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Abstract

This paper studies how to construct a pseudorandom generator using hard lattice prob-
lems.

We use a variation of the classical hard problem Inhomogeneous Small Integer Solution
ISIS of lattice, say Inhomogeneous Subset Sum Solution ISSS. ISSS itself is a hash function.
Proving the preimage sizes ISSS hash function images are almost the same, we construct a
pseudorandom generator using the method in [GKL93]. Also, we construct a pseudoentropy
generator using the method in [HILL99]. Most theoretical PRG constructions are not feasible
in fact as they require rather long random bits as seeds. Our PRG construction only requires
seed length to be O(n2 log2 n) which is feasible practically.

1 Introduction

Pseudorandom generator (PRG) is an important cryptographic primitive. It could stretch
longer random bits from the random seed, using polynomial time. The generated bit string and
the uniform distributed bit string are computationally indistinguishable.

Major study for theoretical PRG starts from 1980s. Blum and Micali [BM82] constructed the
first theoretical constructor using Discrete Logarithm, giving the original definition of PRG. Yao
[Yao82a] gave the currently used definition of PRG and proved that bit-unpredictable implies
pseudorandomness. This definition is equivalent to [BM82]. Both of their construction method
used one-way function. This became the common way to construct PRG for researchers after
them. In this paper, we only study PRG constructed by one-way function though a long-term
existed open problem is whether PRG could be constructed not based on one-way function.

Yao’s method in [Yao82a] proves that PRG could be constructed from any one-way per-
mutation. However, one-way permutation is merely existed. Most one-way function we know
are hash function whose output length is shorter than input length. Levin [Levin87] weakened
the requirement for one-way function, proving one-way on iteration is sufficient for PRG con-
struction. Goldreich at al. [GKL93] provided the method that we will used in this paper. It
requires each one-way function image has roughly the same number of preimage. Finally in
[HILL99], it is proved that every one-way function could be used to construct a PRG. However,
this method requires seed length to be O(n8) which is impractical as we require n to be at least
64. However this construction showed a new concept in information science, the pseudoentropy.
Our one-way function could also be made to be a pseudoentropy generator.

Lattice problem is studied in the view of cryptography since 1996 when Ajtai [Ajtai96]
proved the average-case hardness of lattice problem Small Integer Solution (SIS). The most
recent research showed that SIS and its variation ISIS could be reduced from GapSVP [GPV08].
It is a worst-case to average-case reduction which means by random sampling we could get a
hard instance of SIS or ISIS in polynomial time. We will construct our one-way function based
on a variation of ISIS, say ISSS. We prove that the this one-way function meet the requirements
of [GKL93] by setting proper parameters.
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2 Preliminaries

2.1 Basic Notations

The sets of real numbers and integers are denoted by R and Z respectively. Vectors are
represented as lower-case letters, e.g. x. Matrix and basis are denoted by upper-case letters,
e.g. B. L(B) denote the lattice generated by basis B. For a vector x, the ith coordinate is
denoted by xi. The inner product between x,y ∈ Rn is x · y = 〈x,y〉 =

∑n
i=1 xiyi.

The lp norm of x is ‖x‖p = (
∑n

i=1 |xi|p)
1/p for any p ∈ [1,∞) and the l∞ norm is ‖x‖∞ =

max1≤i≤n |xi|. We omit the subscript when p = 2.
The operation � stands for matrix multiplication on GF[2]. For x, y ∈ {0, 1}l, x � y =∑l
i=1 xiyi mod 2.
For function f , we denote f (0)(x) = x, f (i)(x) = f (i−1)(x). {f (i)(x), i = 0, . . . , l} is a set of

iterative values for iterative function with input x.

2.2 Definitions

Lattice is a Z-module. Its dimension n could be regarded as a security parameter.

Definition 1 (Lattice). Given n linearly independent vectors b1,b2, . . . ,bn ∈ Rm, the lattice
generated by them is defined as

L(b1,b2, . . . ,bn) = {
n∑
i=1

xibi|xi ∈ Z}.

b1, . . . ,bn is a lattice basis. Equivalently, if we define B as the m×n matrix whose columns
are b1,b2, . . . ,bn, then the lattice generated by B is

L(B) = L(b1,b2, . . . ,bn) = {Bx|x ∈ Zn}.

In the following passage, without loss of generality, assume that the input basis B is full
rank and is an integer matrix.

Definition 2 (Shortest Vector Problem (SVP)). Given a basis B ∈ Rm×n, find a nonzero lattice
vector Bx(with x ∈ Zn \ {0}) such that

‖Bx‖ ≤ ‖By‖

for any other y ∈ Zn \ {0}.

Always, researchers use λi (also λi(B) with respect to basis B) to denote the ith shortest
vector in a lattice. λ1 is the shortest vector. We also use Λ to denote a lattice.

GapSVP is defined as the following.

Definition 3 (GapSVPγ). The input consists of B ∈ Zm×n and r ∈ Q.

• In YES instances, λ1(L(B)) ≤ r.

• In NO instances, λ1(L(B)) > γ · r.

Definition 4 (Small Integer Solution (SISq,m,β)). Given an integer q, a matrix A ∈ Zn×mq , and
a real β, find a nonzero integer vector e ∈ Zm such that Ae = 0 (mod q) and ‖e‖ ≤ β.

Definition 5 (Inhomogeneous Small Integer Solution (ISISq,m,β)). Given an integer q, a matrix
A ∈ Zn×mq , a vector b ∈ Znq and a real β, find a nonzero integer vector e ∈ Zm such that Ae = b
(mod q) and ‖e‖ ≤ β.
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Based on ISIS, we give our definition for its variation ISSS.

Definition 6 (Inhomogeneous Subset-Sum Solution (ISSSq,m)). Given an integer q, a matrix
A ∈ Zn×mq , a vector b ∈ Znq , find a nonzero integer vector e ∈ {0, 1}m such that Ae = b
(mod q).

3 Lattice One-Way Function and Its Property

3.1 The One-way Function

According to the definition of ISSS, we focus on the following hash function to construct
our pseudorandom generator.

fA(x) = Ax, x ∈ {0, 1}m.

A is constructed by picking m random elements uniformly from a finite abelian group G.
The reader could regard G as Znq .

First we will prove a special property of this one-way function.
Lemma 1 is proved according to on Claim 5.3 of [Regev05].

Lemma 1. Let G be some finite abelian group and let l be some integer. For any l elements
g1, . . . , gl ∈ G consider the preimage size |f−1(h)| of the following function,

h = f(b) =

l∑
i=1

bigi,b ∈ {0, 1}l.

With probability at least 1− 4
√
|G|/2l, maxh |(|f−1(h)| − 2l

|G|)| ≤ 2
3
4
l · 4

√
|G|.

Proof. Assume g = (g1, . . . , gl) which are l elements from G. Pg be the distribution of the sum
of a random subsets of g1, . . . , gl, i.e.,

Pg(h) =
1

2l
|{b ∈ {0, 1}l|

l∑
i=1

bigi = h}|

According to Claim 5.3 in [Regev05], with probability at least 1− 4
√
|G|/2l,

∑
h

|Pg(h)− 1/|G|| ≤ 4

√
|G|
2l
.

With both sides multiplied by 2l and |f−1(h)| = Pg(h)× 2l, we have the following.

∑
h

|(|f−1(h)| − 2l

|G|
)| ≤ 2

3
4
l · 4

√
|G|

As a result,

max
h
|(|f−1(h)| − 2l

|G|
)| ≤ 2

3
4
l · 4

√
|G|.

Lemma 2. G is a abelian group and l be an integer. For any l elements g1, . . . , gl ∈ G,
consider the preimage size |f−1(h)| of the following function,
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h = f(b) =

l∑
i=1

bigi,b ∈ {0, 1}l.

Suppose the decimal part of log 2l

|G| is d. That is log 2l

|G| = [log 2l

|G| ] + d.

If G meets the following restriction, 0 < d+ log(1− |G|
3
4

2
1
4 l

) < d+ log(1 + |G|
3
4

2
1
4 l

) < 1,

∀h ∈ G, dlog |f−1(h)|e = dlog
2l

|G|
e,

also

∀h ∈ G, blog |f−1(h)|c = blog
2l

|G|
c.

Proof. According to the last lemma, we know that,

max
h
|(|f−1(h)| − 2l

|G|
)| ≤ 2

3
4
l · 4

√
|G|.

∀h ∈ |G|, 2l

|G|
− 2

3
4
l · 4

√
|G| ≤ |f−1(h)| ≤ 2l

|G|
+ 2

3
4
l · 4

√
|G|

Compute log |f−1(h)|.

∀h ∈ |G|, log
2l

|G|
· (1− |G|

3
4

2
1
4
l

) ≤ log |f−1(h)| ≤ log
2l

|G|
· (1 +

|G|
3
4

2
1
4
l

)

[log
2l

|G|
] + d+ log(1− |G|

3
4

2
1
4
l

) ≤ log |f−1(h)| ≤ [log
2l

|G|
] + d+ log(1 +

|G|
3
4

2
1
4
l

)

If G meets the following requirements 0 < d+ log(1− |G|
3
4

2
1
4 l

) < d+ log(1 + |G|
3
4

2
1
4 l

) < 1, then

dlog |f−1(h)|e = dlog
2l

|G|
e,

also

∀h ∈ G, blog |f−1(h)|c = blog
2l

|G|
c.

It is necessary to point out that the restriction is easy to meet when l choose from some
proper value in O(n log n).

Now we describe how to generate the abelian group G. Indeed what we generate, the abelian
group, is a lattice G = Znq . It is generated as a random lattice.

The parameter q has to be chosen carefully, because |G| = qn. That is to say, q should make
|G| meet the restriction in lemma 2. After we generate G, we randomly pick m elements of G
to generate A. And the one way function f is

fA(x) = Ax, x ∈ {0, 1}m.
The next theorem is in [HILL99] Theorem 5.1.4. The construction method used in [HILL99]

could be used by applying ISSS to construct a PRG, but it requires the length of the seed to
be O(n4) which is not optimal.

Theorem 1. A pseudorandom generator can be constructed from a one-way function f if
dlog |f−1|e could be computed in polynomial time. The reduction is weak-preserving.
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3.2 The Hardness of ISSS

As ISSS is a variation of ISIS, it has the same hardness property as ISIS does. In deed,
each randomly generated input instance for a ISISq,m,β oracle (with β =

√
m), could directly

be used as a input for ISSSq,m oracle, where the output of the ISSSq,m oracle is exacly a proper
result for the input ISISq,m,β instance. ISISq,m,β as proved in [MR07], is hard in average-case
assuming GapSVPγ is hard, for a proper γ. The next theorem gives exactly the hardness result
of ISSS.

Theorem 2. For any m = poly(n), q ≥ n2.5 log n, there exists γ = O(n
√

log n) such that,
solving ISSSq,m on the average case is at least as hard as solving GapSVPγ in the worst case.

As a result, assuming GapSVPO(n logn) is hard on the worst case, ISSS is hard on the
average case. This means we could generate a hard instance of ISSS in polynomial time by
random generation. So the function fA we generated above is truly hard as a one-way function.

4 From One Way Function of ISSS to Pseudorandom Generator

In this section, we briefly describe how to construct a pseudorandom generator from our
one-way function, using the method in [GKL93].

4.1 The Construction

The method in [GKL93] focus on how to construct a one way function on iterates. Our one
way function also meets their requirements. Also we make a little improvement to make the
seed shorter.

Now we describe the construction.

Construction 1. Let H(m) be a universal class of hash functions. Each function in H(m)
maps m-bit strings to m-bit strings.

f ′(h0, . . . , ht(m)−1, i, x) = (h0, . . . , ht(m)−1, i
′, hi(f(x)))

where x ∈ {0, 1}m, hk ∈ H(m), 0 ≤ i ≤ t(m)− 1, i′ = (i+ 1) mod t(m), t(m) ≥ m+ 1.

Denote G
(i)
H(m)(f)(x) = hi(Gi−1(f)(x)), where G(0)(f)(x) = x.

Definition 7. Let H be a finite collection of hash functions mapping set I to set O,m = |O|.
Then H is called universal if, given x, y ∈ U, (x 6= y),

|{h ∈ H : h(x) = h(y)}| = |H|
m

.

The following theorem is in [GKL93], section 2.6.

Theorem 3. If f is a strong one-way function, ∀y1 = f(x1), y2 = f(x2), b|f−1(y1)| = |f−1(y2)|c,then
in the construction above, f ′ is a one-way function on iterates.

As the one-way function fA(x) defined in the section 3 is a strong one-way function meets
the requirements according to lemma 2, it could be used by the above method. The result is
the following theorem.

Theorem 4. If f = fA, f ′ constructed in construction 1 is a one-way function on iterates for
|x| steps.

The problem is, the construction method gives in [GKL93] requires generating m hash
functions from the universal class of hash function H. Each hash function will require m2 bits
random bits to construct. It is easy to see that we need more than m3 random bits to start our
generator.
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4.2 Optimization

Next we explains the method to decrease the seed length of the pseudorandom generator.
We will use toeplitz matrix to construct hash functions. This only require cm2 random bits,

where c is a constant.
In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz,

is a matrix in which each descending diagonal from left to right is constant. It is proved in
[Krawczyk95] that toeplitz hash function is one kind of universal hash function. Each universal
hash function is generated as the follows.

Construction 2. Each universal hash function is of the form h(x) = Tx. T is a toeplitz
matrix. Each of its main diagonal elements is randomly chosen from {0, 1}.

A direct way to construct universal hash function h(x) = Tx is to generate the bit matrix
T , which need m2 random bits, where m is the dimension of the matrix. Using toeplitz matrix
it only need 2m − 1 random bits (exactly for the 2m − 1 diagonal elements). In this way, the
overall random bits needed for m hash functions are 2m2 −m in O(m2).

4.3 From one-way function on iterates to PRG

Former researcher had already provided method to construct PRG from one-way function
on iterates.

There are two steps. First step is to construct a generator stretching 1 bit from the seed (1
bit generator). Second Step is to stretch many bits using the 1 bit generator. We summarize the
methods as the following 2 theorem which could be concluded from [GKL93]. We just modified
the number of random hash functions so that it is as less as possible. It could be easily verified
that this modification do not affect its validity.

Theorem 5. The 1 bit generator is as follows.

F(H, x, r) = (f (m)(x)� r, f (m−1)(x)� r, . . . , x� r,H, r)

The input seed is H, x, r, and the value of the function is the generated pseudorandom bit
string. Here H represents the collection of hash function we randomly generated.

In our construction, we have f (i)(x) = G
(i)
H(m)(f)(x). As a result, in order to generate m

hash functions, (2m − 1)m random bits are enough. Finally, the overall length of the seed is
2m2.

The last theorem is stated in [HILL99], Proposition 3.3.4.

Theorem 6. If g : {0, 1}n → {0, 1}n+1 is a pseudorandom generator that stretches by one bit.
Define g(1)(x) = g(x), and inductively, for all i ≥ 1,

g(i+1)(x) = 〈g(g(i)(x){1,...,n}), g
(i)(x){n+1,......,n+i}〉.

Let kn be a integer valued parameter which is computable in polynomial time of n. g(kn) is
a pseudorandom generator.

According to construction 1, theorem 4, 5 and 6, we use fA as the one-function. Construct
one-way function on iteration by construction 1. Use the method in theorem 5 to construct
a 1 bit PRG. At last apply the method in theorem 5 to construct PRG which could generate
arbitrary long ( in polynomial of seed length ) of pseudorandom bits.

6



5 Conclusions and Open Problems

According to our method, we could use lattice one-way function to generate a pseudorandom
generator. Its hardness is based on the assumed hardness of GapSVPO(n logn). The generator
requires O(m2) bits as the seed, where m is in O(n log n).

However there are still some problems about our one-way function. In fact, intuitively, the
ISSS problem could have a better hardness result. So it is a open problem whether ISSS could
be proved hard based on harder problem (harder than GapSVPO(n logn)).

Another open problem is whether there are ways to make the required seed length shorter.
It will be a better result if the needed seed length is in O(n).
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