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Abstract. A little work has ever been performed in cryptanalysis of block ciphers
using cube technique. This paper presents a new framework for an efficient key
recovery attack on block ciphers using a kind of dynamic cube attack. In this method,
a cube tester is positioned at the middle of the cipher which is extended in two
directions over the maximum possible upper and lower rounds, provided that some
subkey bits are guessed. It is shown that an automated algorithm for this dynamic
cube attack on block ciphers can be realized. Furthermore, we show its effectiveness
on two lightweight block ciphers KATAN and SIMON. Our results show that this
method can break 118 and 155 out of 254 rounds of KATAN32 in non-full-codebook
and full-codebook attack scenarios, respectively. In the case of SIMON32/64, we
succeed to cryptanalyze 17 and 22 out of 32 rounds, in the same scenarios. Both
results show that it can absolutely compete with the well-established and mature
methods of cryptanalysis of block ciphers, such as linear, differential and meet in the
middle attack families.
Keywords: Block cipher · Cryptanalysis · Cube attack · SIMON · KATAN

1 Introduction
prospect of Internet of things (IoT) for future life seems so pleasant: every person will
be surrounded by many kinds of networked smart objects such as Radio Frequency
Identification (RFID) tags, sensors, actuators, etc. in order to facilitate more efficient,
accurate and cost-effective services for daily life. Despite this tempting prospect, there are
serious concerns regarding the users privacy and other security accepts of such pervasive
technologies with scarce resources.

Lightweight cryptography includes design and analysis of secure cryptographic primi-
tives and protocols tailored to extremely constrained environments. The major challenge
in lightweight cryptography is how to balance the trade-off between lightweightness and
security: To design a cryptographic scheme with enough security which is comply with the
restricted resources.

New designs require new analyses. So, the external analyses of lightweight primi-
tives/protocols play an important role in the amount of trust put in these innovative design
strategies. This paper focuses on cryptanalysis of lightweight block ciphers, which are an
important class of lightweight cryptographic primitives, today. The attack studied is cube
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attack [DS09a] and the instance block ciphers are KATAN [CDK09] and SIMON [BSS+13]
ciphers.

In 2007, Vielhaber proposed the idea of Algebraic IV Differential Attack (AIDA)
[Vie07], which was then continued by Dinur and Shamir under the new title of cube attack
[DS09a]. In this attack, the cipher is treated as a black box whose input consists of a
public tweakable variable (e.g. IV in stream ciphers and plaintext in block ciphers) and a
secret fixed parameter, (the key of the algorithm). The main idea behind this attack is to
find some information about the secret key of the algorithm by choosing all values for an
appropriate subset of the public input variables and summing up all the corresponding
outputs.

This technique can also introduce a distinguisher, the so called cube tester in [ADMS09],
where instead of retrieving some information from the key bits, a non-random property
of the cipher is discovered by such an oracle access to the cipher. Dynamic cube attack
can be regarded as a more advanced version of the cube attack, in which a cube tester is
employed not to detect a non-random property, but to determine if a specific guess for a
subset of key bits could be correct or not [DS11]. In spite of the classic cube attack where
the attacker sees the cipher as the black box and does not use the structural information of
the algorithm, dynamic cube attack make use of such information, hence it can potentially
reach better results than classic cube attack.

Cube attack family has shown to be very effective in cryptanalysis of lightweight
stream ciphers. Grain [HJMM08] and Trivium [CP08] are two lightweight stream ciphers,
for both of which the most successful attacks are a kind of cube attack family [DS09a,
Vie07, ADMS09, DS11, FV13, VSM13, RBMA16]. In contrast to its significant results in
cryptanalysis of lightweight stream ciphers, apart from a combination of cube attack and
algebraic attack [BCJ+10], it has not yet been applied to block ciphers efficiently1.

In this paper, we aim to take the first steps for an efficient application of cube technique
for cryptanalysis of block ciphers. The technique that we propose is apparently similar to
dynamic cube attack on stream ciphers [DS11], since it makes use of some distinguishers
to discard some wrong guesses of the secret key. Furthermore, some specific functions of
the cube variables and secret key bits should be assigned to the input variables, similar to
the so called dynamic variables in [DS11]. But, the mechanism by which these functions
are derived are totally different. The main approach in the dynamic cube attack on stream
ciphers is to use the recursive description of the cipher’s output function in order to
nullify/simplify some appropriate intermediate variables which consequently leads to a
simplified algebraic function for the output bit. This process demands a “complex process
that can not be fully automated and involves manual work to analyse the cipher" [DS11].
However, the situation is completely different in block ciphers, where a key-only-dependent
function, i.e. the key schedule, is always available in every round of the cipher which
enables the cryptanalyst to do partial encryption/decryption anywhere in the cipher,
conditioned that she has guessed the involved subkeys. This option is not available in
stream ciphers in any case, where the secret key as well as the IV are loaded into the state
of the cipher at the first step, then they are mixed during the initialization phase so a
key-only dependent function would never be conceivable then.

In spite of the very complex manual procedure of the dynamic cube attack on stream
ciphers, our attack on block ciphers can be made fully automated. We put the rc-round
cube tester (distinguisher) in the middle of the cipher. Hence, in spite of all the cube
attacks, the cube variables in our attack are not among the public input variables (i.e.
plaintext bits for block ciphers) but they are basically some bits of an intermediate state.
Then, we extend the attack to ru rounds before, and rl rounds after the distinguisher.

1There are some instances of combinations of cube and side channel attacks [BCJ+10, DS09b, LZFV13,
YWQ09] and cube and fault injection attacks [ARSS12] in the literature. These attacks are defined in the
leakage and fault injection attack models, both of which are out of the model that we used for the attacker
in this work.
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Table 1: Result of previous attacks on KATAN32

Type Round Time Data Memory Ref.
Cube/Algebraic 79 14.72 min 20 – [BCJ+10]

Conditional Differential 78 222 222 – [KMN10]
MITM ASR 110 277 138 275.1 [IS14]
Differential 114 277 231.9 – [AL12]

Dynamic Cube 118 278.3 219 27.5 Sec. 4
MITM ASR 119 279.1 144 279.1 [IS14]

Matchbox MITM 121 277.5 4 32 [FM14]
Dynamic Cube 138 278.5 231 232.5 Sec. 4
Matchbox MITM 153 278.5 32 276 [FM14]
Dynamic Cube 155 278.3 232 233.5 Sec. 4

Multidimensional MITM 175 279.3 3 279.6 [ZG14]
Multidimensional MITM 206 279 3 278.1 [RvR16]
MITM: Meet in the Middle ASR: All Subkey Recovery

Both the extensions potentially involve guessing some key bits. In addition, the backward
ru-round extension determines what each bit of the plaintext must be exactly (i.e. its
precise description in terms of the guessed key bits and cube variables). Finally, the set of
key bits guessed in the two directions are tested by the cube tester.

Having introduced our attack framework in a general view, we examine its efficiency and
flexibility on two lightweight block ciphers: the recently proposed NSA cipher SIMON32/64
[BSS+13], and KATAN32 [CDK09]. We found them good targets for our attack since both
has a low-degree round function compensated by relatively large number of rounds, similar
to the stream ciphers potential targets of cube attack [HJMM08, CP08].

The algorithm of our attack is flexible enough to set the maximum allowable value
for data and time complexities. So, we report our results in two scenarios: full-codebook
and non-full-codebook attacks. In case of KATAN, we could analyse up to 155, 138 and
118 rounds out of 254 rounds by full-codebook, half full-codebook and non-full-codebook
attack scenarios, respectively, which absolutely outperform the only instance of cube attack
[BCJ+10] which could break 79 rounds. In case of SIMON32/64, we could break 22-round
and 17-round version of 32-round cipher in full-codebook and non-full-codebook scenarios,
respectively.

As it can be seen in details in Table 1 and Table 2, for SIMON32, the 22-round
full-codebook attack outperforms all other attacks formally published 2 on this cipher
[AAA+14, SHMS14, BNS14, ALLW14, BRV14, WLV+14, SFW15] except the most recent
one [CW16], and in case of KATAN32 the 155-round full-codebook attack exceeds any
other attacks proposed on this cipher, except the multidimensional meet in the middle
attacks [ZG14, RvR16] which have a significant distance not only from ours, but also from
all other attacks proposed on KATAN [BCJ+10, KMN10, AL12, IS14, FM14].

Our results shows that in spite of the conventional view that cube attack is an appro-
priate tool just for cryptanalysis of stream ciphers, this newcomer attack can absolutely
compete with the well-established and accepted methods for cryptanalysis of block ciphers
such as differential, linear and meet in the middle attack families and even it can overtake
most of them.

This paper is organized as follows: In Section 2, we give some preliminaries and
notations for cube attacks. In Section 3, the proposed framework for dynamic cube attack
on block ciphers is explained in a general view. We present our results on KATAN32 and

2We did not included the informally published results on SIMON such as [AL13, WWJZ14, Ash15,
QHS15].
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Table 2: Result of previous attacks on SIMON32/64

Type Round Time Data Memory Ref.
Linear 11 – 223 – [ALLW14]

Linear (Matsui’s 1st Alg.) 13 232∗∗ 232 – [AAA+14]
Impossible Differential 13 250.1 230 220 [ALLW14]

Linear (Matsui’s 2nd Alg.) 16 254 232 – [AAA+14]
Dynamic Cube 17 257 218 28 Sec. 5
Matchbox MITM 18 262.6 23 255 [SHMS14]

Impossible Differential 18 261.1 232 247.7 [WLV+14]
Differential* 18 246 231.2 215 [ALLW14]

Multiple Linear 18 232 232 – [AAA+14]
Impossible Differential 19 262.6 232 244 [BNS14]

Differential 19 232 231 – [BRV14]
Zero Correlation 20 257 232 241.4 [WLV+14]

Linear Hull 20 259.7 231.7 – [AAA+14]
Integral 21 263 231 254 [WLV+14]

Zero Correlation 21 259.4 232 231 [SFW15]
Dynamic Cube 22 259 232 232.2 Sec. 5

Linear Hull 23 261.8A + 256.3E 231.2 – [CW16]
A: Addition E: Encryption

* Its probability of success is 63%.
** Its needed time for computing one bit of key. So, the total time complexity is 263.

SIMON32/64 in Sections 4 and 5, respectively. Finally we conclude our work in Section 6.

2 Preliminaries and Notations
Suppose f : {0, 1}l → {0, 1} is the boolean function representing one output bit of the
cipher based on the m-bit public input variable P = {pm−1, ..., p0} and n-bit secret key
K = {kn−1, ..., k0} where l = m + n. Let X = P ∪K be the set of all inputs of f . f can
be represented as follows:

f(xl−1, . . . , x0) =
∑
i∈F l

2

ai · x
il−1
l−1 . . . xi1

1 xi0
0 (1)

where {il−1, . . . , i0} is the binary representation of i, and ai is a binary constant.
Now suppose that I is a certain index subset of {0, 1, . . . , l − 1} of size d, namely

cube where d is called the cube dimension. We denote the set of cube variables by
XI = {xi|xi ∈ I}. If we factorize function f by the monomial tI =

∏
i∈I xi, it can be

written in the following form

f(xl−1, . . . , x0) = tI · PS(I) + q(xl−1, . . . , x0) (2)

where PS(I) is a polynomial that has no variable in common with tI , and no monomial in
q contains tI . The PS(I) is called the superpoly of I.

The main idea behind all the variants of cube attack is to confine the cube variables to
public input variables (i.e. XI ⊆ P ) and deal with the lower degree and simpler polynomial
PS(I) rather than the potentially very complex polynomial f . To do so, we enjoy the
following property of Boolean functions:∑

XI∈{0,1}d

f(xl−1, . . . , x0) = PS(I) (3)
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Table 3: Notations

Symbol Definition
m/n block/key size for block cipher

I cube
d cube dimension

XI set of cube variables {xi|i ∈ I}
PS(I) the superpoly for cube I
U/Z index set for neutral/static bits
rc number of rounds in the cube tester part

ru/rl number of rounds in the upper/lower extension part
Ku/Kl set of key bits involved in the upper/lower extension part

S(i) intermediate state at the end of round i
Sj/SJ bit j of intermediate state S, SJ = {Sj |j ∈ J}

T distinguisher bit
N number of tests

p(j)(XI ,Ku) jth description for the plaintext in XI and Ku

Time/Data time/(upper bound for) data complexity
Timemax/Datamax maximum allowable time/data complexity

enc(S(i),K) one-round symbolic encryption of S(i) under key K
dec(S(i),K) one-round symbolic decryption of S(i) under key K

Enc(A, K, r1, r2) r2-round partial encryption of A ∈ {0, 1}m starting at
round r1 under key K ∈ {0, 1}n

Dec(A, K, r1, r2) r2-round partial decryption of A ∈ {0, 1}m starting at
round r1 under key K ∈ {0, 1}n

In other words, if the attacker queries all the possible values of XI ∈ {0, 1}d from
the encryption oracle where the other public variables are fixed, and sum up all the
corresponding outputs, she will come up with the evaluation of PS(I) in which the other
public variables have the same fixed values. The notations used in this paper are listed in
Table 3.

3 Dynamic Cube Attack on Block Ciphers
Apart from distinguishing attacks on hash functions MD5 and Keccak [ADMS09, DMP+15],
all the noteworthy results published for the cube attack family imply its efficiency in
cryptanalysis of lightweight stream ciphers with a low degree round function compensated
by a large number of initialization rounds. For Trivium [CP08], classic cube attack has led
to cryptanalysis of the highest rounds analysed ever [DS09a, ADMS09, FV13, VSM13] and
for Grain family [HJMM08], the best cryptanalytic results are reported by dynamic cube
attack [DS11, RBMA16]. In spite of significant results in stream ciphers, no remarkable
results on block ciphers using cube technique have appeared, by now. The only one is
cryptanalysis of KATAN block cipher which analysed 79 rounds out of 254 rounds using a
combination of cube and algebraic attack.

In this section we will present a framework for cryptanalysis of block ciphers using
a kind of dynamic cube attack. We will show that, despite stream ciphers, this method
can also be applied automatically in cryptanalysis of block ciphers. Due to the algebraic
essence of this attack, those block ciphers with a low-degree round function compensated
by a large number of rounds are potentially good targets for this attack. SIMON32/64
[BSS+13] and KATAN32 [CDK09] are two instance of such ciphers that we have adopted
to examine our method. For more details of our attacks parameters, see Table 1 and Table
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Plaintext 

Ku 

Kl 

ru rounds 

rc rounds 

rl rounds 

Ciphertext 

distinguisher bit 

Cube variables 

Figure 1: An overview of the attack

2.

3.1 Attack Framework
As for all methods of cube attack family, this attack proceeds in two phases: preprocessing
phase and online phase. In the preprocessing phase, the attacker tries to find a cube tester
for a subset of key bits as well as sufficiently many corresponding plaintext descriptions
(in cube variables and that subset of key bits). In the online phase, for each key guess, the
attacker runs the cube tester by appropriate queries from the encryption oracle and checks
if such collections of (P, C) pairs conform the cube tester. If so, the guessed key is treated
as a correct key candidate to be rechecked then.

3.1.1 Preprocessing

In this phase, inspiring from the distinguisher-based attacks on block ciphers, we position
the cube tester at the middle of the cipher (e.g. exactly after round ru) and extend it in
two directions over the maximum possible upper and lower rounds. Such a position for the
cube tester immediately implies that cube variables are defined among the intermediate
state S(ru) rather than the plaintext bits while the other bits of S(ru) can be static variables
(those which must be statically zero) or neutral variables (those which can take any value,
zero or one, since the distinguisher bit, the bit whose non-randomness is supposed to be
distinguished, is independent of them). At this moment, it is not specified yet what the
role of each non-cube bit of S(ru) is: static or neutral variable.

Both the upper and lower extensions demands guessing some key bits. We denote the
subset of key bits (or equivalent bits) that should be guessed in the upper extension by Ku

and that of the lower extension by Kl. A schematic view of the attack is shown in Fig. 1.
In general, the lower and upper extensions of a distinguisher for a block cipher is

a straightforward procedure. At least, in none of the distinguisher-based attacks, the
distinguisher itself is affected by those extensions. But in our cube attack, the upper
extension procedure is not so straightforward insofar as it determines the role of the
non-cube variables in S(ru), hence it affects directly on the cube tester behaviour. In
other words, after determining the upper round of the distinguisher, ru, and choosing the
cube variables among S(ru), we are not free enough to statically assign zero to the other
variables (such a strategy is possible indeed but so costly). In fact, the upper extension
procedure determines a subset of key bits, Ku, which must be guessed in order to find a
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specification for the plaintext in XI and Ku, denoted by P = p(XI ,Ku). It is guaranteed
that Ku has a minimum size and ru-round encrypting of p(XI ,Ku) yields a fashion for
S(ru) in which exactly the bits indexed by I contain a cube variable. Additionally, this
procedure clearly determines the status of non-cube bits of S(ru): static or neutral.

Having determined the status of all bits of S(ru) whether cube, static or neutral, we can
find the maximum length cube tester for this S(ru) as the input of cube tester. Suppose
that the length of the cube tester is rc. So, the distinguisher bit T , which is expected to
show a non-random behavior, is one bit among the intermediate state S(ru+rc). In our
analysis we have assumed only deterministic cube testers, but it can be any function with
a easily detectable non-random property. Once rc is known, we find the maximum possible
rounds that the lower extension part covers. The limiting factor here is the number of
key bits that should be guessed, i.e. |Kl|, in order to compute the distinguisher bit from
the ciphertext. This extension is not as complicated as the upper extension. But, in some
cases, there might be some room for more efficient implementation.

Therefore, the total number of rounds attacked by this method would be r = ru +rc +rl.
An optimum partitioning is the one maximizing r. To get such a partitioning, Algorithm
1 of Appendix C is proposed. In this algorithm, the cube tester slides along a pre-
defined range of ru,min ≤ ru ≤ ru,max for which it tests randomly chosen cube sets
of dimension d at round ru and returns the one, whose attack covers the maximum
rounds r = ru + rc + rl, satisfying the complexity constraints Data < Datamax and
Time < Timemax where Datamax and Timemax are maximum allowable complexities
given as inputs to this algorithm. For each ru and cube set XI of dimension d, this
algorithm proceeds in 3 subroutines: Upper-Extension-Subroutine, Cube-Tester-Subroutine
and Lower-Extension-Subroutine which are explained in details in the following.

Upper-Extension-Subroutine
The input parameters for this subroutine are {ru, I} and it is supposed to return the

following outputs.

• the subset of upper extension (equivalent) key bits, i.e. Ku, which should be guessed.

• the plaintext description p(XI ,Ku) in such a way that its ru-round partial encryption
yields S(ru) where

S
(ru)
i =

{
xi + fi(K) i ∈ I

fi(K) i 6∈ I
, i = 0, . . . , m− 1 (4)

where S
(ru)
i is the ith bit of S(ru), xi is a cube variable and fi is a function of key

bits only.

• the set of neutral and static variables of S(ru), namely U and Z, respectively. It
means that Z = {0 ≤ i < m|i 6∈ I, fi(K) = 0} and U = {0 ≤ i < m|i 6∈ I, fi(K) 6= 0}.

So, this subroutine returns {Ku, p(XI ,Ku), U, Z} for a given {ru, I}. The procedure of
this subroutine is given in Algorithm 2 of Appendix C, where all the variables including
cube variables, key bits and intermediate states have symbolic values.

To see how this subroutine works, first assume that the attacker is going to extend the
upper part for one round (ru = 1). At first, all the bits of S(ru) are set to zero except
those whose indexes are in I which are assigned symbolic cube variables {xi|i ∈ I}. Then,
the attacker partially decrypts S(ru) for one round while setting K = 0 to get the pure
dependency of S(ru−1) to cube variables. Then, she partially encrypt the resulted S(ru−1)

again, this time taking K into account, to find out how the subkey of round ru − 1 affects
on S(ru). There would be no need to guess any bits of K as far as all the bits of S(ru) can
be written in a fashion consistent with Eq. (4).
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Figure 2: Schematic view of Upper-Extension-Subroutine

But, once there is a state bit whose representation violates Eq. (4), e.g. those containing
AND of a xi with a key bit, she has to zero an appropriate internal state bit to avoid such
an event. This zero forcing is equivalent to one bit key guess which will be stored in Ku

list. Having discovered such key bits, the attacker repeats the one-round partial decryption
of S(ru), this time with a subkey with nonzero symbolic value Ku. So, S(ru−1) would be a
function of XI and Ku while S(ru) is a function of XI and K consistent with Eq. (4).

The procedure for ru > 1 is similar. Suppose that the attacker has already finished
step t, 0 ≤ t < ru of upper extension. By now, she has driven S(ru−t) and a list Ku of key
bits to be guessed, each of which corresponds to one internal state bit to be zero. S(ru−t)

is specified based on XI and Ku which guarantees that all bits of S(ru) do not violate the
form given in Eq. (4). This necessitate also the following representation for the other
internal states

S
(ru−t+j)
i = h

(j)
i (XI ,Ku) + g

(j)
i (K), 1 ≤ j < t, 0 ≤ i < m. (5)

This condition means that the symbolic representation of any intermediate variable must
be divisible into two separate parts: a function of XI and Ku bits and a K-only dependent
function. In other word, those parts of the key mixing with the cube variables must be
confined to Ku.

Now, for step t + 1 the attacker performs a one-round partial decryption of S(ru−t)

under a key in which all bits are zero except those specified as Ku and gets S(ru−t−1).
This is followed by a (t + 1)-round partial encryption of S(ru−t−1) under K. Throughout
the partial encryption, she should check if any bit of intermediate state violates condition
of Eq. (5) for all S(ru−t−j), 1 ≤ j < t and condition Eq. (4) for S(ru). Once such an event
occurs, she breaks the partial encryption procedure, detects the internal state bit which
should be forced to zero in order to avoid this event, finds the appropriate key bit to be
guessed, and updates Ku.

Having updated Ku, the attacker repeats the one-round partial decryption of S(ru−t)

under the updated Ku. Then, she performs the (t + 1)-round partial encryption using K,
regularly checks conditions of Eq. (4) and Eq. (5) and repeat the above scenario until
these conditions are completely satisfied. In this way, at the end of step t + 1, the attacker
has derived an updated list Ku of key bits to be guessed as well as the description of
S(ru−t−1) based on XI and Ku which guarantees conditions Eq. (4) and Eq. (5).

This subroutine terminates at t = ru, when all the required outputs {Ku, p(XI

,Ku), U, Z} are provided. A schematic view can be seen in Fig. 2. It should be noted
that, for a given {ru, I}, this attack requires N different plaintext descriptions, denoted
by p(i)(XI ,Ku), i = 1, 2, . . . N all for the same Ku, U and Z. For each guess of Ku, the
batch of plaintext corresponding to a plaintext description p(XI ,Ku) contains 2d plaintexts
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which are generated when p(XI ,Ku) takes all 2d values for XI . As we will see in the case
studies in Appendices A and B, given one p(XI ,Ku), it is an easy task to derive the other
ones.

This subroutine solely determines the upper bound of data complexity for a given
{ru, I} and a number of N tests. Since each of the N tests requires 2d plaintexts for 2|Ku|

key guesses, the data complexity would be bounded to N · 2d+|Ku|. It is an upper bound
since the batches corresponding to different Ku guesses and different tests may overlap.
This is more probable when d + |Ku| gets greater.

After calling Upper-Extension-Subroutine for a given {ru, I} in Algorithm 1 of Appendix
C, the (upper bound of) data complexity is computed and this algorithm will continue if the
computed data complexity is less than Dmax, otherwise it turns into the next {ru, I} pair.
Note that in the case of full-codebook scenario, Datamax = 2m and the data complexity
never exceeds Datamax even if the numerical value for N · 2d+|Ku| does. So, this condition
is omitted in this case. Furthermore there are some possibilities for shortening Ku list in
the full-codebook attack, which will be discussed more in the case studies.

Cube-Tester-Subroutine
Once the attacker defined the status of all bits of S(ru), i.e. U and Z for a given

I, she should find the longest cube tester. To do so, for a given I, Z, U she runs the
Cube-Tester-Subroutine proposed in Algorithm 3 of Appendix C. At first, based on the
cipher structure, the potentially lowest algebraic degree bit in one round of the cipher is
identified as the distinguisher bit T (i.e. the bit whose non-randomness is supposed to be
distinguished).

This algorithm starts from rc = 1, increases rc in each step, and checks if a cube tester
can be found for T at round ru + rc, while the input cube, static and neutral variables
are set at S(ru) according to the given I, Z and U sets, respectively. The tool used here
is similar to the probabilistic linear test in [DS09a] which is modified to tolerate a linear
dependency to the neutral bits (which are functions of the key bits, in turn) as well as
a linear dependency to the key bits of the cube part (i.e. subkeys of rounds ru + 1 to
ru + rc). So, this subroutine returns the maximum rc, for which the distinguisher bit can
be described as

T (rc) = L(K) +
∑
i∈U

bi · S(ru)
i = L(K) +

∑
i∈U

bi · fi(K) = F (K) (6)

where, L is a linear function. If F (K) is not a constant function, Ku should be updated as
Ku = Ku ∪ F (K). Therefore, for a given {U, Z, I, ru}, the Cube-Tester-Subroutine returns
the maximum possible rc, for which the distinguisher bit has a non-random property.

The reader should be noticed that we called the variables whose index are in U
neutral variables, since they contain an unknown key dependent constant value. Although
the distinguisher should not naturally depend on a neutral variable by definition, our
algorithm accepts a distinguisher as far as its dependency on neutral bits is at most a
linear dependency.

Lower-Extension-Subroutine
Once the cube tester length is determined, the only thing remaining in the preprocessing

phase is to trace the distinguisher bit at round ru + rc towards the ciphertext to find
a subset of (equivalent) key bits, Kl, whose guess is sufficient for computation of the
distinguisher bit from the ciphertext. This subroutine returns the maximum number of
rounds rl which can be covered by the lower extension part. The limiting factor here is
the total time complexity of the attack which is directly influenced by d, |Ku| and |Kl|
according to Eq. (7). The procedure of this subroutine is detailed in Algorithm 4 of
Appendix C.
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Having run the three subroutines for all candidate pairs of {ru, I}, the pair which covers
the maximum r, as well as all the relevant parameters {r, rl,Ku, Kl, p(j)(XI ,Ku)|j=1,...,N ,
T ime, Data} is returned as the output of preprocessing phase.

3.1.2 Online Phase

This phase of the attack is detailed in Algorithm 5 of Appendix C. By this algorithm, the
whole secret key is retrieved as follows. For each guess for Ku, the attacker computes N
batch of plaintexts according to p(j)(XI ,Ku), 1 ≤ j ≤ N and queries the encryption oracle
to get the corresponding batch of ciphertexts. Then, she checks whether this specific guess
for Ku ∪ Kl passes all the N tests. If so, this guess is regarded as a candidate for these
subset of key bits and will be rechecked by some (P, C) pairs while the remaining key bits
have been guessed. So, the attack complexities are:

Data ≤ N · 2d+|Ku|

Time = Data + rl

r
N · 2d+|Ku∪Kl| + 2|K|−N + 2|K|−N−m + . . . (7)

Memory = N · 2d

According to Algorithm 5, this memory is required for storing all N batch of plain-
text/ciphertext pairs.

3.2 Choosing Parameters
Selecting appropriate values for input parameters ru,min, ru,max, and d plays an important
role in the efficiency of the resulted attack. For a fixed d, both the upper and lower
extension parts make a few key bits active in the first rounds of the extensions while it
approach to 2 key bits per round in the higher rounds which we call the saturated domain
for the upper/lower extension parts. So, the best strategy is to make the best use of the
both unsaturated domains. The optimum ru locates the cube distinguisher in such a way
that both of the unsaturated parts are included in the rounds covered by the attack. A
too long upper or lower extension part makes the opposite side too short which does not
allow an efficient use of the unsaturated part.

The other important choice is the cube dimension d. Although the larger d makes
rc potentially larger, it also makes the second term of the attack time complexity of
Eq. (7) larger. In addition, a larger d increases the chance of guessing key bits in the
upper extension part, i.e. increasing |Ku|, which in turn increases the time complexity.
Furthermore, the reader should be noticed that data complexity depends exponentially
on d and |Ku|, but it is independent of |Kl|. On the other hand, according to the above
discussion, for very large values for d, e.g. near the block size values, we expect that the
upper extension reach very soon to the saturated domain, hence ru should be too short.
But in this special case we can make use of a method called reseting cube symbols which
will be introduce later. By applying this method to the Upper-Extension-Subroutine, a great
reduction in the size of Ku would be possible. That is why we found the two versions of
small dimension and large dimension cubes more efficient than the middle values.

The number of tests N , on the one hand reduces the last term of time complexity, but
on the other hand it increases the second term.

4 Cryptanalysis of KATAN32
4.1 Specification of KATAN32
KATAN32 is the smallest member of KATAN family of block ciphers with a 32-bit and
80-bit block and key sizes. This cipher is a lightweight block cipher with a simple algebraic
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Table 4: Details of the best dynamic cube attacks on KATAN32

Case d N I ru rc rl |Ku| |Kl| r Time Data
I 5 2 7, 13, 14, 17, 18 22 50 46 14 63 118 278.3 219

II 30 2 0, 1, . . . , 16, 19, . . . , 31 23 74 41 0 53 138 278.5 231

III 31 2 0, 1, . . . , 17, 19, . . . , 31 37 83 35 10 41 155 278.3 232

round function and a large number of rounds. In KATAN32, the plaintext is loaded into
two registers L1, and L2 with 13 and 19 bits length, respectively. The least significant bit
of each register, numbered by 0, is the rightmost one, and the LSB of plaintext is loaded
into the LSB of L2 while its MSB is loaded into the MSB of L1. In each round, L1 and
L2 are shifted to the left for one bit, where the newly computed bits, according to the
following equations, are loaded into the LSB of L2 and L1, respectively.

fa(L1) = L1[12] + L1[7] + (L1[8] · L1[5]) + (L1[3] · IR) + a

fb(L2) = L2[18] + L2[7] + (L2[12] · L2[10]) + (L2[8] · L2[3]) + b (8)

where IR is a round-dependent constant, and a, b are two subkey bits generated by the key
schedule of the cipher. After 254 rounds, the contents of the registers are then exported as
the ciphertext.

Key schedule. KATAN32 has a linear key schedule based on a LFSR structure which
generates 2× 254 = 508 subkey bits according to the following rule:

rki =
{

ki 0 ≤ i < 80
rki−80 + rki−61 + rki−50 + rki−13 80 ≤ i < 508

(9)

For round i = 1, . . . , 254, ai is defined to be rk2i−2, whereas bi is rk2i−1.

4.2 Cube Attack on KATAN32
For Timemax = 279, we set N = 2 and select the MSB of register L2 as the distinguisher
bit which had the lowest degree compared to the other state bits at the same round. We
perform our attack in two scenarios: non-full-codebook and full-codebook attacks.

In non-full-codebook attack we once set Datamax = 220 and searched through the small
dimension cubes i.e. d < 8. The best results belong to a cube of dimension 5 which could
break up to 118 rounds of KATAN32. Then, we set Datamax = 231 where we searched
through the high dimension cubes (d = 30, 31) where a cube of d = 31, breaking 138
rounds, was the most efficient one.

In full-codebook scenario, a cube of d = 31 could reach up to 155 rounds of KATAN32.
The details of the best found cubes are reported in Table 4. As an example, all the
parameters of attack Case I are reported in details in Appendix A.

Improvements in the lower extension. The relations given in Eq. (7) are actually
the attack complexities in the worst case. Depending on the target cipher, there might
be some possibilities to slightly modify the online phase of the attack given in Algorithm
5 to improve the time complexity or even extend the number of rounds attacked. In the
case of KATAN32, in the lower extension part for the partial decryption of the ciphertext,
subkeys of the last four rounds linearly contribute to the state of round r − 4. So, instead
of guessing the whole Kl, and decrypting rl rounds at once for each guess, we can decrypt
four rounds supposing K = 0, store the state in a memory and then guess and add that
part of Kl corresponding to these four rounds. This scenario can be used repeatedly for
all consecutive four rounds of the cipher in lower part until all the rl rounds are covered.
Moreover, for determining the value of the distinguisher bit from the ciphertext, there is
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no need to decrypt all rounds of the lower extension part. Using these two techniques
we will be able to reduce the second term of time complexity by a factor of 1

rl
. But, it

increases memory complexity less than triple to save decrypted bits of every ciphertext for
each guessed part of Kl.

Improvements in the upper extension. For the case of high dimension cubes, e.g.
d = 30, 31, we can get a significant improvement in the upper extension using a technique
which we call resetting cube symbols. Consider Case III of Table 4, the internal state at
round ru = 37 at step t = 0 of the upper extension subroutine is S(37) = (L1(37), L2(37))
where:

L1(37) = {x31, . . . , x19} L2(37) = {0, x17, . . . , x0}

After running the first step of the Upper-Extension-Subroutine, the intermediate states at
rounds 37 and 36 are as follows:

L1(36) = {x0 + x27 + x28 · x25 + x23 · IR36, x31, . . . , x20}
L2(36) = {x19 + x8 + x4 · x9 + x11 · x13, 0, x17, . . . , x1}
L1(37) = {x31, . . . , x19 + b36}
L2(37) = {0, x17, . . . , x0 + a36}

which shows that some new dynamic variables are introduced in the MSBs of the two
registers at round 36. Now, consider the following state descriptionS′(36):

L1′(36) = {y31, . . . , y19} L2′(36) = {y18, 0, y16, . . . , y0}

A set of intermediate states S′(36) in which yis take all 231 possible values is equivalent
to a set of intermediate states S(37) in which xis take all 231 possible values. Since
S′(36) guaranties that the static variable of S(37) is zero. In fact for high dimension
cubes, it is more efficient to trace the neutral/static variables to the upward, rather than
the cube variables as opposed to what we did in Upper-Extension-Subroutine for small
dimension cubes. This method for resetting cube symbols not only simplifies the upper
part computations, but also it causes a great reduction in |Ku|, when the number of upper
rounds increases.

5 Cryptanalysis of SIMON32/64
5.1 Specification of SIMON32/64
SIMON32/64 is a 32-round Feistel block cipher whose round function composed of AND,
XOR and rotations. The internal state at the input and output of round i are denoted by
S(i−1) = (L(i−1), R(i−1)) and S(i) = (L(i), R(i)) respectively, where

L(i) = R(i−1) + F (L(i−1)) + k(i)

R(i) = L(i−1)

F (L(i−1)) = (L(i−1) ≪ 1) · (L(i−1) ≪ 8) + (L(i−1) ≪ 2)
where ≪ denotes the left rotation operation and k(i) is the subkey of round i, 1 ≤ i ≤ 32.

Key schedule. SIMON has a linear key schedule as follows. Assume that K =
K3, K2, K1, K0 is the representation of secret key in four 16-bit words Ki. The subkey of
SIMON32/64 at round i is generated as follows.

k(i) =
{

Ki+1 0 ≤ i ≤ 3
k(i−4) + Y + (Y ≫ 1) + c + (z0)i 4 ≤ i ≤ 32
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Table 5: Details of the best dynamic cube attacks on SIMON32/64

Case d N I ru rc rl |Ku| |Kl| r Time Data
I 5 8 8, 14, 16, 22, 24 3 8 6 10 45 17 257 218

II 31 6 All except 30 or 23 or 16 4 14 4 16 16 22 259 232

where Y = k(i−3) + (k(i−1) ≫ 3), c is a constant and z0 is a binary stream whose precise
value is given in [BSS+13].

5.2 Cube Attack on SIMON32/64
Similar to KATAN, we consider the non-full-codebook and full-codebook scenarios, where
in the former the cubes with small dimensions are searched and for the latter, cubes with
dimension 31 are examined. In each round, the right half variables has the same algebraic
degree which is less than the left half. So, we select bit 15 as the distinguisher bit.

For the non-full-codebook scenario, we set Dmax = 220 and N = 11. Amongst all the
the small dimension cubes which were examined, the best result belongs to a cube of
dimension 5 which could break 17 rounds of SIMON32/64.

In the full-codebook scenario, we could attack 22-round SIMON32/64 by a number
of N = 6 tests. These six tests are actually three pairs of distinguishers, each pair has
a neutral variable (in position 16 or 23 or 30) and 31 cube variables. The tests we used
are the same as those reported in [?] for the integral attack on SIMON. Each pair of
distinguishers demands guessing a set of 16 key bits for Ku. Despite the previous attacks,
these sets are not completely the same, though two of them overlap. In more details,
Ku bits corresponding to distinguisher pairs with neutral bit in 16 and 23 have 11 bits
in common. Hence, |Ku| would be 37 bits which is a huge size at first glance. But, it
can be treated and checked independently for each pair of distinguishers. After checking
the subsets of key bits Ku for each pair of tests, we save the satisfying candidates in a
table which is indexed by Kl and 11 common bits of Ku. In these tables, in average, for
each index there is a number of 25−2 = 23 elements that shows the 5 uncommon bits
of Ku. After checking for these 3 pair of tests, we will have 237 candidate for 43 bits of
Kl ∪ Ku1 ∪ Ku2 ∪ Ku3. The cost for this improvement is a memory for three tables that
need about 230 × 3× 5 bits.

The parameters related to our attacks are reported in Table 5. Furthermore, as an
example all the parameters of attack Case I are given in details in Appendix B.

Improvements. In the lower extension part of both cases we enjoyed the same
method used in KATAN attack for saving time in guessing Kl bits (reduction factor is
1
8

1
rl
). Furthermore, we enjoyed the resetting cube symbols method for Case II of SIMON

attack, as well.

6 Conclusions and Discussions
In this paper we proposed a new framework for dynamic cube attack on block ciphers. The
algorithm proposed for this attack can be made fully automated, in spite of its counterpart
in stream ciphers. We analysed the efficiency of attack on two block ciphers KATAN and
SIMON and the results show that this newcomer method for cryptanalysis of block cipher
can compete with and often outperform from the mature and well-organized cryptanalysis
methods in this domain.

Although our attack is similar to the dynamic cube attack on stream ciphers [DS11] in
some properties, it is completely different in the tools, which are used. In more details, our
attack shares the following properties with the dynamic cube attack on stream ciphers.
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• Assigning the public variables some functions of cube variables and guessed keys
(dynamic variables).

• Using a cube tester to check the validity of guessed key bits.

But, the main differentiations of our work with the dynamic cube attack on stream
ciphers are as follows.

• The cipher is explicitly divided into three distinct parts: upper extension part,
cube part, and lower extension part. Each part are treated in sequence and semi-
independently. In dynamic cube attack on stream ciphers, the lower part is not
present and the first two parts can not be separated.

• This partition enables the attacker to fully automate the attack and get rid of the
manual complex process of dynamic cube attack for deriving the description of
dynamic variables.

• The cube variables are defined among the intermediate state bits rather than the
public variables.

• The keys guessed in the attack are not only those involved in the dynamic variables.
They are also involved in the lower rounds of the cipher.

In fact, the main feature of block ciphers from which most of these differences arise,
especially the possibility to automate the attack, is the availability of an key-only-dependent
function in any round of the cipher, i.e. the key schedule. Key schedule enables the attacker
to perform partial encryption/decryption anywhere within the cipher rounds conditioned
that she has guessed the required subkeys. Such a facility is not provided in stream ciphers,
where the secret key along with the IV are loaded into the stream cipher state in the
first clock and after that there would be no pure access to the secret key, either in the
initialization or key stream generation phases.

There might be a debate about the similarity of this attack and square attack on block
ciphers. Although the cube attack and square attack may have a similar essence, there are
some difference as well. The similarities are as follows:

• From the theoretical point of view, both the distinguishers basically detect a nonran-
dom property (usually equality to zero) for the summation of the outputs of the all
possible values of a subset of input bits.

• The distinguisher is positioned at the middle of the cipher. Then, a key recovery
attack is constructed based on that by extending it from two directions.

But the main differences between the two techniques are as follows:

• From the practical point of view, the integral attack is efficiently applied to S-box-
based structures and, despite cube attack, it does not derive useful distinguishers
against block ciphers with non-bijective functions, bit-oriented structures, and low
degree functions (such as KATAN and SIMON) [Tod15].

• The main property that makes our attack different is the procedure of the upper-
extension-subroutine, which affects the distinguisher parameters and turns our attack
from a classic cube attack (integral attack) into a dynamic one.
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A Details of attack case I on KATAN32
In this appendix the details of attack case I on KATAN32 are reported. The set of upper
extension key is Ku = {ui|1 ≤ i ≤ 14} where

u1 = b1, u2 = a2, u3 = a3, u4 = a4, u5 = b5, u6 = a10, u7 = a13, u8 = b2 + a6,
u9 = b3 + a7, u10 = b3 + b7 + a11, u11 = b6 + b11 + a14, u12 = b4 · b7,
u13 = b2 + b4 · (b6 + b11 + a14), u14 = a9 + b3 · (a13 + b4 · b7)

The first description for plaintext is p(1)(XI ,Ku) = S(0) = (L1(0), L2(0)) where

L1(0) = { u6 + u10 + u13 + u8 + (x3 + u7) · (x2 + x5 + u11 + u6) + (u7 + u12)·
(x5 + u6 + u13), u2 + u9 + u10 + u10 · u11 + (x3 + u11 + u14)·
(x5 + u8 + u10 + (x5 + u6 + u13) · (u7 + u12)), x3 + u3 + u7+
(u9 + u10 · u11) · (x5 + u8), x1 + x4 + u4 + u7 + u11 + u12 + u14 + (x3 + u7)·
u10, x2 + x5 + u6 + u11, x5 + u8 + u10 + (u7 + u12) · (x5 + u6 + u13),
u9 + u11 · u10, x3 + u7, x4 + u11 + u14, x5 + u6 + u13, u10, 0, u7 + u12}

L2(0) = { x1 + u1 + u11, x5 + x2, 0, 0, x3 + u5, x4, 0, 0, 0, 0, 0, x1, x2 + x1 · x4,
0, 0, x3, x4, 0, 0}

which yields the following description for S(22) = (L1(22), L2(22)) which is completely
consistent with Eq. (4).

L1(22) = { b10, b11, b12, a5 + b13 + b2 + b4 · u11, b14, b15, a8 + b16 + b7 · b4, b17, b18,
b19, a1 + b6 · b3 + b4 + b8 + a12 + b20, b21 + (b4 + b11 · b8 + a1 + b9 + a17)·
(b6 · b3 + b4 + b8 + a12), b22}

L2(22) = { x1, x2 + a5 + b2 + b4 · (a14 + b10 + b6), 0, 0, x3 + a8 + b7 · b4, x4, 0, 0,
b6 · b3 + b4 + b8 + a12, 0, 0, x5 + b2 + b6 · (a1 + b9) + b7 + a15, b3 + b10 · b7
+b8 + b12 + a16, b4 + b11 · b8 + a1 + b9 + a17, b12 · (a1 + b9) + b10 + b14+
a18, b6 + b10 · (a5 + b13 + b2 + b4 · (a14 + b10 + b6)) + b11 + a19, b7 + b12
+b14 · b11 + a8 + b16 + b7 · b4 + a20, b8 + b15 · b12 + a5 + b13 + b2 + b17 + a21
+b4 · (a14 + b10 + b6), b9 + a1 + (a5 + b13 + b2 + b4 · (a14 + b10 + b6))·
(a8 + b16 + b7 · b4) + b14 + b18 + a21}

The set of neutral and static variables are as follows.
U = {0, 1, 2, 3, 4, 5, 6, 10, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}
Z = {8, 9, 11, 12, 15, 16}

To get the second plaintext description, let p(2)(XI ,Ku) = p(1)(XI ,Ku) + ∆2 where ∆2

and its corresponding difference at round 22, ∆(22)
2 , are as follows.

∆2 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
∆(22)

2 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, b6 · b3 + b4 + b8 + a12 + b4 + b11 · b8 + a1 + b9 + a17+
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, b11, 0, 0, 0, 1, 0}

which shows that all the nonzero differences are constant and confined to neutral bits.
Finally, the set of key bits to be guessed in the lower extension part are as follows.

Kl = {ai|i ∈ {90, 93, . . . , 118}} ∪ {bi|i ∈ {81, 83, 85, 87, . . . , 118}} ∪ {b79 + a92}

B Details of attack case I on SIMON32/64
In this appendix the details of attack case I on SIMON32/64 are reported. The set of
upper extension key is Ku = {ui|1 ≤ i ≤ 10} where

u1 = c15, u2 = c1, u3 = c5, u4 = b15, u5 = b13, u6 = b9, u7 = b7, u8 = b3, u9 = b1, u10 = b5+c7,
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The first description for plaintext is p(1)(XI ,Ku) = S(0) = (L(0), R(0)) where

L(0) = {u1, x2, 0, x1, 0, x5, 0, x1 + x4, u10, 0, u3, 0, 0, x2 + x3, u2, 0}
R(0) = {x2 · u10 + u4, x1, x1 · u3 + u6, x5, 0, x4, u2 · (x1 + x4) + u10 + u6, x5, u3+

u7, x4 + x2 + u3, 0, x2 + x3, u2 + u8, x5 · u2, u1 + u9, x2 + u1 · (x1 + x4)}

which yields the following description for S(3) = (L(3), R(3)) which is completely consistent
with Eq. (4).

L(3) = {k(1)
5 · k(1)

12 + k
(1)
11 + k

(2)
13 + k

(3)
15 , k

(1)
10 + k

(1)
4 · k(1)

11 + k
(2)
12 + k

(1)
14 + k

(3)
14 k

(2)
11 + k

(3)
13 +

(k(1)
5 · k(1)

14 + k
(1)
4 + k

(2)
6 ) · (k(1)

5 · k(1)
12 + k

(1)
11 + k

(2)
13 ), k

(2)
11 · (k

(1)
2 + k

(2)
4 ) + k

(1)
8 +

k
(2)
10 + k

(1)
12 + k

(3)
12 , (k(1)

8 + k
(2)
10 ) · (k(1)

2 · k(1)
11 + k

(2)
3 ) + k

(2)
9 + k

(1)
11 + k

(3)
11 , k

(1)
6 +

k
(1)
10 + k

(2)
8 + k

(2)
9 · (k(1)

0 + k
(2)
2 ) + k

(3)
10 , k

(3)
9 , x5 + k

(1)
5 · k(1)

14 + k
(1)
4 + k

(2)
6 + k

(1)
8

+k
(3)
8 , k

(3)
7 , x4 + k

(1)
2 + k

(2)
4 + k

(1)
6 + k

(3)
6 , k

(1)
2 · k(1)

11 + k
(2)
3 + k

(1)
5 + k

(3)
5 +

(k(1)
2 + k

(2)
4 ) · (k(1)

5 · k(1)
12 + k

(1)
11 + k

(2)
13 ), (k(1)

2 · k(1)
11 + k

(2)
3 ) · (k(1)

10 + k
(1)
4 · k(1)

11 +
k

(2)
12 ) + k

(1)
0 + k

(2)
2 + k

(1)
4 + k

(3)
4 , k

(2)
11 · (k

(1)
0 + k

(2)
2 ) + k

(3)
3 , k

(1)
14 + k

(2)
0 + k

(1)
2 +

k
(3)
2 , k

(2)
9 · (k(1)

14 + k
(2)
0 ) + k

(3)
1 , x3 + k

(1)
0 + k

(1)
12 + k

(2)
14 + k

(3)
0 }

R(3) = {0, x2 + k
(1)
12 + k

(2)
14 , k

(1)
5 · k(1)

12 + k
(1)
11 + k

(2)
13 , k

(1)
10 + k

(1)
4 · k(1)

11 + k
(2)
12 , k

(2)
11 , k

(1)
8

+k
(2)
10 , k

(2)
9 , x1 + k

(1)
6 + k

(2)
8 , 0, k

(1)
5 · k(1)

1 4 + k
(1)
4 + k

(2)
6 , 0, k

(1)
2 + k(2), k

(2)
3 +

k
(1)
2 · k(1)

11 , k
(1)
0 + k

(2)
2 , 0, k

(1)
14 + k

(2)
0 }

The set of neutral and static variables are identified as follows.

Z = {1, 5, 7, 15}
U = {0, 2, 3, 4, 6, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31}

To get the remaining 15 plaintext descriptions, let p(j)(XI ,Ku) = p(1)(XI ,Ku) + ∆j ,
j = 2, . . . , 16. ∆j could be any difference in the right half of p(1)(XI ,Ku) since it would
result in a difference at round 3, ∆(3)

j , with nonzero constant values confined to U and I
indexes. For example see the following pair of differences:

∆j = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
∆(3)

j = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, k
(2)
11 , 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}

Finally, the set of key bits to be guessed in the lower extension part are as follows.

Kl = {k(13)
i |i ∈ I13} ∪ {k(14)

i |i ∈ I14} ∪ {k(15)
i |i ∈ I15} ∪ {k(16)

i |i ∈ I16} ∪ {k(17)
i |i ∈ I17}

I13 = {7, 14}, I14 = {5, 6, 12, 13, 15}, I15 = {3, 4, 5, 7, 10, . . . , 14}
I16 = {1, . . . , 6, 8, . . . , 13, 15}, I17 = {0, . . . , 15}

C Attack algorithms
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Algorithm 1 Preprocessing Phase
1: Input: {ru,min, ru,max, d, N, T imemax, Datamax}.
2: Output: {r, rl,Ku,Kl, p(j)(XI ,Ku), 1 ≤ j ≤ N, T ime, Data}.
3: r = 0; Out′ = {};
4: for ru = ru,min to ru,max do
5: for randomly chosen I of size d do
6: (Ku, p(XI ,Ku), U, Z) = Upper-Extension-Subroutine(ru, I)
7: Data = N · 2d+|Ku|;
8: if Data ≤ Datamax then
9: rc = Cube-Tester-Subroutine(I, U, ru);
10: (rl,Kl, T ime)=Lower-Extension-Subroutine(rc + ru, d,Ku, T imemax, N);
11: if ru + rc + rl > r then
12: r = ru + rc + rl;
13: Out′ ← {r, rl,Ku,Kl, p(XI ,Ku), T ime, Data};
14: end if
15: end if
16: end for
17: end for
18: p(1)(XI ,Ku) = p(XI ,Ku);
19: for j = 2 to N do
20: p(j)(XI ,Ku) = p(1)(XI ,Ku) + ∆j ; . for some appropriate ∆j chosen by the

attacker.
21: end for
22: return Out← {r, rl,Ku,Kl, p(j)(XI ,Ku), 1 ≤ j ≤ N, T ime, Data};

Algorithm 2 Upper-Extension-Subroutine
1: Input: {ru, I}.
2: Output: {Ku, p(XI ,Ku), U, Z}.
3: XI = {xi|i ∈ I}; . xi is symbolic.
4: K = {kn−1, . . . , k0}; . ki is symbolic.
5: S(ru) = 0, S

(ru)
I = XI , Ku = {};

6: for t = 0 to ru − 1 do
7: S̃(ru−t−1) = dec(S(ru−t),Ku);
8: for j = 0 to t do
9: S̃(ru−t+j) = enc(S̃(ru−t+j−1),K);
10: if conditions of Eq. (4) and Eq. (5) are not satisfied due to the key bit kf then
11: update Ku by kf ;
12: go to 7;
13: end if
14: end for
15: S(ru−t−1) = S̃(ru−t−1);
16: end for
17: p(XI ,Ku) = S(0);
18: S(ru) = S̃(ru);
19: Identify sets U and Z from S(ru);
20: return {Ku, p(XI ,Ku), U, Z};
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Algorithm 3 Cube-Tester-Subroutine
1: Input: {I, U, ru}.
2: Output: {rc}.
3: for rc = 1 to rc,max do . rc,max is set by the attacker.
4: T0 = 0;
5: for i = 0 to 2d − 1 do
6: S = 0, SI = i; . writes the binary representation of i in bits I of S.
7: T0 = T0 + Enc(S, 0, ru, rc);
8: end for
9: for j = 1 to M do . M is the number of linearity tests, set by the attacker
10: Randomly choose x, y ∈ {0, 1}|U | and k1, k2 ∈ {0, 1}|K|;
11: S1Z

= 0, S1U
= x;

12: S2Z
= 0, S2U

= y;
13: S3Z

= 0, S3U
= x + y;

14: T1 = 0, T2 = 0, T3 = 0;
15: for i = 0 to 2d − 1 do
16: S1I

= i, S2I
= i, S3I

= i;
17: T1 = T1 + Enc(S1, k1, ru, rc);
18: T2 = T2 + Enc(S2, k2, ru, rc);
19: T3 = T3 + Enc(S3, k1 + k2, ru, rc);
20: end for
21: if T1 + T2 + T3 + T0 6= 0 then
22: return rc − 1;
23: end if
24: end for
25: end for

Algorithm 4 Lower-Extension-Subroutine
1: Input: {r′,Ku, d, T imemax}.
2: Output: {rl,Kl, T ime}
3: Kl = {}, rl = 0, T ime = N · 2d+|Ku| + 2|K|−N ;
4: while Time < Timemax do
5: K̃l ← Kl, ˜Time← Time;
6: Trace T in forward direction for one round;
7: Update Kl;
8: Time = N · 2d+|Ku| + rl

r′+rl
N · 2d+|Ku∪Kl| + 2|K|−N ;

9: rl = rl + 1;
10: end while
11: return {rl − 1, K̃l, ˜Time};
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Algorithm 5 Online Phase
1: Input: d, N, rl,Ku,Kl, p(j)(XI ,Ku), 1 ≤ j ≤ N
2: Output: secret key K.
3: for k1 = 0 to 2|Ku| − 1 do
4: for i = 0 to 2d − 1 do
5: for j = 0 to N do
6: Compute plaintext P (j, i, k1) = p(j)(XI ,Ku)|XI =i,Ku=k1 ;
7: Query the r-round encryption oracle and save the corresponding ciphertext

C(j, i, k1);
8: end for
9: end for
10: for k2 = 0 to 2|Kl−Kl∩Ku| − 1 do
11: fail = 0; j = 0;
12: while j < N and fail = 0 do
13: T = 0;
14: for i = 0 to 2d − 1 do
15: T = T + Dec(C(j, i, k1), (k1, k2), r, rl);
16: end for
17: if T 6= 0 then
18: fail = 1;
19: end if
20: j = j + 1;
21: end while
22: if fail = 0 then
23: Randomly choose P and query its ciphertext C;
24: for k3 = 0 to 2|K−Kl∪Ku| − 1 do
25: if C = Enc(P, (k1, k2, k3), 0, r) then
26: return (k1, k2, k3);
27: end if
28: end for
29: end if
30: end for
31: end for
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