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Abstract. In this work we describe a message packing and unpacking
method for homomorphic ciphertexts. Messages are packed into the co-
efficients of plaintext polynomials. We propose an unpacking procedure
which allows to obtain a ciphertext for each packed message. The pack-
ing and unpacking of ciphertexts represents a solution for reducing the
transmission bottleneck in cloud based applications, in particular when
sending homomorphic calculations results. The results we obtain (pack-
ing ratio, unpacking time) are compared to existing packing methods
based on trans-ciphering.

1 Introduction

A homomorphic encryption scheme allows to perform computations on encrypted
data such that during the computation the evaluator never has access to the de-
crypted data. Since the seminal work of Gentry [Gen09], introducing the first
fully homomorphic encryption (FHE) many other simpler and more efficient
schemes have been proposed. The spectrum of applications of homomorphic en-
cryption is rather large, in particular in the domain of cloud-based applications
[NLV11,GLN12,LLAN]. We start by giving some literature reference on mes-
sage packing methods for homomorphic ciphertexts, on existing homomorphic
encryption schemes and operations they support. Afterwards we describe mes-
sage packing and unpacking methods together with some experimental results.
Finally, some conclusions and future works are given.

1.1 Ciphertext message packing

In the context of cloud-based applications the client sends data encrypted un-
der a homomorphic encryption (HE) scheme to the cloud. The cloud evaluates
an algorithm on encrypted data and sends the obtained ciphertexts (algorithm
execution results) back to the client. All the HE schemes proposed so far have a
huge ciphertext expansion factor (ciphertext size to payload ratio). In practice
the uplink (client to cloud) and the downlink (cloud to client) transmission of
encrypted data is a bottleneck in the applicability of HE.



The first ideas for decreasing HE ciphertext expansion factor were described
in [NLV11], in particular the authors proposed to send uplink data encrypted us-
ing a symmetric encryption scheme. On the cloud side the data is trans-ciphered
from the symmetric encryption to the HE. The trans-ciphering works only in
one direction (symmetric encryption to HE).

The AES can be used as symmetric encryption scheme for trans-ciphering
(refer to |[GHS12b,CCK™,CDS15]). Resulting HE ciphertexts will have a multi-
plicative depth of 40 without any computation performed on data yet. A more
recent work |[CCF*15| studies symmetric encryption schemes which are “HE
friendly”, thus which can generate HE ciphertexts with smaller multiplicative
depths. The authors propose a family of symmetric encryption schemes based
on Trivium with multiplicative depth 12.

In batched HE schemes [GHS12a] one can pack multiple plaintext messages
into the slots of a single ciphertext. Using slot permutation/rotation procedure
one can recover each message into a separate ciphertext and execute a circuit.
After the execution, one can reassemble circuit output ciphertexts into a single
ciphertext. This method allows to send almost fresh ciphertexts! and support
downlink /uplink transmission. Although when compared to trans-ciphering it is
less efficient in terms of the expansion factor of the sent data.

A third method, proposed in [NLV11], is to build a ciphertext encrypting a
polynomial which coefficients are plaintext messages to be packed. This method
can be used only for downlink transmissions because, as the authors stated, there
is no method to unpack such a ciphertext. In terms of data traffic this packing
method is more efficient than the batched one because the number of slots in
batched schemes depends on the factorization of the ring modulus polynomial,
which is always inferior to the number of polynomial coefficients (except for
specific plaintext spaces).

In this work, we introduce an improvement for the message packing into
polynomial coefficients method. We use finite field extension as plaintext spaces
and propose a method which allows to unpack messages in the ciphertext do-
main (using homomorphic operations). The proposed method also works for ring
extensions plaintext spaces. Still, in order to lighten the discourse we limit our-
selves to the finite field extension case. This packing/unpacking method can also
be used to combine execution of boolean circuits and arithmetic circuits over
finite fields. As for example to execute in the same ciphertext domain an effi-
cient version of the AES circuit (over finite field Fos as in [GHS12b]) and an
additional (payload) boolean circuit. We limit our discourse only to ring learn-
ing with errors (ring-LWE) based HE schemes, because the proposed packing
method needs a polynomial ring plaintext space.

1.2 Homomorphic encryption schemes

Let A =Z[X]/®(X) be the ring of integers modulo an irreducible polynomial
& (X). Let A, = A/qgA be the set of integer polynomials reduced modulo the

1 Slot switching increases the noise in the ciphertext, although much less than trans-
ciphering.



polynomial @ (X) and with coefficients reduced modulo ¢. In ring-LWE based
cryptosystems ciphertexts and secret keys are elements (vector of elements) from
the ring A,.

Leveled HE schemes [BGV12| use a series integer modulus qq, g1, . .. for ci-
phertexts at different moments of homomorphic evaluation. A modulus switching
technique is used (switch ciphertext from modulus ¢; to modulus g;+1, ¢; > Gi+1)
to deal with the noise increase. In [Bral2| a notion of scale-invariance for leveled
HE schemes is introduced. In scale-invariant schemes a single modulus, ¢, is used
for ciphertexts during the whole homomorphic evaluation.

The plaintext space in this HE schemes is the ring of polynomials A;. In
the first schemes, only one binary message was encrypted in a ciphertext (the
zero-degree coefficient of a polynomial from Asy). This allowed to evaluate homo-
morphically arbitrary boolean circuits. Using a larger modulus (¢t > 2) for the
plaintext space it is possible to execute operations on integers modulo ¢ homo-
morphically. One also can encrypt finite field elements F;» into ciphertexts when
t is prime, polynomial ¢ (X) is irreducible modulo ¢ and n divides the degree of
@ (X).

In a batched schemes [GHS12a| the plaintext space ring A; can be factored
into sub-rings (defined by the factorization of the polynomial @ (X) modulo t)
such that addition and multiplication applies to each sub-ring independently.
Batching several messages into ciphertext slots allows to execute homomorphic
operations on all messages at once. Using ring homomorphism operations one
can permute plaintext messages in a ciphertext.

To summarize, ring-LWE based HE schemes allow to execute homomorphic
operations (batched or not) over: (i) finite field Fy» elements or (ii) polynomial
ring A; elements (includes the integer modulo ring case).

1.3 Homomorphic operations

A homomorphic encryption scheme is described by a set of operations. We try to
give a generic list of operations supported by any ring-LWE leveled HE scheme
ignoring implementation details. We limit our discourse to non-batched schemes,
but without loss of generality the results presented in this paper are also valid
for batched schemes.

KeyGen (1>‘) — generate the set of keys: a secret key sk used for encrypting/decrypting
messages, a public key pk used for encrypting messages and an additional
set of evaluation keys evk (for key-switching in homomorphic multiplication
and ring homomorphism operations).

Enc, (m) — encrypts a plaintext message m € A; using the public key pk.

Decg (ct) — decrypts a ciphertext ct using the secret key sk.

Add (ctq, cty) — outputs a ciphertext which represents the addition of plaintext
messages encrypted by ct; and cto:

Decg (Add (cty, cta)) = Decgy (ct1) + Decgy (cta)

Mult (cty, cto, evk) — outputs a ciphertext which represents the multiplication
of plaintext messages encrypted by ct; and cts:
Decg) (Mult (cty, cta, evk)) = Decy (ct1) - Decyy (cta)



Frob (ct,i,evk) — outputs a ciphertext which represents the application of the
Frobenius endomorphism ¢ (X — X'), 1 < i < n, over the plaintext
message encrypted by ct:

Decgy, (Frob (ct, i, evk)) = ¢ (Decgy (ct))

The Frobenius endomorphism operation (or Frobenius powering) can be per-
formed with small noise increase (much smaller than simple ciphertext squar-
ing) for some HE scheme instantiations.

To lighten the discourse we use addition and multiplication operators for homo-
morphic addition and multiplication of ciphertexts: ct; + cto = Add (cty, cta)
and respectively cty - cto = Mult (ctq, cto, evk). The same applies for Frobenius
endomorphism: ¢’ (ct) = Frob (ct, i, evk). Evaluation key evk use is implicit in
operator notation. We recall that all the arithmetic operations are performed
over the plaintext space ring A;.

Homomorphic addition and multiplication can be applied to a plaintext and
a ciphertext, i.e. ct; + mo means an addition between the ciphertext ct; and
the plaintext message mso. Such an homomorphic operation shall be denoted as a
plaintext-ciphertext homomorphic operation. The noise increase of a plaintext-
ciphertext operation is lower when compared to the noise increase of this oper-
ation applied onto ciphertexts.

2 Ciphertext packing

Let m; € Z¢, 0 < i < n, be n plaintext messages. The messages are packed as
coefficients of a polynomial m (X):

m(X)=mo+mi-X+...4+my_1-X"! (1)

We suppose that n is inferior to the degree of the plaintext space ring A;, so that
m (X) € A;. Afterwards polynomial m (X) is encrypted and a ciphertext which
packs n plaintext messages is obtained: ctpecr = Encpr (m (X)). We shall note
that this packing method was used in [NLV11| to optimize the homomorphic
addition or multiplication of several numbers.

The same packing methodology can be used to pack ciphertexts. Suppose
n ciphertexts ct;, 0 < ¢ < n, are given. The ciphertext ctp,cr which packs
ciphertexts ct;, 0 < i < n, is computed using expression:

Ctpack = cto +cty - X+ ... +ctp_q- xrt

The packing of ciphertexts can be done using n plaintext-ciphertext homo-
morphic multiplications and n — 1 homomorphic additions. The noise increase is
mainly due to the homomorphic sums and lesser to plaintext-ciphertext multi-
plications. If we suppose that the ciphertext ct; encodes the plaintext message
m; (€ Z¢) then Decg (Ctpaek) =mo+mq1 - X + ... +mp_q - X"



3 Ciphertext unpacking

Let ctpeck be a ciphertext in which are packed n messages as in relation (1). We
call unpacking the procedure of extracting ciphertexts ct;, 0 < i < n, such that
Decg (ct;) = m;. Unpacking such a ciphertext is a bit trickier than packing.
Unpacking is possible for plaintext rings A; with a prime characteristic, thus for
finite field plaintext spaces?. In what follows we suppose that A; is an extension
finite field Fy;». We introduce a method for extracting messages from a packed
message in the plaintext domain. This method can be applied in the ciphertext
space also using homomorphic operations.

Let Extr; : F;n — [F; be a function which extracts the i-th coefficient of
the polynomial in argument. For example when function Extr; is applied to a
polynomial which packs messages as in (1) message m; is obtained:

Extr; (m(X):m0+m1-X+...+mn_1-X"_1) =m;

Function Extr; is an affine transformation over the standard power basis of
F;». We use the fact that an affine transformation over the standard power basis
can be computed as a Fy» affine transformation over the conjugates (i.e. Frobe-
nius endomorphisms ¢?, 0 < j < n). The extraction function can be expressed
as Extr; (m) = Z;l;ol ai ;@ (m), a; ; € Fn. There is no constant term because
Extr; (0) = 0.

Suppose for the moment that coeflicients a; ; are given. As said earlier be-
cause of scheme homomorphism functions Extr; can be evaluated directly on
a packed ciphertext in order to obtain n unpacked ciphertexts. In particular,
given a ciphertext ctyqer the encryption of the i-th message can be found using
expression:

ct; = Extr; (Ctpgek) =

ai0* Ctpack + Qi1 - ¢ (Ctpack) + ...+ ajn-1- ¢n71 (Ctpack:) (2)

In terms of homomorphic operations the evaluation of an extraction function
require n — 1 Frobenius power operations, n ciphertext-plaintext multiplications
and n — 1 homomorphic sums. We note that the conjugates of ctp,c; are com-
puted only once for all extractions. When the homomorphic encryption scheme
supports Frobenius powering the noise increase is low, when this is not the case
then we can perform the power operations using homomorphic multiplications.
In the latter case, the minimal multiplicative depth for computing conjugates

& (ctpack) (: ctgack), 0 < j < n,is [loggn] + [logyt]. Although there is no
need to compute all the extraction functions (in the case the number of packed
messages is inferior to n), however all the conjugates must be computed. In the
case of extension fields of large degree computing the conjugates by homomor-
phic multiplications will have a huge impact on performance.

2 As said earlier unpacking is also possible for ring extensions A,- where p is prime.



In what follows we describe how the extraction functions coefficients a; ;
are computed and afterwards we give some practical issues on using extracting
functions.

3.1 Computing extraction functions coefficients

Let us examine the application of all extraction functions in matrix form. The
evaluation off all extractions functions (i.e. unpacking of all messages) can be
expressed as a matrix multiplication M = A - C where M = (m;),.,.,, is the
vector of messages packed in m (: mo+my - X+ ...+mpy_1- X”*I), A is the
matrix (unpacking matrix) with coefficients a; ; such that in the row ¢ are the
coefficients of the extraction function Extr; and C' = (¢’ (m))0<j<n is the vector
of conjugates of the packed message m. -

In order to find the coefficients of matrix A we shall study the inverse trans-
formation, i.e. the packing of messages. The packing can be performed by mul-
tiplying the inversed matrix A to the values to pack: C' = A~!. M. Only the
first element of C represents the packed message, other elements are conjugates
of the packed message. Let us expand the j-th conjugate of m:

my=¢ [ D mX') = Y ¢ (m)¢! (XT) = D mig (XT) (3)
0<i<n 0<i<n 0<i<n

Relations ¢/ (a +b) = ¢7 (a) + ¢? (b), a,b € Fn, and ¢/ (a) = a, a € Fy, are

used in the development of the conjugate expression. Arranging equations (3) in
matrix form we obtain the following expression for matrix A~!:

1 X X2 XD
1 Xt X2t X(nfl)t
A1 = 1 th X2t2 X(nfl)t{"

1 Xt"71 X2t"71 X(n—l)t”71

We observe that A~! is the Vandermonde matrix over the conjugates of
X: A=V (X,6(X),¢*(X),...,¢" ' (X)). Vandermonde matrix inversion
complexity is O (nz) in terms of finite field operations [EF06].

Using the explicit formula for Vandermonde matrix inversion we prove rela-
tion (4). A proof is given in appendix A.

¢ (aij) = Qi j+1 modn, 0<4,j<n (4)

Formulation Z;:Ol @7 (@i 0 - Ctpack) can also be used for the extraction function
Extr; (ctpeck) in order to compute and store only the first row of matrix A.
If k£ is the number of extraction functions to be evaluated then in this case the
Frobenius endomorphism will have to be done k-(n — 1) times instead of (n — 1),
whilst the number of plaintext-ciphertext multiplications lowers from k - n to k.



To summarize, the computation of the unpacking matrix A is done in two
steps: in the first step matrix A1 is built® and afterwards this matrix is inverted
(quadratic complexity). We shall note that if matrix A is to be integrated in the
public key-chain we have the flexibility to store only the first column of A and
afterwards compute when needed other columns using relation (4).

4 Experimentation

In this section we describe several experiments we have performed in order to
obtain numeric estimates of Vandermonde matrix inversion time, coefficient ex-
traction speed and packing performance. In our experiments we have used the
HElib library [HS14,HS15]. Cyclotomic polynomials are used in HElib as ir-
reducible modulus for plaintext/ciphertext rings. Let @,, (X) be the m-th cy-
clotomic polynomial. The degree of @,, (X) is given by Euler’s totient function
¢ (m). If polynomial @,,, (X) can be factored modulo ¢ (plaintext coefficient mod-
ulo), then all the factors will have the same degree n. The ciphertext coefficient
size is chosen automatically as a function of the number multiplication levels L
to support. The security of the obtained homomorphic encryption scheme (se-
curity of the ring-LWE instance) depends on the cyclotomic polynomial degree
and on the ciphertext coefficient size. Many other parameters allow to fine tune
HEIlib. In our experiments we limit ourselves to the following parameters: plain-
text modulo — ¢, number of multiplication levels — L and cyclotomic polynomial
order — m.

We shall note that HElib allows to evaluate linear functions over the standard
power basis. These methods can be used to perform a coefficient extraction
procedure, however a non-optimized one. We have implemented in HElib the new
matrix inversion procedure and an optimized extraction procedure. In the case
when the cyclotomic polynomial factors over the plaintext space the extraction
procedure is applied onto each plaintext slot separately. So actually a single
extraction procedure extracts many messages, one message per slot. Furthermore
one can use existing plaintext slot rotation methods in order to move all the
packed messages into the same slot.

4.1 Matrix inverse

In HEIlib the Vandermonde matrix is inverted using Gauss elimination over field
extension (NTL library function). Afterwards Hansel’s lifting is used to compute
the inverse over ring extension when the plaintext space is a ring extension. This
method has a cubic complexity in terms of extension field operations. In our im-
plementation we initially compute the first column of the inversed Vandermonde
matrix using the explicit formula directly over the field/ring extension. Other
columns are computed using relation (4) on demand. The complexity for this
method is quadratic. In what follows we compare HEIlib implementation with our

3 It can be built on the fly and integrated in the matrix inversion step.



implementation for matrix inverting. Firstly we study the influence of field /ring
extension size (which is the size the of Vandermonde matrix) and afterwards
the influence of coefficient size (plaintext modulo size) on the inversion time.
We have used cyclotomic polynomials @,, (X) of small* size prime order m and
which are irreducible modulo ¢. Obtained matrix inversion times can be general-
ized to cyclotomic polynomials @, (X) whose factors modulo ¢ have equivalent
degrees.

In figure 1 are plotted execution times of matrix inversion as a function of
matrix size (plaintext extension size). Just as it was expected our method, which
has a smaller theoretical complexity, is faster in practice too. For large matrices
our method is up to 240 times faster. With the increase in matrix size this gap
grows exponentially.
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Fig.1. Inversion time as a function of the extension field size. The
same coefficient modulus is used. Field extensions are Zigss/Pn(X), n €
[29, 53,89, 149,197,281, 331,379,401]. The execution times for HElib implemen-
tation (OLD label) or ours (NEW label) is on the vertical axis. Extension field size
(matrix size) is on the horizontal axis.

In figure 2 is represented the execution time of HEIlib inversion method and
our inversion as a function of the field/ring extension coefficient bit-size. We can
observe that for both methods the inversion over ring extension is faster than
the inversion over field extension for equivalent coefficient bit-sizes. We suppose
this is due to a more optimized implementation of ring extension operations in
NTL. Our inversion method is at least 40 times faster for any coefficient sizes.

4.2 Extraction performance

There are two possible formulations for the extraction function, either Z?;Ol ¢ (@i,0 - Ctpack)

or Z;:()l a; ; & (ctpack). We have implemented and have tested both expressions
using HElib. Unsurprisingly the second formulations is faster in all the test cases

4 HE scheme security was irrelevant in this experiment.
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Fig. 2. Inversion time as a function of the field /ring extension coefficient bit-size. The
used extensions are Z;/®Pgg (X), with either ¢ prime (field extension— GF label) or a
power of prime t = 3%, k € [5,10,15,20, 25, 30], (ring extension — GR label). ®g9 (X)
is the 89-th cyclotomic polynomial (matrix size is 88 x 88). On horizontal axis the
bit-size (log,t) of plaintext modulo (¢) is given. On vertical axis the execution time
of the inversion method: either the HElib implementation (OLD label) or ours (NEW
label).

we have performed. This is due to the fact that Frobenius endomorphisms need
a key-switching operation and is approximatively 10 times slower than plaintext-
ciphertext multiplications. In what follows the second formulation is used.

Extraction methods were implemented in HElib. The used plaintext coeffi-
cient modulo ¢ is either 2 or 1024. The order m of cyclotomic polynomials @,, (X)
is chosen in such a way that m is a prime inferior to 10°, ®,, (X) factors modulo
t into factors of degree n < 200 and the obtained HE scheme has at least 80 bits
of security. The number of multiplicative levels L to support by the HE scheme
is set to 5. In total 12 instances of HE schemes are obtained.

Suppose Ctpqcr is a ciphertext which packs ¢ (m) messages m; j, 0 < @ <
e(m)/n and 0 < j < n. Let Z;L:_& m; ;X7 be the polynomial packed into the
i-th plaintext slot of ciphertext ctp,cr. The extraction procedure is performed
in two steps. Initially n ciphertexts ct; are obtained using the extraction func-
tion (2). Ciphertext ct; packs messages m; ; in its plaintext slots. Afterwards
plaintext slot rotations were performed on each ciphertext ct; in order to bring
all messages m; ; into the same slot. In total ¢ (m) — n rotations are done, n
messages being already in the good slot. As a result ¢ (m) ciphertexts ct; ; are
obtained each containing in the same slot a message m; ; from the initial packed
ciphertext ctpgck-

The application of extraction function increases the noise level of input ci-
phertext. This must be considered when the dimensioning of the HE scheme
is done. Ciphertext noise increase (in bits) incurred by the extraction proce-
dure is represented in figure 3. It includes the noise due to the extraction func-



tion (2) and to plaintext slot rotation®. For both plaintext spaces unexplained
jumps in the noise increase can be observed for the same cyclotomic polynomials
(m = 5419, 6529, etc.). Without entering into much details we found that this
is caused by the cyclotomic ring representation in HElib. Plaintext slot rotation
increases ciphertext noise only for these cyclotomic rings and no noise at all is
added for the others. Extraction procedure noise increase for plaintext modulo 2
is around 6 —7 bits when slot rotation does not add any noise and around 11 —12
bits otherwise. Noise increase is a bit larger for plaintext modulo 1024. Reported
to the HE instances we use (L = 5) this corresponds up to 1 multiplicative level
for ¢ = 2 and up to 2 multiplicative levels for ¢ = 1024.

In order to see if the noise increase depends on the number of multiplicative
levels the same tests were performed for multiplicative level L = 10. The differ-
ence between noise increase in both cases (L =5 and L = 10) was under 0.03%
for t = 2 and even smaller for ¢ = 10. We assume that the noise increase does
not vary much as a function of multiplicative depth.
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Fig. 3. Increase of ciphertext noise in bits (vertical axis) after unpacking procedure
related to cyclotomic polynomial order m (horizontal axis). Horizontal axis values are
sorted in increasing order of the degree of cyclotomic polynomial factors (given in
brackets).

Execution time of the unpacking procedure is represented in figure 4. To-
tal execution time of unpacking procedure is plotted with continuous line, whilst
dotted line is used for the fraction of the total execution time took by the extrac-
tion function. Extraction function execution time (dotted line) depends greatly
on the cyclotomic polynomial factor degree and less on the cyclotomic polyno-
mial degree. The unusual jumps of the total execution time are explained as
previously by the properties of the employed cyclotomic ring. For some cyclo-

5 Plaintext slot rotations in HElib are performed using one or more ciphertext ho-
momorphisms followed by a key-switchings. We suppose that any rotation can be
performed in a single step so that the noise due to slot rotation remains low and
bounded.



tomic rings plaintext slot rotation is faster. Execution time is always larger for
plaintext modulo ¢ = 1024 when compared to t = 2.

3500
——t=2 e t=1024

3000

; 2500

)
o o o
S © o
S & o

Execution time, sec

o
o
S

TX e
¥ - I SR I

e
oM s« o 1¥: oz
8191 5419 9719 6361 8101 6529 6553 5581 8681 6679 7487 5347
(13) (42) (43) (53) (100) (102) (117) (124) (124) (159) (197) (198)

Cyclotomic polynomial order (factor degree)

Fig. 4. Execution time (vertical axis) of the unpacking procedure related to cyclotomic
polynomial order m (horizontal axis). Horizontal axis values are sorted in increasing
order of the degree of cyclotomic polynomial factors (in brackets).

4.3 Comparison to literature methods

In work [CCF*15] the authors propose a method in which messages are initially
encrypted using a stream cipher (low-depth ones: Trivium and Kreyvium) and
then a trans-ciphering procedure is used to switch from stream cipher encryption
to HE scheme encryption. The authors used HEIlib and an in-house implemen-
tation of HE scheme for their experimentations. Only the results obtained using
HEIlib are reported here. After trans-ciphering the HE parameters allow to exe-
cute 7 more multiplicative levels of homomorphic operations. The best latency
and throughput results they obtain are provided in table 1. The latency is the ho-
momorphic execution time of a stream cipher and the throughput is the number
of messages which are obtained during an execution. The throughput results are
little bit “inflated” because the messages from the plaintext slots of a ciphertext
are also counted (no ciphertext rotation is performed).

[Stream cipher[latency (sec.)[throughput (bit/min.)]

Trivium-13 11380 516.3
Kreyvium-13 12450 286.8
Table 1. Best results in terms of latency and throughput from [CCFT15].

We have executed the same tests as in previous section except that the plain-
text modulo was binary and the multiplicative level was set to 8. After the



extraction procedure the HE scheme supports 7 more multiplicative levels (ap-
proximatively) as in [CCFT15]. We keep only HE instances which provide more
than A = 80 bits of security. Two use cases are envisaged: (i) only the extrac-
tion function equation (2) is applied (n ciphertext are obtained, one message per
plaintext slot) and (ii) additionally plaintext slot rotations are performed (p (m)
ciphertexts are obtained, one message per ciphertext). In table 2 are shown the
obtained latencies (execution times) and throughputs for different cyclotomic
polynomials. First and second use cases results are given in columns “extr.” and
respectively in columns “extr.+rot.”. Column “#slots” gives the available num-
ber of plaintext slots (= #(m)/n) and column “|slot|” represents the cyclotomic
polynomial factor degree n.

latency (sec.) |throughput (bit/min.)|expansion

m|f#slots|[slot]| A extr. [extr.+rot. extr. [ extr.-+rot. factor
6529 64 | 102 167.6| 1460.1 |2336.3 268.3 339.4
6553| 56 | 117 < 80 225.3| 8479 1744.7 463.6 341.7
6679 42 | 159 434.6] 1861.0 | 922.0 215.3 339.8
7487 38 | 197 749.2| 1564.0 | 599.6 287.2 340.7
8101 81 100 202.4| 1132.5 |2400.8 429.1 337.3
8191| 630 | 13 S 198 4.9 991.5 [99366.8 495.6 339.6
8681 70 | 124 393.0{ 3169.6 |1325.1 164.3 335.1
9719 226 | 43 53.8 | 1582.2 [10833.9 368.5 339.7

Table 2. Latency and throughput results obtained using our extraction procedure.

The expansion factor (ratio between the size of sent data and the number
of sent messages) obtained in [CCF*15] is asymptotically close to 1 for a large
number of messages. The expansion factor in our case (given in the last column)
is approximatively 340 ciphertext bits for a message bit. It does not depend on
the number of messages but depends on the HE scheme parameters.

Trans-ciphering [CCF*15] is performed on each plaintext slot independently.
Resulting ciphertexts contain many input messages (first use case described in
previous section). In order to be fair we compare their results to the results we
obtain using the first use case only (“extr.” columns). The latency in our case is
at least 15 times lower. Obtained throughput is at least as good as in their work
and for some HE instances (m = 8191) much larger. Sure that this comparison
is only approximate as we have ignored the machines on which the test were
performed, the fact that “unpacked” ciphertext are of different sizes: 8 levels in
our case compared to 21 in theirs®, and also the two methods have different
expansion factors.

5 Subsequent homomorphic evaluations on “unpacked” ciphertext will be faster in our
case.



5 Conclusions

In this work we have proposed a packing procedure for homomorphic encryption
schemes. The messages are packed into coefficients of plaintext polynomials. A
method for homomorphically unpacking messages packed in this way from a ci-
phertext is proposed. Performed experimentations showed that lower unpacking
times are obtained when compared to existing work based on trans-ciphering.
The packing ratio (number of bits to send for a payload bit) is larger than
for trans-ciphering methods (which is worse). In these methods (trans-ciphering)
only the uplink traffic can be packed. Whereas the method proposed in this
paper can be used for packing uplink as well as for downlink traffic. In order
to increase the packing ratio of this packing method the digit-extraction (from
plaintext spaces modulo p") procedure described in [HS15] can also be used.
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A Vandermonde matrix over F;» inverse

In what follows we give a proof for relation ¢ (a; ;) = @i j+1 mod n verified by
the inverse of the Vandermonde matrix V' (e, oe),...,on 1t (e)) over finite field
F» where ¢ is the Frobenius endomorphism X — Xt

Lemma 1. Let V (e, ¢ (e),...,¢" " (e)) be a Vandermonde matriz with e an
element from an extension field Fyn and A = (ajj), ., be the inverse of this
matriz. The elements a; ; verify relation a; j41 mod n = ¢ (@i j)-

Proof. The explicit formula for Vandermonde matrix V (xg, z1, ..., Z,—1) inver-
sion is:
a;j = @ii/g;, 0 <d,j <n

where

ap= (1" Y L

UECg’;Fl keco

Bi= 1] (@ —am).

mesS;

Here S; is the set of integers from 0 to n—1 excluding j, i.e. S; = {0,...,n — 1}\
{j}, and ng is the set of combinations of k elements from the set ;.

If each element k in the set S is replaced by the element k£ +1 mod n then
the set Sj11 mod n is obtained:

k—k+1 modn
S; = Sj+1 mod n (5)

If each element £ in every combination o of C’gj is replaced by k+1 mod n

then the set of combinations C’gjﬂ i is obtained:

k—k+1 modn
4 3 4
Csj CSJ'+1 mod n (6)



For example let C% = {{0,2},{0,3},{2,3}} be 2-element combinations
from the set S; = {0,2,3}. When in C’gl every element k is replaced by k + 1
mod n we obtain {{1,3},{1,0},{3,0}} = CZ..

In our case we have x;, = ¢* (¢), 0 < k < n. The Frobenius endomorphism of
zp, is ¢ (z) = ¢ (0" (€)) = ¢**1 (€) = Z(k+1) mod n, the “ mod n” comes from
the fact that ¢" (e) = e. Lets compute the Frobenius endomorphism of a;; :

(i) =¢ [ (=1)" " Z ka =

UECE‘{iil kco

ot Y e =

oecy Tt keo

(_1)n—i—1 Z H x(kJrl) mod n @

seCy i keo

(_1)71—1‘—1 Z H Lk' = Q4,541 mod n

seon—i—1 keo
€ Sj+1 mod n

Equivalently for 3; we obtain:

sB) =0 | [] @i—an)| =[] 0@—a)= ] (¢ (x;) — 6 (ax)) =

kesS; kesS; kesS;

(5)
H ($j+1 mod n — Lk+1 mod n) = H ($j+1 mod n — xk) = Bj-&-l mod n
kESJ‘ kGSj+1 mod n

We conclude that ¢ (a; ;) = ¢ (¥ii/8;) = @ii+1 mod n/Bj41 mod n = Qi j+1 mod n
(B; is always invertible because 3; # 0).

Corollary 1. LetV (e, ¢ (e),...,¢" " (e)) be a Vandermonde matriz with e an
element from an extension ring GR(t",m) and A = (a; ), be the inverse of
this matriz. The elements a; ; verify relation a; j+1 mod n = ¢ (a;,;) where ¢ is
the Frobenius endomorphism X s X*t.

Proof. Equivalently as lemma 1.



