is not clear that heating up the device or shooting
with a laser on the memory can be described by, e.g., an affine function — a class that is usually
considered in the literature. We also notice that physical tampering may completely destroy the
device, or may be detected by hardware countermeasures, and hence our model of bounded but
arbitrary tampering may be sufficient in such settings.

2. It allows to analyze the security of cryptoschemes already used “in the wild”: as outlined above
a common countermeasure to protect against arbitrary tampering is to implement a key validity
check and self-destruct (or output a special failure symbol) in case such check fails. Unfortu-
nately, most cryptographic implementations do not come with such a built-in procedure to check
the validity of the key; furthermore, such a self-destruct feature might not always be desirable, for
instance in settings where faults are not adversarial, but due to some characteristic of the environ-
ment where the device is used (e.g., the temperature). Our notion of bounded tamper resilience
allows to make formal security statements about algorithms running directly in implementations
without self-destruct, so that neither the construction, nor the implementation needs to be specially
engineered.

3. It can be a useful as a building-block: even if the restriction of bounded tamper resilience may be
too strong in some settings, it can be useful to achieve results in the stronger continuous tampering
setting (we provide some first preliminary results on this in Section 3)).

Notice that this is similar to the setting of leakage resilient cryptography which also started mainly
with “bounded leakage” that later turned out to be very useful to get results in the continuous
leakage setting.

We believe that due to the above points the bounded tampering model is an interesting alternative to
avoid known impossibility results for arbitrary tampering attacks.

1.1 Our Contribution

We initiate a general study of schemes resilient to both bounded tampering and leakage attacks. We call
this model the bounded leakage and tampering model (BLT) model. While our general techniques use
ideas from the leakage realm, we emphasize that bounded leakage resilience does not imply bounded
tamper resilience. In fact, it is easy to find contrived schemes that are leakage resilient but completely
break for a single tampering query. At a more technical level, we observe that a trivial strategy using
leakage to simulate, e.g., faulty signatures, has to fail as the adversary can get any polynomial number

of faulty signatures — which clearly cannot be simulated with bounded leakage only. Nevertheless, as
we show in this work, we are able to identify certain classes of cryptoschemes for which a small amount
of leakage is sufficient to simulate faulty outputs. We discuss this in more detail below.

Our concrete schemes are proven secure under standard assumptions (DL, factoring or DDH) and
are efficient and simple. Moreover, we show that our schemes can easily be extended to the continual
setting by putting an additional simple assumption on the hardware. We elaborate more on our main
contributions in the following paragraphs (see also Table[I.1]for an overview of our results). Importantly,
all our results allow arbitrary key tampering and do not need any kind of tamper detection mechanism.

Identification schemes. It is well known that the Generalized Okamoto identification scheme [58]]
provides security against bounded leakage from the secret key [7, 53]. In Section [3] we show that
additionally it provides strong security against tampering attacks. While in general the tampered view
may contain a polynomial number of faulty transcripts that may potentially reveal a large amount of
information about the secret key, we can show that fortunately this is not the case for the Generalized
Okamaoto scheme. More concretely, our analysis shows that by leaking the public keys corresponding
to the modified secret keys allows, for each tampering query, to simulate any number of faulty transcripts
(under the modified keys) by running the honest-verifier zero-knowledge simulator. Since the public key
is significantly shorter than the secret key, BLT security of the Generalized Okamoto scheme is implied
by its leakage resilience.

Our results on the Okamoto identification can be further generalized to a large class of identification
schemes (and signature schemes based on the Fiat-Shamir heuristic), namely to all X-protocols where
the secret key is significantly longer than the public key. In particular, we can instantiate our result with
the generalized Guillou-Quisquater ID scheme [49]], and its variant based on factoring [44]], yielding
tamper resilient identification based on factoring. We give more details in Section [3]

Interestingly, for Okamoto identification security still holds in a stronger model where the adversary
is allowed to tamper not only with the secret key of the prover, but also with the description of the public
parameters (i.e., the generator g of a group G of prime order p). The only restrictions are: (i) tampering
with the public parameters is independent from tampering with the secret key and (ii) the tampering
with public parameters must map to its domain. We also show that the latter restrictions are necessary,
by presenting explicit attacks when the adversary can tamper jointly with the secret key and the public
parameters or he can tamper the public parameters to some particular range.

Public key encryption. We show how to construct IND-CCA secure public key encryption (PKE) in
the BLT model. To this end, we first introduce a weaker CCA-like security notion, where an adversary
is given access to a restricted (faulty) decryption oracle. Instead of decrypting adversarial chosen ci-
phertexts such an oracle accepts inputs (m,), encrypts the message m using randomness 7 under the
original public key, and returns the decryption using the faulty secret key. This notion already provides a
basic level of tamper resilience for public key encryption schemes. Consider for instance a setting where
the adversary can tamper with the decryption key, but has no control over the ciphertexts that are sent to
the decryption oracle, e.g., the ciphertexts are sent over a secure authenticated channel.

Our notion allows the adversary to tamper adaptively with the secret key; intuitively this allows
him to learn faulty decryptions of ciphertexts for which he already knows the corresponding plaintext
(under the original public key) and the randomness. We show how to instantiate our basic tamper
security notion under DDH, by proving that the BHHO cryptosystem [16] already satisfies it. The
proof uses similar ideas as in the proof of the Okamoto identification scheme. In particular our analysis
shows that by leaking a single group element per tampering query, one can answer any number of
(restricted) decryption queries; hence restricted IND-CCA BLT security of BHHO follows from its
leakage resilience (which was proven in [57]).

We then show how to transform the above weaker CCA-like notion to full-fledged CCA security in
the BLT model. To this end, we follow the classical paradigm to transform IND-CPA security into IND-
CCA security by adding an argument of “plaintext knowledge” 7 to the ciphertext. Our transformation
requires a public tamper-proof common reference string similar to earlier work [52]. Intuitively, this
works because the argument 7 enforces the adversary to submit to the faulty decryption oracle only
ciphertexts for which he knows the corresponding plaintext (and the randomness used to encrypt it).
The pairs (m,) can then be extracted from the argument 7, allowing to simulate arbitrary decryption
queries with only access to the restricted decryption oracle.

Updating the key in the iFloppy model. As mentioned earlier, if the key is not updated BLT security
is the best we can hope for when we consider arbitrary tampering. To go beyond the bound of |sk| tam-
pering queries we may regularly update the secret key with fresh randomness, which renders information
that the adversary has learned about earlier keys useless. The effectiveness of key updates in the context
of tampering attacks has first been used in the important work of Kalai et al. [52]. We follow this idea
but add an additional hardware assumption that allows for much simpler and more efficient key updates.
More concretely, we propose the iFloppy model which is a variant of the floppy model proposed by
Alwen et al. [7] and recently studied in depth by Agrawal et al. [6]]. In the floppy model a user of a
cryptodevice possesses a so-called floppy — a secure hardware token — that stores an update keyE] The
floppy is leakage and tamper proof and the update key that it holds is solely used to refresh the actual
secret key kept on the cryptodevice. One may think of the floppy as a particularly secure device that the
user keeps at home, while the cryptodevice, e.g., a smart-card, runs the actual cryptographic task and is
used out in the wild prone to leakage and tampering attacks. We consider a variant called the iFloppy
model (here “i” stands for individual). While in the floppy model of [6, [7]] all users can potentially pos-
sess an identical hardware token, in the iFloppy model we require that each user has an individual floppy
storing some secret key related data. We note that from a practical point of view the iFloppy model is
incomparable to the original floppy model. It may be more cumbersome to produce personalized hard-
ware tokens, but on the other hand, in practice one would not want to distribute hardware tokens that all
contain the same global update key as this constitutes a single point of failure.

We show in the iFloppy model a simple compiler that “boosts” any ID scheme with BLT security
into a scheme with continuous leakage and tamper resilience (CLT security). Similarly, we show how
to extend IND-CCA BLT security to the CLT setting for the BHHO cryptosystem (borrowing ideas
from [6]]). We emphasize that while the iFloppy model puts additional requirements on the way users
must behave in order to guarantee security, it greatly simplifies cryptographic schemes, and allows us
to base security on standard assumptions. Our results in the iFloppy model are described in Section 3]
(Section [5.1ffor ID schemes, and Section [5.2[for PKE schemes).

Tampering with the computation via the BRM. Finally, we make a simple observation showing
that if we instantiate the above ID compiler with an ID scheme that is secure in the bounded retrieval
model [25} 34, [/ we can provide security in the iFloppy model even when the adversary can replace
the original cryptoscheme with an arbitrary adversarial chosen functionality, i.e., we can allow arbitrary
tampering with the computation (see Section [6). While easy to prove, we believe this is nevertheless
noteworthy: it seems to us that results in the BRM naturally provide some form of tamper resilience and
leave it as an open question for future research to explore this direction further.

1.2 Related Work

Related key security. We already discussed the relation between BLT security and the traditional no-
tion of RKA security above. Below we give further details on some important results in the RKA area.

3Notice that “floppy” is just terminology and we use it for consistency with earlier works.

Bellare and Kohno [[12]] initiated the theoretical study of related-key attacks. Their result mainly focused
on symmetric key primitives (e.g. PRP, PRF). They proposed various block-cipher based constructions
which are RKA-secure against certain restricted classes of tampering functions. Their constructions
were further improved by [56, [10]. Following these works other cryptographic primitives were con-
structed that are provably secure against certain classes of related key attacks. Most of these works
consider rather restricted tampering functions that, e.g., can be described by a linear or affine func-
tion [[12, 56, (10} 19,159,162, [14]. A few important exceptions are described below.

In [13] the authors show how to go beyond the linear barrier by extending the class of allowed
tampering functions to the class of polynomials of bounded degree for a number of public-key primitives.
Also, the work of Goyal, O’Neill and Rao [47] considers polynomial relations that are induced to the
inputs of a hash function. Finally Bellare, Cash and Miller [11] develop a framework to transfer RKA
security from a pseudorandom function to other primitives (including many public key primitives).

Tamper resilient encodings. A generic method for tamper protection has been put forward by Gen-
naro et al. [46]]. The authors propose a general “compiler” that transforms any cryptographic device
CS with secret state st, e.g., a block cipher, into a “transformed” cryptoscheme CS’ running with state
st’ that is resilient to arbitrary tampering with st’. In their construction the original state is signed and
the signature is checked before each usage. While the above works for any tampering function, it is
limited to settings where CS does not change its state as it would need access to the secret signing
key to authenticate the new state. This drawback is resolved by the concept of non-malleable codes
pioneered by Dziembowski, Pietrzak and Wichs [37]. The original construction of [37] considers an
adversary that can tamper independently with bits, a model further explored in [23], 22]. This has been
extended to small size blocks in [21], permutations [5, 4f], and recently to so-called split-state tamper-
ing [550 135} 2, 20, 39, (18, 13} [1]] and global tampering [41L 19, 51]. Recently, non-malleable codes have
also been used to protect a generic random access machine against tampering attacks [28 40].

While the above schemes provide surprisingly strong security guarantees, they all require certain
assumptions on the hardware (e.g., the memory has to be split into two parts that cannot be tampered
with jointly), and require significant changes to the implementation for decoding, tamper detection and
self-destruct.

Continuous tamper resilience via key updates. Kalai et al. [52] provide the first feasibility results
in the so-called continuous leakage and tampering model (CLT). Their constructions achieve strong
security requirements where the adversary can arbitrarily tamper continuously with the state. This is
achieved by updating the secret key after each usage. While the tampering adversary considered in [S2] is
clearly stronger (continuous as opposed to bounded tampering), the proposed schemes are non-standard,
rather inefficient, and rely on non-standard assumptions. Moreover, the approach of key updates requires
a stateful device and large amounts of randomness which is costly in practice. The main focus of this
work, are simple standard cryptosystems that neither require randomness for key updates nor need to
keep state.

Tampering with computation. In all the above works (including ours) it is assumed that the circuitry
that computes the cryptographic algorithm using the potentially tampered key runs correctly and is not
subject to tampering attacks. An important line of works analyze to what extent we can guarantee
security when the complete circuitry is prone to tampering attacks [50, 42} 26, 54, 27, 45]]. These works
typically consider a restricted class of tampering attacks (e.g., individual bit tampering) and assume that
large parts of the circuit (and memory) remain un-tampered.

Subsequent work. A preliminary version of this paper appeared as [29]. Subsequent work [30] shows
how to transform an arbitrary cryptoscheme into one satisfying a slightly weaker form of BLT security;

the number of tampering queries tolerated, however, is significantly smaller than the one achieved by
the constructions analyzed in this paper. The transformation in [30] can be understood as applying a
“non-malleable key derivation function” [41] to the state, a paradigm that was later extended in [61].

2 Preliminaries

2.1 Basic Notation

We review the basic terminology used throughout the paper. For n € N, we write [n] := {1,...,n}.
Given a set S, we write s <— S to denote that element s is sampled uniformly from S. If A is an
algorithm, y <— A(x) denotes an execution of A with input = and output y; if A is randomized, then y
is a random variable. Vectors are denoted in bold. Given a vector x = (z1,. .., 2,) and some integer a,
we write a* for the vector (a™!,...,a"*). The inner product of x = (z1,...,2¢) andy = (y1,...,Yr)
is (x,¥) = Yi_; @i - Ui

We denote with & the security parameter. A function d(k) is called negligible in k (or simply negli-
gible) if it vanishes faster than the inverse of any polynomial in k. A machine A is called probabilistic
polynomial time (PPT) if for any input z € {0,1}* the computation of A(x) terminates in at most
poly(|z|) steps and A is probabilistic (i.e., it uses randomness as part of its logic). Random variables
are usually denoted by capital letters. We sometimes abuse notation and denote a distribution and the
corresponding random variable with the same capital letter, say X.

Languages and relations. A decision problem related to a language £ C {0, 1}* requires to determine
if a given string y is in £ or not. We can associate to any A/P-language £ a polynomial-time recognizable
relation R C {0, 1}* x {0,1}* defining £ itself, i.e. £ = {y : Jx s.t. (y,z) € R} for || < poly(|y]).
The string z is called a witness for membership of y € £.

Information theory. The min-entropy of a random variable X over a set X’ is defined as Hoo (X)) :=
— log max, Pr[X = z], and measures how X can be predicted by the best (unbounded) predictor. The
conditional average min-entropy [33] of X given a random variable Z (over a set Z) possibly depen-
dent on X, is defined as ItIOO(X|Z) = —log EZHZ[Z_H(’O(MZ:Z)]. Following [7l], we sometimes
rephrase the notion of conditional min-entropy in terms of predictors A that are given some information
Z (presumably correlated with X), so Hoo(X|Z) = — log(maxa Pr[A(Z) = X]). The above notion
of conditional min-entropy can be generalized to the case of interactive predictors A, which participate
in some randomized experiment £. An experiment is modeled as interaction between A and a challenger
oracle £(+) which can be randomized, stateful and interactive.

Definition 2.1 ([[7]). The conditional min-entropy of a random variable X, conditioned on the ex-

periment € is Hoo(X|€) = — log(maxa Pr [A*0)() = X]). In the special case that £ is a non-
interactive experiment which simply outputs a random variable Z, then Ho,(X|Z) can be written to
denote H,(X|€) abusing the notation.

We will rely on the following basic properties (see [33, Lemma 2.2]).

Lemma 2.1. For all random variables X, Z and A over sets X, Z and {0, 1}* such that Hoo (X |Z) >
o, we have

Hoo(X|Z,A) > Hoo(X|Z) = A > o — A,

2.2 Hard Relations

Let R be a relation for some N P-language £. We assume the existence of a probabilistic polynomial
time algorithm Setup, called the setup algorithm, which on input 1* outputs the description of public
parameters pp for the relation R. Furthermore, we say that the representation problem is hard for R if
for all PPT adversaries A there exists a negligible function 6 : N — [0, 1] such that

Pr[a* # @5 (y.), (3y,27) € R (y,2,27) = App)i pp « Setup(1¥)] < (k).

Representation problem based on discrete log. Let Setup be a group generation algorithm that upon
input 1% outputs (G, g, p), where G is a group of prime order p with generator g. The Discrete Log
assumption states that for all PPT adversaries A there exists a negligible function § : N — [0, 1] such
that

Pr [y =g": x+ AG,9,p,9),y + G, (G,g,p) Setup(lk)] < 4(k).

Let £ € N be a function of the security parameter. Given a vector a € Z, define ¢® = (g1, ...,)
and let x = (x1,...,2y) < Z:fg. Define y = Hle g;*; the vector x is called a representation of y. We
let Rp be the relation corresponding to the representation problem, i.e. (y,x) € Rp, if and only if x
is a representation of y with respect to (G, g, g%). We say that the /-representation problem is hard in G
if for all PPT adversaries A there exists a negligible function 6 : N — [0, 1] such that

P[X* # X; (y¢ X)v (y7 X*) € RpL :
(y,%,x*) + A(G, g,9% p); (G, g,p) < Setup(1*); a + Z[] < 5(k).

The /-representation problem is equivalent to the Discrete Log problem [7, Lemma 4.1].

Representation problem based on RSA. Let Setup be a group generation algorithm that upon input
1% outputs (N, e, d), where N = p - ¢ such that p and ¢ are two primes and also ed = 1 mod ((p —
1)(g¢ — 1)). The RSA assumption states that for all PPT adversaries A there exists a negligible function
9 : N — [0, 1] such that

Pr {y =2°mod N : z < A(N,e,y),y + Zy, (N, e, d) + Setup(lk)} < (k).

Let ¢ € N be a function of the security parameter. Given a vector o € Zﬁ, define ¢* = (g1,...,9¢)
and let x = (x1,...,7¢) + Z% and p + Z}. Define y = Hle g;" - p® mod N; the pair (x, p) is
a representation of y with respect to (N, e, g,g%). We let Rgsa be the relation corresponding to the
representation problem, i.e. (y, (X, p)) € Rrsa if and only if (x, p) is a representation of y with respect
to (N, e, g,9%). We say that the ¢-representation problem is hard in Zy if for all PPT adversaries A
there exists a negligible function § : N — [0, 1] such that

P[(X*a p*) 7& (Xa p); (y7 (va))v (y7 (X*,p*)) € DC{RSA :
(¥, (x,p), (x*,p*)) <= AN, ,9,9%); (N, e,d) = Setup(1*); g <= Z; o = Z2] < 6(k).

The /-representation problem in Zy is equivalent to the RSA problem (see [58], 44]).

Decisional Diffie Hellman. Let Setup be a group generation algorithm that upon input 1* outputs
(G, g,p), where G is a group of prime order p with generator g. The Decisional Diffie Hellman (DDH)

assumption states that for all PPT adversaries A there exists a negligible function 6 : N — [0, 1] such
that

‘Pr [A(g,gx,gy,gxy) =1: 2,y Zy,(G,g,p) < Setup(lk)

—Pr [A(g,gx,gy,gz) =1: 2,y,2 < Zp, (G, g,p) < Setup(lk)} ‘ < (k).

2.3 Signature Schemes

A signature scheme is a triple of algorithms SZG = (KGen, Sign, Vrfy) such that: (1) KGen takes the
security parameter k as input and outputs a key pair (pk, sk); (2) Sign takes as input a message m and
the secret key sk, and outputs a signature o; (3) Vrfy takes as input a message-signature pair (m, o)
together with the public key pk and outputs a decision bit (indicating whether (m, o) is a valid signature
with respect to pk).

We require that for all messages m and for all keys (pk, sk) < KGen(1%), algorithm Vrfy(pk,m,
Sign(sk,m)) outputs 1 with all but negligible probability. A signature scheme SZG is existentially
unforgeable against chosen message attacks (EUF-CMA), if for all PPT adversaries A there exists a
negligible function § : N — [0, 1] such that Pr [A wins] < §(k) in the following game:

1. The challenger samples (pk, sk) < KGen(1¥) and gives pk to A.
2. The adversary is given oracle access to Sign(sk, -).

3. Eventually A outputs a forgery (m*,oc*) and wins if Vrfy(pk, (m*,0*)) = 1 and m* was not
asked to the signing oracle before.

2.4 >l-protocols

Y-protocols [24]] are a special class of interactive proof systems for membership in a language £, where
a prover P = (Pg, P1) wants to convince a verifier V = (Vp, V) (both modelled as PPT algorithms)
that it possesses a witness to the fact that a given element y is in some language £. Denote with x the
witness corresponding to y, and let pp be public parameters. The protocol proceeds as follows: (1)
The prover computes a < Py(pp) and sends it to the verifier; (2) The verifier chooses ¢ < Vo (pp, y),
uniformly at random from some challenge space S, and sends it to the prover; (3) The prover answers
with z < P1(pp, (a, ¢, x)); (4) The verifier outputs a result V1 (pp, vy, (a,c, 2)) € {accept, reject}. We
call this a public-coin three round interactive proof system. A formal definition of Y-protocols can be
found below.

Definition 2.2 (3-protocol). A ¥-protocol (P, V) for a relation R is a three round public-coin interactive
proof system with the following properties.

Completeness. Whenever P and V follow the protocol on common input y, public parameters pp and
private input z to P such that (y, z) € R, the verifier V accepts with all but negligible probability.

Special soundness. From any pair of accepting conversations on public input y, namely (a,c, 2),
(a,c, 2") such that ¢ # ¢, one can efficiently compute 2 such that (y, z) € 9.

Perfect Honest Verifier Zero Knowledge (HVZK). There exists a PPT simulator M, which on input y
and a random c outputs an accepting conversation of the form (a, ¢, z), with exactly the same
probability distribution as conversations between the honest P, V on input y.

Note that Definition requires perfect HVZK, whereas in general one could ask for a weaker
requirement, namely that the HVZK property holds only computationally.

10

2.5 True Simulation Extractability

‘We recall the notion of true-simulation extractable (tSE) NIZKs [32]]. This notion is similar to the notion
of simulation-sound extractable NIZKs [48]], with the difference that the adversary has oracle access to
simulated proofs only of true statements (and not of arbitrary ones).

Let 2R be an NP relation on pairs (y, x) with corresponding language £ = {y : Iz s.t. (y,x) € R}.
A tSE NIZK proof system for fR is a triple of algorithm (Gen, Prove, Verify) such that: (1) Algorithm
Gen takes as input 1¥ and generates a common reference string w, a trapdoor tk and an extraction
key ek; (2) Algorithm Prove® takes as input a pair (y, «) and produces an argument 7 which proves that
(y,x) € R; (3) Algorithm Verify® takes as input a pair (y, 7) and checks the correctness of the argument
7 with respect to the public input y. Moreover, the following properties are satisfied:

Completeness. For all pairs (y,z) € R, if (w,tk,ek) < Gen(1*) and 7 < Prove®(y,x) then
Verify“(y, m) = 1.

Composable non-interactive zero knowledge. There exists a PPT simulator S such that, for any PPT
adversary A, there exists a negligible function 6 : N — [0, 1] such that [Pr [A wins] — 3| < §(k)
in the following game:

1. The challenger samples (w, tk, ek) <~ Gen(1*) and gives w to A.

2. A chooses (y,x) € R and gives these to the challenger.

3. The challenger samples g < Prove”(y, z), m1 < S(y,tk), b € {0,1} and gives 7, to A.
4. A outputs a bit b’ and wins iff b’ = b.

Strong true simulation extractability. Define a simulation oracle S}, (-, -) that takes as input a pair (y, x),
checks if (y,z) € R and then it either outputs a simulated argument 7 <— S(y, tk) (ignoring z)
in case the check succeeds or it outputs | otherwise. There exists a PPT algorithm Ext(y, 7, ek)
such that, for all PPT adversaries A, there exists a negligible function 6 : N — [0, 1] such that
Pr [A wins] < §(k) in the following game:

The challenger samples (w, tk, ek) «— Gen(1¥) and gives w to A.

ASu() can adaptively access the simulation oracle Suc (5.

Eventually A outputs a pair (y*, 7*).

The challenger runs z* <+ Ext(y*, 7*, ek).

A

A wins if: (a) (y*,7*) # (y,n) for all pairs (y,) returned by the simulation oracle; (b)
Verify“ (y*, m*) = 1; (¢) (y*,2*) € R.

In case A is given only one query to Sy, (-), we speak of one-time strong tSE.

2.6 A Note on Deterministic vs Probabilistic Tampering

In this paper we assume the tampering functions chosen by the adversary to be deterministic. This is
without loss of generality as the adversary can always hard-wire the “best” randomness into the function.
Here, the best randomness refers to some specific choice of the random coins which would maximize
the adversary’s advantage. Moreover, in this work we model tampering functions by polynomial size
circuits with an identical input/output domain.

11

3 ID Schemes with BLT Security

In an identification scheme a prover tries to convince a verifier of its identity (corresponding to its public
key pk). Formally, an identification scheme is a tuple of algorithms ZD = (Setup, Gen, P, V) defined
as follows:

pp < Setup(1%¥): Algorithm Setup takes the security parameter as input and outputs public parameters
pp. The set of all public parameters is denoted by PP.

(pk, sk) + Gen(1¥): Algorithm Gen outputs the public key and the secret key corresponding to the
prover’s identity. The set of all possible secret keys is denoted by SK.

(P,V): We let (P(pp, sk) = V(pp, pk)) denote the interaction between prover P (holding sk) and
verifier V (holding pk) on common input pp. Such interaction outputs a result in { accept, reject },
where accept means P’s identity is considered as valid.

Definition 3.1. Let A = A\(k) and ¢ = ¢(k) be parameters, and let 7 be some set of functions such that
T € ThasatypeT : SKxPP — SKxPP. We say that D is bounded \-leakage and ¢-tamper secure
(in short (A, t)-BLT secure) against impersonation attacks with respect to 7 if the following properties
are satisfied.

(i) Correctness. For all pp < Setup(1¥) and (pk,sk) < Gen(1*) we have that (P(pp, sk) =
V(pp, pk)) outputs accept.

(i) Security. For all PPT adversaries A, there exists a negligible function 6 : N — [0, 1], such that
Pr [A wins] < §(k) in the following game:

1. The challenger runs pp < Setup(1¥) and (pk, sk) < Gen(1¥), and gives (pp, pk) to A.

2. The adversary is given oracle access to P(pp, sk) that outputs polynomially many proof
transcripts with respect to secret key sk.

3. The adversary may adaptively ask ¢ tampering queries. During the ith query, A chooses a
function 7; € T and gets oracle access to P(pp;, ski), where (sk;, pp;) = Ti(sk, pp). The
adversary can interact with the oracle P(pp,, sk;) a polynomially number of times, where

the prover uses the tampered secret key sk; and the public parameter pp,.

4. The adversary may adaptively ask leakage queries. In the jth query, A chooses a function
L; :{0,1}* — {0, 1} and receives back the output of the function applied to sk.

5. The adversary loses access to all other oracles and interacts with an honest verifier V (holding
pk). We say that A wins if (A(pp, pk) = V(pp, pk)) outputs accept and Zj Aj <A

Notice that in the above definition the leakage is from the original secret key sk. This is without loss of
generality as our tampering functions are modeled as deterministic circuits.

In a slightly more general setting, one could allow A to leak on the original secret key also in the
last phase where it has to convince the verifier. In the terminology of [7] this is reminiscent of so-called
anytime leakage attacks. Our results can be generalized to this setting, however we stick to Definition|3.1
for simplicity.

The rest of this section is organized as follows. In Section [3.1] we prove that a large class of X-
protocols are secure in the BLT model, where the tampering function is allowed to modify the secret
state of the prover but not the public parameters. In Section [3.2] we look at a concrete instantiation
based on the Okamoto ID scheme, and prove that this construction is secure in a stronger model where
the tampering function can modify both the secret state of the prover and the public parameters (but
independently). Finally, in Section [3.3| we illustrate that the latter assumption is necessary, as otherwise
the Okamoto ID scheme can be broken by (albeit contrived) attacks.

12

ID Scheme from > -Protocol

Let ((Po, P1), (Vo, V1)) be a X-protocol for a relation K.
Setup(lk): Sample public parameters pp <— PP for the underlying relation 3.
Gen(1%): Output (y, x) € R, where sk := 2 € X and pk := y € Y and || is polynomially bounded by |y|.
(P(pp, sk) = V(pp, pk)): Parse sk := z, and pk := y; the protocol works as follows.

The prover sends a < Po(pp) to the verifier.

The verifier chooses a random challenge ¢ < Vo (pp, y), with ¢ € S, and sends it to the prover.

The prover computes the answer z < P1(pp, (a, ¢,)).

L S

The verifier accepts iff Vi(pp, y, (a, ¢, z)) outputs accept.

Figure 1: ID scheme based on Y-protocol for relation ‘R

3.1 >-protocols are Tamper Resilient

It is well known that 3-protocols (see Section [2.4) are a natural tool to design ID schemes. The con-
struction is depicted in Figure[I] We restrict our analysis to X-protocols for so-called complete relations
R such that for each possible witness x € X, there is always a corresponding statement y €) such that
(y,z) € MR. As discussed later, the relations considered to instantiate our result satisfy this property.
Consider now the class of tampering functions 75« C 7T such that T € T has the following form:
T = (T*,IDPP) where T** : SKC — SK is an arbitrary polynomial time computable function and
IDPP ;PP — PP is the identity function. This models tampering with the secret state of P without
changing the public parameters (these must be hard-wired into the prover’s code). The proof of the
following theorem uses ideas of [7], but is carefully adjusted to incorporate tampering attacks.

Theorem 3.1. Let k € N be the security parameter and let (P,V) be a X-protocol, for a complete
relation R, with challenge space S of size O(k'°8%), such that the representation problem is hard for
R (cf. Section[2.2)). Assume that conditioned on the distribution of the public input y €), the witness
x € X has average min entropy at least 3, i.e., Ho (X|Y) > B. Then, the ID scheme of Figure |l|is
(M(k),t(k))-BLT secure against impersonation attacks with respect to Tg, where

B
A< B—tlog|Y| —k and tSLOgMJ_l

Proof. Assume that there exists a polynomial p(-) and an adversary A that succeeds in the BLT experi-

ment (cf. Definition with probability at least §(k) := 1/p(k), for infinitely many k& € N. Then, we
construct an adversary B (using A as a subroutine) such that:

Pr [x* # 73 (y,2), (y,2%) € R: (y,2,7%) < B(pp); pp Setup(lk)] > 68— S| —27"

Since |S| is super-polynomial in k, this contradicts the assumption that the representation problem is
hard for 2R (cf. Section[2.2).

Adversary B works as follows. It first samples (y,2) < Gen(1%), then it uses these values to
simulate the entire experiment for A. This includes answers to the leakage queries, and access to the
oracles P(pp, z), P(pp, &;) where #; = Tj(x) = Tj(sk) = sk; for all i € [t]. During the impersonation
stage, B chooses a random challenge ¢ € S which results in a transcript (a, ¢, z). At this point B rewinds
A to the point after it chose a, and selects a different challenge ¢’ € S resulting in a transcript (a, ¢/,).
Whenever the two transcripts are accepting and ¢ # c¢, the special soundness property ensures that

13

adversary B has extracted successfully some value z* such that (y,z*) € 2R. Let us call the event
described above E, and the event x = x* is denoted by FE». Clearly,

Pr [B succeeds] = Pr |2* # z; (y, z), (y, 2*) € R : (y,z,2*) « B(pp); pp « Setup(1¥)
= Pr [El VAN —|E2] .

ey

Claim 1. The probability of event Ey is Pr [E1] > 6% — |S|~L.

Proof. The proof is identical to the proof of [[7, Claim 4.1]. We repeat it here for completeness.

Denote with V' the random variable corresponding to the view of A in one execution of the BLT
game up to the challenge phase; this includes the public values (pp, y), the coins of A, the leakage, and
the transcripts obtained via the oracles P(pp, z), P(pp, Z1), ..., P(pp, Z;). Notice that B is essentially
playing the role of the challenger for A (as it knows a correctly distributed pair (y, z)), but at the end
of the execution it rewinds A after it already sent the value a in the challenge phase, and samples a new
challenge ¢’ +— S hoping that ¢ # ¢ (where ¢ < S is the challenge sampled in the first run of A).
Hence, the probability space of the event E; includes the randomness of the BLT game, the coins of A,
and the randomness used to sample ¢’ € S.

Let W be an indicator random variable, such that W = 1 when A wins in one execution of
the BLT game (and W = 0 otherwise). By definition, E[W] := 4. Notice that Pr[E;|V =v] >
Pr [W? = 1|V = v] — |S|7, since the probability that ¢ = ¢’ is at most |S|~* and this probability is
independent of the fact that the two conversations (a, ¢, z) and (a, ¢/, ") are accepting. Therefore,

Pr(Ey =Y Pr(E|V =o]Pr[V =02 Pr(W?=1[V =10 Pr[V=1]-|S|"
=EW? - [S[7 > EW])? -S| =8~ 157" @

where the first inequality of Eq. (2)) follows by Jensen’s inequality. This concludes the proof of the
claim. O

Claim 2. The probability of event Es is Pr [Ey] < 27F.

Proof. We prove the claim holds even in case the adversary is unbounded. Consider an experiment &,
which is similar to the experiment of Definition [3.1} except that now the adversary does not get access
to the leakage oracle. Consider an adversary A trying to predict the value of = given the view in a run
of &y; such view contains polynomially many transcripts (for the initial secret key and for each of the
tampered secret keys) together with the original public input y and the public parameters pp (which
are tamper-free), i.e., m’ewio = {0, ¥,,..., ¥, } U{y,pp}. The vector ¥ and each of the vectors ¥;
contains polynomially many transcripts of the form (a, ¢, z), corresponding (respectively) to the original
key and to the ¢th tampered secret key.

We now move to experiment &1, which is the same as & with the modification that we add to
A’s view, for each tampering query, the public value ¢; €) corresponding to the tampered witness
Z; = T;(z) € X; note that such value always exists, by our assumption that the relation R is complete.
Hence, m’ewil = m‘ewi0 U{(91,...,0:)} Clearly,

Hoo (X&) > Hoo (X&) (3)

Next, we consider experiment & where A is given only the values (91,...,3:), i.e., m’ewi2 =
{91..,9:} U{y,pp}. We claim that conditioning on &; or on & has the same effect on the min-
entropy of X. This is because the values {W, W}, can be computed as a deterministic function of
(y,91,.--,7¢) as follows: For a randomly chosen challenge ¢ run the HVZK simulator M upon input
(pp, ¥i, c) and append the output (a,c, z) to ¥;. (The same can be done to simulate ¥, by running

14

M(pp,y, c).) It follows from perfect HVZK that this generates an identical distribution to that of exper-
iment £ and thus _ _
Hoo(X[&1) = Hoo(X|&). ©)

Since the public parameters are tamper-free and are chosen independently of X, we can remove
them from the view and write

Hoo(X|&) = Hoo(X|V1,..., Y3, Y) > Hoo (X|Y) = |(V1, ..., Y)| = B —tlog ||, 5)

where we used Lemmatogether with the fact that the joint distribution (171, cee }N/t) can take at most
(|Y|)t values, and our assumption on the conditional min-entropy of X given Y.

Consider now the full experiment described in Definition [3.] and call it £3. Note that this experi-
ment is similar to the experiment &y, with the only addition that here A has also access to the leakage
oracle. Hence, we have m’ewi?’ = viewd U m'efw'Aeak. Denote with A € {0,1}* the random variable
corresponding to view!ﬁak. Using Lemma and combining Eq. B)-(®) we get

Hoo(XE3) = Hoo(X|E0, A) > Hoo (X&) — A > B —tlog|Y| — A >k,

where the last inequality comes from the value of A in the theorem statement. We can thus bound the
probability of Ey as Pr [Es] < 27 Hee(XI€) < 9k The claim follows. O

Combining Claim[I]and Claim [2]together with Eq. (1)) yields
Pr [B succeeds] = Pr [E} A ~Fy] > Pr[E)] — Pr[Ey] > 62 — |S| 7t — 27F,

which contradicts our assumption on the hardness of the representation problem for {R. This finishes the
proof. O

Instantiations. Below, we discuss a number of concrete instantiations for Theorem [3.1] based on stan-
dard hardness assumptions:

e Generalized Okamoto. This instantiation is described in detail in Section [3.2] where we addition-
ally show that the generalized Okamoto ID scheme [58]] remains secure also in case the public
parameters (and not only the secret key) are subject to tampering.

e Generalized Guillou-Quisquater. Consider the relation Rgsa of Section[2.2] The relation is easily
seen to be complete. Hardness of the /-representation problem for Sigsa follows from the RSA
assumption, and was shown in [58]]. A suitable >-protocol is described in [49]. A variant based
on factoring can be obtained following Fischlin and Fischlin [44]].

3.2 Concrete Instantiation with more Tampering

We extend the power of the adversary by allowing him to tamper not only with the witness, but also with
the public parameters (used by the prover to generate the transcripts). However the tampering has to be
independent on the two components. This is reminiscent of the so-called split-state model (considered
for instance in [55]]), with the key difference that in our case the secret state does not need to be split into
two parts.

We model this through the following class of tampering functions 7pjit: We say that T' € Tyt if
we can write T' = (TF TPP) where T* : SK — SK and TP : PP — PP are arbitrary polynomial
time computable functions. Recall that the input/output domains of 7°**, TPP are identical, hence the
size of the witness and the public parameters cannot be changed. As we show in the next section, this
restriction is necessary. Note also that Tg € Tgpiie € 7T

15

Generalized Okamoto ID Scheme

Let ¢ = £(k) be some function of the security parameter. Consider the following identification scheme.

Setup: Choose a group G of prime order p with generator g and a vector o < Zf,, and output pp = (G, g, g%, p)
where g% = (g1,-.-,9e)-

Gen(1%): Select a vector x := (1, ...,x¢) < Z5 and set pk =y = Hle g;* and sk := x.
(P(pp, sk) = V(pp, pk)): Parse pp = (G, g,9%,p), sk := (x1,...,x¢), and pk := y; the protocol works as
follows.
1. The prover chooses a random vector r := (71, ...,7¢) + Zf, and sends a = Hle git.
2. The verifier chooses a random challenge ¢ < Z, and sends it to the prover.
3. The prover computes the answer z = (r1 + cz1,...,T¢ + czy¢).
4. The verifier accepts if and only if Hle gl =a-y°

Figure 2: Generalized Okamoto Identification Scheme

Generalized Okamoto. Consider the generalized version of the Okamoto ID scheme [38]], depicted
in Figure 2| The underlying hard relation here is the relation 9Rp_ and the representation problem for
PMpL is the (-representation problem in a group G (cf. Section [2.2). As proven in [[7], this problem is
equivalent to the Discrete Log problem in G.

We first argue that the protocol is BLT-secure against impersonation attacks with respect to 7. This
follows immediately from Theorem as the relation PRp is complete, and the protocol of Figure
is a X-protocol which satisfies perfect HVZK; moreover || = |S| = p and the size of prime p is
super-polynomial in k to ensure hardness of the Discrete Log problem. Observing that the secret key
x, conditioned on the public key y, is uniform in a subspace of dimension ¢ — 1, i.e., Hoo (X|Y) >
(¢ — 1) logp = B, we obtain parameters A < (¢ — 1 —t)log(p) — kandt < ¢ — 2.

Next, we show that the generalized Okamoto ID scheme is actually secure for Tgpic (with the same
parameters).

Theorem 3.2. Let k € N be the security parameter and assume the Discrete Log problem is hard in
G. Then, the generalized Okamoto ID scheme is (\(k),t(k))-BLT secure against impersonation attacks
with respect to Tpiit, where

A< (—1—t)log(p) — k and t</{-—2.

Proof (Sketch). The proof follows closely the proof of Theorem [3.1] with the key difference that we
also have to take care of tampering with respect to pp = (G, g, g, p). We sketch how this can be done
below.

Given an adversary A winning the BLT security experiment with non-negligible advantage §(k),
consider the same reduction B outlined in the proof of Theorem attacking the ¢-representation
problem in G. Notice that the reduction can, as before, perfectly simulate the environment for A as it
knows honestly generated parameters (pp, pk, sk). In particular, Claim|[1]still holds here with |S| = p.

It remains to prove Claim 2] To do so, we modify the view of the adversary in the proof of The-
orem such that it contains also the tampered public parameters pp, for all i € [¢]. In particular,
the elements (a, ¢, z) contained in each vector ¥, in the view of experiment & are now sampled from
P(pp;, %;), where X; = T *(x) and pp; = T/ (pp) for all i € [t]. We then modify & and & by
additionally including the values of the tampered public parameters { p}oi}ie[t].

We claim that Hoo (X|€1) = Hoo (X&), in particular the view of A in £ can be simulated given
only {p~ki, PP;}ie[)- This follows from the fact that the generalized Okamoto ID scheme maintains
the completeness and perfect HVZK properties even when the transcripts are computed using tampered

16

public parameters pp = (G, 3,91, - -, 300, D). (Whereas of course in this case the protocol is not sound.)
The HVZK simulator M(pp, 3, ¢) works as follows: Choose 21, ..., 2z, at random in Z; and if § # 0
mod p, then compute a = (Hf:1 G:")/y° mod p. In case § = 0 mod p, then just set a = O For
any (%, pp) = (T**(x), TPP(pp)), the distributions M(pp, §, c) and (P(pp, %) == V(pp, 7)) are both
uniformly random over all values (a, ¢,z = (z1, ..., 2¢)) such that Hle g; = ay® mod p.

Therefore the simulation perfectly matches the honest conversation. This proves Eq. (). Now
Eq. (B) follows from the fact that the tampering functions 7P cannot depend on sk. The rest of the
proof remains the same. 0

3.3 Some Attacks

We show that for the Okamoto scheme it is hard to hope for BLT security beyond the class of tampering
functions 7Tgpjic. We illustrate this by concrete attacks which work in case one tries to extend the power
of the adversary in two different ways: (1) Allowing A to tamper jointly with the witness and the public
parameters; (2) Allowing A to tamper independently with the witness and with the public parameters,
but to increase their size.

Tampering jointly with the public parameters. Consider the class of functions 7 introduced in
Definition [3.11

Claim 3. The generalized Okamoto ID scheme is not BLT-secure against impersonation attacks with
respect to T

Proof. The attack uses a single tampering query. Define the tampering function 7'(x, pp) = (X, pp) to
be as follows:

e The witness is unchanged, i.e., x = x.

e The value p is some prime of size |p| = |p| such that the Discrete Log problem is easy in the
corresponding group G. (This can be done efficiently by choosing p — 1 to be the product of small
prime (power) factors [60].)

e Let g be a generator of G (which exists since 7 is a prime) and define the new generators as
g = §* mod p.

Consider now a transcript (a, ¢, z) produced by a run of P(pp,x). We have a = 925:1 i’ mod p for
random r; € Zgz. By computing the Discrete Log of a in base g (which is easy by our choice of G), we get
one equation Zle TiT; = logg(a) mod p. Asking for polynomially many transcripts, yields ¢ linearly
independent equations (with overwhelming probability) and thus allows to solve for (z1, ..., z/). (Note
here that with high probability z; mod p = x; mod p since |p| ~ [p|.) O

Tampering by “inflating” the prime p. Consider the following class of tampering functions Ty €
* .. We say that T' € if T = (T*%,T?P), where T** : SK — {0,1}* and T*? : PP — {0,1}*.

split* st)lit
Claim 4. The generalized Okamoto ID scheme is not BLT-secure against impersonation attacks with
respect to s’;“t.

Proof. The attack uses a single tampering query. Consider the following tampering function T° =

(TF, TP%) € Ty

~T;

“Note that § = 0 mod j implies that for at least one of the generators g;’s we get §; = 0 mod p, so that a =]_[f:1 gt =
0 mod p.

17

e Choose p to be a prime of size || = Q(£|p|), such that the Discrete Log problem is easy in G.
(This can be done as in the proof of Claim3])

e Choose a generator g of G; define g1 =gand g; = 1forall j =2,... /.
e Define the witness to be X such that ; = x1||...||z;and Z; = 0forall j =2,..., /.

Given a single transcript (a, ¢, z) the adversary learns a = §™* for some r; € Z;. Since the Discrete
Log is easy in this group, A can find r;. Now the knowledge of c and z; = r1 + cZ1, allows to recover
551:(351,...,:6@).]

3.4 BLT-Secure Signatures

It is well known that every >-protocol can be turned into a signature scheme via the Fiat-Shamir heuris-
tic [43)]. By applying the Fiat-Shamir transformation to the protocol of Figure [I} we get efficient BLT-
secure signatures in the random oracle model.

4 IND-CCA PKE with BLT Security

We start by defining IND-CCA public key encryption (PKE) with BLT security. A PKE scheme is a
tuple of algorithms PXE = (Setup, KGen, Enc, Dec) defined as follows. (1) Algorithm Setup takes as
input the security parameter and outputs the description of public parameters pp; the set of all public
parameters is denoted by PP. (2) Algorithm KGen takes as input the security parameter and outputs a
public/secret key pair (pk, sk); the set of all secret keys is denoted by SK and the set of all public keys
by PK. (3) The randomized algorithm Enc takes as input the public key pk, a message m € M and
randomness r € R and outputs a ciphertext ¢ = Enc(pk, m; r); the set of all ciphertexts is denoted by C.
(4) The deterministic algorithm Dec takes as input the secret key sk and a ciphertext ¢ € C and outputs
m = Dec(sk, ¢) which is either equal to some message m € M or to an error symbol L.

Definition 4.1. Let A = A(k) and ¢t = ¢(k) be parameters, and let 7, be some set of functions such
that 7' € Tg has atype 7' : SK — SK. We say that PICE is IND-CCA (A(k), t(k))-BLT secure with
respect to Tg if the following properties are satisfied.

(i) Correctness. Forall pp < Setup(1%), (pk, sk) <— KGen(1*) we have that Pr[Dec(sk, Enc(pk,m))
= m| = 1 (where the randomness is taken over the internal coin tosses of algorithm Enc).

(i) Security. For all PPT adversaries A, there exists a negligible function d(k) : N — [0, 1], such that
Pr [A wins] < § + 6(k) in the following game:

1. The challenger runs pp < Setup(1*¥), (pk, sk) < KGen(1¥) and gives (pp, pk) to A.

2. The adversary is given oracle access to Dec(sk, -). This oracle outputs polynomially many
decryptions of ciphertexts using secret key sk.

3. The adversary may adaptively ask ¢ tampering queries. During the ith query, A chooses a
function T; € T and gets oracle access to Dec(sk;, -), where sk; = Tz(sk) This oracle
outputs polynomially many decryptions of ciphertexts using secret key sk;.

4. The adversary may adaptively ask polynomially many leakage queries. In the jth query, A
chooses a function L; : {0,1}* — {0,1}* and receives back the output of the function
applied to sk.

5. The adversary outputs two messages of the same length mg, m; € M and the challenger
computes ¢, <— Enc(pk, my) where b is a uniformly random bit.

18

6. The adversary keeps access to Dec(sk,-) and outputs a bit . We say A wins if b = ¥/,
> ;Aj < Aand ¢ has not been queried for to the decryption oracle.

In case t = 0 we get, as a special case, the notion of semantic security against a-posteriori chosen-
ciphertext \(k)-key-leakage attacks from [57]]. Notice that A is not allowed to tamper with the secret key
after seeing the challenge ciphertext. As we show in Section this restriction is necessary because
otherwise A could overwrite the secret key depending on the plaintext encrypted in cp, and thus gain
some advantage in guessing the value of b by asking additional decryption queries.

We build an IND-CCA BLT-secure PKE scheme in two steps. In Section |4.1| we define a weaker
notion which we call restricted IND-CCA BLT security. In Section|d.2]we show a general transformation
from restricted IND-CCA BLT security to full-fledged IND-CCA BLT security relying on tSE NIZK
proofs [31] in the common reference string (CRS) model. The CRS is supposed to be tamper-free
and must be hard-wired into the code of the encryption algorithm; however tampering and leakage can
depend adaptively on the CRS and the public parameters. Finally, in Section[4.3] we prove that a variant
of the BHHO encryption scheme [57]] satisfies our notion of restricted IND-CCA BLT security.

4.1 Restricted IND-CCA BLT Security

The main idea of our new security notion is as follows. Instead of giving A full access to a tampering
oracle (as in Definition we restrict his power by allowing him to see the output of the (tampered)
decryption oracle only for ciphertexts ¢ for which A already knows both the corresponding plaintext m
and the randomness r used to generate c (via the real public key). Essentially this restricts A to submit
to the tampering oracle only “well-formed” ciphertexts.

Definition 4.2. Let A\ = A\(k) and t = ¢(k) be parameters, and let T¢ be some set of functions such that
T € T hasatype T : SK — SK. We say that PKE is restricted IND-CCA (A(k), t(k))-BLT secure
with respect to Ty if it satisfies property (i) of Definition 4.1 and property (ii) is modified as follows:

(i) Security. For all PPT adversaries A, there exists a negligible function d(k) : N — [0, 1], such that
Pr [A wins] < 3 + (k) in the following game:

1. The challenger runs pp < Setup(1¥), (pk, sk) <= KGen(1*) and gives (pp, pk) to A.

2. The adversary may adaptively ask ¢ tampering queries. During the ith query, A chooses a
function T; € T and gets oracle access to Dec*(s~l<:i, -,), where sk; = T;(sk). This oracle
answers polynomially many queries of the following form: Upon input a pair (m,r) €
M x R, compute ¢ + Enc(pk,m;r) and output a plaintext 72 = Dec(sk;, c) using the
current tampered key.

3. The adversary may adaptively ask leakage queries. In the jth query, A chooses a function
L; :{0,1}* — {0, 1} and receives back the output of the function applied to sk.

4. The adversary outputs two messages of the same length mg, m; € M and the challenger
computes ¢, <— Enc(pk, my) where b is a uniformly random bit.

5. The adversary loses access to all oracles and outputs a bit b’. We say that A wins if b =
and), Aj < A

We note that, by setting ¢ = 0, we recover the original notion of semantic security under \-key-
leakage attacks for public key encryption, as defined in [57].

4.2 A General Transformation

We compile an arbitrary restricted IND-CCA BLT-secure encryption scheme into a full-fledged IND-
CCA BLT-secure one by appending to the ciphertext ¢ an argument of “plaintext knowledge” 7 computed

19

From Restricted to Full-Fledged IND-CCA BLT Security

Let PKE = (Setup, KGen, Enc, Dec) be a PKE scheme and (Gen, Prove, Verify) be a tSE NIZK argument
system for the relation:
Reke = {(pk,c), (m,r) : ¢ = Enc(pk,m;r)}.

Define the following PKE scheme PKXE’ = (Setup’, KGen’, Enc’, Dec’).
Setup’: Sample pp < Setup(1*) and (w, tk, ek) < Gen(1%) and let pp’ = (pp,w).
KGen’: Run (pk, sk) + KGen(1%) and set pk’ := pk and sk’ := sk.
Enc’: Sample r < R and compute ¢ <— Enc(pk, m;r). Output (c,), where 7 < Prove® ((pk, c), (m,r)).

Dec’: Check that Verify” ((pk, c),) = 1. If not output _L; otherwise, output m = Dec(sk, c).

Figure 3: How to transform a restricted IND-CCA BLT-secure PKE into an IND-CCA BLT-secure PKE

through a (one-time, strong) tSE NIZK argument system (cf. Section [2.5)). The same construction has
been already used by Dodis et al. [31]] to go from IND-CPA security to IND-CCA security in the context
of memory leakage.

The intuition why the transformation works is fairly simple: The argument 7 enforces the adversary
to submit to the tampered decryption oracle only ciphertexts for which he knows the corresponding
plaintext (and the randomness used to encrypt it). In the security proof the pair (m,r) can indeed be
extracted from such argument, allowing to reduce IND-CCA BLT security to restricted IND-CCA BLT
security.

Theorem 4.1. Let k € N be the security parameter. Assume that PKE is a restricted IND-CCA
(A(k), t(k))-BLT secure encryption scheme and that (Gen, Prove, Verify) is a one-time strong tSE NIZK
argument system for relation Rpke. Then, the encryption scheme PKE' of Figure |3| is IND-CCA
(\(k), t(k))-BLT secure.

Proof. We prove the theorem by a series of games. All games are a variant of the IND-CCA BLT game
and in all games the adversary gets correctly generated public parameters (pp,w, pk). Leakage and
tampering queries are answered using the corresponding secret key sk. The games will differ only in the
way the challenge ciphertext is computed or in the way the decryption oracles work.

Game G;. This is the IND-CCA BLT game of Definition 4.1| for the scheme PXE’. Note in partic-
ular that all decryption oracles expect to receive as input a ciphertext of the form (¢, 7) and
proceed to verify the proof 7 before decrypting the ciphertext (and output _L if such verifi-
cation fails). The challenge ciphertext is a pair (¢, m) such that ¢, = Enc(pk, mp;r) and
mp < Prove”((pk,cp), (my,r)), where my € {mg, m1} for a uniformly random bit b. Our
goal is to upper bound |Pr [A wins in G;] — 1/2].

Game Gs. In this game we change the way the challenge ciphertext is computed by replacing the argu-
ment 7, with a simulated argument 7, < S((pk, ¢), tk). It follows from the composable NIZK
property of the argument system that G; and G, are computationally close. In particular, there
exists a negligible function ¢; (k) such that |Pr [A wins in G;] — Pr [A wins in Go] | < 01 (k).

Game G3. We change the way decryption queries are handled. Queries (¢, 7) to Dec(sk, -) (such that 7
accepts) are answered by running the extractor Ext on 7, yielding (m,r) < Ext((pk,c), m,ek),
and returning m.

Queries (¢,) to Dec(s~ki, -) (such that 7 accepts) are answered as follows. We first extract
(m, 1) + Ext((pk, c), m,ek) as above. Then, instead of returning m, we recompute ¢ = Enc(pk,

m;r) and return m = Dec(sk;, ¢).

20

It follows from one-time strong tSE that Gy and G3 are computationally close. The reason for
this is that A gets to see only a single simulated proof for a true statement (i.e., the pair (pk, cp))
and thus cannot produce a pair (¢,) # (cp, ™) such that the proof 7 accepts and Ext fails to
extract the corresponding plaintext m. In particular, there exists a negligible function d5(k) such
that |Pr [A wins in Go] — Pr[A wins in G3] | < d2(k).

Game G,4. In the last game we replace the ciphertext ¢, in the challenge with an encryption of olmel,
whereas we still compute the proof as 7, < S((pk, cp), tk).

We claim that Gs and G4 are computationally close. This follows from restricted IND-CCA BLT-
security of PICE. Assume there exists a distinguisher D between Gs and G4. We build an adversary
B breaking restricted IND-CCA BLT security for PXE. The adversary B uses D as a black-box
as follows.

Reduction BP:

1. Receive (pp, pk) from the challenger, sample (w, tk,ek) < Gen(1¥) and give pp’ =
(pp,w) and pk’ = pk to A.

2. Upon input a normal decryption query (c,7) from A, run the extractor to compute
(m, 1) < Ext((pk,c), m, ek) and return m.

3. Upon input a tampering query T; € T, forward T; to the tampering oracle for PXE.
To answer a query (c,), run the extractor to compute (m,r) < Ext((pk,c),m,ek).
Submit (1,) to oracle Dec*(sk;, -, -) and receive the answer 7. Return 1 to A.

4. Upon input a leakage query L, forward L; to the leakage oracle for PCE.

5. When A outputs mg,m; € M, sample a random bit b’ and output (1, 0"'|). Let ¢,
be the corresponding challenge ciphertext. Compute 7, < S((pk, ¢3), tk) and forward
(cp, mp) to A. Continue to answer normal decryption queries (¢,) from A as above.

6. Output whatever D does.

Notice that the reduction perfectly simulates the environment for A; in particular ¢, is either the
encryption of randomly chosen message among (mg, m1) (as in G3) or an encryption of zero (as
in G4). Since PKE is restricted IND-CCA (A, ¢)-BLT secure, it must be |Pr[A wins in G3] —
Pr [A wins in G4] | < d3(k) for a negligible function d3 : N — [0, 1].

As clearly Pr [A wins in G4] = 1/2, we have obtained:

|Pr[A wins in G1] — 1/2| = |Pr [A wins in G;| — Pr [A wins in Gg4] |
< |Pr[A wins in G;] — Pr [A wins in Ga] | 4+ |Pr [A wins in Gg]
— Pr[A wins in G3] | + |Pr[A wins in G3] — Pr [A wins in Gg4] |
< 61(k) 4 02(k) + 63(k) = negl(k).

This concludes the proof. O

4.3 Instantiation from BHHO

We show that the variant of the encryption scheme introduced by Boneh et al. [16] used in [S7] is
restricted IND-CCA BLT-secure. The proof relies on the observation that one can simulate polynomially
many decryption queries for a given tampered key by only leaking a bounded amount of information
from the secret key. Hence, security follows from leakage resilience of BHHO (which was already
proven in [57]).

The BHHO PKE scheme works as follows: (1) Algorithm Setup chooses a group G of prime order
p with generator g and let pp = (G, g,p); (2) Algorithm KGen samples random vectors x, o € Z¢,

21

computes ¢* = (g1,...,g¢) and let sk := x = (x1,...,2¢) and pk := (h, g*) where h = Hle g
(3) Algorithm Enc takes as input pk and a message m € M, samples a random r € Z, and returns
c = Enc(pk,m;r) = (¢7,...,9p,h" - m); (4) Algorithm Dec parses ¢ = (g, c;) and outputs m =
c1 - g~ {°0X) where (cg,x) denotes the inner product of ¢y and x.

Proposition 4.1. Let k € N be the security parameter and assume that the DDH assumption holds in G
(¢f. Section[2.2). Then, the BHHO encryption scheme is restricted IND-CCA (A\(k), t(k))-BLT secure,
where

A< (—2—t)logp —w(logk) and — t</{-—3.

Proof. Naor and Segev [57, Section 5.2] showed that BHHO is restricted IND-CCA (), 0)-BLT secure
upto N < (£ —2)logp — w(log k:)E] Assume there exists an adversary A which breaks restricted IND-
CCA (A, t)-BLT security with probability (k) = 1/p(k), for some polynomial p(-) and infinitely many
values of k£ € N. We build an adversary B which breaks restricted IND-CCA (', 0)-BLT security of the
encryption scheme, with the same advantage, yielding a contradiction.

Adversary B uses A as a black-box and is described below.

Reduction B”:

1. Receive (pp, pk) from the challenger and forward these values to A.

2. Whenever A asks for a leakage query, submit this query to the leakage oracle and return the
answer to A.

3. Upon input a tampering query 7; € Tg, submit a leakage query in order to retrieve the value
h; = H§:1 gj_ij’i, where x; = T;(x) = (Z14,...,Z¢;). When A asks for a decryption
query (m,r), return 7 = (k" - m) - hl.

4. Whenever A outputs mg, m; € M, forward mg, m; to the challenger. Let ¢, be the corre-
sponding challenge ciphertext; forward ¢ to A.

5. Output whatever A does.

Note that for each of A’s tampering queries B has to leak one element in Z,. Using the value of \
from above, this gives A = X' — tlogp = (¢ — 2 — t) log p — w(log k). Moreover, B produces the right
distribution since

r

¢ 1
~ - i i _s¢ s %
= om) = | [[o7 | = Lg% =g~ Sim s =) . glooki),
j=1 J=1
where (g, c1) = ((¢"*,...,9"*), h""m) is an encryption of m using randomness r and public key
h. This simulates perfectly the answer of oracle Dec*(sk;, -, -). Hence, B has the same advantage as A
which concludes the proof. O

We remark that efficient proofs of plaintext knowledge for the BHHO PKE scheme (to use within
the transformation of Figure|3)) are already known (see, e.g., [17,138])).

4.4 TImpossibility of ‘“Post-Challenge” IND-CCA BLT Security

Previous definitions of related-key security for IND-CCA PKE allow the adversary to issue tampering
queries even after seeing the challenge ciphertext [62, [13]. The reason why the schemes of [62, [13]] can
achieve this stronger flavour is that the class of tampering functions is too limited to cause any harm. In

SRecall that for ¢ = 0 no decryption query is allowed, and thus restricted IND-CCA (), 0)-BLT security collapses to the
notion of semantic security against \’—key-leakage attacks from [37].

22

fact, as we argue below, when the tampering function can be an arbitrary polynomial time function (as
is the case in our schemes), no PKE scheme can be secure if such “post-challenge” tampering queries
are allowed.

Proposition 4.2. No one-bit PKE scheme can be “post-challenge” IND-CCA (0, 1)-BLT secure.

Proof. We build a polynomial time adversary A breaking IND-CCA BLT security. A will ask a single
tampering query after seeing the challenge ciphertext ¢, (corresponding to m; € {0, 1}) and then make
a single decryption query to the tampered decryption oracle, to learn the bit b with probability negligibly
close to 1. Given the public key pk and challenge ciphertext c;, adversary A proceeds as follows:

1. Sample m* € {0, 1} uniformly at random and compute ¢* < Enc(pk, m*).
2. Define the following tampering query T¢, = m+ (sk):

e Run my = Dec(sk, cp). In case my, = 0, let sk = sk.

e In case m; = 1, sample (pk*, sk*) < KGen(1%) until Dec(sk*,c*) # m*. When this
happens, let sk = sk*.

3. Query the decryption oracle Dec(s7c, -) with ¢*. In case the answer from the oracle is m* output 0
and otherwise output 1.

For the analysis, assume first that A runs in polynomial time. In this case it is easy to see that the attack
is successful with overwhelming probability. In fact, ¢* # ¢, with overwhelming probability and the
answer from the tampered decryption oracle clearly allows to recover b.

We claim that A runs in expected polynomial time. This is because if one tries to decrypt c* using
an independent freshly generated secret key sk™, the resulting plaintext will be uncorrelated, up to a
small bias, to the plaintext m*, for otherwise the underlying PKE scheme would not even be IND-
CPA secure. (Recall that ¢* is an encryption of m* under the original public key pk.) This shows that
Pr [Dec(sk*, c*) # m*| ~ 1/2 and thus the loop ends on average after 2 attempts.

If one insists on the tampering function being polynomial time (and not expected polynomial time)
we can just put an upped bound on the number of pairs (pk*, sk™) that the function can sample in the
loop. This comes at the expense of a negligible error probability. O

5 Updating the Key in the iFloppy Model

We complement the results from the previous two sections by showing how to obtain security against
an unbounded number of tampering queries in the floppy model of [7, 6]. Recall that in this model we
assume the existence of an external tamper-free and leakage-free storage (the floppy), which is needed
to refresh the secret key on the tamperable device. An important difference between the floppy model
considered in this paper and the model of [6] is that in our case the floppy can contain “user-specific”
information, whereas in [6] it contains a unique master key which in principle could be equal for all
users. To stress this difference, we refer to our model as the iFloppy model.

Clearly, the assumption of a unique master key makes production easier but it is also a single point
of failure in the system since in case the content of the floppy is published (e.g., by a malicious user)
the entire system needs to be re—initializedﬁ A solution for this is to assume that each floppy contains
a different master key as is the case in the iFloppy model, resulting in a trade-off between security and
production cost.

®We note that in the schemes of [[6] making the content of the floppy public does not constitute a total breach of security;
however the security proof completely breaks down, leaving no security guarantee for the schemes at hand.

23

For simplicity, we consider a model with polynomially many updates where, between each update,
the adversary is allowed to leak and tamper only once. However, the schemes in this section can be
proven secure in the stronger model where between two key updates the attacker is allowed to leak
adaptively A bits from the current secret key and tamper with it for some bounded number of times.

5.1 ID Schemes in the iFloppy Model

An identification scheme ZD = (Setup, Gen, P, V, Refresh) in the iFloppy model is defined as follows.
(1) Algorithm Setup is defined as in a standard ID scheme. (2) Algorithm Gen outputs an update key
uk together with an initial public/secret key pair (pk, sk). (3) Algorithms P and V are defined as in a
standard ID scheme. (4) Algorithm Refresh takes as input the update key uk and outputs a new key sk’
for the same public key pk.

Definition 5.1. Let A = A(k) be a parameter, and let 7¢x be some set of functions such that T € Tg
has atype 7' : SK — SK. We say that ZD is (A(k), 1)-CLT secure against impersonation attacks with
respect to T in the iFloppy model, if the following properties are satisfied.

(i) Correctness. For all pp < Setup(1%), (pk, sk, uk) < Gen(1*) we have that:
(P(pp, sk) = V(pp, pk)) = (P(pp, Refresh(uk)) = V(pp, pk)) = accept.

(ii) Security. For all PPT adversaries A, there exists a negligible function § : N — [0, 1], such that
Pr [A wins] < §(k) in the following game:

1. The challenger runs pp < Setup(1¥) and (pk, sk, uk) < Gen(1%), and gives (pp, pk) to A;
let skq = sk.

2. The adversary is given oracle access to P(pp, sk1).
3. The adversary may adaptively ask leakage and tampering queries. During the ith query:
(a) A specifies a function L; : {0,1}* — {0, 1}* and receives back L;(sk;).
(b) A specifies a function 7; : SK — SK and is given oracle access to P(pp, s7<:i), where
Ski = Tz(skz)
(c) The challenger updates the secret key, sk;11 < Refresh(uk).

4. The adversary loses access to all oracles and interacts with an honest verifier V (holding
public key pk). We say that A wins if (A(pp, pk) = V(pp, pk)) outputs accept.

Remark 1. One could also consider a more general definition where between two key updates A is
allowed to ask multiple leakage queries with output size \;, as long as) | y Aj < A. Similarly, we could
allow A to tamper in each round for ¢ times with the secret key sk;. The constructions in this section can
be proven secure in this extended setting, but we stick to Definition [5.1] for simplicity.

A general compiler. We now describe a compiler to boost any (\, ¢)-BLT secure ID scheme (P, V), to
a (A, t)-CLT secure ID scheme (P, V’). The compiler is based upon a standard (not necessarily leakage
or tamper resilient) signature scheme SZG, and is described in Figure 4]

The basic idea is as follows. We generate the key pair (mpk, msk) using the key generation algo-
rithm of the underlying signature scheme. We store msk in the floppy and publish mpk as P’s identity.
We also sample a key pair (pk, sk) for ZD (which we call the temporary keys) and we provide the
prover with a value help which is a signature of pk under the master secret key msk. Whenever P wants
to prove its identity, it first sends the temporary pk together with the helper value and V verifies this

24

iFloppy ID Compiler

Given as input an ID scheme ZD = (Setup, Gen, P,V) and a signature scheme SZG = (KGen, Sign, Vrfy)
output an ID scheme ZD’ = (Setup’, Gen’, P’, V', Refresh), specified below.

Setup’: Run pp « Setup(1¥) and publish pp.

Gen’: Run the key generation algorithm of the underlying signature scheme, obtaining (mpk, msk) <
KGen(1%). Also, run (pk, sk) < Gen(1¥). The value mpk is the actual public key, whereas we refer
to the values (pk, sk) as the temporary keys. Compute and publish a helper value help < Sign(msk, pk).
The prover P" holds ((pp, pk, help), sk), the verifier V' holds mpk. The master key msk is the update key,
which is stored in the floppy.

P’'((pp, pk, help), sk) = V' (pp, mpk): The prover P’ first sends the pair (pk, help) to V. The verifier verifies
the signature, i.e. it checks that Vrfy(mpk, (pk, help)) outputs accept. If the verification was successful,
they run (P(pp, sk) == V(pp, pk)) and V' accepts if and only if the interaction leads to accept.

Refresh: Sample a fresh pair (pk’, sk’) < Gen(1%) and update the helper value as in help’ < Sign(msk, pk’).
The prover now holds ((pp, pk’, help’), sk’).

Figure 4: Boosting BLT security to CLT security for ID schemes

signature using mpkm If the verification succeeds, P and V run an execution of ZD where P proves it
knows the secret key sk corresponding to pk. At the end of each authentication the prover updates its
pair of temporary keys using the floppy, using the update key msk to sign the new public key pk’ that is
freshly generated. We prove the following result.

Theorem 5.1. If SZG is EUF-CMA and ID is (A, 1)-BLT secure against impersonation attacks with
respect to Tex, then the scheme ID' output by the compiler of Figure 4| is (\,1)-CLT secure against
impersonation attacks with respect to Tq in the iFloppy model.

Proof. We show that if there exists a PPT adversary A who wins the CLT security game against ZD’
with non-negligible probability, then we can build either of two reductions B or C violating BLT se-
curity of ZD or EUF-CMA of SZG (respectively) with non-negligible probability. Let us assume that
Pr [A wins] > §(k), where 6(k) = 1/p(k) for some polynomial p(-) and infinitely many k& € N. The
CLT experiment for ZD' is specified below:

CLT Experiment:
1. The challenger runs pp < Setup’(1*) and (mpk, msk) + KGen(1%), and gives (pp, mpk)
to A.
2. For each i = 1,...,q(k) (where q(k) is some polynomial in the security parameter), the

challenger does the following:
- During round i sample (pk;, sk;) < Gen(1*) and compute help; < Sign(msk, pk;) .
- Give A oracle access to P'((pp, pk;, help;), sk;)).
- Answer the leakage and tampering query from A using key sk;. The leakage query con-

sists of a function L; : {0,1}* — {0, 1}*; the tampering query consists of a tampering
function T; : SK — SK.

3. During the impersonation stage, the challenger (playing now the role of the verifier V')
receives the pair (pk™, help*) from A; if Vrfy(mpk, (pk™*, help™)) outputs 0, the challenger
outputs reject. Otherwise, it runs (A(pp, pk*) = V(pp, pk™)) and outputs whatever V does.

7 Alternatively P can send (pk, help) together with the first message of the identification scheme, in order to keep the same
round complexity as in ZD.

25

Let FRESH be the following event: The event becomes true if the pair (pk*, help*) used by A during the
impersonation stage of the above experiment is equal to one of the pairs A has seen during the learning
phase (i.e., one of the pairs (pk;, help,)). We have

Pr [A wins] = Pr [A wins A FRESH] + Pr [A wins A FRESH| , (6)

where all probabilities are taken over the randomness space of the CLT experiment and over the ran-
domness of A. We now describe a reduction B (using A as a black-box) which breaks BLT security of
ID.

Reduction B”:

1. Receive pp < Setup(1%) from the challenger. Sample (mpk, msk) <+ KGen(1*) and
forward (pp, mpk) to A.

2. Choose an index j < [¢] uniformly at random.
3. Forallt =1,...,q, simulate the learning stage of A as follows.
(a) During all rounds ¢ such that ¢ # j:
- Sample (pk;, sk;) < Gen(1¥) and compute help, < Sign(msk, pk;). Give A
oracle access to P'((pp, help;, pk;), sk;).
- Simulate A’s leakage and tampering query by using key sk;.
(b) During round j:
- Receive the public key pk from the challenger and use this key as the jth temporary
public key. Compute help < Sign(msk, pk).
- Simulate oracle P’((pp, help, pk), sk) by forwarding (pk, help) to A and using the

target oracle P(pp, sk).
- Simulate leakage query L; and tampering query 7); by submitting the same func-
tions to the target oracle.
4. Simulate the impersonation stage for A as follows:

(a) Receive (pk*, help*) from A. If pk* # pk (i.e., B’s guess is wrong) abort the execution.
Otherwise, run Vrfy(mpk, (pk*, help*)) and output reject if verification fails.

(b) Run (A(pp, pk*) = V(pp, pk™)) and use the messages from A in the impersonation
stage, to answer the challenge from the target oracle.

Note that B’s simulation is perfect, since it simulates all rounds using honestly generated keys whereas
round j is simulated using the target oracle which allows for one tampering query and X bits of leakage
from sk. Denote with GUESS the event that B guesses the index j correctly. Since B wins whenever A
is successful and FRESH occurs, and moreover event GUESS is independent of all other events, we get

Pr [B wins] = Pr [B wins A GUESS] + Pr [B wins A GUESS]
1 — 7
> Pr [B wins A GUESS] = ——Pr [A wins A FRESH] . @

q(k)

We now describe a second reduction C (using A as a black-box), breaking existential unforgeability
of SZG.

Reduction C*;

1. Run pp < Setup(1%), receive the public key mpk from the challenger and forward (pp, mpk)
to A. Denote with msk the secret key corresponding to mpk (which of course is not known
to Q).

26

2. Forallt =1,...,q, simulate the learning stage of A as follows:

(a) Sample (pk;, sk;) < Gen(1¥). Forward pk;, to the target signing oracle and receive
back the corresponding signature help; < Sign(msk, pk;). Simulate oracle access to
P'((pp, help,, pk;), sk;) using knowledge of key sk;.

(b) Simulate the leakage and tampering query using knowledge of key sk;.

3. During the impersonation stage:

(a) Receive (pk™, help*) (which is a message-signature pair) from A and verify the signa-
ture with public key mpk. If verification fails, output some random guess and abort. (In
that case A loses and C can only win with negligible probability.)

(b) Otherwise, run (A(pp, pk*) = V(pp, pk™)) and return to A whatever V does.
(c) Output forgery (m* = pk*, o* = help*).

Whenever FRESH occurs, the pair (pk™, help®) returned by A is such that this pk* is different from all
the pk;’s it has seen during the learning phase. In this case, whenever A wins, the forgery (m*,o*)
output by C is a valid forgery. Hence,

Pr [C wins] > Pr[A wins A FRESH] . (8)
Combining Eq. (6)-(8)), we obtain:
q(k)-Pr [B wins]+Pr [C wins] > Pr [A wins A FRESH| +Pr [A wins A FRESH] = Pr [A wins] > §(k).
Hence either Pr [B wins] > 0/(2¢) or Pr [C wins| > /2, which are both non-negligible. O

Remark 2. Assuming factoring or DL is hard, we can instantiate Theorem with our schemes from
Section [3| resulting into tamper resilient identification schemes in the iFloppy model under polynomial
many tampering and leakage attacks.

5.2 PKE Schemes in the iFloppy Model

A PKE scheme PKE = (Setup, KGen, Enc, Dec, Refresh) in the iFloppy model is defined as follows.
(1) Algorithm Setup is defined as in a standard PKE scheme. (2) Algorithm KGen outputs an update key
uk together with an initial public/secret key pair (pk, sk). (3) Algorithm Enc and Dec are defined as in
a standard PKE scheme. (4) Algorithm Refresh takes as input the update key uk and outputs a new key
sk’ for the same public key pk.

Definition 5.2. Let A = A\(k) be a parameter, and let 7¢ be some set of functions such that 7" € T has
atype T : SK — SK. We say that PKE is IND-CCA (A(k), 1)-CLT secure with respect to Tg in the
iFloppy model, if the following properties are satisfied.

(i) Correctness. For all pp < Setup(1%), (pk, sk, uk) < Gen(1*) we have that:
Pr [Dec(Refresh(uk), Enc(pk,m)) = m| = 1.
(ii) Security. For all PPT adversaries A, there exists a negligible function § : N — [0, 1], such that
Pr [A wins] < 1/2 + §(k) in the following game:

1. The challenger runs pp < Setup(1¥) and (pk, sk, uk) < Gen(1%), and gives (pp, pk) to A;
let sk1 = sk.
2. The adversary is given oracle access to Dec(skq,).

3. The adversary may adaptively ask leakage and tampering queries. During the ith query:

27

(a) A specifies a function L; : {0,1}* — {0, 1}* and receives back L;(sk;).

(b) A specifies a function T; : SK — SK and is given oracle access to Dec(sk;, -), where
Ski = TZ(SI{ZZ)

(c) The challenger updates the secret key, sk;11 < Refresh(uk).

4. The adversary outputs two messages of the same length mg, m; € M and the challenger
computes ¢, <— Enc(pk, my) where b is a uniformly random bit.

5. The adversary outputs a bit ' and wins if b = /.

The same considerations of Remark [[]hold here.

Construction from BHHO. As noted in [[6], the BHHO PKE scheme (cf. Section allows for a
very simple update mechanism. When we plug this encryption scheme in the construction of Figure [3]
we obtain the following scheme. (1) Algorithm Setup chooses a group G of prime order p with generator
g, runs (w, tk, ek) <— Gen(1%) and lets pp = (G, g, p,w). (2) Algorithm KGen samples random vectors
o,x € Zﬁ, and sets uk = (o, x); furthermore it chooses sk = x; = x + 3 (where 8 < ker(«)) and
lets pk = (h, g®) for h = g'®*). (3) Algorithm Enc takes as input pk and a message m € M, samples
arandom r € Z, and returns ¢ = (¢g"*, h" - m) together with a proof = < Prove“((pk, ¢), (m,r)) for
((pk,c), (m, 7)) € Rpke (cf. Figure[3). (4) Algorithm Dec parses ¢ = (g, ¢1), runs Verify“'((pk, c),)
and outputs m = ¢1 - g~ €01} in case the verification succeeds and L otherwise. (5) Algorithm Refresh
samples 3; < ker(a) and outputs x; = x + 3;.

The theorem below shows that the above scheme is IND-CCA CLT-secure in the iFloppy model.
One would expect that a proof of this fact is simple, since the keys after each update are completely
fresh and independent (given the public key) and thus security should follow from BLT security of the
underlying scheme. However, it is easy to see that such a proof strategy does not work directly (at least
in a black-box way) Unfortunately this requires us to make the proof from scratch. Since the proof
relies on ideas already introduced in this paper or borrowed from [6]], we give only a sketch here.

Theorem 5.2. Let k € N be the security parameter. Assume that the DDH assumption holds in G. Then,
the PKE scheme described above is IND-CCA (A\(k), 1)-CLT secure with respect to Te in the iFloppy
model, where A < (¢ — 3)logp — w(log k).

Proof (sketch). We define a series of games (starting with the original IND-CCA CLT game) and prove
that they are all close to each other.

Game G;. This is the IND-CCA CLT game. In particular the challenge ciphertext is a pair of the
form (¢* = (¢"*,h" - my),) where 7 < Prove” ((pk, c*), (mp, 1)), for my € {my, m1} and
b < {0, 1}. Our goal is to bound |Pr [A wins in G;] — 1/2].

Game Gs. In this game we change the way the challenge ciphertext is computed by replacing the argu-
ment 77* with a simulated argument 7* <— S((pk, ¢*), tk). It follows from the composable NIZK
property of the argument system that G; and Gy are computationally close.

Game Gj. In this game we change the way decryption queries are handled. Queries (¢, 7) to Dec(x;, -)
(such that 7 accepts) are answered by running the extractor Ext on 7, yielding (m, r) < Ext((pk,
c),m,ek), and returning m. Queries (¢,) to Dec(X;,-) (such that 7 accepts) are answered as
follows. We first extract (m, r) < Ext((pk, ¢), 7, ek) as above. Then, instead of returning m, we
recompute ¢ = Enc(pk, m;r) and return m = Dec(x;, ¢).

As argued in the proof of Theorem Gy and Gs are computationally close by the one-time
strong tSE property of the argument system.

8We stress that in the PKE case we cannot apply the same trick as for the compiler of Figure@ since that would require to
make the scheme interactive.

28

Game G,4. In this game we change the way the secret keys are refreshed. The challenger first chooses a
random (¢ — 2)-dimensional subspace S C ker(«) and samples the new keys x; from the affine
subspace x + S. We prove that Gz and G4 are statistically close by a hybrid argument. Assume
there are ¢ = poly(k) updates and define for each i = 0, . . ., ¢ the following hybrid distribution:

Game G3 ;. Sample at the beginning a random (¢ — 2)-dimensional subspace S C ker(a) and
modify the refreshing of the key as follows.

e Forevery 1 < j <q—i,letx; =x+ [3; where 3, < ker(a).
e Forevery q —1 < j < gq,letx; = x +s; wheres; < S.

Note that G3 = G3 and G4 = G34. As argued in [6, Theorem 13] it follows from the affine
version of the subspace hiding lemma (see [|6, Corollary 8]) that as long as the leakage is bounded
an adversary cannot distinguish leakage on 3, < ker(a) from leakage on s; <— S (and this holds
even if « is public and known at the beginning of the experiment and S becomes known after
the leakage occurs). We do loose an additional factor log p in the leakage bound here, due to the
fact that we use one additional leakage query to leak the group element h; needed to simulate the
tampered decryption oracle Dec(%;, -) (as we do in the proof of Proposition . This yields the
bound A < (¢ — 3)log p — w(log k) on the tolerated leakage.

Game Gj. In this game we compute the component ¢* of the challenge ciphertext (¢*, 7*) as
F = (gco _ gra’CI _ g<co,x) . mb)- 9)
This is only a syntactical change since ¢{¢0*) . my;, = (g<°"x>)r -mp = h" - my.

Game Gg. In this game the challenger chooses a, x as before and in addition samples a vector ¢y < Zf;
and sets .S to be the (/—2)-dimensional subspace S = ker(e, cg). The secret keys x; are chosen as
in the previous game from S. The component ¢* of the challenge ciphertext (¢*, 7*) is computed
as in Eq. (9) using the above vector cg.

As shown in [6, Theorem 13], G5 and Gg are computationally close by the extended rank-hiding
assumption (which is equivalent to DDH).

Game Gy. In this game we change again the way the keys are refreshed, namely each key x; is sampled
from the full original (¢ — 1)-dimensional space x + ker(a). As before, the last two games are
close by the affine subspace hiding lemma.

Game Gg. In the last game we change the way the challenge ciphertext is chosen. Namely, we choose a
random v < Zj, and let ¢* = (¢, g"). Game Gg and Gy are statistically close since G does not
reveal anything about x beyond (a, x) from the public key, and thus (cg, x) are statistically close
to uniform.

Note that the second element is now independent of the message. Hence, the probability that A
wins in Gg is 1/2 concluding the proof.

O]

6 Tampering with the Computation in the iFloppy Model

We finally consider the question of tampering with the computation for ID schemes in the iFloppy model.
In particular, we allow the adversary A to tamper in an arbitrary way with the algorithm of the prover
P as long as the interfaces of the algorithm stay unchanged (input/output domain consistency) and the
adversary can run the tampered algorithm only a bounded number of times between two key updates.

29

To model the input/output consistency, we let A replace the algorithm P with an arbitrarily different
algorithm P as long as P and P have the same input/output domain.

Formally, we model such arbitrary tampering with the computation by an adversary that corrupts the
prover P, and we denote the adversarial controlled prover by P. Of course, P cannot be corrupted by
the adversary A itself as this would enable A to learn the entire secret key and completely break security
of the identification scheme. We follow Dziembowski et al. [36] and consider a big adversary A and a
small adversary B, where we can think of B as a “virus” that corrupts the prover while A is the adversary
that observes (possibly corrupted) protocol executions with P. Notice that the only way in which B can
“communicate” with the big adversary A is via the output of the tampered prover P.

We formally describe security with respect to tampering with the computation in the definition below.
For simplicity, we assume that the adversary only gets a single protocol transcript after each tampering
query. This can be generalized to an arbitrary constant number but we omit the details here.

Definition 6.1. Let A = \(k) be the leakage parameter. We say that ZD is a A-continuous leakage and
tampering with computation (CLTC) secure identification scheme in the iFloppy model if additionally
to correctness (cf. Definition the scheme satisfies the following property:

CLTC Security: For all PPT adversaries A there exists a negligible function § : N — [0, 1] such that
Pr [A wins] < §(k) in the following game:

1. The challenger runs pp < Setup(1%) and (pk, sk, uk) < Gen(1*), and gives (pp, pk) to A. Let
sk1 = sk and uk be stored on the floppy.

2. We repeat the following steps a polynomial number of times, where the adversary may adaptively
ask leakage and tampering queries and each round is completed with an update of the secret key
using the floppy. More precisely, in the ith round the following happens:

(a) A specifies a function L; : {0,1}* — {0, 1}* and receives back L;(sk;).
(b) A specifies an algorithm P; and obtains the faulty transcript (P;(pp, sk;) = V(pp, pk)).
(c) The challenger updates the secret key, sk;+1 < Refresh(uk).

3. The adversary loses access to all oracles and interacts with an honest verifier V (holding pk). We
say that A wins if (A(pp, pk) = V(pp, pk)) outputs accept.

In the theorem below we show that when we instantiate the general compiler from Figure {] with an
appropriate identification scheme with key size k£ >> s + ssig (s is the length of the transcript, and s;g
is the length of a message/signature pair) and security against s + ss;g bits of leakage, we can achieve
security with respect to Definition Identification schemes that are secure in the Bounded Retrieval
Model (BRM) satisfy these conditions and have been constructed, e.g., by Alwen et al. [7] based on the
Generalized Okamoto ID scheme.

Theorem 6.1. Ler SIG = (KGen, Sign, Vrfy) be an EUF-CMA secure signature scheme with mes-
sage/signature pairs of size ssig, and ID = (Setup, Gen, P, V) be an (s+ ssig + A)-leakage and O-tamper
resilient identification scheme with transcript length s. Then, ID' from Figure 4|is a A-CLTC secure
identification scheme in the iFloppy model.

The proof is similar to the proof of Theorem hence we provide only a sketch here. The only
difference is in the reduction to the security of the underlying identification scheme ZD. While in
Theorem [5.1] we simulate the tampering with access to the tampering oracle, we now simulate the tam-
pering queries P/, i.e., the faulty transcript (P’ ((pp, pk;, help;), sk;) = V/(pp, mpk)) with access to the
leakage oracle. As the transcript has length s + sgg, we can learn the entire faulty transcript from the
leakage oracle. This is where we loose s + ssjg bits in the leakage bound compared to the underlying
identification scheme.

30

Proof (sketch). We show that if there exists a PPT adversary A who wins the CLTC security game
against ZD' with non-negligible probability, then we can build either of two reductions B or C violating
leakage resilience of ZD or EUF-CMA of SZG (respectively) with non-negligible probability. Let us
assume that Pr [A wins| > 6(k), where §(k) = 1/p(k) for some polynomial p(-) and infinitely many k.
The CLTC experiment for ZD' is specified below:

CLTC Experiment:
1. The challenger runs pp < Setup’(1¥) and (mpk, msk) < KGen(1¥), and gives (pp, mpk)
to A.
2. Foreachi = 1,...,q(k) (where ¢(k) is some polynomial in the security parameter), the

challenger does the following:
- During round i sample (pk;, sk;) < Gen(1*) and compute help; < Sign(msk, pk;) .
- Give A oracle access to P'((pp, help;, pk;), sk;).

- Answer the leakage and tampering query from A using key sk;. The leakage query con-
sists of a function L; : {0,1}* — {0,1}?, yielding L;(sk;); the tampering query con-
sists of a modified algorithm ﬁ; (with the same input/output domain as the honest prover
algorithm P’), yielding a transcript from (f’;((pp, pk;, help,), sk;) = V'(pp, mpk)).

3. During the impersonation stage, the challenger (playing now the role of the verifier V')
receives the pair (pk*, help*) from A; if Vrfy(mpk, (pk*, help*)) outputs 0, the challenger
outputs reject. Otherwise, it runs (A(pp, pk*) = V(pp, pk™)) and outputs whatever V does.

Let FRESH be the same event as defined in the proof of Theorem[5.1] We have
Pr [A wins] = Pr [A wins A FRESH] + Pr [A wins A FRESH] ,

where all probabilities are taken over the randomness space of the CLTC experiment and over the ran-
domness of A. We now describe a reduction B (using A as a black-box) which breaks leakage resilience
of ID.

Reduction B”:

1. Receive pp <+ Setup(1%¥) from the challenger. Sample (mpk,msk) + KGen(1*) and
forward (pp, mpk) to A.

2. Choose an index j < [¢] uniformly at random.
3. Forallt =1,...,q, simulate the learning stage of A as follows.

(a) During all rounds 7 such that i # j:
- Sample (pk;, sk;) < Gen(1¥) and compute help, < Sign(msk, pk;). Give A
oracle access to P'((pp, help;, pk;), sk;).
- Simulate A’s leakage and tampering query by using key sk;.
(b) During round j:
- Receive the public key pk from the challenger and use this key as the jth temporary
public key. Compute help < Sign(msk, pk).
- Simulate oracle P’((pp, help, pk), sk) by forwarding (pk, help) to A and using the

target oracle P(pp, sk).

- Simulate leakage query L; by submitting the same function to the target leakage
oracle.

31

- Simulate tampering query I5; by submitting the leakage function corresponding
to ISS((pp, help, pk),-) to the target leakage oracle, obtaining the corresponding
modified transcriptﬂ

4. Simulate the impersonation stage for A as follows:

(a) Receive (pk*, help*) from A. If pk* # pk (i.e., B’s guess is wrong) abort the execution.
Otherwise, run Vrfy(mpk, (pk*, help*)) and output reject if verification fails.

(b) Run (A(pp, pk*) = V(pp, pk™)) and use the messages from A in the impersonation
stage, to answer the challenge from the target oracle.

Note that B’s simulation is perfect, since it simulates all rounds using honestly generated keys whereas
round j is simulated using the target prover oracle and the leakage oracle which allows for simulating
A’s leakage and tampering queries using a total of A + s + ssig bits of leakage from sk (i.e., A bits for
A’s leakage queries, and (s + ssjg) bits for the faulty transcript P; = V/ corresponding to A’s tampering
query). Denote with GUESS the same event as in the proof of Theorem [5.1] As before, we have

Pr [B wins] > Pr [A wins A FRESH] .

1
q(k)
Finally, consider the same reduction C defined in the proof of Theorem[5.1] trying to break existential
unforgeability of SZG using A as a black-box. Notice that the reduction can still perfectly simulate all
of A’s queries, because it knows all the pairs (pk;, sk;) for all © € [g]. Hence, as in the proof of
Theorem 5.1}
Pr [C wins| > Pr[A wins A FRESH] .

Combining the previous equations, we obtain ¢(k) - Pr [B wins] + Pr [C wins] > Pr [A wins] > (k). A
contradiction. O

We note that the above result seemingly achieves a stronger security notion than Theorem [5.1] (tam-
pering with the computation vs. tampering only with the state) while not requiring a bounded tamper
resilient identification scheme as the underlying primitive. The fundamental difference between the two
theorems comes from the fact that in the theorem above we can only use the identification scheme a
bounded number of times between each two key updates, while when we tamper only with the secret
state Theorem [5.1|does not set any such usage restriction.

Acknowledgments

Work done while the last author was a postdoc at the Computer Science Department of Aarhus Uni-
versity, supported by the Danish Council for Independent Research (under the DFF Starting Grant 10-
081612). Ivan Damgard acknowledges support from the Danish National Research Foundation, the
National Science Foundation of China (under the grant 61061130540), and also from the CFEM re-
search center. Sebastian Faust was partially funded by the above grants. Pratyay Mukherjee’s work at
Aarhus University was supported by a European Research Commission Starting Grant (no. 279447) and
the above grants. Part of this work was done while this author was at the University of Warsaw and
was supported by the WELCOME/2010-4/2 grant founded within the framework of the EU Innovative
Economy Operational Programme.

“Here is how B simulates the transcript with more details. Without loss of generality, assume that a basic interaction P = V
consists of ;s messages for odd ;1 € N; recall that the interaction P’ 2 V'’ also consists of ;1 messages, where the pair (pk, help)
is appended to the first message sent by P. Thus, the ith message of the interaction Is; = V', fori € [p] can be simulated
by a leakage query hard-wiring a description of |5;_ together with (m1, ..., m;—1, pp, pk, help), where (m1, ..., m;_1) is the
current partial transcript.

32

References

[1] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable reduc-
tions and applications. JACR Cryptology ePrint Archive, 2014:821, 2014.

[2] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive com-
binatorics. In STOC, pages 774-783, 2014.

[3] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Leakage-resilient
non-malleable codes. JACR Cryptology ePrint Archive, 2014:807, 2014.

[4] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes resistant to permutations and perturbations. JACR Cryptology ePrint
Archive, 2014:841, 2014.

[5] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit optimal-rate non-malleable codes against bit-wise tampering and permutations. IACR
Cryptology ePrint Archive, 2014:842, 2014.

[6] Shweta Agrawal, Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. On continual leakage
of discrete log representations. IACR Cryptology ePrint Archive, 2012:367, 2012.

[7] Joél Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in the
bounded-retrieval model. In CRYPTO, pages 36-54, 2009.

[8] Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In WOEC’96: Pro-
ceedings of the 2nd conference on Proceedings of the Second USENIX Workshop on Electronic
Commerce, pages 1-1, Berkeley, CA, USA, 1996. USENIX Association.

[9] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under related-key attacks
and applications. In ICS, pages 45-60, 2011.

[10] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure against
related-key attacks. In CRYPTO, pages 666—684, 2010.

[11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks
and tampering. In ASTACRYPT, pages 486-503, 2011.

[12] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In EUROCRYPT, pages 491-506, 2003.

[13] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond the linear barrier:
IBE, encryption and signatures. In ASTACRYPT, pages 331-348, 2012.

[14] Rishiraj Bhattacharyya and Arnab Roy. Secure message authentication against related key attack.
In FSE, 2013.

[15] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating errors
in cryptographic computations. J. Cryptology, 14(2):101-119, 2001.

[16] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision diffie-hellman. In CRYPTO, pages 108-125, 2008.

[17] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In EUROCRYPT,
pages 351-368, 2009.

33

[18] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-state
tampering. In FOCS, pages 306-315, 2014.

[19] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In Innovations
in Theoretical Computer Science, ITCS, pages 155-168, 2014.

[20] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-
state tampering. In TCC, pages 440-464, 2014.

[21] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: Built-in tamper resilience. In ASI-
ACRYPT, pages 740-758, 2011.

[22] Sandro Coretti, Yevgeniy Dodis, Bjorn Tackmann, and Daniele Venturi. Self-destruct non-
malleability. JACR Cryptology ePrint Archive, 2014:866, 2014.

[23] Sandro Coretti, Ueli Maurer, Bjorn Tackmann, and Daniele Venturi. From single-bit to multi-bit
public-key encryption via non-malleable codes. IACR Cryptology ePrint Archive, 2014:324, 2014.

[24] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis,
University of Amsterdam, November 1996.

[25] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password proto-
cols in the bounded retrieval model. In TCC, pages 225-244, 2006.

[26] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate tampering.
In CRYPTO, pages 533-551, 2012.

[27] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against 1/poly(k)
tampering rate. In TCC, pages 540-565, 2014.

[28] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable and
updatable non-malleable codes and their applications. IACR Cryptology ePrint Archive, 2014:663,
2014.

[29] Ivan Damgard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper re-
silience: How to go beyond the algebraic barrier. In ASIACRYPT, pages 140-160, 2013.

[30] Ivan Damgéard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. The chaining lemma and
its application. JACR Cryptology ePrint Archive, 2014:979, 2014.

[31] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lépez-Alt, and Daniel Wichs. Cryptography
against continuous memory attacks. In FOCS, pages 511-520, 2010.

[32] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana Lpez-Alt, and Daniel Wichs. Efficient public-
key cryptography in the presence of key leakage. In ASIACRYPT, pages 613-631, 2010.

[33] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97-139, 2008.

[34] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages 207-224,
2006.

[35] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO, pages 239-257, 2013.

34

[36] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing func-
tions. In TCC, pages 125-143, 2011.

[37] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS, pages
434-452, 2010.

[38] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-
malleability of the fiat-shamir transform. In INDOCRYPT, pages 60-79, 2012.

[39] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous non-
malleable codes. In TCC, 2014.

[40] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper and
leakage resilient von Neumann architecture. IJACR Cryptology ePrint Archive, 2014:338, 2014.

[41] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-malleable
codes and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages 111-128, 2014.

[42] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to trade
leakage for tamper-resilience. In ICALP (1), pages 391-402, 2011.

[43] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signa-
ture problems. In CRYPTO, pages 186—194, 1986.

[44] Marc Fischlin and Roger Fischlin. The representation problem based on factoring. In C7-RSA,
pages 96113, 2002.

[45] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient
to additive attacks with applications to secure computation. In STOC, pages 495-504, 2014.

[46] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
tamper-proof (atp) security: Theoretical foundations for security against hardware tampering. In
TCC, pages 258-277, 2004.

[47] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In TCC,
pages 182-200, 2011.

[48] Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group signa-
tures. In ASTIACRYPT, pages 444-459, 2006.

[49] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In CRYPTO, pages 216231, 1988.

[50] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In EUROCRYPT, pages 308-327, 2006.

[51] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes. JACR
Cryptology ePrint Archive, 2014:956, 2014.

[52] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable and
leaky memory. In CRYPTO, pages 373-390, 2011.

[53] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage resilience. In
ASIACRYPT, pages 703-720, 2009.

35

[54] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the gates. In
ASIACRYPT, pages 161-180, 2013.

[55] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In
CRYPTO, pages 517-532, 2012.

[56] Stefan Lucks. Ciphers secure against related-key attacks. In FSE, pages 359-370, 2004.

[57] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pages
18-35, 2009.

[58] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signa-
ture schemes. In CRYPTO, pages 31-53, 1992.

[59] Krzysztof Pietrzak. Subspace LWE. In TCC, pages 548-563, 2012.

[60] Stephen Pohlig and Martin Hellman. An improved algorithm for computing logarithms over and
its cryptographic significance. IEEE Transactions on Information Theory, 24(1):106-110, 1978.

[61] Baodong Qin, Shengli Liu, Tsz Hon Yuen, Robert H. Deng, and Kefei Chen. Continuous non-
malleable key derivation and its application to related-key security. IACR Cryptology ePrint
Archive, 2015:3, 2015.

[62] Hoeteck Wee. Public key encryption against related key attacks. In Public Key Cryptography,
pages 262-279, 2012.

36

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Basic Notation
	Hard Relations
	Signature Schemes
	-protocols
	True Simulation Extractability
	A Note on Deterministic vs Probabilistic Tampering

	ID Schemes with BLT Security
	-protocols are Tamper Resilient
	Concrete Instantiation with more Tampering
	Some Attacks
	BLT-Secure Signatures

	IND-CCA PKE with BLT Security
	Restricted IND-CCA BLT Security
	A General Transformation
	Instantiation from BHHO
	Impossibility of ``Post-Challenge'' IND-CCA BLT Security

	Updating the Key in the iFloppy Model
	ID Schemes in the iFloppy Model
	PKE Schemes in the iFloppy Model

	Tampering with the Computation in the iFloppy Model

