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Abstract

Indistinguishability obfuscation (IO) is a tremendous notion, powerful enough to give
rise to almost any known cryptographic object. Prior candidate IO constructions were
based on specific assumptions on algebraic objects called multi-linear graded encodings.

We present a generic construction of indistinguishability obfuscation from public-key
functional encryption with succinct encryption circuits and subexponential security. This
shows the equivalence of indistinguishability obfuscation and public-key functional en-
cryption, a primitive that has previously seemed to be much weaker, lacking the power
and the staggering range of applications of indistinguishability obfuscation.

Our main construction can be based on functional encryption schemes that support a
single functional key, and where the encryption circuit grows sub-linearly in the circuit-size
of the function. We further show that sublinear succinctness in circuit-size for single-key
schemes can be traded with sublinear succinctness in the number of keys (also known
as the collusion-size) for multi-key schemes. We also show that, under the Learning with
Errors assumption, our techniques imply that any indistinguishability obfuscator can be
converted into one where the size of obfuscated circuits is twice that of the original circuit
plus an additive overhead that is polynomial in its depth, input length, and the security
parameter.

*An extended abstract of this paper appears in the proceedings of FOCS 2015.
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1 Introduction

Program obfuscation, aiming to turn programs into “unintelligible” ones while preserving
functionality, has been a holy grail in cryptography for over a decade. While heuristic meth-
ods of obfuscation are widely used in practice, our theoretical understanding of obfuscation
is still in its early stages. Rather unfortunately, the most natural and intuitively appealing no-
tion of obfuscation, namely virtual-black-box (VBB) obfuscation [Had00, BGI"12], was shown
to have strong limitations [Had00, BGI*12, GK05, BCC*14]. Furthermore, except for very re-
stricted function classes (see, for example, [Can97, LPS04, Wee05, HMS07, HRSV11, CRV10]),
no candidate construction with any form of meaningful security was known for a long time.

This changed dramatically when Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH " 13b]
demonstrated a candidate obfuscation algorithm for all circuits, and conjectured that it satis-
fies an apparently weak notion of indistinguishability obfuscation (I0) [BGI"12, GR07], requir-
ing only that the obfuscations of any two circuits of the same size and the same functionality
(namely, the same truth table) are computationally indistinguishable. Since then, a sequence of
works, pioneered by Sahai and Waters [SW14], have demonstrated that IO is not such a weak
notion after all, leading to a plethora of applications and even resolving long-standing open
problems. The number of cryptographic primitives that we do not know how to construct
from IO is small and dwindling fast.!

The tremendous power of IO also begets its reliance on strong and untested computational
assumptions. Despite significant progress [PST14, GLSW15], known IO constructions prior
to this work [GGH "13b, PST14, BR14, BGK 14, GLSW15, AB15, Zim15] were based on the
hardness of little-studied problems on multi-linear maps [GGH13a]. Thus, an outstanding
foundational question in cryptography is:

Can we base indistinguishability obfuscation on solid cryptographic foundations?

1.1 This Work

In this work, aiming to make progress in the above direction, we show how to construct in-
distinguishability obfuscation from an apparently weaker primitive: public-key functional en-
cryption. In a functional encryption scheme [BCOP04, SW05, BSW12, O'N10], it is possible to
produce functional keys FSK for functions f (represented as circuits throughout this paper).
Given an encryption of an input =, computed using a public key PK and the functional key
FSK¢, anyone can compute f(x), but nothing more about x itself.

In the past few years, functional encryption (FE) schemes with different efficiency and se-
curity features were constructed from various computational assumptions. A central measure
of interest (in general and in the specific context of this work) is the size of ciphertexts, or more
generally the encryption time. Here the ideal requirement is that the time to encrypt depends
only on the underlying plaintext x, but this requirement may be relaxed in several meaningful
ways, such as allowing dependence on the size of the circuits computing the corresponding
functions, just the size of their output, or the number of generated functional keys.

Functional encryption, on the face of it, seems much less powerful than IO and sure enough,
it has not had nearly as many applications. Seemingly, IO derives its power from the fact that it
allows anyone to compute meaningfully with a hidden object (say, a circuit) with no additional
help. In contrast, FE does allow us to encrypt circuits? but to evaluate the circuit on an input,

1Strictly speaking, we need the assumption that IO exists, plus a very mild (and minimal) complexity-theoretic
assumption that NP ¢ ioBPP [KMN " 14].

2Given FE for a sufficiently expressive class, we can switch the roles of circuits and inputs, going through a
universal circuit.



one needs a functional key associated with the input! Not surprisingly, the power of FE seems
to be limited to achieving a notion of “obfuscation on a leash” or “token-based obfuscation”,
as defined by Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP*13].

Perhaps surprisingly, we show:

Theorem 1.1 (informal). Assuming the existence of a sub-exponentially-secure public-key functional
encryption scheme for all circuits, where encryption time is polynomial in the input-size and sub-linear
in the circuit-size, there exists indistinguishability obfuscation for all circuits.

Furthermore, in the above theorem, it suffices to start from a scheme that supports only a
single functional key and satisfies a mild selective-security indistinguishability-based guaran-
tee. We can further relax the above to allow the encryption to also depend polynomially on
circuit-depth (or even exponentially, assuming pseudo-random functions in NC').

We also show that the requirement for sub-linear dependence on circuit size can be traded,
when moving to multi-key functional encryption schemes with a sub-linear dependence on the
number of derived keys. Informally, in such multi-key schemes, it is guaranteed that an ad-
versary in the possession of a set of functional keys, learns nothing on the encrypted message
beyond the combination of function outputs corresponding to the set of keys.

In fact, we show a generic bootstrapping theorem that captures both the transformation
from the multi-key setting to the single-key setting, and the removal of depth dependence in
single-key schemes.

Theorem 1.2 (informal). Assuming the existence of multi-key functional encryption schemes for all
circuits, where encryption time is polynomial in the input-size and circuit-size, but sub-linear in the
number of released keys, or single-key functional encryption schemes with sub-linear dependence on
circuit-size and polynomial dependence on circuit-depth, there exist single-key functional encryption
schemes with sub-linear dependence on circuit-size (and no further dependence on circuit-depth).

This transformation, in particular, allows obtaining new IO candidates from exsiting multi-
key functional encryption schemes such as the one by Garg et al. [GGHZ16] (in its subepxonentially-
hard version).

Another corollary that follows from our techniques and previous results on FE with suc-
cinct keys [BGG'14] is that obfuscation size can always be reduced to linear in the function’s
circuit-size plus some overhead in circuit-depth.

Corollary 1.3 (informal). Assuming sub-exponential hardness of the Learning with Errors problem
and IO, there exists 10 such that an obfuscation of any circuit C of depth d and input length n is of size
2|C| + poly(n,d, A).

Interpretation. Functional encryption schemes satisfying the succinctness properties required
in Theorem 1.2 were previously known based on indistinguishability obfuscation [GGH " 13b]
or the stronger notion of differing-inputs obfuscation [BCP14]. Thus, our result establishes
the equivalence of functional encryption and IO, up to some sub-exponential security loss.
The question of basing IO on more standard assumptions still stands, but is now reduced to
improving the state of the art in functional encryption.

It is rather tempting to be pessimistic and to interpret our result as a lower-bound show-
ing that improving functional encryption based on standard assumptions may be very hard,
or perhaps straight out impossible. Our take on the result is quite optimistic. We hope that
the construction would eventually lead to IO from more standard assumptions, or improved
assumptions on multilinear graded encodings.® Indeed, in the past few years, we have seen

*Below, we mention subsequent work that has already partially fulfilled this hope.
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a remarkable progress in constructions of functional encryption based on standard assump-
tions [SS10, GVW12, GVW13]. The state of the art scheme based on a standard assumption
is that of Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP*13] relying on the
sub-exponential learning with errors assumption. The construction achieves ciphertext size
that only grows polynomially with the circuit output size and depth; thus, for circuits with
say a single output bit, ciphertexts may indeed be sub-linear in circuit size, but this will not be
the case for circuits with long outputs. Interestingly, the latter construction achieves a strong
simulation-based security guarantee, under which sub-linear growth in the output size (let
alone circuit-size) is actually impossible [AGVW13, AIKW13, GKP*13]. Reducing the de-
pendence on the output (under an indistinguishability-based notion) has been a tantalizing
problem. Now, this question becomes of central importance in the quest to achieve indistin-
guishability obfuscation.

Gorbunov, Vaikuntanathan and Wee [GVW15] showed how to construct predicate encryp-
tion schemes for all circuits (with a-priori bounded depth) from sub-exponential hardness of
the Learning with Errors problem (LWE). In their scheme, the ciphertext size is polynomial
in the input length and the depth of the circuit, and otherwise independent of the circuit size
and output size. A predicate encryption scheme can be interpreted as a functional encryption
scheme with a “weak attribute-hiding” property (see [KSW13, AFV11, GVW15] for more de-
tails). Strengthening this to “full attribute hiding” will give us a functional encryption scheme
that satisfies the requirements of Theorem 1.2, and is yet another frontier in achieving indistin-
guishability obfuscation from LWE.

We next explain the main ideas standing behind our construction.

1.2 Main Ideas

Our starting point is a natural input extension approach: given an obfuscator O,,—; for circuits
with input length n—1, design an obfuscator O, for circuits with input length n. Intuitively, this
way we can get obfuscation for circuits with arbitrary polynomial input length — recursively
apply the input extension step polynomially many times. The base case is trivial — for circuits
C with a single input bit, simply define the obfuscation O;(C') to be the corresponding truth
table (C(0),C(1)).

A crucial feature of any such input extension procedure is the blowup it incurs in complex-
ity. Indeed, a trivial input extension procedure:

On(C(l‘l, e ,:Un)) = On_l(C(ZE‘l,. . .,xn_l,O) O C(:Bl, ey n—1, 1))

that first creates an (n — 1)-bit input circuit with a doubly-long output (by taking two copies of
the original circuit and fixing the last bit x,, to either 0 or 1) blows up the obfuscation size, at
each step, by at least a multiplicative factor of two. Accordingly, such a procedure can only be
applied logarithmically-many times (indeed, it is equivalent to simply writing the truth table
of the circuit). To avoid such blowup, we must ensure that the total size of circuits obfuscated
in each recursive step does not outgrow the size of previous circuits (except perhaps by an
additive amount).

At high-level, this work is dedicated to developing such an input-extension procedure,
based on functional encryption.
From token-based obfuscation to efficient input-extension. The basic idea behind our input-
extension procedure is founded on the concept of token-based obfuscation and its connection
to function-hiding functional encryption. A token-based obfuscation algorithm consists of an
obfuscation algorithm Tok.Obf(C) that given a circuit C' produces an obfuscation C and a secret
key SK. Unlike the standard notion of obfuscation, which would allow evaluating C' on any



input z to learn C(x), here evaluation requires a token z corresponding to x. The token z can
be generated by an encoding algorithm Tok.Enc(SK, z) using the secret key SK (for simplicity
of exposition, we shall assume that Tok.Enc is deterministic). Security is guaranteed against
any adversary that does not possess the secret key and only gets the obfuscation 5’, as well as
a polynomial number of encoded inputs z of its choice. For the notion to be non-trivial, the
complexity of Tok.Enc is required to only depend on the input x, and not on the circuit C.

Intuitively (and for now thinking about an obfuscation as an opaque black-box), token-
based obfuscation suggests a simple input-extension procedure:

On(C(z1,...,25)) :=Tok.Obf(C(z1,...,2m)),
On—1(Tok.Enc(SK, z1,...,2y,-1,0) o Tok.Enc(SK, z1, ..., 2y_1,1)) ;

namely, to obfuscate a circuit C' with n-bit inputs (z1,...,z,), obfuscate C' using the token
based obfuscation, and then use the obfuscator 0,1, to obfuscate a bit-fixing variant of the
token generator

Tok.Enc(SK, z1,...,x,-1,0) o Tok.Enc(SK, 1, ..., zp—1, 1)

that given (z1,...,2z,—1) generates two encodings corresponding to fixing z,, to either 0 or 1.

Crucially, since the complexity of Tok.Enc(SK, z) only grows with the encoded input = €
{0,1}", the circuit recursively obfuscated by O,,_; (and then O,,_5 and so on) is now bounded,
through all steps, by a fixed polynomial poly(n) in the input length n. Unwinding the recur-
sion, the complexity of O,, will now be bounded by poly(|C|) + n - poly(n).

From functional encryption to token-based obfuscation. As observed in [GKP"13, BS15],
token-based obfuscation can be constructed from any symmetric-key functional encryption scheme
that has a succinct encryption circuit. Concretely, they show that it is possible to harness the
existing message-hiding of functional encryption to also guarantee function hiding. Here a
functional key FSK¢ is guaranteed to hide the circuit C' and can be viewed as a token-based
obfuscation of C'. The encryption algorithm Enc(SK, -), with the corresponding private encryp-
tion key SK, is then viewed as the token generator.

Combined with the token-based input extension procedure, this suggests a strategy for
constructing obfuscation based on (symmetric-key) functional encryption with a succinct en-
cryption circuit. Materializing this high-level strategy requires of course a more careful exami-
nation of the security guaranteed at each and every step. Assuming all the involved primitives
satisfy an ideal (simulation-based) security guarantee would indeed allow implementing this
strategy and eventually lead to an ideal obfuscation guarantee (known as virtual black-box
security). However, ideal security is known to be impossible for either (succinct) functional
encryption or obfuscation [AGVW13, BGI"12].

The hope is that starting with a weaker indistinguishability-based guarantee for functional
encryption would still allow to carry through the above strategy, leading to indistinguishabil-
ity obfuscation. This turns out to encounter certain difficulties, which eventually lead to our
requirement of public-key functional encryption (rather than symmetric-key), as well as our
sub-exponential security requirement. We next overview these challenges and the way they
are dealt with.

Under the hood. A natural first attempt to achieve our goal is to mimic the ideal solution.
Namely, starting from a (symmetric-key) function-hiding functional encryption scheme, to ob-
fuscate any circuit C' with input x = z;...x,, generate the functional key FSK¢ and add an
obfuscation

’LO(EHC(SK, TlyeoeyTp—1, 0) o Enc(SK, Tlyeoey -1, 1))



of the corresponding (bit fixing) encryption circuit. This clearly satisfies the required function-
ality, but it is not clear how to prove security based on IO. While the function-hiding guarantee
of symmetric-key FE holds in the presence of an encryption oracle, it may not hold when the
adversary is presented with an actual circuit implementing this oracle. In particular, an indis-
tinguishability obfuscation of the encryption circuit, which includes the secret encryption key,
may potentially leak the secret key. (As a matter of fact, it may even be that the encryption
function is unobfuscatable [BGI*12] in the sense that any circuit implementation thereof would
leak the secret key).

To overcome the above difficulty, we would like to obtain FE with a more robust func-
tion hiding guarantee that holds even in the presence of an indistinguishability obfuscation
of the encryption algorithm. Perhaps the first thought that comes to mind is to use public-key
function-hiding FE, in which case the encryption circuit can be published without compromis-
ing security. However, it is easy to see that public-key function-hiding FE is too strong in the
sense that it directly implies IO, which is the very thing we are trying to construct.*

Instead, we define a new notion of puncturable functional encryption that lies somewhere be-
tween the notions of symmetric-key and public-key for function-hiding FE. In particular, this
notion may not provide full-fledged function hiding in the presence of the encryption key, but
does satisfy certain weaker properties. Once we define this notion, we show how to obtain it
from plain (non-function-hiding) public-key FE, and show that the guaranteed security prop-
erties are already enough to prove the security of the IO input-extension procedure described
above.

Puncturable FE. Roughly speaking, the notion of puncturable FE (PFE) satisfies two proper-
ties: key indistinguishability and puncturing. The first property asserts that for any two functions
fo and f1, of the same size and functionality, it is possible to generate a fake functional key
FSK* = FSKY, ;, together with two fake encryption keys EKf, EK] so that a real encryption
key EK and a functional key FSK, corresponding to f, are indistinguishable from the fake
functional key FSK* together with the corresponding fake encryption key EKj:

EK, FSK}, ~. EK}, FSK*, EK%, FSK* ~, EK,FSKj, .

The gap between such an FE and a function hiding FE is that given the fake functional key FSK*
it may still be possible to distinguish EK{ from EKY (indeed this is the case in our scheme).
The second property, called puncturing, is meant to bridge this gap. Our notion of punc-
turing is inspired by that of puncturable pseudorandom functions [BW13, KPTZ13, BGI14] and
roughly says the following. First, for any message z, encryptions under the two fake keys are
indistinguishable
Enc(EKG, ), FSK* =, Enc(EK7, z), FSK* .

Moreover, there is an efficient way to generate a so called punctured version EK {z}, EK] {z}
of the keys EK{, EK7, so that the above indistinguishability holds even in the presence of both
punctured keys. In terms of functionality, the punctured keys still allow to compute encryp-
tions for all messages z’ # x.

Why is puncturable FE enough? While the above puncturing requirement still does not say
that the fake keys EK{ and EKY are indistinguishable, it is sufficient for showing that indis-
tinguishability obfuscations iO(Enc(EKG, -)) and iO(Enc(EKST, -)) of the corresponding encryp-
tion algorithms are in fact indistinguishable (even in the presence of the fake functional key
FSK*), provided that the underlying puncturable FE and IO are subexponentially-secure. This

*Roughly speaking, an obfuscation of a circuit C' consists of a functional key for C' and the public-encryption
algorithm. Now, anyone could encrypt any input z, and obtain C'(x) by invoking functional decryption.



is shown using a hybrid technique commonly used in the context of IO [BGL"15, CHJV15,
KLW15, CLTV15].

Roughly speaking, we can move from an obfuscation of one circuit to an obfuscation of the
other through a sequence of hybrids {H;},¢ o 1}~ ranging over all messages x of length n. In
M., the obfuscated circuit uses the key EK] to encrypt all messages z’ that are lexicographically
smaller than z, and uses the key EK{ to encrypt all other messages. Going from one hybrid to
the next, we consider a circuit where both keys are punctured at the point x, and the encryption
of z is hardwired. The new circuit computes the exact same function as the original one, and
thus this change cannot be detected when the circuit is (indistinguishability) obfuscated. Now,
we can switch an encryption under one key to an encryption under the other relying on the
security of the puncturable PFE.

The distinguishing gap between the hybrids additively grows as we move between one
hybrid to the next, and overall degrades by a factor of 2". This is indeed the reason we need to
start from subexponentially secure IO and puncturable FE (where the security parameter will
be an appropriate polynomial in n).

The final construction. Overall, our input-extension step has the following form. To generate
an obfuscation iO,,(C) of a circuit C' with n-bit input x = z; ... z,, generate a (real) functional
key FSK¢ together with a (real) encryption key EK and add an obfuscation

iOp—1(Enc(EK, 21, ...,2p-1,0) o Enc(EK, 21, ..., 21, 1))

of the corresponding (bit fixing) encryption circuit, defined on n — 1 bits. To evaluate the
circuit on input x, the evaluator runs the obfuscation on the (n — 1)-bit prefix of x and chooses
the encryption Enc(EK, x) according to the last bit of x. Then it simply performs functional
decryption.

Indistinguishability between obfuscations of two functionally-equivalent circuits Cp and
(' is shown by first using the key-indistinguishability property to switch real keys EK, FSK,,
corresponding to an obfuscation of Cj, into fake keys EKp, FSK*. Then, we switch to the fake
keys EK1, FSK* using the puncturing property following the hybrid argument outlined above.
Finally, we can switch back to real keys EK, FSK¢, corresponding to an encryption of C, using
key indistinguishability again.

In terms of security, each invocation of the input extension step incurs a multiplicative
loss of 2" in the distinguishing gap, and overall when extending a trivial one-bit-input IO to
n-bit-input 10, the overall degradation is roughly 922ictn ! v 217,

Constructing puncturable FE and the need for public-key encryption. Finally, we describe
how to convert any public-key FE scheme FE into a new scheme PFE that is puncturable. The
construction relies on similar techniques to those used for function hiding in the symmetric-
key setting [BS15].

Concretely, to generate a key for a function f, we use the underlying scheme FE to generate
a functional key FSKg, for an augmented function g. The circuit g = g[CTy, CT1] has two (plain)
symmetric-key encryptions CTy, CT1, under two independently chosen secret keys SKo, SKy,
hardwired into its code. In the actual scheme, both ciphertexts encrypt the circuit f. The
function g expects as input, not only an input x for f, but also a key SK;. Given those, it
decrypts the corresponding ciphertext CT,, and applies the decrypted circuit to the input x.

The (real) encryption key EK then consists of the encryption key EKgg of the underlying FE
along with a secret key SK;, for a randomly chosen b, as well as a key K for a pseudorandom
function. Encryption is done using the encryption of the underlying FE, encrypting not only
the message x, but also the secret key SKj; any randomness r required for the encryption
algorithm is derived by applying the pseudorandom function to =, namely r = PRFk(z).



A fake encryption key EKJ is distributed identically to a real key EK, consisting of EKfg, SKy,, K,
for a random bit by. The second key EKY only differs in the symmetric key, which is chosen
to be the second key SK;,, where b; = 1 — by. As expected, the fake functional key FSK* cor-
responds now to g[CTo, CT1] where CT,, encrypts fp and CT,, encrypts f; (rather than both
encrypting the same function).

Proving key indistinguishability and puncturing naturally extends the ideas used to prove
function-hiding in [BS15]. (There, the adversary, never actually sees the encryption key, and
is only given an oracle that computes encryptions.) Key indistinguishability, follows directly
from the security of the symmetric encryption scheme; indeed, the only difference between
the real keys EK, FSKy, and fake keys EKf, FSK* is that in the latter the ciphertext CT;, em-
bedded in FSK* encrypts f; instead of fj. Since EKj only includes the secret key SK;, and is
independent of SK,, semantic security applies. A symmetric argument holds for the real keys
EK, FSKy, and fake keys EK7}, FSK*.

We then need to prove that encryptions of any message = under the fake key EK are indis-
tinguishable from ones under EK7, even in the presence of a punctured version of the keys. Let
us first understand why such indistinguishability holds when the adversary does not obtain
any encryption keys. In this case, which is analogous to [BS15], we can rely on the security
of the underlying FE. Specifically, recall that the only difference between encryptions under
the two keys is that when encrypting with EK{, we use the underlying encryption to encrypt
(x,SKp,), whereas when encrypting under EKf, we encrypt (z,SK;,). Note, however, that
since fp and f; compute the same function, the function ¢g[CTy, CT;] does distinguish between
two such inputs. Indeed, in the first case it outputs fy(x) and in the second fi(z). This, in
particular, means that two such encryptions are indistinguishable.

It is left to show that we can produce a punctured version of the encryption keys EKj {z},
EK?T {z} such that the above would hold even in their presence. This basically implies that
we have to: (1) generate a punctured version of the encryption key EKpg in the underlying
(non-function-hiding) functional encryption scheme, and (2) generate a punctured version of
the pseudorandom functional key K. The second requirement can be dealt with easily relying
on puncturable pseudorandom functions [BW13, KPTZ13, BGI14] — these are exactly pseudo-
random functions where it is possible to puncture the secret key at any point z, so that given
the punctured key K {z} the value r = PRFk(z) is pseudorandom.

The question is how to satisfy the first requirement, namely, ensure puncturing for the
functional encryption key EKrg. This is exactly where we rely on public-key functional en-
cryption. Indeed, with public-key functional encryption the encryption key EKrg = PKis
trivially puncturable. That is, given the key PK itself (unchanged) indistinguishability is still
guaranteed. This is in contrast to symmetric-key FE where in the presence of the encryption
key, indistinguishability may no longer hold.”

1.3 Concurrent Work

We mention several concurrent and independent works:

¢ Ananth and Jain [A]15] also show how to construct indistinguishability obfuscation from
sub-exponentially secure public-key functional encryption, under a similar assumption
on the running-time of the encryption algorithm (which they term compactness). The two
works take a somewhat different perspective to the problem. At high-level, Ananth and
Jain show that functional encryption schemes as above can be converted into a multi-
input functional encryption, a notion defined by Goldwasser et al. [GGG'14] that is

>The subsequent work [KNT17] shows how to construct a puncturable symmetric-key FE directly from plain
symmetric-key FE, thereby allowing to base the entire transformation on symmetric-key FE.



known to imply indistinguishability obfuscation. The core step of their construction is a
transformation from n-input FE to (n + 1)-input FE, which is analogous to our recursive
step of basing (n + 1)-bit-input IO on n-bit-input I0. Our proof of security is perhaps
more simple and concise, which we attribute to the fact that in each recursive step we
fully exploit the expressive power of the IO guarantee, compared to the less expressive
(multi-input) FE guarantee. In particular, we are able directly invoke previous proof
techniques developed for IO.

e Brakerski, Komargodski, and Segev [BKS16] show how to convert any (single-input)
symmetric-key functional encryption scheme into an O(1)-input symmetric-key scheme
(or doubly-logarithmic-input assuming sub-exponential security), which is not known to
be sufficient to go all the way to IO polynomially large inputs.

e Ananth, Jain, and Sahai [A]S17] show how IO can be bootstrapped to always have linear-
size overhead. By developing new techniques, they improve on the above Corollary 1.3
in two aspects. First, they avoid the LWE assumption. Second, they avoid the polynomial
dependence of the obfuscated circuit-size on the depth of the original circuit.

e Ananth, Jain, and Sahai [AJS15] also show how to transform any collusion-resistant FE
into a single-key FE scheme with succinct encryption circuits.

1.4 Followup Work

We mention several subsequent works that have relied on our result, or have extended it:

e Lin, Pass, Seth and Telang [LPST16b] show a different transformation from (public-key)
functional encryption to IO. While their transformation shares much of the structure of
our transformation, it has different features such as better (but still sub-exponential) se-
curity loss, and admits a very elegant description in the language of succinct random-
ized encodings [BGL*15, CHJV15, KLW15]. Their description of the transformation
from public-key FE to IO shares much of the same high-level structure as the classi-
cal Goldreich-Goldwasser-Micali transformation from a pseudorandom generator to a
pseudorandom function.

e Lin, Pass, Seth and Telang [LPST16a], in another work, introduce a relaxation of IO called
Exponential Indistinguishability Obfuscation (XIO) that only requires that the size of an
obfuscated circuit is sub-linear in the size of its truth table. Based on our result and
the learning with errors (LWE) assumption, they show that this relaxation suffices for
obtaining full-fledged IO.

e A progression of works [Lin16, LV16, AS17, Lin17, LT17] has shown how to reduce the
degree of multi-linear maps required for constructing IO (assuming also the existence of
appropriate local pseudorandom generators). The core of these works is a construction
of FE, which is then bootstrapped to IO using our transformation.

e Bitansky, Nishimaki, Passelegue and Wichs [BNPW16] show how to obtain IO from sub-
exponentially-secure symmetric-key functional encryption and plain public-key encryp-
tion. In fact, they show how these primitives together imply a public-key functional
encryption scheme and then invoke our transformation. Subsequently, Kitagawa, Nishi-
maki, and Tanaka [KNT17] removed the assumption of public-key encryption, show-
ing that subexponentially-secure symmetric-key functional encryption implies public-
key functional encryption.



e Garg, Pandey, Srinivasan and Zhandry [GPS16, GPSZ17] show how many of the appli-
cations of IO (such as the hardness of PPAD and multiparty key exchange) can be based
instead directly on polynomially-secure functional encryption. Their reduction invokes
a variant of our input-extension technique, but avoids the sub-exponential security loss.
An general framework that captures these works was subsequently introduced by Liu
and Zhandry [LZ17].

e Li and Micciancio [LM16] and Garg and Srinivasan [GS16] independently show a con-
struction of a multi-key (collusion-resistant) functional encryption starting from any polynomially-
secure single-key functional encryption scheme with succinct encryption circuits. Such
a transformation follows from our results as IO implies a collusion-resistant functional
encryption scheme by the results of [GGH " 13b], except that we lose a sub-exponential
security factor that comes from invoking our transformation. The results of [LM16,

(GS16] avoid this loss. This, together with our result that transforms a polynomially se-
cure collusion-resistant FE into a single-key FE scheme with succinct encryption circuits,
shows that both variants of FE are in fact equivalent.

2 Definitions

We review basic concepts and present the basic definitions used throughout the paper.

2.1 Standard Computational Concepts
We rely on the standard notions of Turing machines and Boolean circuits.
e We say that a Turing machine is PPT if it is probabilistic and runs in polynomial time.

e For (a deterministic and time-bounded) algorithm A, we denote by A(-) the correspond-
ing boolean circuit (computing the same function). We denote by A(z, -) the circuit where
a prefix of the input is fixed to «.

¢ A polynomial-size circuit family C is a sequence of circuits C = {C)},y, such that each
circuit C) is of polynomial size A°(Y) and has A°() input and output bits.

e We follow the standard habit of modeling any efficient adversary as a family of polynomial-
size circuits. For an adversary A corresponding to a family of polynomial-size circuits
{Ax} \en» we often omit the subscript A, when it is clear from the context. When we write
A(x) for a circuit A, without specifying the length of =, we assume that A only reads an
¢-bit prefix of x, where ¢ is the input-size of the circuit A.

e A function f : N — R is negligible if f(\) = A\~<(1).
e For random variables X and Y, distinguisher D, and 0 < i < 1, we write X ~p , YV if

|Pr[D(X) =1] - Pr[D(Y) =1]| < p.
e Two ensembles of random variables X = {X)}\ey and Y = {Y)}ien are said to be
computationally indistinguishable, denoted by X' ~. ), if for all polynomial-size distin-

guishers D = {D, } oy, there exists a negligible function y such that for all A,

X2 D) Y -



For a concrete function J, we denote by X ~; ) the case that the above distinguishing
gap is bounded by §*(1). That is, for every polynomial-size distinguisher D there exists a
constant o < 1 such that X\ ~p 5(y)e V).

e Our constructions rely on primitives that are subexponentially-secure, or more generally
d-secure for some negligible 0. Typically, in the literature, this addresses adversaries of
subexponential size that break the underlying system with subexponentially small prob-
ability. Like many other works in the context of indistinguishability obfuscation, for our
purpose, it will be sufficient to require that polynomial-size (rather than subexponential-
size) adversaries break the system with subexponentially-small probability.

2.2 Single-Key FE with Succinct Encryption

In this work, we consider a restricted notion of single-key functional encryption schemes
where the function is known in setup time. This is in contrast to the typical stronger definition
in the literature where the function is not known in setup time and the encryption key and a
master decryption key are generated independently of the function. (Note that since we aim
to construct IO from functional encryption, considering such a weaker notion only strengthens
the result.) Furthermore, we will require certain succinctness of the encryption circuit, which
will play an essential role in our constructions.

Such a scheme FE, for a function class F (represented by boolean circuits) and message space
{0,1}*, consists of three PPT algorithms (FE.Setup, FE.Enc, FE.Dec) with the following syntax:

e FE.Setup(1?, f): takes as input a security parameter \ in unary and function f € F and
outputs a public key PK and a functional key FSKj.

e FE.Enc(PK,m): takes as input a public key PK and a message m € {0,1}* and outputs
an encryption of m. We shall sometimes address the randomness r used in encryption
explicitly, which we denote by FE.Enc(PK, m;r).

e FE.Dec(FSK¢, CT): takes as input a functional key FSK; and a ciphertext CT and outputs
m.

We next define the required correctness, security, and efficiency properties.

Definition 2.1 (Single-key, selectively-secure, public-key FE with succinct encryption). A tuple
of PPT algorithms FE = (FE.Setup, FE.Enc, FE.Dec) is a single-key, selectively-secure, public-key
functional encryption scheme with succinct encryption, for function class F, and message space {0, 1}*,
if it satisfies:

1. Correctness: for every A\,n € N, message m € {0,1}", and function f € F, with domain

{0, 13",

(PK,FSKy) « FE.Setup(1*, f)

CT + FE.Enc(PK,m) =1

Pr | f(m) < FE.Dec(FSK,CT)

2. Selective security: for any polynomial-size adversary A = {Ax},cn, there exists a negligible
function p(X\) such that for any X\, n € N, any mo, m; € {0,1}", and function f € F such that

f(mo) = f(ma),

PK, FSK s, FE.Enc(PK, mg) ~.4,, PK, FSK§, FE.Enc(PK,m,) |
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where (PK,FSK¢) «— FE.Setup(1*, f).

We further say that FE is 6-secure, for some concrete negligible function §(\), if for all polynomial-
size adversaries the above distinguishing gap p(\) is smaller than (X)),

3. Succinct encryption circuit: there exists a polynomial ® and a constant 0 < ¢ < 1, such that
for any input-size n, circuit-size s, and s-size function f : {0,1}" — {0,1}*,

|FE.Enc(PK,-)| < s'7¢- ®(n, ) ,
where (PK,FSK¢) «— FE.Setup(1*, f).

e Encryption is fully succinct if ¢ = 1.

e Encryption is weakly depth-succinct if

IMFE.Enc(PK,-)| < s'7-®(n,d, \) .
e Encryption is very weakly depth-succinct if

IMFE.Enc(PK, )| < s*75 - ®(n,2¢,\) .

In Section 4, we show that any weakly-depth-succinct scheme implies a succinct scheme.
Furthermore, assuming the existence of pseudorandom functions in NC' this extends to very-
weakly-depth-succinct schemes. Accordingly, throughout most of the paper, we restrict atten-
tion to succinct schemes (and do not address depth).

2.3 Indistinguishability Obfuscation

We define indistinguishability obfuscation (IO) with respect to a given class of circuits. The
definition is formulated as in [BGI"12].

Definition 2.2 (Indistinguishability obfuscation). A PPT algorithm iO is said to be an indistin-
guishability obfuscator for a class of circuits C, if it satisfies:

1. Functionality: for any C' € C and security parameter ),

Pr |Var 1 i0(C, 1Y)(a) = C(a:)] =1.

2. Indistinguishability: for any polynomial-size distinguisher D = {D)}, oy there exists a neg-
ligible function (u(\), such that for any two circuits Cy, Cy € C that compute the same function
and are of the same size:

iO(Cy, 1Y) ~p, i0(Cy, 1)

where the probability is over the coins of iO.

We further say that iO is 6-secure, for some concrete negligible function 6 (), if for all polynomial-
size adversaries the above distinguishing gap p(\) is smaller than (X)),

11



2.4 Puncturable Pseudorandom Functions

We consider a simple case of puncturable pseudorandom functions (PRFs) where any PRF may
be punctured at a single point. The definition is formulated as in [SW14] and is satisfied by the
GGM [GGMS86] pseudorandom function [BW13, KPTZ13, BGI14].

Definition 2.3 (Puncturable PRFs). Let k()) be a polynomially-bounded length function. An effi-
ciently computable family of functions

PRF = {PRFK 40,11 = {0,131 | K € {0,1}FM X e N} ,

associated with an efficient (probabilistic) key sampler Genpr r, is a puncturable PRF if there exists a
polynomial-time puncturing algorithm Punc that takes as input a key K, and a point x*, and outputs a
punctured key K{z*} of the same size, so that the following conditions are satisfied:

1. Punctured-key correctness: for every z* € {0,1}%,

Pr [Va # 2" : PRFk(z) = PRFy -y (2) | K{z*} = Punc(K,z")] =1 .

K<—Gen7:R]:(1>‘)

2. Indistinguishability at punctured points: for any polynomial-size distinguisher D = {Dy} ¢
there exists a negligible function p(X), such that for all A € N, and any =* € {0,1}*,

K{z"}, PRFk(z*) =p, K{z"}, 7 ,

where K < Genprz(1*), K{z*} = Punc(K, z*), and r < {0, 1}

We further say that PRF is S-secure, for some concrete negligible function §(\), if for all
polynomial-size adversaries the above distinguishing gap () is smaller than §(\)*),

Remark 2.4. The definition requires that punctured keys are of the same size as plain keys and
that the same evaluation algorithm PRF works for both. We note that this requirement is w.L.o.g
by appropriate padding.

Remark 2.5. The original [GGMS86] construction of pseudorandom functions is described for a
fixed input length. Here we define and use pseudorandom functions over arbitrary strings. A
slight variant of the [GGMS86] construction is known to achieve this [Gol01] and admits exactly
the same puncturing properties (and proof of security).

2.5 One-Time Symmetric Encryption with Local Decryption

A one-time symmetric encryption scheme Sym with local decryption consists of a tuple of two
PPT algorithms (Sym.Enc, Sym.Dec) with the following syntax:

e Sym.Enc(SK,m) takes as input a symmetric key SK € {0,1}*, where ) is the security
parameter, and a message m € {0,1}", and outputs a size-n ciphertext CT.

e Sym.Dec(SK, CT;, i) takes as input the key SK a ciphertext bit CT; and the index i € [n],
and outputs the decrypted message bit m;.

Throughout, we interpret Sym.Dec(SK, CT), where no set of bits is specified as decrypting
the entire ciphertext Sym.Dec(SK, CT) = Sym.Dec(SK, CTy,1),...,Sym.Dec(SK, CT,,, n).

Definition 2.6 (One-time symmetric encryption with local decryption). A pair of deterministic
polynomial-time algorithms (Sym.Enc, Sym.Dec) is a one-time symmetric encryption scheme for mes-
sage space {0, 1}* if it satisfies:

12



1. Correctness: for every security parameter X € N, message length n € N, message m € {0,1}",
and index i € [n],

SK « {0,1}*

Pr |Sym.Dec(SK, CT;,i) = m; CT = Sym.Enc(SK, m)

We say that Sym is shallow if it has a decryption circuit of depth log .

2. One-time indistinguishability: for any polynomial-size distinguisher D = {Dy}y there
exists a negligible function (), such that for all X € N, and any equal size messages mg, m,

Sym.Enc(SK, mq) ~p , Sym.Enc(SK,m1) ,

where SK < {0, 1},

We say that Sym is §-secure, for some concrete negligible function 6(\), if for all polynomial-size
adversaries the above distinguishing gap 11()\) is smaller than 6(\)2(),

Such encryption schemes follow from any pseudorandom function (or local pseudorandom
generator). Given pseudorandom functions in NC' (which are known under various standard
assumptions [BR17]), there exist such schemes that are also shallow.

Fact 2.7 ([GGM86, HILL99]). Assuming (§-secure) one-way functions, there exists a (5-secure) one-
time symmetric encryption with local decryption. Assuming pseudorandom functions in NC', the
scheme is shallow.

2.6 Decomposable Randomized Encodings

We rely on the notion of decomposable randomized encodings (REs) from [Yao86, IK00, AIK04,
AIKO06]. There are different variants of REs in the literature differing in their security and de-
composition (or locality) properties. Here we define the properties that will be used in our
constructions, which are satisfied by Yao’s garbled circuit [Yao86] in conjunction with appro-
priate pseudorandom functions.

Such a scheme RE consists of two polynomial-time algorithms (RE.Enc, RE.Dec) with the fol-
lowing syntax:

e RE.Enc(f,1%): takes as input a circuit f : {0,1}" — {0,1}" and a security parameter 1
and outputs a new encoder circuit f : {0,1}" x {0,1}* — {0,1}*.

e RE.Dec(y) takes as input an encoding y and outputs y.
We next the define the required correctness, security, and decomposability properties.

Definition 2.8 (Decomopsable randomized encoding). A pair of polynomial-time algorithms RE =
(RE.Enc, RE.Dec) is a decomposable randomized encoding if it satisfies:

1. Correctness: for every \,n € N, circuit f : {0,1}" — {0,1}*, and input x € {0,1}",

f + RE.Enc(f, 1)

Pr RE.Dec(f(:z;r)) = f(z) r e {0,110

=1.
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2. Privacy: there exists a PPT simulator RE.Sim such that for any polynomial-size adversary A =
{Ax} \en there exists a negligible function ji(\) such that for any \,n € N, any f : {0,1}" —
{0,1}™, and x € {0,1}",

f(l'vr) %A,u RESIm(fa f(:E)) 9

where f < RE.Enc(f,1*) and r < {0,1}*.

We further say that RE is 0-secure, for some concrete negligible function 6(X), if for all polynomial-

size adversaries the above distinguishing gap p(\) is smaller than (X)),

3. Decomopsability: there exists a polynomial ® such that for any input size n € N and size-s
circuit f : {0,1}" — {0,1}*, the encoder circuit f <+ RE.Enc(f,1*) can be decomposed into
{=s-®(n,\) circuits X R X

flayr) = (fulasr),. . folasr)
each of size ®(n, \) and with single output bit.
We say that RE is shallow if the depth of each f; is log .

Such randomized encodings can be constructed from one-time symmetric encryption (Def-
inition 2.6) and pseudorandom functions (which can in turn be constructed from one-way
functions) based on Yao’s garbled circuit. Assuming pseudorandom functions in NC!, the
randomized encodings are shallow.

Fact 2.9 ([Yao86, AIK06]). Assuming (§-secure) one-way functions there exists a (9-secure) decom-
posable randomized encoding. Assuming also pseudorandom functions in NC?, it is shallow.

3 The Transformation

In this section, we describe the transformation from FE to IO and analyze it. The transforma-
tion consists of two steps. First, in Section 3.1, we define and construct a notion of puncturable
functional encryption with a succinct encryption circuit that satisfies a weak form of function
hiding. Then, in Section 3.2, we construct IO from such FE schemes.

3.1 Puncturable Functional Encryption

We now define the abstraction of Puncturable Functional Encryption (PFE) that will be used in
our transformation.

Such a scheme PFE, for a function class F (represented by boolean circuits) and message space
{0,1}*, consists of three polynomial-time algorithms (PFE.Setup, PFE.Enc, PFE.Dec), the first
probabilistic and the other two deterministic, with the following syntax:

e PFE.Setup(1%, f): takes as input a security parameter ) in unary and function f € F with
domain {0, 1}", and outputs an encryption key EK and a functional key FSK;.

e PFE.Enc(EK,m): takes as input an encryption key EK and a message m € {0,1}" and
outputs a ciphertext CT encrypting m.

e PFE.Dec(FSK¢, CT): takes as input a functional key FSK; and a ciphertext CT and out-
puts m.

We next define the required correctness, security, and efficiency properties. To define the secu-
rity properties, we require the existence of two additional algorithms:

14



e PFE.Setup*(1%, fo, f1): a PPT algorithm that takes as input the security parameter ), and
two functions fy, fi € F with domain {0, 1}" and outputs a pair of keys (EKf, EK}) and
a fake functional key FSK*.

e PFE.Punc(EKG, EK], m): a deterministic polynomial-time algorithm that takes as input
keys (EKG, EKT) and a message m € {0, 1} and outputs a punctured keys (EKG {m} , EK] {m}).

Definition 3.1 (Puncturable functional encryption). PFE = (PFE.Setup, PFE.Enc, PFE.Dec) is a
puncturable functional encryption scheme with succinct encryption, for function class F and message
space {0, 1}*, if it satisfies:

1. Correctness: for every \,n € N, message m € {0,1}", and function f € F with domain
{0,13",

(EK, FSK;) « PFE.Setup(1*, f)

CT = PFE.Enc(EK, m) =1

Pr | f(m) = PFE.Dec(FSK, CT)

2. Punctured-key Correctness: for every \,n € N, message m € {0,1}", and functions fo, f1 €
F,and b € {0,1},

Pr [vm' € {0,1}" \ {m} : PFE.Enc(EK} {m},m') = PFE.Enc(EK},m")] =1,
where (EK}, EKY, FSK*) <— PFE.Setup*(1*, fo, f1) and (EK} {m} , EK} {m}) = PFE.Punc(EK}, EK}, m).

3. Key indistinguishability: for any polynomial-size adversary A = {A\} oy, there exists a
negligible function ju(\), such that for any A € N, equal-size functions fo, fi € F, and b €

{0,1}:
EKy, FSK}, =4, EK}, FSK* |
where (EKy, FSKy,) < PFE.Setup(1?*, f;) and (EK}, EK}, FSK*) +— PFE.Setup*(1%, fo, f1).

4. Indistinguishability at punctured points: for any polynomial-size adversary A = {A\}, cns
there exists a negligible function (), such that for any \,n € N, m € {0,1}", and equal-size
functions fy, fi € F such that fo(m) = f1(m),

EKG {m},EK] {m},FSK*, PFE.Enc(EK{, m) =4,
EKS {m} ,EK? {m} ,FSK*, PFE.Enc(EK}, m) ,

where (EK}, EKY, FSK*) < PFE.Setup*(1*, fo, f1) and (EK {m} ,EK* {m}) = PFE.Punc(EK}, EK%, m).

We further say that PFE is §-secure, for some concrete negligible function §(\), if for all polynomial-
size adversaries the above distinguishing gaps j1(\) are smaller than 5(\)*().

5. Succinct encryption circuit: there exists a polynomial ® and a constant 0 < € < 1, such that
for any input-size n, circuit-size s, s-size functions f, f’ : {0,1}" — {0,1}*, m € {0,1}", and
be{0,1},

IPFE.Enc(EK}, )| = |PFE.Enc(EK} {m},-)| = |PFE.Enc(EK, )| < 5!~ - ®(n, \) ,

where (EK, FSK) < PFE.Setup(1?*, f), (EK}, EKS, FSK*) <— PFE.Setup*(1*, £, f'),
(EKG {m},EK} {m}) < PFE.Punc(EK}, EK{, m).

Encryption is fully succinct if e = 1.
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Puncturable FE from single-key FE. We now show that any single-key, selectively-secure
public-key FE scheme (Definition 2.1) implies a puncturable FE scheme that has essentially
the same succinctness properties as the original scheme.

Ingredients. We rely on the following primitives:

¢ A single-key, selectively-secure, public-key functional encryption scheme FE for all cir-
cuits.

e A one-time symmetric encryption scheme Sym.
¢ A puncturable pseudo-random function family PR.F.

The constructed scheme PFE consists of the algorithms
(PFE.Setup, PFE.Enc, PFE.Dec, PFE.Setup*, PFE.Punc)

described in Figure 1.

Theorem 3.2. PFE is a puncturable functional encryption for all circuits. If FE is succinct so is PFE.
If FE, Sym, PRF are all §-secure so is PFE.
Proof. We prove that the constructed scheme satisfies the properties of a PFE (Definition 3.1).

Correctness: Fix a security parameter A € N, message m € {0,1}", and f € F with domain
{0,1}". By the functionality of FE and correctness of Sym,

PFE.Dec(FSK¢,FCT) = FE.Dec(FSKp,FCT) =
F(m,SKg, ) =
U(Sym.Dec(SKg,CTg),m) =
U(f,m) = f(m)
where (EK, FSK ) <+ PFE.Setup(1*, ), FCT = PFE.Enc(EK,m), EK = (PK,K,SKg, 8), F is the
function underlying FSK¢, and CTy, CT; are the ciphertexts corresponding to F'.

Punctured-key correctness: Fix a security parameter A € N, message m € {0,1}", and fo, f1 €
F with domain {0, 1}". By the punctured-key correctness of PRF, for any m’ € {0,1}" \ {m}
and b € {0,1},

PFE.Enc(EK}; {m},m’) = FE.Enc(PK, (m’,SKg,, B5); PRFy () (m)) =
FE.Enc(PK, (m’,SKg,, 8); PRFk(m')) =
PFE.Enc(EK],m/) |
where (EK}, EK}, FSK*) <— PFE.Setup*(1*, fo, f1), EK} = (PK,K,SKg,, B), (EK§ {m}, EK} {m}) =
PFE.Punc(EKG, EKT,m), and K{m} = Punc(K,m).

Key indistinguishability: Fix any polynomial-size A = {A)},.y. By the indistinguishability
of Sym, there exists a negligible jisym()), such that for any A\,n € N, m € {0,1}", equal-size
fo, f1 € F with domain {0,1}", and b € {0, 1},

EK, FSK, ~4 s, EKG, FSK*

where (EK, FSK,) < PFE.Setup(1*, f;,) and (EK}, EK}, FSK*) « PFE.Setup*(1%, fo, f1).
Indeed, EK and EKj, are identically distributed, whereas the only difference between FSK,
and FSK* is in how the underlying function is generated. In the first, we generate F' such that
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PFE

e PFE.Setup(1?, f):

- Generate:
* Symmetric encryption keys (SKo, SK1) < {0,1}* x {0,1}*.
% Symmetric encryptions (CTg, CT1) = Sym.Enc(SKo, f) x Sym.Enc(SKy, f).
* A circuit F defined for (m,SK, 8) € {0,1}" x {0,1}* x {0,1} by

F(m,SK, 8) = U(Sym.Dec(SK,CTg),m) ,

where U(+, -) is the universal circuit.
* Public key and functional key (PK, FSKr) < FE.Setup(1*, F).
* Seed K < Genpr#(1?) for a puncturable pseudo random function.
% A random bit 5 < {0,1}.
— Output:
x* EK:= (PK,K,SKg, 3).
* FSKy := FSKp.
e PFE.Setup* (1%, fo, f1):

- Generate everything as PFE.Setup(1?*, fo), except that instead of generating F as above,
we generate F* with CTg = Sym.Enc(SKg, fo) and CT1_5 = Sym.Enc(SKi_g, f1),
where again  is a random bit. That is, now one (random) ciphertext corresponds
to fo and the other to f; (rather than both to the same f).

- Output:
x EKG := (PK,K,SKg, 8) and EK7] := (PK,K,SK;_3,1 — ).
* FSK* := FSKp-.

e PFE.Enc(EK,m):

- Parse EK = (PK, K, SKg, 3).
— Output FCT = FE.Enc(PK, (m, SKg, 3); PRFk(m)).

e PFE.Dec(FSK;, FCT):
— Output FE.Dec(FSK¢, FCT).
e PFE.Punc(EKj, EKY,m):
- Parse {EK} = (PK, K,SK,Bmﬁb)}be{o,l}'

— Compute K {m} = Punc(K,m).
— Output {EK} = (PK,K{m},SKg,, Bs)},c(0.1}-

Figure 1: A puncturable functional encryption

both ciphertexts {CTqo = Sym.Enc(SKa, fb) },e10,13 encrypt the same function f;. In the second,
CT1_p, = Sym.Enc(SK;_g,, fi—s) encrypts fi_p. The key EK, respectively EK}, only include the
key SKg, and not the key SK;_g,. Thus the indistinguishability of Sym applies.

Indistinguishability at punctured points: Fix any polynomial-size A = {A)},y- By pseudo-
randomness at punctured points of PRF and selective security of FE. there exist a negligible
1pre(A), pre(A), such that for any A\,n € N, m € {0,1}", fo, fi € F such that fy(m) = fi(m),
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and b € {0,1},
{EKS {m}}aeqo,1y - FSK*, PFE.Enc(EK}, m)) =
{PK,K{m}, SKﬁa’/Ba}ae{O 1 FSK*, FE.Enc(PK, (m, SKg,, Bp)
{PK,K{m}, SKﬁavﬂa}ae{o,l} , FSK*, FE.Enc(PK, (m, SKg,, B); ") = A ure
{PK,K{m},SKBa, Ba}tacioy - FSK™, FE.Enc(PK, (m, SKo, 0);7) ,
where (EK}, EKY, FSK*) <— PFE.Setup*(1*, fo, f1), (EK§ {m}, EKT {m}) = PFE.Punc(EK}, EK}, m),
K{m} = Punc(K,m), and r + {0, 1}*.
The first indistinguishability follows from pseudorandomness at punctured points. The

second indistinguishability follows from the selective security of FE and the fact that the func-
tion F* underlying FSK* satisfies

F*(m,SKg,, By) = U(Sym.Dec(SKg,,CTg,),m) = U(fp,m) = fo(m) = fo(m) = F*(m, SKop,0) .
Overall, the distribution EKy {m} , EKT {m} , FSK*, PFE.Enc(EK}, m)) is indistinguishable from

a distribution that is independent of b, and thus the two distributions corresponding to b €
{0, 1} are indistinguishable.

; PRFg(m)) A, pprr

For the last two properties, it follows readily that if Sym, PRF, FE are §-secure for some con-
crete negligible ¢ then PFE is J-secure.

Succinct encryption: Assume that FE is succinct. That is, there exist a polynomial ®fg and
constant 0 < € < 1 such that the size of its encryption circuit is bounded by

s Opg(n, A)

where n, s are the input-size and circuit-size of the function chosen during the setup phase.
We show that PFE is also succinct with parameters (¢, ®prg) for a fixed polynomial ®pre.
First, observe that fake keys EK* and fake punctured keys EK* {m}, for any message m €
{0,1}", are of the same size as real keys EK*, and the corresponding encryption circuit is of the
same size:
|PFE.Enc(EK, )| = |PFE.Enc(EK*,-)| = |PFE.Enc(EK* {m},-)|
We now bound the size of PFE.Enc(EK, -), which is of the form FE.Enc(PK, (-, SK, 3); PRFk(-)).
Observe that

e PRFk(-), for messages of size n, can be computed by a circuit of size ®prg(n, \) for a fixed
polynomial ®pgr.

e Given r = PRFk(m) as input, FE.Enc(PK, (m, SK, 8);r) can be computed by a circuit of
size s'' "¢ ®pg(n’, \), where in PFE, messages m of size n translate to messages (m, SK, )
of size n’ and circuits f(m) of size s translate to circuits F(m, SK, ) of size s’ in FE.

Observe that n’ = n + A + 1. It is left to bound s’. F' chooses CTg according to 5 and applies
U(Sym.Dec(SKg, CTg), m). By Fact2.7, each CT 3 encrypting f is of size s and applying Sym.Dec
requires size s - ®sym () for a fixed polynomial ®s,. Applying a universal circuit for an input
circuit of size s requires size s - ®7(logs) < s - ®y(\) for a fixed polynomial & [Val76]. Thus
overall,
s' <s Psymu(N)
for a fixed polynomial ®s,m 17(\) that aggregates the above.
In conclusion, we can bound the size of the encryption circuit PFE.Enc(EK, -) by

Dpre(n, A) + 8B (n/, N) < 517F (Ppre(n, A) + Poymur(A) - Pre(n + A+ 1,1))

establishing our requirement with ®pge(n, A) := Ppre(n, A) + Psym v (A) - Pre(n + A + 1, X).
]
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3.2 From Puncturable Functional Encryption to Indistinguishability Obfuscation

In this section, we show how to transform any puncturable functional encryption with succinct
encryption, such as the one constructed in the previous section, into an indistinguishability
obfuscator.

Ingredient. We rely on a puncturable functional encryption scheme

PFE = (PFE.Setup, PFE.Enc, PFE.Dec, PFE.Setup*, PFE.Punc) .

Notation: Throughout, bit-strings will be boldfaced, whereas bits will not. In particular, for a
string x € {0, 1}", we denote by x; its j-long prefix and by z; the jth bit in the string.

The obfuscator. The obfuscator, formally given in Figure 2, is parameterized by a function
A(n,A) > X (of the circuit input-length and the security parameter), which will define the
security parameter with which PFE will be invoked. The security and the complexity of the

obfuscator will depend on the choice of the function.

A high-level description. Given a circuit C : {0,1}" — {0,1}"" and security parameter ),
the obfuscator iO5(C, 1?), first computes a new security parameter A = A(n, \), and invokes

a recursive obfuscation procedure rO.Obf(n, C, 1;\), formally described in Figure 3. A corre-
sponding recursive evaluation procedure rO.Eval is described right after in Figure 4.

The recursive obfuscation procedure r0.0bf (i, C;, 1) extends obfuscation for circuits with
i — 1 input-bits to obfuscation for circuits with ¢ input-bits. To this end, it generates an ob-
fuscation of an encryption circuit £_; and a corresponding functional key FSK;, under the
puncturable functional encryption scheme PFE. The encryption circuit &_; takes a prefix
x;—1 € {0,1}*"1 and generates two encryptions — one for of each possible continuation x;_;0
and x;_11. The corresponding functional key FSK; allows to evaluate the circuit C; on the
encrypted input .

Unrolling this recursive process, we obtain “a tree of encryptions”, where for each node
corresponding to some input-prefix x;, there is a corresponding encryption CTy, of that prefix,
and the node’s children can be computed using the corresponding functional key FSK;. The
leaves, correspond to encryptions of the full input x = x,, and the last functional key FSK,
corresponds to the original circuit C. Overall, to evaluate the obfuscation at an input x, one
expands the tree along the path corresponding to x, until obtaining C'(x) at the final level.

i05(C, 1Y)
Input: A circuit C': {0,1}" — {0,1}" and security parameter .

1. Compute a new security parameter A = A\(n, \).

2. Output rO.0bf(n, C,1%).

Figure 2: The obfuscator.

Theorem 3.3. Let A be a security parameter, let n denote circuit-input size, and let A(n, \) be a func-

tion. Then if PFE is §(\)-secure, for security parameter X\, iO5, using security parameter ), is a
27 §(X)-secure indistinguishability obfuscator for all circuits .

The theorem immediately implies that subexponentially-secure puncturable functional en-
cryption (which in turn, can be constructed from subexponentially-secure public-key func-
tional encryption) implies an indistinguishability obfuscator.
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rO.0bf(i,C;, 1)

Input: An input length i € N, a circuit C; : {0,1}* — {0, 1}*, and security parameter A.
1. If i = 1, output (C;(0), C;(1)).
2. Otherwise:

Generate an encryption key and functional key (EK;, FSK;) < PFE.Setu p(1*,Cy).
Generate the circuit £_, defined for any x;_; € {0, 1}t by

5,'_1(Xi_1) = {PFEEI’IC(EK“ (Xi_l’xi»}xie{&l} .

e Pad &;_1 tosize ¢ = ¢(|€;—1]) for some fixed linear function 4(s) = ¢ - s determined in
the analysis. We denote by &/, the padded circuit.

Generate an obfuscation

&1 =r0.0bf(i — 1, ,,1%) .

3. Output (gifl, FSKz)

Figure 3: The recursive obfuscation procedure.

rO.Eval(i, &, x;)

Input: An input length ¢ € N, an obfuscation & = (g'i,l, FSK;), and prefix x; € {0,1}".
1. If i = 1, parse gl = (CTy,CTy), and output CTy, .

2. Otherwise, compute (CTx, ,0,CTx, ;1) =rO.Eval(i — 1, g'i_l, x;_1), where x;_; are the first
1 — 1 bits of x;.

3. Output FE.Dec(FSK;, CTy;).

Figure 4: The recursive evaluation procedure.

Corollary 3.4. If PFE is 2= _secure, for security parameter ), then i05 is \™“(-secure, for security
parameter )\, and any function A\(n, \) = w((n? + log Ao,

Remark 3.5 (Technical remark on the proof). One may think of our obfuscator as iteratively
applying an input-extension procedure that takes an obfuscator for i — 1 bits and produces
an obfuscator for i bits. Each such step incurs a certain security loss in the distinguishing
gap, which may of course depend on the size of the specific analyzed adversary. We formally
analyze the obfuscator as a whole, rather than analyzing a single input-extension step. This
allows us to capture the overall loss of an n-step extension process for any specific adversary
(or rather any specific adversary size).

Proof of Theorem 3.3. We prove that the constructed scheme is an indistinguishability obfusca-
tor.

Functionality. Correctness follows the intuition outlined above — an evaluation corresponds
to gradually constructing an encryption of the input x = x,,, by using the corresponding func-
tion at every level of the tree, and eventually applying the last functional key corresponding
to the obfuscated circuit C.
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We formally prove correctness by induction on the input length 1 < i < n. Specifically, we
prove that for any circuit C; : {0,1}* — {0,1}*, letting E = r0.0bf(i, C;, 1:\), it holds that for
any input x; € {0, 1}, rO.Eval(i, &, x;) = Ci(x;). Correctness then follows by considering the
full input x = x,, and the obfuscated circuit C,, = C.

For the base case i = 1, it holds by definition that & = C;(0), C;(1) and for any x; € {0,1},
rO.Eval(1, gl, x1) = C1(x1). We now assume that the required correctness holds for i — 1 and
show that it holds for .

By definition

& =r0.0bf(i,C;, 1) = (E_1,FSK;) |
where &_; = rO.0bf(i — 1, ,,1%), (EK;,FSK;) + PFE.Setup(1*,C;), and &% ,(x;_1) is a

circuit that computes two encryptions {CTy,_,;, = PFE.Enc(EK;,x; 1b)}, {01} (padded to size
((|€i-1l)). _

By the induction hypothesis, we know that rO.Eval(i — 1,&;_1,%x;—1) = (CTx, ,0,CTx, ,1);
namely, the obfuscation &;_; preserves the functionality of the obfuscated circuit &;. It then,
follows by definition that

rO.Eval(i, &, x;) = PFE.Dec(FSK;,CTy,) ,

which by the functionality of PFE is equal to C;(x;) as required.

Security. Let s(\), n(\) be any two polynomially-bounded functions and let D = {D,}, . be
any polynomial-size distinguisher that works on obfuscations iO(C, 1) for circuits C of size
5()), defined on {0, 1},

We aim to bound

dio(N) = max

Pr [D(iox(coa 1Y) = 1} —Pr [D(i@;(Cl, 1) = 1} ‘ -

max

Pr [D(r(’).Obf(n, Co, 1Y) = 1} —Pr [D(r(’).Obf(n,Cl, 1) = 1}
Co,C1

9

where Cy, C are any two circuits defined on {0, 1} of the same functionality and size s()\).
For every A € N, 1 <i < n()), and size-s circuit C, we may view

rOObf(n, C, 1:\) = (rOObf(Za Cia 15\)5 Z)

as consisting of an obfuscation rO.0bf(i, C;, 1) for inputs of size i along with additional in-
formation z (capturing the functional keys FSK; 1, ...,FSK,). We shall denote by ¢; = ¢;()\)
the length of such a z.

We now define §,,()\) := d;0(A) and for i < n()\),

0; () ==
( ) CIOI,lgf{,z

)

Pr [D(ro.Obf(i, Co, 1Y), 2) = 1} —Pr [D(ro.Obf(i, C1,1%),2) = 1}

where Cj and C} are any two circuits defined on {0, 1}? of the same size and functionality and
z € {0,1}%.

Proposition 3.1. If PFE is y-secure, there exists a function spre(\) = (N such that for any
AeN,n=n(A),A=An,N),i€{2,...,n}:

° 51()\) < 2+l ((51_1()\) + 5PFE(5\))-
e 61(\)=0.

21



Before proving the proposition, we show that it concludes the security analysis:
Claim 3.6. 5n < O(2n2 . 5PFE)'
Proof. To prove the claim, we show by induction on i that

i—1 j—1

0; < OPFE Z H 2k

j=1 k=0
By Proposition 3.1, §; = 0 and thus satisfies the above. Assuming the above holds for
i —1 > 1, and using the proposition again:

6; <2"1(8;_1 + pre) <

i—2 j—1
21t Spee + 2 Spre Z H gi—k _
j=1k=0
i—-2
2+l 50ce + Spre Z H gitl—k _
j=1k=0
i—1j—1
2+l §0ce + Spre Z H gitl—k _
j=2 k=0
i—1j—1
SpFE Z H 2i+17k )
j=1k=0
We deduce accordingly
n—17—1 o
0n < OPFE Z H 2"k < Spre(n — 1)220=39 < O(0ppe2™) .
j=1k=0

We now turn to prove the proposition.

Proof of Proposition 3.1. First, to see that §; = 0, note that for any C defined on {0, 1},
r0.0bf(1,C, 1) = (C(0), C(1))
by definition, and thus for any two Cy, C with the same functionality
rO.0bf(1,Cy, 1*) = rO.0bf(1,C4,1%) .

We now prove the main part of the proposition. Fixi € {2,...,n()\)}, and let Cy, C; be any two
circuits defined on {0, 1}* of eqaul size and fix any auxiliary input z € {0, 1}%. We will bound

‘Pr [D(ro.Obf(i,co, 1, 2) = 1] —Pr [D(ro.Obf(i,cl, 1, 2) = 1” .

For this purpose, we consider the following sequence hybrid experiments.
Hy, for b € {0, 1}: This hybrid corresponds to the (real) distribution where:

rO.0bf(i, Cy, 1V) = (E FSK) ,
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where € = r0.0bf(i — 1, E[EK], 1), (EK, FSK) « PFE.Setup(1*, C}), and £Y[EK](x) is a circuit
that for any x € {0,1}*~! computes two encryptions

EEK](x) = {PFE.Enc(EK, X5)} 501} -

padded to size ¢(|E[EK])|).

Hj for b € {0, 1}: This hybrid is identical to #;, except that we sample fake keys (EKG, EKY, FSK*) «
PFE.Setup*(lS‘, Cy, C1) and use EK}, FSK* instead of EK and FSK.

gy fory € [2¢ + 1]: This hybrid is identical to H}, except that £ is an obfuscation of a hybrid

circuit &, [EKF, EKY] instead of the circuit £[EKG]. The hybrid circuit computes two encryptions,
but uses EKJ for all plaintexts x5 > y and EKT for all plaintexts x5 < y, where we naturally
interpret x/3 as an integer in [2¢] according to lexicographic order.

That is, for any x € {0,1}"7}, the circuit & [EK}, EK}] is defined by

e [ PFE.Enc(EKG,xp), ifxB>y;
&y [EK, BKT(x) —{ PFE.Enc(EK],x8), ifxB<y. [,y |

and is padded to size ¢ = ¢(|E[EK]|)).
Gy fory € 2" + 1], b € {0, 1}: This hybrid is identical to G}, except that £ is an obfuscation of

a hybrid circuit 5£,5[E Ko {y},EKT {y},CTy | instead of the circuit & [EK, EK}]. Here the keys
(EK5 {y},EKT {y}) = PFE.Punc(EKG, EKY,y) are punctured at y, and the ciphertext CT,,; =
PFE.Enc(EK},y) is hardwired and consists of an encryption of y under EK}. The circuit be-
haves similarly to &, [EKG, EK7}], only that for all y’ # y it uses the punctured keys, whereas for
y it outputs the hardwired ciphertext CTy, ;.

That is, for any x € {0, 1}, the circuit £ ,[EKf {y} , EK] {y}, CTy ;] is defined by

Ey,b[EKB {Y} ) EK‘{ {y} ) CTy] (X) = { CTy,b7 if X/B =Y

PFE.Enc(EK} {y},x8), ifx8>y; }
PFE.Enc(EKY {y},x0), ifx8<y. Bef01)

and is padded to size ¢ = ¢(|E[EK]|)).

Claim 3.7. Assuming that PFE is ~y-secure, there exists function Spre(A) = v(N)W) such that for any
A€ N, n=n(\), A= XA\, n),anyi € [n], and any two equal-size circuits Cy, Cy : {0,1}* — {0, 1}*:

1. Ho =D spre Hi-
2. Hy = G7.

3. g; ~D,5i—1 g;o/fm’ ally € [21 + 1]

HN

) g;’70 ~D,dpre g;Vl,fOV ally € [Qi +1].

7. MY ~Dspre Hi
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Before proving the claim, we show that it concludes the proof of Proposition 3.1:
0; =[Pr[D(Ho) = 1] = Pr[D(H1) = 1]| =
[Pr[D(H5) =1] = Pr[D(H) =1]| + Y [Pr[D(Hy) =1] — Pr[D(H}) =1]| =

befon
|Pr[D(G}) = 1] — Pr [D(G3:) = 1]| + be%:j} |Pr[D(Hy) = 1] — Pr[D(H;) = 1] <
% [Pr[D(G5) = 1] = Pr [D(Gg1) = 1] | + b;{zm} [Pr [D(Hy) = 1] — Pr[D(H}) = 1]| <
ii (|Pr[D(G}) =1] — Pr [D(G} o) = 1]| + 7
- |Pr[D(G50) = 1] - Pr[D(G; ) = 1]|+
[PrD(G;.) =1] = Pr[D(G5.0) =1]]) + Y [Pr[D(Hy) = 1] - Pr[D(H;) = 1]| <

be{0,1}
24(20,—1 + Spre) + 20pre = 2710, + (2" + 2)dpre < 27 (8i1 + OprFE) -

Proof of Claim 3.7. The indistinguishability between the hybrids is established by applying the
-security of the underlying puncturable functional encryption PFE and the bound §;_; on the
distinguishing gap for circuits on 7 — 1 input bits.

Hy ~ Hj for b € {0,1} (items 1,7): Here the difference between the hybrids is that in H; we
sample real keys (EK, FSK) PFE.Setup(lS‘, Cy) whereas in Hj we sample fake keys (EKG, EKY, FSK*)
PFE.Setup*(1*, Cp, C1) and use EK}. By the key indistinguishability of PFE:

EK, FSK ~., EK}, FSK* .

Thus,
Hy ~p e H
for some constant o < 1 that depends only on D.
Hy = 01, G5 = Hj (items 2,6): The equality between the hybrids follows by their definition.

Indeed, in Hj; we always use EK{ as in G} and in H] we always use EK7 as in G}

241"
Gy b = Gyyp for b € {0, 1} (items 3,5): Here the difference between GF ., and Gy , is in the ob-
fuscated circuit £. In the first, £ = r0.0bf (1 —1, 6’5 1 EKG, EKT, 1), whereas in the second,
£ =r0.0bf(i — 1, ,[EKS, EKY, CTyupel, 1 A).

The two circuits compute the exact same function, but in two different ways:

e The first circuit uses the keys (EKf, EKY) to encrypt all plaintexts x3 # y + b, whereas
the second circuit uses the punctured keys (EKj {y + b} , EK] {y + b}). By punctured-key
correctness of PFE, the two result in the same ciphertexts.

e For the plaintext y + b, the first circuit computes CTy 4, = PFE.Enc(EK;,y + b) on its
own using the key EK}, whereas the second circuit uses a hardwired CTy 4.

The two circuits are padded to the same size ¢ = ¢(|€[EK]|). We can thus bound
|Pr [D(G34p) = 1] = Pr[D(G5,) = 1]| =
‘Pr [ (rO.0bf(i — 1, Ey 14, 1V), FSK*, 2) = 1] ~Pr [D(r@.Obf(i — 1,85, 1Y), FSK*, 2) = 1” <

max
CL,C1 7

Pr [ (rO.0bf(i — 1,0, 1), 2') = 1} —Pr [D(r(’).Obf(i 1,00 1Y, ) = 1} ‘ S
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where above Cj and C are any two circuits defined on {0, 1}“1 of the same functionality and
size ¢ and we view (z, FSK*) as 2/ € {0, 1}%-1.
It follows that
g;’-i-b ~D,5i—1 g;,b .

Gy .o~ Gy 1 (item 4): Here the difference between the hybrids is in the hardwired ciphertext

CTy 4, = PFE.Enc(EKy, y), where b = 0 in the first hybrid and b = 1 in the second. By indistin-
guishability at punctured points of PFE:

EKG{y},EKT {y},FSK*,CTy o ~s EK; {y},EK] {y},FSK*,CT, .

Thus,
* o *
gy70 N’Yal y71 :
for some constant o/ < 1 that depends only on D.

The function dppe. The function 5pFE(5\) = V(S\)min{a’a'} thus satisfies the requirement of the
Claim 3.7. This concludes the proof of the claim. O

The padding parameter. The padding parameter /(|£|) is chosen to account for the maximal-
size circuit among the circuits £, £y, £ j, considered in the above hybrids. Observe that the size
of the circuits &y, & 4 is indeed linear in the size of the (real or fake) encryption circuits

|PFE.Enc(EKj, )| = |PFE.Enc(EK} {y},-)| = |PFE.Enc(EK, ) = |€] .
This concludes the proof of Proposition 3.1 and the proof of security. O

Efficiency. We now analyze the efficiency of the obfuscator relying on succinct encryption of
the underlying PFE. Assume that PFE is succinct. That is, there exists a polynomial ®prg and
a constant 0 < € < 1 such that the size of the corresponding encryption circuit is bounded by

s'7% ppg(n, A)

where n, s are the input-size and circuit-size of the functions chosen during the (possibly fake)
setup phase. 3
We show that for any polynomial A(n, A) = poly(n, A), there exists a fixed polynomial ®;0

such that iO5(C, 1*) runs in time ®;0(|C|, A). First, observe that the recursive rO.Obf(i, C;, 1*)
only invokes the efficient PFE algorithms, and thus there exists a polynomial ®,. such that for

all \,n € N, € [n], the running time of rO.Obf (i, C;, 1X) is bounded by ®,.(|Cy|, \|).
We prove the following:

Claim 3.8. Let {(s) = c - s be the padding function and let ®pre = ®pre(n, \). Then, for all i € [n),
Cil < 1C] - (c®pre)'/*

Before proving the claim, we show that it concludes the efficiency analysis. Indeed, it
implies that the total running time of the obfuscator is bounded by a fixed polynomial

Pio(|C], ) < n-g;%ﬁ@r(lcz‘\vi(m M) < 1CT- 2. (IC] - ((cpre) /%, MICLN)) -
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Proof of Claim 3.8. We prove by induction on ¢ that

1—1 i
[Cri] <C - (cOppg) =007

This concludes the proof since 3222 (1 — )/ =&
Fori =0, C,, = C and the bound holds.

Assume the bounds hold for i > 0. By the induction hypothesis, the succinctness of PFE,
and the definition of 70.0bf, it holds that for any i > 0,

|Cril = ]| = L&) < e|Cria|' " Ppre <
‘Cylfe(cq)PFE)(lfe)Z;;%(l—s)jcq)PFES

i—1 .
IC| - (cPppg)>i=0l=e)

This concludes the proof of Theorem 3.3.

3.3 IO with Linear Overhead

In this section, we observe that a variant of our construction, combined with known results
from the literature, implies that any IO scheme can be turned into an IO scheme where the
obfuscation only grows linearly in the size of the circuit. Specifically, Concretely, under the
Learning with Errors (LWE) Assumption, we show that any IO can be transformed into one
where an obfuscation of a size-s, depth-d circuit, with input length n, is of size 2s+poly(n, d, \).

This is achieved by relying on a single application of the recursive obfuscator (instead of n
applications) and instantiating our puncturable functional encryption with a public-key func-
tional encryption scheme with succinct keys as the one constructed by Boneh et al. [BGG ' 14]:

Proposition 3.2 (FE with succinct keys [BGG14]). Assuming subexponential LWE, there exists
a subexponentially-secure, single-key, public-key, functional encryption scheme, where there exists a
polynomial ®gg such that for any depth-d circuit C' : {0,1}" — {0,1}™, letting (PK,FSK¢) <
FE.Setup(1*, C), it holds that:

e FSK¢ = (C, fsk).
o The key fsk and the encryption circuit FE.Enc(PK, ) are of size at most ®gg(n, m,d, \).
We prove:

Corollary 3.9. Assuming subexponential LWE and subexponentially-secure IO, there exists 10 where
there exists a polynomial ®, such that given any size-s, depth-d circuit C' : {0,1}" — {0,1}", a
corresponding obfuscation is of size 2s + ®(n, m,d, \).

Proof. First, we observe that by plugging-in the FE scheme given by Proposition 3.2 into the
construction from Section 3.1, we obtain a puncturable FE that inherits the succinctness of the
underlying FE scheme up to a mild loss.

Claim 3.10. Assuming subexponential LWE, there exists a subexponentially-secure puncturable func-
tional encryption scheme, where there exists a polynomial ®prg such that for any depth-d circuit
C :{0,1}" — {0,1}™, letting (EK,FSK¢) « PFE.Setup(1?*, C), it holds that:

e FSK¢ is of size at most 2|C| + ®pre(n, m,d, \).
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o The encryption circuit PFE.Enc(EK, -) is of size at most ®pre(n, m, d, \).

Proof. Let FE be the scheme given by Proposition 3.2 and let PFEE be the puncturable func-

tional encryption scheme from Section 3.1 when instantiated with FE. In PFE™F, a functional
key FSK for a circuit C' consists of a functional key FSKy generated under FE for a circuit
F = F|[CTy, CT4] that is parameterized by two symmetric-key encryptions CTy, CT; of C. The
circuit F' can be efficiently constructed given only CTy, CT;. Also, recall that in the given FE
scheme, FSK has the form (F, fsk) where fsk is of size ®(n, m, d, \).

We now consider a slight variant of PFEFE, which we shall denote by

PFE = — (PFE.Setup, PFE.Enc, PFE.Dec, PFE.Setup*, PFE.Punc) |,

where the functional key FSK for C consists of (CTy,CTy, fsk) and the functional decryption
process PFE.Dec(FSK, CT) first parses FSK = (CTy, CTy, fsk), then computes the secret key
FSK = (F[CTy, CT4], fsk), and finally applies FE.Dec(FSK, CT).

_— FE
Correctness and security. First, observe that the scheme PFE  satisfies the same functionality
and security properties of PFEFE (proven in Section 3.1). Indeed, the two schemes only de-
fer in the format of functional keys and a functional key FSK under PFEE can be efficiently

— _— FE
simulated from a functional key FSK under PFE .

—— FE
Function-key succinctness. We now analyze the succinctness of PFE . By the above con-
struction, the size of a functional key for a circuit C is bounded by

[FSK| = 2|CTo| + [fsk| = 2|C| + Pre(n,m,d, N) |

where we use the fact that in (one-time) symmetric-key encryption schemes, the ciphertext-size
equals the message-size (Fact 2.7).

Encryption succinctness. The difference from the succinctness analysis in Section 3.1 is that
there the size of the encryption circuit of FE grows (sublinearly) with circuit-size, whereas here
it does not grow with the circuit size, but does grow (polynomially) with the output length
and depth.

_—_FE
The encryption circuit in PFE  has the form
PFE.Enc(EK, ) = FE.Enc(PK, (-, SK, 8); PRFk(-)) .
Observe that

e PRF(-), for messages of size n, can be computed by a circuit of size ®prg(n, \) for a fixed
polynomial ®pgr.

e Given r = PRFk(m) as input, FE.Enc(PK, (m, SK, 3); ) can be computed by a circuit of
size ®pg(n/,m’, d’, \), where in PFE, messages m of size n translate to messages (m, SK, /3)
of size n’ and circuits f : {0,1}" — {0,1}" of size s and depth d translate to circuits
F:{0,1}" — {0,1}™ of size s’ and depth ¢ in FE.

Observe that ' = n+ A+ 1 and m/ = m. Itis left to bound s’ (here, it suffices that s’ = s°(1))
and d'. F chooses CTg according to 5 and applies U(Sym.Dec(SK3, CT3), m). By Fact 2.7, each
CTg encrypting f is of size s and applying Sym.Dec requires size s- ®sym(A) and depth ®sym ()
for a fixed polynomial ®s,m. Applying a depth-universal circuit for an input circuit of size s
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and depth d requires size s® - @y (log s) < s3- ®(\) and depth ¢y - d for a fixed polynomial @/
and constant ¢y [CH85]. Thus overall, there exists a polynomial ® such that

s < B(s, \), d < ®(dN) ,

for a fixed polynomial ¢ that aggregates the above.
In conclusion, we can bound the size of the encryption circuit PFE.Enc(EK, -) by

Dpre(n, A) + Pre(n’,m’,d', N) < Ppre(n, A) + Pre(n + A+ 1,m, ®(d, A), \) ,

establishing our requirement with ®prg(n, m, d, A) := ®prr(n, \) + Pre(n+A+1,m, ®(d, A), A).
]

We next show that any 22" -secure indistinguishability obfuscator O can be combined with
a 2*"-secure puncturable functional encryption PFE as the one given by Claim 3.10 (where in
both ) is the security parameter) to obtain a new indistinguishabiliy obfuscator i’ where the
size of an obfuscation of a size s depth d circuit C' : {0,1}" — {0, 1}"™ is of size 25+ ®(n, m, d, \)
for a fixed polynomial ®.

The construction. We consider a single iteration of the recursive transformation from Sec-
tion 3.2. That is, we define )
i0'(C,1") = r0.0bf(n, C, 1) |

where rO.0bf(n, -, 1;\) is defined as in Section 3.1 and is instantiated with PFE (from Claim 3.10),
and redefine

rO.0bf(n —1,-,1) = i0(-,1%) .
In addition, we define A(\, n) = w(n + log \)® . N
The evaluation procedure is changed accordingly. That is, given an obfuscation C, we
define N N
i0'.Eval(C,x) = rO.Eval(n,C,x) ,

where rO.Eval(n, C, x) is defined as in Section 3.1 and is instantiated with PFE (from Claim 3.10),
and redefine N N
rO.Eval(n — 1, E,x,,—1) = 1O.Eval(F, x,,—1) .

The correctness of the scheme follows readily, we focus on succinctness and security.

Efficiency and succinctness. In the new scheme, an obfuscation
i0'(C, 1) = (€, FSK)

consists of a functional key FSK and an obfuscation & « iO(EL, 1) of the circuit £(1) =
PFE.Enc(EK, -) padded to size ¢(|€|) where (EK, F/S\K) < PFE.Setup*(1*,C) and £(s) = c -
for an absolute constant c.

By the succinctness of PFE and the efficiency of iO:

S,

10/ (C,1M)| = |FSK| + [iO(£4,1Y)] <
2|0 + ®pre(n, m, d, X) + Bio(|EY]) <
2|C| + ®pre(n, m, d, \) + ;0(c - Ppre(n,m, d, N)) |

where ®;¢ is a fixed polynomial that bounds the running time of iO.

28



This establishes the succinctness requirement given by Corollary 3.4, with
®(n,m,d,\) := ®pre(n, m,d, A(n, \)) + ®;o(c - Ppre(n, m,d, A\(n, \))) .

The fact that the obfuscator runs in polynomial time follows readily from the fact that all un-
derlying algorithms run in polynomial time and are applied at most once.

Security. The security of the scheme follows from the security proof of the recursive scheme in
Section 3.2. Specifically, for any polynomial-size distinguisher D = {D,}, o, we define 6, ()
and 0,1(A) as in Section 3.2. (The first is the maximal distinguishing advantage of D against

the constructed obfuscator iO’ and the second is against 70.0bf(n — 1, -, 1*), which in our case

is the underlying obfuscator iO(, 1;\)). 3
By Proposition 3.1, the subexponential-security of PFE and ‘O, and our choice of A(n, ),

50(A) < 271 (6, 1(N) + Spre(N)) <
on+1 (29(4&) i 29(4&)) < gw(log))

4 A Bootstrapping Theorem

In this section, we show how to transform any multi-key functional encryption scheme with
certain weak succinctness into a succinct single-key functional encryption scheme (which in
particular is suitable for our FE to IO transformation from Section 3).

The notion of multi-key functional encryption schemes that we consider is a natural gener-
alization of the single-key notion (Section 2.2), where security is guaranteed even in the pres-
ence of multiple functional keys. In the literature this notion is commonly referred to as col-
lusion resistance. We in fact consider a definition that is somewhat weaker than the typical
definition in the literature where all functions are known at setup time. (Note that since we
aim to construct succinct single-key functional encryption from multi-key functional encryp-
tion, considering such a weaker notion only strengthens the result.)

In terms of succinctness, the common requirement for such schemes is that the complexity
of encryption may grow with the circuit-size of functions, but not with the overall number
of keys generated. Here, we will even allow sublinear dependence on the number of func-
tions (we call this requirement weak size-succinctness.) We show that any such scheme can be
transformed to a succinct single-key scheme.

The transformation can be applied to functional encryption schemes from the literature,
such as the one by Garg, Gentry, Halevi and Zhandry [GGHZ16]. This gives rise to an 10
construction based on a subexponential variant of the assumptions in [GGHZ16] on multi-
linear graded encodings.

We further show that the same transformation can be applied to transform any succinct
single/multi-key scheme where encryption complexity scales (polynomially/exponentially)
with circuit depth into a succinct scheme with no dependence on the depth (beyond the sublin-
ear dependence on circuit size).

We start with the relevant definition and then proceed to the transformation.

4.1 Multi-Key FE with Succinct Encryption

A multi-key FE scheme MFE, for a function class F (represented by boolean circuits) and mes-
sage space {0, 1}*, consists of three PPT algorithms (MFE.Setup, MFE.Enc, MFE.Dec) with the
following syntax:
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e MFE.Setup(1?, f1,..., f¢): takes as input a security parameter \ in unary and /¢ functions
f1,..., fo € F and outputs a public key PK and functional keys FSKy,, ..., FSKy,.

e MFE.Enc(PK,m): takes as input a public key PK and a message m € {0,1}* and outputs
an encryption of m. We shall sometimes address the randomness r used in encryption
explicitly, which we denote by MFE.Enc(PK, m;).

e MFE.Dec(FSKy, CT): takes as input a functional key FSK¢, a ciphertext CT and outputs
.

We next the define the required correctness, security, and efficiency properties.

Definition 4.1 (Multi-key, selectively-secure, public-key FE with succinct encryption). A tuple
of PPT algorithms MFE = (MFE.Setup, MFE.Enc, MFE.Dec) is a multi-key, selectively-secure, public-
key functional encryption scheme with succinct encryption, for function class F, and message space
{0, 1}*, if it satisfies:

1. Correctness: for every \,n,¢ € N, message m € {0,1}", functions f = (f1,..., fe) € F¥,
with domain {0,1}", and every i € [{],

(PK,FSKj,,...,FSK},) < MFE.Setup(1*, f)

Pr | fi(m) < MFE.Dec(FSKy,,CT) CT < MFE.Enc(PK, m)

=1.

2. Selective security: for any polynomial-size adversary A = {A\} oy, there exists a neg-
ligible function p1(X\) such that for any A\,n,¢ € N, any mg,m; € {0,1}", and functions
F="(f1,---, fi) € Ftsuch that f(mg) = f(m1),

PK,FSKj,,...,FSKy,, MFE.Enc(PK, m) ~.4, PK,FSKy,,...,FSK},, MFE.Enc(PK,m,)

where (PK,FSKy,,...,FSKy,) +~ MFE.Setup(1*, f).

We further say that MFE is 0-secure, for some concrete negligible function §(\), if for all polynomial-
size adversaries the above distinguishing gap p(\) is smaller than (X)),

3. Succinct encryption circuit: there exists a polynomial ® and a constant 0 < ¢ < 1, such
that for any input-size n, circuit-size s, depth d and s-size, d-depth functions f = (f1,..., fe) :
{0,1}™ — {0,1}*,

IMFE.Enc(PK, )| < (£- )75 - ®(n,\) ,

where (PK,FSKy,,...,FSK,) < MFE.Setup(1*, f).

Encryption is fully succinct if e = 1.

Encryption is weakly depth-succinct if

IMFE.Enc(PK, )| < (£-5)° - ®(n,d,\) .

Encryption is very weakly depth-succinct if

IMFE.Enc(PK, )| < (£-5)'7% - ®(n, 24 )) .

Encryption is weakly size-succinct if

IMFE.Enc(PK, )| < /175 . &(s, \) .
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We first observe that for all notions of succinctness, but weak size-succinctness, single-key
and multi-key FE are equivalent (essentially tautological).

Claim 4.2. The notions of (9-secure) single-key FE (Definition 2.1) and multi-key FE (Definition 2.1)
are equivalent with respect to succinctness/weak-depth-succinctness/very-weak-depth-succinctness.

Proof. First, note that any multi-key FE is a single-key FE where ¢ = 1, with respect to the above
succinctness notions. To see that any single-key FE FE implies a multi-key FE MFE, consider
the MFE scheme where any tuple of size-s, depth-d functions fi,..., f, : {0,1}" — {0,1}" is
parsed as a size-s - £, depth-d single function f : {0, 1}" — {0, 1}™*¢.

We then define:

o MFE.Setup(1*, f1, ..., fo) = PK, (FSKy, 1), ..., (FSKy, ), where PK, FSK ; < FE.Setup(1*, f).
e MFE.Enc(PK,m) = FE.Enc(PK, m).
e MFE.Dec((FSK,i),CT) = m;, where m; ... my = FE.Dec(FSK, CT).

The functionality, security, and succinctness /weak-depth-succinctness/very-weak-depth-succinctness
of MFE follow readily from those of FE. O

In contrast to the above, weak size-succinctness is only meaningful for ¢ > 1. For ¢ = 1,
it corresponds to a single-key scheme with no succinctness at all. Indeed, the notion of full
collusion-resistance common in the literature (for instance, in [GGHZ16]) only implies weak
size-succinctness.

From weak succinctness to succinctness. We now prove a bootstrapping theorem that shows
that any multi-key FE scheme with (one of several forms of) weak succinctness implies succinct
single-key FE (and also succinct multi-key FE by Claim 4.2).

The transformation is similar in spirit to previous randomized-encoding-based bootstrap-
ping schemes from the literature [GVW12, ABSV15]. Roughly speaking, we rely on the fact
that any function f(z) represented by an arbitrary circuit has a randomized encoding f(z; )
that can be decomposed into multiple functions { filz; r)} of lower complexity, both in terms of

circuit-size and circuit-depth. Such an encoding can be efficiently decoded to f(x) and reveals
nothing on z but the result f(x). This intuitively means that in order to generate a functional
key for any function f it is sufficient to generate functional keys for the encoding functions

{ fl}, while including the randomness required for encoding as part of the encrypted mes-

sage. In particular, if the complexity of encryption depends on the complexity of functions, we
have now managed to reduce it.

The actual construction is somewhat more complicated in order to facilitate the security
proof. Here also we rely on a common proof technique based on the trapdoor paradigm [FS89,
CIJ"13, ABSV15] (sometimes termed the Trojan method).

4.2 The Transformation

We turn to describe the actual transformation.

Ingredients. We rely on the following primitives:

¢ A multi-key, selectively-secure, public-key functional encryption scheme MFE for all cir-
cuits.

e A one-time symmetric encryption scheme Sym.
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¢ A decomposable randomized encoding scheme RE.

The constructed scheme FE consists of algorithms
(FE.Setup, FE.Enc, FE.Dec)

described in Figure 5.

FE

e FE.Setup(1*, f):

Compute a decomposed encoding circuit fi, ..., fo < RE.Enc(f,1%).

Sample a symmetric encryption key SK « {0, 1}*.

Sample an encryption CT « Sym.Enc(SK, 0).
Construct circuits Fy, ..., Fp : {0,1}" x {0,1}* x {0,1}* x {0,1} — {0,1} as follows:

5 o filmsr), ifb=0;
Film, 7, 5K.0) _{ Sym.Dec(SK, CT;,i) ifb=1.

Sample keys (PK,FSKy. ,...,FSKz, ) < MFE.Setup(1*, Fy, ..., FY).
Output:

* PK.
* FSKf = FSK}:H’""FSKF[

e FE.Enc(PK,m):
— Sample encoding randomness r « {0, 1}*.
— Output FCT < MFE.Enc(PK, (m,r, L,0)).
o FE.Dec(FSK, FCT):
— Parse FSKy = FSKE,...,FSKF[.
— Compute an encoding i <~ MFE.Dec(FSK, ,FCT), ..., FE.Dec(FSK, , FCT).
— Output the decoded value RE.Dec(g).

Figure 5: A single-key functional encryption with succinct encryption

Theorem 4.3. FE is a single-key functional encryption for all circuits. If MFE is weakly (depth/size)
succinct, or MFE is very weakly depth-succinct and both RE and Sym are shallow, then FE is succinct.
If MFE, RE, and Sym are all §-secure so is FE.

The above theorem, in particular, implies that any single key FE that is weakly depth-
succinct implies a succinct FE, and assuming also pseudorandom functions in NC?, so does
any very weakly depth-succinct FE.

Corollary 4.4 (of Claim 4.2 and Facts 2.7,2.9). Any (6-secure) single key functional encryption that is
weakly depth-succinct can be transformed into a (d-secure) succinct scheme. Assuming pseudorandom
functions in NC*, very weak depth-succinctness is sufficient.

Proof. We prove that the constructed scheme satisfies the properties of single-key FE with suc-
cinct encryption.
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Correctness: Fix a security parameter A € N, message m € {0,1}", and f € F with domain
{0,1}". By the functionality of MFE and correctness of RE,

FE.Dec(FSK, FCT) = RE.Dec ({MFE.Dec(FSKE_,FCT)}ZEM> _
RE.Dec ({E(m,r, L,o)}m) -
RE.Dec <{fi(m§T)}ie[£]> = f(m) ,

where (PK,FSKy) « FE.Setup(1*, f), FSKy = {FSKF,} o F} is the function underlying
1 ZE
FSK},, FCT = FE.Enc(EK, m), and {f} « RE.Enc(f).

Selective security: Fix any polynomial-size A = {A\},.y, We prove that there exists negli-
gible pre(A) such that for any security parameter \, function f : {0,1}" — {0,1}"™, and two
messages mg, m1 € {0, 1}" such that f(mo) = f(m1),

FSKfa FEEnC(PKa 771()) %_A“u, FSKf, FEET’IC(PK7 TT'L]) s

where (PK, FSKy) < FE.Setup(1%, f).
For this purpose, we consider the following sequence hybrid experiments.

HY for b € {0,1}: This hybrid corresponds to the (real) distribution:

(PK,FSKy) = (PK,FSK, ..., FSK )  MFESetup(1*, F1,..., Fy)
FCT < MFE.Enc(PK, (my, 7, L,0)) ,

where F; = F3[CT;] is a circuit that according to a choice input bit 3, either computes the ith
encoding f;(m,r) or decrypts CT;. In this hybrid, 8 = 0 and the circuit performs the first
operation. The ciphertext CT = CT; ..., CT, < Sym.Enc(SK, 0¢) encrypts zeros.

H} for b € {0,1}: This hybrid is identical to H{) except that CT «+ Sym.Enc(SK, filme;r), ..., fo(mp; )
is an encryption of the encoding f(m;r) = fi(m;7),..., fo(m;r) instead of 0.

H3 for b € {0,1}: This hybrid is identical to H? except that FCT + MFE.Enc(PK, (L, L,SK,1))
encrypts (L, L, SK, 1) instead of (my, 7, L,0).

743: This hybrid is identical to 7} except that CT + Sym.Enc(SK, g1, ..., ) is an encryption of

a simulated encoding y1, ..., g¢ < RE.Sim(f, f(my)) instead of f(myp;r).

Claim 4.5. There exist negligible functions jisym(X), mre(A), pre(A) such that:
7'[8 A, pisym ,Hl% ~ A, umre ,Hl% ~ A, uRre M

Furthermore, if Sym, MFE, RE are -secure, the functions y above can be replaced with 541,

Before proving the claim, note that it concludes the security proof. Indeed, setting urg =
2(psym + pmre + fire), it implies indistinguishability of the two real experiments: H &4 e Hi-

Proof of Claim 4.5. We prove indistinguishability between each two subsequent hybrids.
H) ~ H}: Here the difference is in the symmetric encryption CT = CTy,...,CT, underlying
the functions £[CT], ..., F;[CT,]. In HY, we encrypt 0¢ and in H}, we encrypt f(mp, 7).
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Thus, by the indistinguishability of Sym, there exists yisym such that:
Hg %-A:,U'Sym Hg :

H} ~ H}: Here the difference is in the functional ciphertext FCT. In H}, we encrypt (my, 7, L, 0)
and in 7, we encrypt (L, L, SK, r). For every function F},

Ey(my,r, L,0) = fi(my;r) = Sym.Dec(SK, CT;,4) = Fy(L, L,SK,1) .
Thus, by the selective security of MFE, there exists pmrg such that:
/Hl% ~ A, pumre /Hl% .

H? ~ H}: Here the difference is again in the symmetric encryption CT = CTy,...,CT, under-

lying the functions F[CTy],..., Fy[CT,]. In H}, we encrypt the encoding f(1my,r) and in H3
we encrypt the simulated encoding § <— RE.Sim(f,y), where y = f(mqo) = f(my).
Thus, by the privacy of RE, there exists ure such that:

2 o 3
Hi, ~ A, uRe M.

In all of the above, it follows readily that if Sym, RE, MFE are d-secure for some concrete
negligible 0 then FE is J-secure.
This concludes the proof of the claim and of the security of the constructed FE. O

Succinct encryption: We first show that if MFE is weakly size-succinct, then FE is succinct. This
also implies that FE is succinct if MFE is weakly depth-succinct, as weak depth-succinctness
implies weak size-succinctness. We then show that FE is succinct also if MFE is very weakly
depth-succinct and RE and Sym are shallow.

Assume that MFE is weakly size-succinct. That is, there exist a polynomial ®yrg and a
constant 0 < € < 1 such that the size of the encryption circuit corresponding to ¢ functions is
bounded by

AL (I)MFE(ga )\) ,

where 5§ is the circuit-size of each of the ¢ functions chosen during the setup phase. We show
that FE is also succinct with parameters (¢, ®rg) for a fixed polynomial ®re.

Fix a size-s function f. We analyze the size and depth of the corresponding functions
Fy, ..., Ey. Recall that each function F, = F; [CT;] either decrypts a bit, or computes one encod-
ing bit. Specifically, it has the form

Ej(m,r,SK,b) = b® Sym.Dec(SK, CT;,4) & (1 —b) @ fi(m;r) |

where ®, @ denote multiplication and addition modolu 2.
Thus, R R
§ = ’Fl’ < O(]Sym.Dec(-, CTZ',’L')‘ + ’fl(, )D < <I>5ym7RE(n,)\) ,

where ®sy, re is a fixed polynomial that depends only on the schemes Sym and RE. Further-
more, by the decomposability of RE, it is the case that

€§ S-‘I)RE(H,A) s

where ®ge is a fixed polynomial that depends only on RE.
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Applying the weak size-succinctness of MFE, it follows that in FE, the size of an encryption
circuit corresponding to a size-s function f is bounded by

(s Pre(n, 1) ™" Oumpe(PsymRe(n, ) A) -
This implies succinctness of FE with parameters (¢, ®) when setting
®(n,A) = Pre(n, A)PmrE(Psym RE(7, A), A)

Assume now that MFE is very weakly depth-succinct. That is, there exists a polynomial
Ppmre and constant 0 < ¢ < 1 such that the size of the encryption circuit corresponding to ¢
functions is bounded by

(Zé)l_a ' (I)MFE(n7 2627 A )

where 3 is the circuit-size and d is the circuit-depth of each of the £ functions chosen during the
setup phase. Assume also that both Sym and RE are shallow.
Recalling again the definition of the functions Fl, ce Fg note that the depth of each Fis at
most
c¢-max {dsym,dre}) < 2c-log A |

where ds,m and dgg are the depth of the decryption circuit in Sym and of each f; in RE, cis an
absolute constant, and we rely on the fact that both schemes are shallow.

Applying the very weak depth-succinctness of MFE, it follows that in FE, the size of an
encryption circuit corresponding to a size-s function f is bounded by

(s - PRe(n, A) - PsymRre(n, A))'° Pype(n, 22610824 ))
This implies succinctness of FE with parameters (e, ®) when setting

®(n,\) = Pre - PoymRe(n, A) - Pupe(n, A2, N) .
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