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Abstract

In this note, we prove lower bounds on the amount of entropy of random sources necessary for
secure message authentication. We consider the problem of non-interactive c-time message au-
thentication using a weak secret key having min-entropy k. We show that existing constructions
using (c+ 1)-wise independent hash functions are optimal.

This result resolves one of the main questions left open by the work of Dodis and Spencer [2]
who considered this problem for one-time message authentication of one-bit messages.

1 Introduction

1.1 Non-interactive Message Authentication

In this note, we revisit the problem of non-interactive message authentication: where Alice and Bob
share a weak secret key R ∈ {0, 1}n, and Alice wants to communicate up to c messages authentically
to Bob over a channel controlled by the adversary Eve. This problem is known to have an easy
solution with ε-security for ε < 1 using one of various possible universal hash functions, or more
generally c + 1-wise independent hash functions (see, for example, [6, 5] that give construction for
c = 1). These solutions, however, require that the min-entropy H∞(R) of the source R is at least
cn
c+1 + log(1ε ).

Dodis and Spencer [2] studied this problem with the goal of finding a lower bound on the min-
entropy of R. They showed that for any integer k ≥ n

2 , and any one-round message authentication
protocol for one-bit messages, there exists a k-flat source R such that the advantage of the adversary
in forging the tag is at least 2n/2−k, or in other words, H∞(R) ≥ n

2 + log(1ε ). This showed that the
construction using universal hash functions is optimal for one-bit messages. However, the bound
for many time message authentication is still far from optimal and this was left as one of the
main open questions in [2]. Specifically, the authors state that it is interesting to extend their
quantitative results for private-key encryption and especially authentication to larger than one-bit
message spaces. While this question has subsequently been almost resolved for the case of private-
key encryption [1], it has remained open for the case of private-key authentication.
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1.2 Our contribution and Comparison with [2]

We answer this open question in the affirmative, i.e., that for any integer k ≥ cn
c+1 , and any c-

round message authentication protocol, there exists a k-flat source R such that the advantage of
the adversary in forging the tag is at least 2cn/(c+1)−k, or in other words, H∞(R) ≥ cn

c+1 + log(1ε ).
Our proof uses a simple idea based on the chain rule for Shannon entropy.

In comparison, the result of [2] was proved by considering a bipartite multigraph with the edges
corresponding to the keys and the vertices on each part corresponding to the tags of the bit 0
and 1, respectively. They then partitioned their proof into two cases (i) where there are few tags
corresponding to the bit 0, in which case it is easy to guess Tag(0, R), and (ii) where there are many
tags corresponding to the bit 0, but where knowing Tag(0, R) gives significant information about
Tag(1, R). It seems that one might be able to generalize this idea to prove a lower bound for c-time
message authentication by considering c + 1 cases as opposed to considering two cases for c = 1.
However, the case analysis becomes significantly more involved due to the combinatorial nature of
the proof, and perhaps this is a reason why the question has remained open for so long.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer m ∈ N, we let Um

denote the uniform distribution over {0, 1}m, the bit-strings of length m. For a distribution or
random variable X we write x ← X to denote the operation of sampling a random x according to
X. For a set S, we write s← S as shorthand for s← US .

2.1 Entropy Definitions

The prediction probability of a random variable X is defined as

Pred(X) := max
x

Pr[X = x].

The min-entropy of X is defined as

H∞(X) := − logPred(X).

We say that a random variable X is an (n, k)-source if X ∈ {0, 1}n and H∞(X) ≥ k. We also define
conditional prediction probability of a random variable X conditioned on another random variable
Z as

Pred(X|Z) := Ez←Z

[
max
x

Pr[X = x|Z = z]
]

= Ez←Z

[
2−H∞(X|Z=z)

]
.

The conditional min-entropy of X is defined as

H∞(X|Z) := − logPred(X|Z).

Also, the Shannon entropy H1(X) of a random variable X is defined as

H1(X) := −
∑
x

Pr[X = x] log Pr[X = x] .
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The conditional Shannon entropy of a random variable X conditioned on another random variable
Z is defined as

H1(X|Z) := Ez←ZH1(X|Z = z)

= −Ez←Z

∑
x

Pr[X = x|Z = z] log Pr[X = x|Z = z] .

We will need the following standard facts about (conditional) min-entropy, and (conditional) Shan-
non entropy.

Fact 1. Let X,Y, Z be arbitrary random variables, and let f be an arbitrary function. Then the
following hold

1. H∞(X|Z) ≥ H∞(f(X)|Z), and H1(X|Z) ≥ H1(f(X)|Z).

2. H1(X,Y |Z) = H1(X|Y,Z) +H1(Y |Z).

3. H1(X|Z) ≥ H∞(X|Z).
We remark here that the definition of the conditional Shannon entropy is fairly standard, but

there are other alternative definitions in the literature for conditional min-entropy. However, our
proposed definition is by now fairly standard. We direct the reader to [3] which contains a compre-
hensive discussion on conditional entropies, and proves Fact 1 among several other results.

2.2 Message Authentication Codes

In order to define a message authentication code, we first introduce the following game Gc(r). For
a given function Tag : M× {0, 1}n 7→ T and a fixed secret key r ∈ {0, 1}n, an adversary Eve is
allowed to make at most c adaptive queries µ1, . . . , µc to Tag(·, r). We say that Eve wins the game
if she outputs a pair (µc+1, σ), such that Tag(µc+1, r) = σ and µc+1 /∈ {µ1, . . . , µc}. We define the
advantage of Eve in this game as

AdvEvec (r) = Pr[Eve wins Gc(r)].

Definition 1. A function Tag : M× {0, 1}n 7→ T is called a c-time (n, k, ε)-secure message au-
thentication code, if for any distribution R on {0, 1}n with H∞(R) ≥ k, for any computationally
unbounded adversary Eve,

Er←R[Adv
Eve
c (r)] ≤ ε.

2.3 k-wise Independent Hash Functions

Here we define and give a well-known construction of k-wise independent hash functions.

Definition 2. A function H : X ×R 7→ Y is said to be a k-wise independent hash function if for
all y1, . . . , yk ∈ Y, and all distinct x1, . . . , xk ∈ X ,

Pr
r←R

(H(x1, r) = y1 ∧ · · · ∧ h(xk, r) = yk) =
1

|Y|k
.

Lemma 1 (folklore). Let k be a positive integer, and let X = Y = F, and R = Fk for some finite
field F. Then the function H : X ×R 7→ Y given by

H(x, (r0, . . . , rk−1)) := r0 + r1 · x+ · · ·+ rk−1 · xk−1

is a k-wise independent hash function.
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3 Tight Bound for c-time MACs

In this section, we prove a lower bound on the error-probability ε for c-time message authentication
protocol for deterministic functions Tag.

Theorem 1. Let Tag be a c-time (n, k, ε)-secure message authentication code where Tag : M×
{0, 1}n 7→ T . Then we have the following.

1. If k ≤ cn
c+1 then ε = 1;

2. If k > cn
c+1 then ε ≥ 2

cn
c+1
−k.

Proof. Let U be an n-bit uniformly random string, and let µ1, . . . , µc+1 ∈ M be fixed distinct
messages. Note that H1(U) = n. Using Fact 1 multiple times, we get

n =H1(U) ≥ H1 (Tag(µ1, U), . . . ,Tag(µc+1, U))

=H1 (Tag(µ1, U)) +H1 (Tag(µ2, U), . . . ,Tag(µc+1, U)|Tag(µ1, U))

= . . .

=

c+1∑
i=1

H1 (Tag(µi, U)|Tag(µ1, U), . . . ,Tag(µi−1, U))

≥
c+1∑
i=1

H∞ (Tag(µi, U)|Tag(µ1, U), . . . ,Tag(µi−1, U)) .

Therefore, there exists i ∈ {1, . . . , c+ 1}, such that

H∞ (Tag(µi, U)|Tag(µ1, U), . . . ,Tag(µi−1, U)) ≤ n

c+ 1
.

We fix an i satisfying this ineqaulity. For any t = (t1, . . . , ti−1) ∈ T i−1, let E(t) be a shorthand for
the event that Tag(µj , U) = tj for 1 ≤ j < i. From the definition of conditional min-entropy, we
get the following.

2−
n

c+1 ≤ Et∈T i−1 max
ti∈T

Pr
[
Tag(µi, U) = ti|E(t)

]
=

∑
t∈T i−1

Pr[E(t)] ·max
ti∈T

Pr[Tag(µi, U) = ti|E(t)]

=
∑

t∈T i−1

max
ti∈T

Pr[Tag(µj , U) = tj for 1 ≤ j ≤ i] . (1)

For every fixed t = (t1, . . . , ti−1) ∈ T i−1, let µt be the most probable value of Tag(µi, U) given
Tag(µj , U) = tj for 1 ≤ j < i. Intuitively, we want to choose a distribution over the set of keys so
that Tag(µj , U) = tj for 1 ≤ j < i implies that Tag(µi, U) = µt. Then, given tags for µ1, . . . , µi−1,
we can always guess the tag for µi. Let Kt be the set of keys corresponding to µt, i.e.,

Kt =
{
r ∈ {0, 1}n|Tag(µi, r) = µt,Tag(µj , r) = tj for 1 ≤ j < i

}
.

Let also
K =

⋃
t∈T i−1

Kt.
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From inequality (1),
|K| ≥ 2n · 2

−n
c+1 = 2

cn
c+1 .

If 2k ≤ |K|, then let R be an arbitrary 2k element subset of K. Otherwise, let

R = K ∪ K′ ,

where K′ is a set of arbitrary keys from the set {0, 1}n \ K, such that |R| = 2k.
We claim that if R is uniformly distributed on R, then there exists a strategy for Eve such that

the advantage in guessing Tag(µi, r) given Tag(µ1, r), . . . ,Tag(µi−1, r) is at least 2
cn
n+1
−k if k > cn

n+1 ,
and 1, otherwise. To see this, notice that for any r ∈ K, there is a unique value of Tag(µi, r) given
Tag(µ1, r), . . . ,Tag(µi−1, r). Let the strategy of Eve be to guess this unique tag assuming R ∈ K.
Then, Eve succeeds with probability 1 if R ∈ K, and hence the advantage of Eve is

ε ≥ |R ∩ K|
2k

≥
min

(
2k, 2

cn
c+1

)
2k

.

The statement of the theorem now follows.

It is well-known that the bound from Theorem 1 can be achieved by using a family of (c+1)-wise
independent hash functions (see [4] for similar results). For the sake of completeness, we present
this construction below.

Lemma 2 (folklore). Let F be a finite field, and let M = T = F, and let the set of keys be Fc+1

with n = (c+ 1) log |F|. Then the function Tag :M× Fc+1 7→ T defined as:

Tag (µ, (r0, . . . , rc)) := r0 + r1 · µ+ · · ·+ rc · µc

is a c-time (n, k, 2
cn
c+1
−k)-secure message authentication code.

Proof. Let U be uniform in Fc+1. For any fixed strategy of Eve, and r ∈ Fc+1, let f(r) denote
AdvEvec (r). Let µ1, . . . , µc+1 be arbitrary distinct messages in M. By Lemma 1, we have that
for any σ ∈ T , the probability that Tag(µc+1, U) = σ given Tag(µ1, U), . . . ,Tag(µc, U) is at most
1
|F| = 2−n/(c+1). Hence,

Er←U [f(r)] ≤ 2−
n

c+1 .

Now, consider a random key R ∈ Fc+1, such that H∞(R) ≥ k. Then

Er←R[f(r)] =
∑

r∈Fc+1

Pr(R = r) · f(r)

≤ max
r∈Fc+1

Pr(R = r)
∑

r∈Fc+1

f(r)

≤ 2−k · 2n · Er←U [f(r)]

≤ 2n−k · 2−
n

c+1

= 2
cn
c+1
−k ,

as needed.
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