
Achieving Differential Privacy with Bias-Control
Limited Source

Yanqing Yao1,2 ⋆⋆ and Zhoujun Li1,2

1School of Computer Science and Engineering, Beihang University, Beijing, China
2Beijing Key Laboratory of Network Technology, Beihang University, Beijing, China

yaoyanqing1984@gmail.com,lizj@buaa.edu.cn

Abstract. In the design of differentially private mechanisms, it’s usually
assumed that a uniformly random source is available. However, in many
situations it seems unrealistic, and one must deal with various imperfect
random sources. Dodis et al. (CRYPTO’12) presented that differential
privacy can be achieved with Santha-Vazirani (SV) source via adding a
stronger property called SV-consistent sampling and left open question
if differential privacy is possible with more realistic (i.e., less structured)
sources. A new source, called Bias-Control Limited (BCL) source, intro-
duced by Dodis (ICALP’01), is more realistic. It can be considered as a
generalization of the SV and sequential bit-fixing sources. Unfortunate-
ly, the natural extension of SV-consistent sampling to the BCL source
is hopeless to achieve differential privacy, mainly because SV-consistent
sampling requires “consecutive” strings, while some strings can’t be gen-
erated from “non-trivial” BCL source.

Motivated by this problem, we introduce a new appealing property, called
compact BCL-consistent sampling, the degeneration of which is differ-
ent from SV-consistent sampling shown by Dodis et al. (CRYPTO’12).
We prove that if the mechanism based on the BCL source satisfies this
property, then it’s differentially private. Even if the BCL source is degen-
erated into the SV-source, our proof is much more intuitive and simpler
than that of Dodis et al. Further, we construct explicit mechanisms using
a new truncation technique as well as arithmetic coding. We also propose
its concrete results for differential privacy and utility. While the results
of Dodis and Yao (CRYPTO’15) imply that if there exist differential-
ly private mechanisms for imperfect randomness, then the parameters
should have some constraints, we show an explicit construction of such
mechanisms, whose parameters match the prior constraints.

1 Introduction

Traditional cryptographic models take for granted the availability of perfect
randomness, i.e., sources that output unbiased and independent random bits.
However, in many settings this assumption seems unrealistic, and one must deal
with various imperfect sources of randomness. Some well known examples of
such imperfect random sources are physical sources, biometric data, secrets with
⋆⋆ The first version of this work was done while the author visited New York University.
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partial leakage, and group elements from Diffie-Hellman key exchange. To ab-
stract this concept, several formal models of realistic imperfect sources have been
described (see [DY14] for a summary). Roughly speaking, they can be divided
into extractable and non-extractable. Extractable sources allow for determin-
istic extraction of nearly perfect randomness. Moreover, while the question of
optimizing the extraction rate and efficiency has been very interesting, from the
qualitative perspective such sources are good for any application where perfect
randomness is sufficient. Unfortunately, it was quickly realized that many real-
istic sources are non-extractable [SV86,CG88,Dod01]. The simplest example is
Santha-Vazirani (SV) source [SV86], which produces an infinite sequence of bits
r1, r2, . . ., with the property that Pr[ri = 0 | r1 . . . ri−1] ∈ [ 1−δ2 , 1+δ

2 ], for any
setting of the prior bits r1, . . . , ri−1. Santha and Vazirani [SV86] showed that
there exists no deterministic extractor Enc : {0, 1}n → {0, 1} capable of extract-
ing even a single bit of bias strictly less than δ from the δ-SV source, irrespective
of how many SV bits r1, . . . , rn it is willing to wait for.

Despite this pessimistic result, ruling out the “black-box compiler” from per-
fect to imperfect (e.g., SV) randomness for all applications, people still hope that
specific “non-extractable” sources (e.g., SV sources) are sufficient for concrete
applications. Indeed, there are already a series of positive results for simulating
probabilistic polynomial-time algorithms [VV85, SV86, CG88, Zuc96, ACRT99]
and authentication applications [MW97,DOPS04,DKRS06,ACM+14]. Unfortu-
nately, the situation appears to be much less bright when dealing with privacy
applications, such as encryption, commitment, zero-knowledge, and some others.
Please see [DLMV12,DY14] for a survey. While a series of negative results seem
to strongly point in the direction that privacy inherently requires extractable
randomness, a recent work of Dodis et al. [DLMV12] put a slight dent into this
consensus, by showing that SV sources are provably sufficient for achieving a
more recent notion of privacy, called differential privacy (DP) [DMNS06].

The motivating scenario of differential privacy is a statistical database. The
purpose of a privacy-preserving statistical database is to enable the user to learn
released statistical facts without compromising the privacy of the individual users
whose data is in the database. Differential privacy ensures the removal or addi-
tion of a single database item does not (substantially) affect the outcome of any
analysis [Dwo08]. More formally, a differentially private mechanism M(D, f ; r)
uses its randomness r to “add enough noise” to the true answer f(D), where D
is some sensitive database of users, and f is some useful aggregate information
(query) about the users of D. On one hand, to preserve individual users’ privacy,
we want M to satisfy ξ-differential privacy, that is, for any neighboring databas-
es D1 and D2 (i.e., D1 and D2 differ on a single record), and for any possible
output z, e−ξ ≤ Pr

r
[M(D1, f ; r) = z]/Pr

r
[M(D2, f ; r) = z] ≤ eξ for small ξ > 0.

On the other hand, to keep ρ−utility (or accuracy) of M , we hope the expected
value of |f(D)−M(D, f ; r)| over random r to be upper bounded by ρ. Usually,
we should make a tradeoff between differential privacy and utility.

Additive-noise mechanisms [DMNS06,GRS09,HT10] have the form M(D, f ; r)
= f(D)+X(r), where X is an appropriately chosen “noise” distribution added to
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guarantee ξ-DP. For instance, for counting queries, the right distribution is the
Laplace distribution [DMNS06]. However, we can’t generate a “good enough”
sample of the Laplace distribution with SV sources. In fact, any differentially pri-
vate and accurate additive-noise mechanism for a source R implies the existence
of a randomness extractor for R, essentially collapsing the notion of differential
privacy to that of traditional privacy, and showing the impossibility of differen-
tially private and accurate additive-noise mechanisms for SV sources [DLMV12].
From another perspective, an additive-noise mechanism must satisfy T1∩T2 = ∅,
where Ti is the set of coins r with M(Di, f ; r) = z for i = 1, 2, based on which an
SV adversary can always succeed in amplifying the ratio Pr[r ∈ T1]/Pr[r ∈ T2]
(see [DLMV12]), or |Pr[r ∈ T1]− Pr[r ∈ T2]| (see [DY14]).

Dodis et al. [DLMV12] observed a necessary condition, called consistent sam-
pling (i.e., informally, |T1 ∩ T2| ≈ |T1| ≈ |T2|), to build SV-robust mechanisms.
They also introduced another condition to match the bit-by-bit property of SV
sources. The combination of the above two conditions is called SV-consistent
sampling (see Definition 8). They built differentially private and accurate Laplace
mechanisms using some truncation and arithmetic coding techniques. Such mech-
anisms are capable to work with all such distributions, provided that ρ-utility is
now relaxed to be polynomial of 1/ξ, whose degree and coefficients depend on δ,
but not on the size of the database D. Coupled with the impossibility of tradi-
tional privacy with SV sources, this result suggested a qualitative gap between
traditional and differential privacy, but left open the question below.

Open Question. Is differential privacy possible with more realistic (i.e., less
structured) sources than SV sources?

Dodis et al. [Dod01] introduced a new source, called Bias-Control Limited
(BCL) source, denoted as BCL(δ, b), which generates a sequence of bits r1, r2, . . .,
where for i = 1, 2, . . ., the value of ri can depend on r1, . . . , ri−1 in one of the
following two ways: (A) ri is determined by r1, . . . , ri−1, but this happens for at
most b bits, or (B) 1−δ

2 ≤ Pr[ri = 1 | r1 . . . ri−1] ≤ 1+δ
2 , where 0 ≤ δ < 1. (See

Definition 2.) In particular, when b = 0, it degenerates into SV source of [SV86];
when δ = 0, it yields the bit-fixing source of [LLS89]; when b = 0 and δ = 0, it
corresponds to the perfect randomness. If b ̸= 0 and δ ̸= 0, we say the BCL source
is non-trivial. The BCL source models the problem that each of the bits produced
by a streaming source is unlikely to be perfectly random: slight errors (due to
noise, measurement errors, and imperfections) of the source are inevitable, and
the situation that some of the bits could have non-trivial dependencies on the
previous bits (due to internal correlations, poor measurement or improper setup),
to the point of being completely determined by them. Hence, compared with SV
source, the BCL source appears much more realistic, especially if the number of
interventions b is somewhat moderate.

As the BCL source naturally (and realistically!) relaxes SV source, for which
non-trivial differential privacy is possible, it will be interesting and meaningful to
see whether existing results can be extended to BCL sources (especially for rea-
sonably high b raised by Dodis [Dod14]). Recently, Dodis and Yao [DY14] have
shown an impossibility result for BCL source: when b ≥ Ω((log(ξρ) + 1)/δ), it’s
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impossible to achieve (BCL(δ, b), ξ)-differentially private (see Definition 3) and
(U , ρ)-accurate (see Definition 4) mechanism for Hamming weight queries. In oth-
er words, if there exists a (BCL(δ, b), ξ)-differentially private and (U , ρ)-accurate
mechanism for Hamming weight queries, then b < O((log(ξρ)+1)/δ). This result
gives us a bit hope to design differentially private and accurate mechanisms for
some b.

Our Results and Techniques.
Essentially, to achieve differential privacy, we need to restrict Prr←BCL(δ,b,n)

[r ∈ T1\T2]/Prr←BCL(δ,b,n)[r ∈ T2]. We attempt to naturally extend SV-consistent
sampling (see Definition 8) to BCL sources, but can’t get positive results. It’s
not surprising, as the “interval” property (see Definition 8) is crucial to achieve
SV-differential privacy, while the mechanism based on BCL(δ, b) with b ̸= 0 can’t
be an “interval” mechanism.

We will start by extending consistent sampling in [DLMV12] to the BCL
source: for every distribution Y ∈ BCL(δ, b, n) with S0

def
= {r ∈ {0, 1}n |

Pr[Y = r] ̸= 0}, |(T1 \ T2) ∩ S0|/|T2 ∩ S0| has a constant upper bound. Similar
to [DLMV12], the extended consistent sampling is still a necessary condition for
building BCL-robust, differentially private mechanisms. Moreover, from the gen-
eration procedure of BCL(δ, b, n), we can upper bound the numerator and lower
bound the denominator by introducing the common prefix u of T1 and T2. Let
SUFFIX(u, n) be the set of all length n binary strings having u as a prefix. Unlike
Dodis et al. [DLMV12] that limited |SUFFIX(u, n)|/|T1 ∪T2| = 2n−|u|/|T1 ∪T2|
(see Definition 8), we upper bound n−|u| by a certain constant. Correspondingly,
the concept of compact BCL-consistent sampling (see Definition 9) emerges.

However, to construct explicit differentially private mechanisms, we are con-
fronted with some difficulties. According to the method of yielding finite precision
mechanisms in [DLMV12], we can’t upper bound n− |u| as a constant! To solve
this problem, we propose a new truncation trick. Combining this with arithmetic
coding, we design a new mechanism (see Section 4.1). Our contributions are as
follows.

– We introduce a new concept, called compact BCL-consistent sampling (see
Definition 9), to study differentially private mechanisms. It should be noted
that if b = 0, the degenerated BCL-consistent sampling is not the same as
the SV-consistent sampling (see Definition 8) given in [DLMV12].

– We prove that if the BCL source satisfies this property, then the correspond-
ing mechanism is differentially private (see Theorem 1). Even if the BCL
source is degenerated into SV source, compared with [DLMV12], our proof
is much more intuitive and simpler (see Theorem 1 with b = 0 and Theorem
4.4 of [DLMV12]).

– We use a new truncation technique and arithmetic coding in the design of a
finite-precision mechanism to satisfy compact BCL-consistent sampling (see
Section 4.1).

– We also give rigorous proofs about differential privacy and utility of this kind
of mechanism (Theorems 2 and 3).
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– While the result of [DY14] implies if there exists a (BCL(δ, b), ξ)−differentially
private and (U , ρ)-accurate mechanism for the Hammimg weight queries,
then it should satisfy ρ > 2b·log(1+δ)−9

ξ , we build such explicit mechanisms
with the parameters matching the above condition (Theorem 4).

2 Preliminaries

In this section, we present some notations and definitions that will be used later.
Let {0, 1}∗ def

=
∪

m∈Z+

{0, 1}m. We consider a distribution over {0, 1}∗ as contin-

uously outputting (possibly correlated) bits. We call a family R of distributions
over {0, 1}∗ a source. Denote U as the uniform source, which is the set containing
only the distribution U on {0, 1}∗ that samples each bit independently and uni-
formly at random. For a set S, we write US to denote the uniform distribution
over S. For simplicity, denote Un as the uniform distribution over {0, 1}n. For a
distribution or random variable R, let r ← R denote the operation of sampling
a random r according to R. Denote ⌊·⌉ as the nearest integer function.

For a positive integer m (i.e., m ∈ Z+), let [m]
def
= {1, 2, . . . ,m}. For m ∈ Z+

and x = x1 . . . xm ∈ {0, 1}m, denote SUFFIX(x)
def
= {y = y1y2 . . . ∈ {0, 1}∗ |

xi = yi for all i ∈ [m]} as the set of all bit strings having x as a prefix. For
n ∈ Z+ where n ≥ m, let SUFFIX(x, n)

def
= SUFFIX(x) ∩ {0, 1}n. For any

sequence r = r1r2 . . . ∈ {0, 1}∗, define the real representation of r to be the real
number REAL(r)

def
= 0.r1r2 . . . ∈ [0, 1]. For any interval I ⊆ [0, 1], let |I| be the

length of I, and let STR(I, n)
def
= {r ∈ {0, 1}n | REAL(r) ∈ I} be the set of all

n-bit strings whose real representation lies in I.

Definition 1. ( [SV86]) Let r1, r2, . . . be a sequence of Boolean random vari-
ables and 0 ≤ δ < 1. A probability distribution R = r1r2 . . . over {0, 1}∗ is a
δ-Santha-Vazirani (SV) distribution, denoted by SV (δ), if for all i ∈ Z+ and for
every string s of length i−1, we have 1−δ

2 ≤ Pr[ri = 1 | r1r2 . . . ri−1 = s] ≤ 1+δ
2 .

We define the δ-Santha-Vazirani source SV(δ) to be the set of all δ-SV distri-
butions. For SV (δ) ∈ SV(δ), we define SV (δ, n) as SV (δ) restricted to the first
n coins r1, r2, . . . , rn. We let SV(δ, n) be the set of all distributions SV (δ, n).

Definition 2. ( [Dod01]) Let r1, r2, . . . be a sequence of Boolean random vari-
ables and 0 ≤ δ < 1. A probability distribution R = r1r2 . . . over {0, 1}∗ is a
(δ, b)-Bias-Control Limited (BCL) distribution, denoted by BCL(δ, b), if for all
i ∈ Z+ and for every string s of length i − 1, the value of ri can depend on
r1, r2, . . . , ri−1 in one of the following two ways:

(A) ri is determined by r1, . . . , ri−1, but this happens for at most b bits. This
process of determining a bit is called intervention.

(B) 1−δ
2 ≤ Pr[ri = 1 | r1r2 . . . ri−1 = s] ≤ 1+δ

2 .
We define the (δ, b)-BCL source BCL(δ, b) to be the set of all (δ, b)-BCL

distributions. For a distribution BCL(δ, b) ∈ BCL(δ, b), we define BCL(δ, b, n)
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as the distribution BCL(δ, b) restricted to the first n coins r1, r2, . . . , rn. We let
BCL(δ, b, n) be the set of all distributions BCL(δ, b, n).

This source models the facts that physical sources can never produce com-
pletely perfect bits and some of the bits generated by a physical source could be
determined from the previous bits.

Remark 1. In particular, if b = 0, the BCL source degenerates into SV source
(i.e., BCL(δ, b, n) and BCL(δ, b) degenerate into SV(δ, n) and SV(δ) respectively)
[SV86]; if δ = 0, it yields the sequential-bit-fixing source of Lichtenstein, Linial,
and Saks [LLS89]. The definitions and results in the reminder can be degenerated
into the counterparts for SV and sequential bit-fixing sources.

Consider a statistical database as an array of rows from some countable
set. Two databases are neighboring if they differ in exactly one row. Let D
be the space of all databases. For simplicity, we only consider query functions
f : D → Z. Recall some concepts mentioned in [DLMV12] as follows.

Definition 3. Let ξ ≥ 0, R be a source, and F = {f : D → Z} be a family of
functions. A mechanism M is (R, ξ)-differentially private for F if for all neigh-
boring databases D1, D2 ∈ D, all f ∈ F , all possible outputs z ∈ Z, and all
distributions R ∈ R:

Pr
r←R

[M(D1, f ; r) = z]/ Pr
r←R

[M(D2, f ; r) = z] ≤ 1 + ξ.

In what follows we employ the upper bound of the ratio of probabilities
introduced in [DLMV12] other than the traditional upper bound “eξ” to make
later calculations a little simpler. It is reasonable since when ξ ∈ [0, 1], which
is the main useful range, we have eξ ≈ 1 + ξ, and when ξ ≥ 0, we always have
1 + ξ ≤ eξ.

Remark 2. As observed by Dodis et al. [DLMV12], here we assume that the
randomness r as input of the mechanism M is in {0, 1}∗, i.e., M has at its
disposal a possibly infinite number of random bits, but for each database D,
query f ∈ F , and fixed outcome z, M needs only a finite number of coins
r ∈ 2τ(f(D),z), where τ is a function, to determine whether M(D, f ; r) = z.
Furthermore, we assume that if M(D, f ; r) = z, then providing M with extra
coins doesn’t change the output. Namely, for any r′ with r as its prefix, we still
have M(D, f ; r′) = z. Hence, for any two neighboring databases D1, D2 ∈ D,
query f ∈ F , and fixed outcome z, M needs only a finite number of coins r ∈ 2n,
where n

def
= max{τ(f(D1), z), τ(f(D2), z)}, to determine whether M(D1, f ; r) =

z and M(D2, f ; r) = z.

Definition 4. Let ρ > 0, R be a source, and F = {f : D → Z} be a family of
functions. A mechanism M has (R, ρ)-utility (or accuracy) if for all databases
D ∈ D, all queries f ∈ F , and all distributions R ∈ R:

Er←R[|M(D, f ; r)− f(D)|] ≤ ρ.
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Definition 5. We say a function family F admits accurate and private mecha-
nisms w.r.t.R if there exists function g(·) s.t. for all ξ > 0 there exists mechanism
M(ξ) that is (R, ξ)-differentially private and has (R, g(ξ))-utility. M = {M(ξ)}
is called a class of accurate and private mechanisms for F w.r.t. R.

One core problem in the area of differential privacy is to design accurate and
private mechanisms. Though there are already some infinite additive mechanisms
based on gaussian, binomial, and Laplace distributions, we must specify how to
approximate them under finite precision in practice. Under the assumption of
the availability of perfect randomness, we can simply approximate a continuous
sample within some “good enough” finite precision, which is omitted in most
differential privacy papers. Unfortunately, the above assumption is unrealistic in
many situations. In fact, Dodis et al. [DLMV12] built finite-precision mechanisms
with imperfect randomness SV(δ).

Definition 6. For query f : D → Z, the sensitivity of f is defined as ∆f
def
=

max
D1,D2

∥f(D1) − f(D2)∥ for all neighboring databases D1, D2 ∈ D. For d ∈ Z+,

denote Fd = {f : D → Z | ∆f ≤ d}.

For clarity, in this paper we only consider the case d = 1. It is straightforward
to extend all our results to any sensitivity bound d.

Definition 7. The Laplace (or double exponential) distribution with mean µ

and standard deviation
√
2
ε , denoted as Lapµ, 1ε , has probability density func-

tion PDFLap
µ, 1ε

(x) = ε
2 · e

−ε|x−µ|. The cumulative distribution function is given by

CDFLap
µ, 1ε

(x) = 1
2 + 1

2 · sgn(x− µ) · (1− e−ε·|x−µ|).
If a random variable X has this distribution, denote X ∼ Lapµ, 1ε .

In this paper, suppose that 1
ε ∈ Z+, as otherwise there exists a smaller ε to

achieve.

3 Compact BCL-Consistent Sampling

Dodis et al. [DLMV12] introduced SV-consistent sampling. However, the proof
of “SV-consistent sampling implies differential privacy” (see Theorem 4.4 in
[DLMV12] for details) is complex. In addition, its natural extension to BCL
sources is unknown to achieve differential privacy, as the proof of Theorem 4.4
in [DLMV12] relies on the fact that the values in T2 (resp. T1) constitutes con-
secutive integers, while it may not be the case for BCL sources.

In this section, we introduce the concept of compact (ζ, c)-BCL-consistent
sampling. Then we observe that it is sufficient to design finite-precision accurate
and private mechanisms based on BCL sources.

Consider a mechanism M with randomness space {0, 1}∗. For i ∈ {1, 2}, let
{r ∈ {0, 1}∗ | z = M(Di, f ; r)} be the set of all coins such that M outputs z when
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running on two neighboring databases D1 and D2, query f , and randomness r.
It should be noted that in our model only a finite number of coins r ∈ 2n,
where n

def
= max{τ(f(D1), z), τ(f(D2), z)}, need to be sampled to determine

if M(D1, f ; r) = z and M(D2, f ; r) = z (see also Remark 2). Therefore, for
i ∈ {1, 2} and n

def
= max{τ(f(D1), z), τ(f(D2), z)}, denote

T (Di, f, z)
def
= {r ∈ {0, 1}n | z = M(Di, f ; r)}.

Let T1
def
= T (D1, f, z) and T2

def
= T (D2, f, z). Denote

u
def
= argmax{|u′| | u′ ∈ {0, 1}≤n and T1 ∪ T2 ⊆ SUFFIX(u′, n)}.

Then the ratio is

Pr
r←BCL(δ,b,n)

[r ∈ T1\T2]

Pr
r←BCL(δ,b,n)

[r ∈ T2]
=

Pr
r←BCL(δ,b,n)

[r ∈ T1\T2 | r ∈ SUFFIX(u)]

Pr
r←BCL(δ,b,n)

[r ∈ T2 | r ∈ SUFFIX(u)]
.

Since the BCL source generates strings bit by bit, the calculation of the ratio
can be simplified.

Recall the concept of SV-consistent sampling [DLMV12] as follows.

Definition 8. Let c̃ > 1 and ζ̃ > 0. We say a mechanism M is an interval
mechanism if for all f ∈ F , all D ∈ D, and all possible outcomes z ∈ Z, the set

{
n∑

i=1

ri · 2n−i | r = r1, r2, . . . , rn ∈ T (D, f, z)} contains consecutive integers.

An interval mechanism has (ζ̃, c̃)-SV-consistent sampling if for all queries
f ∈ F , all neighboring databases D1, D2 ∈ D, all possible outcomes z ∈ Z,
which define T1, T2, and u as above, the following two properties hold:
(1) |T1\T2|

|T2| ≤ ζ̃; (2) |SUFFIX(u,n)|
|T1∪T2| ≤ c̃.

Note that when b ̸= 0, BCL(δ, b, n) can’t generate all n-bit strings, thus the
corresponding mechanism cannot be an interval mechanism. Though Dodis et
al. [DLMV12] proposed that if M has (ζ̃, c̃)-SV-consistent sampling, then M is
(SV(δ), ξ)-differentially private (see Theorem 4.4 of [DLMV12]). In that proof,
the “interval” property is a crucial condition (see Appendix A for details), so we
cannot follow that thought. Instead, we resort to a new property as follows.

Definition 9. Let c be a constant and ζ > 0. A mechanism is a compact (ζ, c)-
BCL-consistent sampling mechanism with BCL(δ, b) if for all queries f ∈ F , all
neighboring databases D1, D2 ∈ D, all possible outcomes z ∈ Z, which define
T1, T2 and u as above, and all distributions Y ∈ BCL(δ, b, n) with S0

def
= {r ∈

{0, 1}n | Pr[Y = r] ̸= 0}, the following two properties hold:
(1) |(T1\T2)∩S0|

|T2∩S0| ≤ ζ; (2) n− |u| ≤ c.

Now we show that compact (ζ, c)-BCL-consistent sampling is sufficient to
achieve (BCL(δ, b), ξ)-differential privacy where ξ can be arbitrarily small as
long as ζ is small enough.
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Theorem 1. If M is a compact (ζ, c)-BCL-consistent sampling mechanism for
(δ, b)-BCL-sources, then M is (BCL(δ, b), ξ)-differentially private, where ξ ≤
( 1+δ
1−δ )

c · [ 12 (1 + δ)]−b · ζ. In particular, for δ ∈ [0, 1), and c = O(1), we have
lim
ζ→0

( 1+δ
1−δ )

c · [ 12 (1 + δ)]−b · ζ = 0.

Proof. Assume that |(T1\T2)∩S0|
|T2∩S0| ≤ ζ and n − |u| ≤ c. For any r, r′ ∈ {0, 1}n,

denote r = r1 . . . rn and r′ = r′1 . . . r
′
n where ri, r

′
i ∈ {0, 1} for i ∈ [n]. Then

Pr
r←BCL(δ,b,n)

[r ∈ T1\T2]

Pr
r←BCL(δ,b,n)

[r ∈ T2]
=

Pr
r←BCL(δ,b,n)

[r ∈ (T1\T2) ∩ S0 | r ∈ SUFFIX(u)]

Pr
r←BCL(δ,b,n)

[r ∈ T2 ∩ S0 | r ∈ SUFFIX(u)]

=

∑
r′∈(T1\T2)∩S0

Pr
r←BCL(δ,b,n)

[r = r′ | r′ ∈ SUFFIX(u)]∑
r′∈T2∩S0

Pr
r←BCL(δ,b,n)

[r = r′ | r′ ∈ SUFFIX(u)]

Since the BCL source generates strings bit by bit, for any fixed r′ ∈ {0, 1}n,
Pr

r←BCL(δ,b,n)
[r = r′ | r′ ∈ SUFFIX(u)] = Pr

r←BCL(δ,b,n)
[r|u|+1 = r′|u|+1 | r1 . . . r|u|

= u] × . . . × Pr
r←BCL(δ,b,n)

[rn = r′n | r1 . . . r|u|r|u|+1 . . . rn−1 = ur′|u|+1 . . . r
′
n−1].

Therefore, Pr
r←BCL(δ,b,n)

[r ∈ T2] ≥ [ 12 (1− δ)]n−|u| · |T2 ∩ S0| and Pr
r←BCL(δ,b,n)

[r ∈

T1\T2] ≤ [ 12 (1 + δ)]n−|u|−b · |(T1 \ T2) ∩ S0|. Correspondingly,

Pr
r←BCL(δ,b,n)

[r ∈ T1\T2]

Pr
r←BCL(δ,b,n)

[r ∈ T2]
≤

[ 12 (1 + δ)]n−|u|−b

[ 12 (1− δ)]n−|u|
· |(T1 \ T2) ∩ S0|
|T2 ∩ S0|

≤ (
1 + δ

1− δ
)n−|u| · [ 1

2
(1 + δ)]−b · ζ ≤ (

1 + δ

1− δ
)c · [ 1

2
(1 + δ)]−b · ζ

2

Remark 3. When b = 0, Theorem 1 holds for SV sources, while Theorem 4.4
of [DLMV12] cannot be naturally extended to BCL sources, mainly because of
the “consecutive strings” requirement in Theorem 4.4 of [DLMV12]. Further, the
proof here is much simpler and more intuitive than that of [DLMV12].

4 Accurate and Private Mechanisms with BCL sources

In this section, we show an explicit construction of finite-precision accurate and
private mechanisms with BCL sources. Then we analyze differential privacy and
utility with BCL sources (and uniform source as a special case). An extra fruit is
the improvement of a Lemma in [DLMV12]. Finally, we show some comparisons
of our results with prior work.
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4.1 Explicit Construction

We construct an infinite-precision mechanism, called MCBCLCS
ε , then modify it to

a finite precision one, denoted as M
CBCLCS
ε . Recall that some truncation method

and arithmetic coding were shown in [DLMV12] in order to get a finite mechanis-
m, which leads to the non-intuitive notion of SV-consistent sampling. However, it
cannot be transplanted to BCL sources. In this section, we develop another trun-
cation technique. Other than choosing n

def
= log( 1

|I′
y(k)|

)+3 shown in [DLMV12],

here we propose n
def
= ⌊log 2

|Iy(k)| + log(2b + 1)⌋ as seen in Step 2 below. The
finite-precision mechanism is designed as follows.

Explicit Construction of the Mechanism:

Step 1 On input database D ∈ D, f ∈ F , the infinite-precision mechanism MCBCLCS
ε

computes f(D). Assume that f(D) = y. MCBCLCS
ε (D, f) outputs z ← 1

ε · ⌊ε ·
(y + Lap0, 1ε )⌉. Denote Zy as the output distribution of MCBCLCS

ε (D, f).

Step 2 Let sy(k)
def
= CDFLap

y, 1ε
(
k+ 1

2

ε ) for all k ∈ Z. Denote Iy(k) = [sy(k − 1), sy(k)).
Let s̄y(k − 1) (resp. s̄y(k)) be sy(k − 1) (resp. sy(k)) rounded to the first

n
def
= τ(y, k/ε)

def
= ⌊log 2

|Iy(k)|+log(2b+1)⌋ bits after the binary point, where
τ is a certain function. Denote Īy(k) = [s̄y(k − 1), s̄y(k)).

Step 3 Denote Zy as the output distribution of M
CBCLCS
ε (D, f), which approximates

Zy. We obtain distribution Zy in the following way. For all k ∈ Z, let n
def
=

⌊log 2
|Iy(k)| + log(2b + 1)⌋. Sample a sequence of bits r ∈ {0, 1}τ(y,k/ε) from

a distribution BCL(δ, b, τ(y, k/ε)) and output k
ε where k ∈ Z is the unique

integer such that REAL(r) ∈ Īy(k).

2

It is easy to prove that Iy−1(k) ∩ Iy(k) ̸= ∅. The set of points {sy(k)}k∈Z
partitions the interval [0, 1] into infinitely many intervals {Iy(k)

def
= [sy(k −

1), sy(k))}k∈Z. Similarly, the set of points {sy−1(k)}k∈Z partitions the interval

[0, 1] into infinitely many intervals {Iy−1(k)
def
= [sy−1(k − 1), sy−1(k))}k∈Z.

From the above construction, for all k ∈ Z, and any neighbouring databases
D1, D2, where f(D1) = y and f(D2) = y − 1, we have

Pr[M
CBCLCS
ε (D1, f) =

k
ε ]

Pr[M
CBCLCS
ε (D2, f) =

k
ε ]

=
Pr[Zy = k

ε ]

Pr[Zy−1 = k
ε ]

=
|Īy(k)|
|Īy−1(k)|

.

Remark 4. We need to make sure that n def
= max{τ(f(D1), k/ε), τ(f(D2), k/ε)}

is legal. Namely, it needs to be guaranteed that rounding the endpoints in Iy−1(k)
and Iy(k) with respect to n will neither cause intervals to “disappear” nor make
consecutive intervals “overlap”.

Remark 5. Note that we can view Iy−1(k) as having “shifted” Iy(k) slightly to
the right. Hence the truncation methods for the endpoints of Iy(k) and Iy−1(k)
are different in order to guarantee BCL-consistent sampling.



Achieving Differential Privacy with Bias-Control Limited Source 11

4.2 Concrete Results for Differential Privacy and Utility

In this section, we improve a useful lemma of [DLMV12] as a “warm up”. Then we
prove that our construction satisfies compact (ζ,O(1))-BCL-consistent sampling
and hence it is differentially private. We also show that it has “good enough”
utility.

Improvement of Lemma A.1. of [DLMV12] Lemma 2 is one core step
to achieve consistent sampling. Though it has essentially been proved by Dodis
et al. [DLMV12], there still exist some typos there and the upper bound is not
optimal. Hence, we modify the Lemma A.1 of [DLMV12] and get Lemma 2.
More concretely, recall that Lemma A.1. of [DLMV12] and its partial proof are
as follows.

Lemma 1. For all y, k ∈ Z, |I ′y(k)|/|Iy−1(k)| ≤ 6ε.

Proof.
...

Case 3: If sy(k− 1) < sy−1(k− 1) < 1
2 ≤ sy−1(k− 1), then |I′

y(k)|
|Iy−1(k)| ≤

1−e−ε

2(e−1) .
...

2

It should be noted that: (1) It is obvious that “sy−1(k−1) < 1
2 ≤ sy−1(k−1)”

never holds. (2) “ |I
′
y(k)|

|Iy−1(k)| ≤
1−e−ε

2(e−1) ” is wrong! Since −1 − 1
ε ≤ v < −1, without

loss of generality, assume that 1
ε is an even integer and v = −1− 1

2ε . Then

|I ′y(k)|
|Iy−1(k)|

=
eε − 1

2 · e−εv − e−2εv−ε−1 − eε
=

1− e−ε

2(e
1
2 − 1)

>
1− e−ε

2(e− 1)
,

which stands in contradiction to the inequality |I′
y(k)|

|Iy−1(k)| ≤
1−e−ε

2(e−1) .
A further analysis yields the following result:

Lemma 2. Denote I ′y(k)
def
= Iy(k) \ Iy−1(k) = [sy(k − 1), sy−1(k − 1)). For all

y, k ∈ Z and ε ∈ (0, 1), we have |I ′y(k)|/|Iy−1(k)| < e·ε and |I ′y(k)|/|Iy(k)| < e·ε.

Proof. In the following, we only prove that |I ′y(k)|/|Iy−1(k)| < e·ε. |I ′y(k)|/|Iy(k)| <
e · ε can be proven similarly. Note that if x < y, then CDFLap

y, 1ε
(x) < 1

2 ; otherwise,

CDFLap
y, 1ε

(x) ≥ 1
2 .

|I ′y(k)|
|Iy−1(k)|

=
sy−1(k − 1)− sy(k − 1)

sy−1(k)− sy−1(k − 1)
=

CDFLap
y−1, 1ε

(
k− 1

2

ε )− CDFLap
y, 1ε

(
k− 1

2

ε )

CDFLap
y−1, 1ε

(
k+ 1

2

ε )− CDFLap
y−1, 1ε

(
k− 1

2

ε )
.

We consider four cases:
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Case 1: If 1
2 ≤ sy(k − 1) < sy−1(k − 1) < sy−1(k), then |I′

y(k)|
|Iy−1(k)| =

eε+1−e
e−1 .

Case 2: If sy(k − 1) < 1
2 ≤ sy−1(k − 1) < sy−1(k), then

|I ′y(k)|
|Iy−1(k)|

=
1− 1

2 · e
−ε[

k− 1
2

ε −(y−1)] − 1
2 · e

ε(
k− 1

2
ε −y)

1− 1
2 · e

−ε[
k+1

2
ε −(y−1)] − {1− 1

2 · e
−ε[

k− 1
2

ε −(y−1)]}
.

For simplicity, denote v
def
=

k− 1
2

ε −y. By the assumption, we have that −1 ≤ v <
0. Correspondingly,

|I ′y(k)|
|Iy−1(k)|

=
1− 1

2e
−ε(v+1) − 1

2e
εv

−1
2e
−ε(v+1+ 1

ε ) + 1
2e
−ε(v+1)

=
−(eεv − 1)2 − e−ε + 1

−e−1−ε + e−ε
≤ eε+1 − e

e− 1
.

Case 3: If sy(k − 1) < sy−1(k − 1) < 1
2 ≤ sy−1(k), then

|I ′y(k)|
|Iy−1(k)|

=
1
2 · e

ε[
k− 1

2
ε −(y−1)] − 1

2 · e
ε(

k− 1
2

ε −y)

1− 1
2 · e

−ε[
k+1

2
ε −(y−1)] − 1

2 · e
ε[

k− 1
2

ε −(y−1)]
.

For simplicity, denote v
def
=

k− 1
2

ε − y. By the assumption, we have that −1− 1
ε ≤

v < −1. Correspondingly,

|I ′y(k)|
|Iy−1(k)|

=
1
2 · e

ε(v+1) − 1
2 · e

εv

1− 1
2 · e

−ε(v+ 1
ε+1) − 1

2 · eε(v+1)

=
eε − 1

−(e−εv− 1+ε
2 − e

1+ε
2 )2 + e1+ε − eε

<
eε − 1

−(e ε−1
2 − e

1+ε
2 )2 + e1+ε − eε

=
1− e−ε

1− e−1
.

Case 4: If sy(k − 1) < sy−1(k − 1) < sy−1(k) <
1
2 , then

|I ′y(k)|
|Iy−1(k)|

=
1
2 · e

ε[
k− 1

2
ε −(y−1)] − 1

2 · e
ε(

k− 1
2

ε −y)

1
2 · e

ε[
k+1

2
ε −(y−1)] − 1

2 · e
ε[

k− 1
2

ε −(y−1)]
=

1− e−ε

e− 1
.

For ε ∈ (0, 1), we have

1− e−ε

e− 1
<

1− e−ε

1− e−1
=

e− e1−ε

e− 1
<

eε · (e− e1−ε)

e− 1
=

eε+1 − e

e− 1
< e · ε.

The last inequality holds because (1) g1(x)
def
= ex+1−e

e−1 is a convex function;

(2) g2(x)
def
= e · x is a linear function; (3) g1(0) = g2(0) and g1(1) = g2(1). 2
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The upper bound of |I ′y(k)|/|Iy−1(k)| is 6ε according to [DLMV12] while
it is eε according to our proof. Hence, compared with Lemma 1 as shown in
[DLMV12], the result here is much better.

Remark 6. Let I ′′y (k)
def
= Iy−1(k) \ Iy(k) = [sy(k), sy−1(k)). Similarly, we obtain

that there exists a constant C s.t. |I
′′
y (k)|
|Iy(k)| < C ·ε for y, k ∈ Z and ε ∈ (0, 1). We’ll

omit this case in the remainder due to space limitations.

Analysis of Differential Privacy and Utility We will show that the con-
struction in Section 4.1 achieves “good enough” differential privacy and utility
with both BCL and uniform sources below.

Theorem 2. Mechanism M
CBCLCS
ε is a compact (2(2b+1)·e·ε+1, log( 2e·(2

b+1)
1−e−1 +

1))-BCL-consistent sampling mechanism for (δ, b)-BCL sources. Corresponding-
ly, M

CBCLCS
ε is (U , 2e · ε)-differentially private and (BCL(δ, b), ξ)-differentially

private with

ξ = (
1 + δ

1− δ
)
log(

2e·(2b+1)

1−e−1 +1) · (1 + δ

2
)−b · [2(2b + 1) · e · ε+ 1].

The high-level idea is as follows. Denote I ′y(k)
def
= Iy(k) \ Iy−1(k) = [sy(k −

1), sy−1(k− 1)). Recall that n def
= τ(y, k/ε) in Section 4.1. Assume that Y is any

distribution BCL(δ, b, n) and S0
def
= {r ∈ {0, 1}n | Pr[Y = r] ̸= 0}. By induction,

it can be easily seen that 2n−b ≤ |S0| ≤ 2n. Without loss of generality, assume
that n

def
= ⌊log 2

|Iy−1(k)| + log(2b + 1)⌋ in order to guarantee that n is legal (see
Remark 4 and the proof of Proposition 1). First of all, we show Lemma 3. Based
on it, we prove that for all y, k ∈ Z, |STR (Ī ′y(k), n) ∩ S0|/|STR (Īy−1(k), n) ∩
S0| ≤ 2(2b + 1) · e · ε + 1 (see Proposition 1 below) and |SUFFIX(u, n)| ≤
2e · (2b + 1)/(1 − e−1) + 1 (see Proposition 2 below), where u be the longest
common prefix of all strings in Ī

def
= Īy(k) ∪ Īy−1(k). Let T1 = STR (Īy(k), n)

and T2 = STR (Īy−1(k), n). Then T1 \T2 = STR (Ī ′y(k), n). Correspondingly, by
Definition 9 and Theorem 1, we obtain Theorem 2.

Proof. We start by proposing that rounding the endpoints of Iy−1(k) and Iy(k)
can neither alter the size of the intervals Iy(k) and Iy−1(k) by much nor enlarge
the size of I ′y(k) as follows.

Lemma 3. For all y, k ∈ Z, we have
(1) |Ī ′y(k)| ≤ |I ′y(k)|+ 2−n,

(2) |Iy−1(k)|+ 2−n ≥ |Īy−1(k)| ≥ |Iy−1(k)| − 2−n,
(3) |Iy(k)|+ 2−n ≥ |Īy(k)| ≥ |Iy(k)| − 2−n.

Proof. (1) Since sy−1(k − 1) ≥ s̄y−1(k − 1) and s̄y(k − 1) ≥ sy(k − 1)− 2−n, we
get |Ī ′y(k)| ≤ |I ′y(k)|+ 2−n.
(2) From s̄y−1(k) ≥ sy−1(k) − 2−n and s̄y−1(k − 1) ≤ sy−1(k − 1), |Īy−1(k)| ≥
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|Iy−1(k)| − 2−n follows. From sy−1(k) ≥ s̄y−1(k) and sy−1(k − 1) ≤ s̄y−1(k −
1) + 2−n, |Iy−1(k)| + 2−n ≥ |Īy−1(k)| follows. By combining them together, we
get Lemma 3 (2).
(3) Since s̄y(k) ≥ sy(k) − 2−n and s̄y(k − 1) ≤ sy(k − 1), we have |Īy(k)| ≥
|Iy(k)| − 2−n. Moreover, since s̄y(k) ≤ sy(k) and s̄y(k − 1) ≥ sy(k − 1) − 2−n,
we have |Īy(k)| ≤ |Iy(k)|+ 2−n. Hence, Lemma 3 (3) holds. 2

Proposition 1. For all y, k ∈ Z, denote n
def
= ⌊log 2

|Iy−1(k)| + log(2b + 1)⌋. Sup-

pose that Y is any distribution BCL(δ, b, n) and S0
def
= {r ∈ {0, 1}n | Pr[Y =

r] ̸= 0}. Then

|STR (Ī ′y(k), n) ∩ S0|
|STR (Īy−1(k), n) ∩ S0|

≤ 2(2b + 1) · e · ε+ 1.

Proof. We compute the upper bound of |STR (Ī ′y(k), n)∩S0|, and then compute
the lower bound of |STR (Īy−1(k), n) ∩ S0|.

(1) Consider |Ī ′y(k)| as the probability of sampling a sequence r from US0

such that r ∈ STR (Ī ′y(k), n) ∩ S0, where 2n−b ≤ |S0| ≤ 2n. Hence,

|Ī ′y(k)| =
∑

r∈STR(Ī′
y(k),n)∩S0

1

|S0|
≥

∑
r∈STR(Ī′

y(k),n)∩S0

1

2n
.

Therefore, by Lemmas 2 and 3, we get

|STR (Ī ′y(k), n) ∩ S0| ≤ 2n · |Ī ′y(k)|
≤ 2n · (|I ′y(k)|+ 2−n)

≤
2(2b + 1) · |I ′y(k)|
|Iy−1(k)|

+ 1

≤ 2(2b + 1) · e · ε+ 1.

(2) From |Īy−1(k)| =
∑

r∈STR (Īy−1(k),n)∩S0

1
|S0| ≤

∑
r∈STR (Īy−1(k),n)∩S0

( 12 )
n−b

and Lemma 3, we get

|STR (Īy−1(k), n) ∩ S0| ≥ 2n−b · |Īy−1(k)|
≥ 2n−b · (|Iy−1(k)| − 2−n)

> 2
log 1

|Iy−1(k)|+log(2b+1)−b · |Iy−1(k)| − 2−b

= 1.

Therefore, Proposition 1 follows. 2

Proposition 2. For all y, k ∈ Z, denote n
def
= ⌊log 2

|Iy−1(k)| + log(2b + 1)⌋. Let

u be the longest common prefix of all strings in Ī
def
= Īy(k) ∪ Īy−1(k). Then

|SUFFIX(u, n)| ≤ 2e · (2b + 1)

1− e−1
+ 1.
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Proof. Let u′ be the longest common prefix of all strings in I
def
= Iy(k)∪Iy−1(k).

Then we have |SUFFIX(u, n)| ≤ |SUFFIX(u′, n)|. We bound |SUFFIX(u, n)| by
bounding the number of n-bit strings to the left or right of Ī (depending on
where Īy(k) and Īy−1(k) are located in the interval [0,1]).

Now we calculate the size of the interval [sy(k − 1), 1] (resp. [0, sy−1(k)]),
which is an approximation of the size of [s̄y(k − 1), 1] (resp. [0, s̄y−1(k)]). Then
we can upper bound how many n-bit strings there are in the interval [s̄y(k−1), 1]
(resp. [0, s̄y−1(k)]). Let S

def
= [sy(k − 1), 1].

Recall that sy(k)
def
= CDFLap

y, 1ε
(
k+ 1

2

ε ) for all k ∈ Z and

CDFLap
y, 1ε

(x) =


1

2
· eε(x−y), if x < y;

1− 1

2
· e−ε(x−y), if x ≥ y.

Note that if x < y, then CDFLap
y, 1ε

(x) < 1
2 ; otherwise, CDFLap

y, 1ε
(x) ≥ 1

2 .
I ′y(k) = [sy(k − 1), sy−1(k − 1)) and I ′y+1(k) = [sy+1(k − 1), sy(k − 1)).

For simplicity, denote v
def
=

k− 1
2

ε − y. We consider four cases.
Case 1: Assume 1

2 ≤ sy+1(k − 1) < sy(k − 1) < sy−1(k − 1). Then v ≥ 1.

|I ′y(k)|
|I ′y+1(k)|

=
1− 1

2 · e
−ε[

k− 1
2

ε −(y−1)] − 1 + 1
2 · e

−ε(
k− 1

2
ε −y)

1− 1
2 · e

−ε(
k− 1

2
ε −y) − 1 + 1

2 · e
−ε[

k− 1
2

ε −(y+1)]

=
1

eε
.

Case 2: Assume sy+1(k − 1) < sy(k − 1) < sy−1(k − 1) < 1
2 . Then v < −1.

|I ′y(k)|
|I ′y+1(k)|

=
1
2 · e

ε[
k− 1

2
ε −(y−1)] − 1

2 · e
ε(

k− 1
2

ε −y)

1
2 · e

ε(
k− 1

2
ε −y) − 1

2 · e
ε[

k− 1
2

ε −(y+1)]

=
1
2 · e

ε(v+1) − 1
2 · e

εv

1
2 · eεv −

1
2 · eε(v−1)

= eε.

Case 3: Assume sy+1(k− 1) < 1
2 ≤ sy(k− 1) < sy−1(k− 1). Then 0 ≤ v < 1.

|I ′y(k)|
|I ′y+1(k)|

=
1− e−ε

−e−ε(eεv − eε)2 + eε − 1
=⇒ 1

eε
<
|I ′y(k)|
|I ′y+1(k)|

≤ 1.

Case 4: Assume sy+1(k−1) < sy(k−1) < 1
2 ≤ sy−1(k−1). Then −1 ≤ v < 0.

|I ′y(k)|
|I ′y+1(k)|

=
−(e−εv− ε

2 − e
ε
2 )2 + eε − 1

1− e−ε
=⇒ 1 <

|I ′y(k)|
|I ′y+1(k)|

≤ eε.

We only analyze Case 1, the other cases are analogous.
Since I ′y(k) and I ′y+1(k) are consecutive intervals for all y ∈ Z, we have

|S| =
y∑

j=−∞
|I ′j(k)| ≤

y∑
j=−∞

|I ′y(k)|(e−ε)y−j =
|I ′y(k)|
1− e−ε

≤
|I ′y(k)|

(1− 1
e ) · ε

.
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The last inequality holds because: (1) g1(x)
def
= 1 − e−x is a concave function;

(2) g2(x)
def
= (1− 1

e ) · x is a linear function; (3) g1(0) = g2(0) and g1(1) = g2(1).

Let S̄
def
= [s̄y(k − 1), 1]. Then |S̄| ≤ |S|+ 2−n ≤ |I′

y(k)|
(1− 1

e )·ε
+ 2−n.

On the other hand, |S̄| can be considered as the probability of sampling a se-
quence r from the uniform distribution Un such that r ∈ STR (S̄, n). Therefore,

|S̄| =
∑

r∈STR (S̄,n)

1

2n
= |STR (S̄, n)| · (1

2
)n.

|STR (S̄, n)| = 2n · |S̄|
≤ 2n · (|S|+ 2−n)

≤ 2n ·
|I ′y(k)|

(1− 1
e ) · ε

+ 1

=
|I ′y(k)|
|Iy−1(k)|

· 2(2
b + 1)

(1− 1
e ) · ε

+ 1

≤ 2e · (2b + 1)

1− e−1
+ 1.

Hence, |SUFFIX(u, n)| ≤ |STR (S̄, n)| ≤ 2e·(2b+1)
1−e−1 + 1. 2

Combining Theorem 1, Proposition 1, and Proposition 2, we get Theorem 2.
2

Now we show that the mechanism in Section 4.1 has “good enough” utility.
The proof is similar to that in [DLMV12]. Please see Appendix B for details.

Theorem 3. M
CBCLCS
ε has (BCL(δ, b), O( 1ε ·

1
1−δ ))-utility and (U , O( 1ε ))-utility.

Coupling Theorem 2 with the proof of Theorem 3, we obtain that

Theorem 4. There exists an explicit (BCL(δ, b), ξ)−differentially private and
(U , ρ)-accurate mechanism M for the Hammimg weight queries where

ρ >
2b·log(1+δ)−9

ξ
· [( 2

1 + δ
)b+1 · 2(2

b + 1)

(1 + δ)b
· (1 + δ

1− δ
)
log(

2(2b+1)e

1−e−1 +1) · 211

1− ( 1+δ
2 )2

· e]

>
2b·log(1+δ)−9

ξ
.

4.3 Comparisons to prior work

It is known that Dodis et al. [DLMV12] presented explicit accurate and private
mechanisms with SV source which is a special case of the BCL source. If we
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replace the truncation method in [DLMV12] with the one in Step 2 of Section
4.1, then the modified mechanism of [DLMV12] is accurate as well as differen-
tially private under some meaningful constrained parameters by letting b = 0 in
Theorem 4. Compared with the original result in [DLMV12], ours is better in
the sense that we have much simpler and more intuitive proof.

In addition, recall that Dodis and Yao [DY14] observed that

Theorem 5. If b ≥ log(ξρ)+9
log(1+δ) = Ω( log(ξρ)+1

δ ), then no (BCL(δ, b), ξ)−differentially
private and (U , ρ)-accurate mechanism for the Hammimg weight queries exists.

Therefore, assume that the mechanism M is (BCL(δ, b), ξ)−differentially pri-
vate and (U , ρ)-accurate for the Hammimg weight queries, then ρ > 2b·log(1+δ)−9

ξ .
It implies that it is possible to construct a (BCL(δ, b), ξ)−differentially pri-
vate and (U , ρ)-accurate mechanism for Hammimg weight queries, where ρ >
2b·log(1+δ)−9

ξ . In this paper, we have obtained explicit construction of such mech-
anisms and presented rigorous analysis. Thus we have made some progress.
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A The reason why “interval” is crucial in [DLMV12]

Recall some notions in the proof of Theorem 4.4 (Roughly speaking, Theorem
4.4 says that if M has (ζ̃, c̃)-SV-consistent sampling, then M is (SV(δ), ξ)-
differentially private) in [DLMV12] below.

Define v to be the longest prefix such that T1 \ T2 ⊆ SUFFIX(v, n). For-
mally,

v
def
= argmax{|v′| | v′ ∈ {0, 1}≤n and T1 \ T2 ⊆ SUFFIX(v′, n)}.
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Let I0
def
= SUFFIX(v0, n)∩(T1 \T2) and I1

def
= SUFFIX(v1, n)∩(T1 \T2).

– Define v0 as the longest prefix such that I0 ⊆ SUFFIX(v0, n). Namely,

v0
def
= argmax{|v′0| | v′0 ∈ {0, 1}≤n and I0 ⊆ SUFFIX(v′0, n)}.

– Define v1 as the longest prefix such that I1 ⊆ SUFFIX(v1, n). Namely,

v1
def
= argmax{|v′1| | v′1 ∈ {0, 1}≤n and I1 ⊆ SUFFIX(v′1, n)}.

Since the source SV(δ, n) generates consecutive integers in {0, 1}n,

|SUFFIX(v0, n)|/2 + |SUFFIX(v1, n)|/2 ≤ |I0|+ |I1| = |T1 \ T2|.

Based on the above result and some other analyses, Theorem 4.4 of [DLMV12]
holds. Thus the “interval” property is crucial in [DLMV12].

B Proof of Theorem 3

Proof. We only need to prove that for all neighboring D1, D2 ∈ D, all f ∈ F ,
and all BCL(δ, b) ∈ BCL(δ, b), Er←BCL(δ,b)[|M

CBCLCS
ε (D1, f ; r) − f(D1)|] and

Er←BCL(δ,b)[|M
CBCLCS
ε (D2, f ; r)−f(D2)|] are both upper bounded by O( 1ε ·

1
1−δ ).

Without loss of generality, assume that f(D1) = y and f(D2) = y − 1. Then

Er←BCL(δ,b)[|M
CBCLCS
ε (D1, f ; r)− y|]

=
∞∑

k=−∞

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D1, f ; r) =

k

ε
] · |k

ε
− y|.

Let n
def
= ⌊log 2

|Iy−1(k)| + log(2b + 1)⌋. Let a be the longest common prefix of

all strings in STR (Īy(k), n). Denote I0
def
= SUFFIX(a0, n) ∩ STR(Īy(k), n) and

I1
def
= SUFFIX(a1, n) ∩ STR(Īy(k), n). Thus, I0 ∪ I1 = STR(Īy(k), n). Hence

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D1, f ; r) =

k

ε
] ≤ (

1 + δ

2
)|a0|+(

1 + δ

2
)|a1| ≤ 2·(1 + δ

2
)
log( 1

|Īy(k)| ).

Similarly, we can conclude that

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D2, f ; r) =

k

ε
] ≤ 2 · (1 + δ

2
)
log( 1

|Īy−1(k)| ).

Claim. For all y, k ∈ Z, we have |Iy(k)| ≤ 1
2 · e

− 1
2 · (e− 1) · e−|k−εy|.
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Proof. We consider three cases.
Case 1: Assume that k− 1

2

ε − y ≥ 0 and k+ 1
2

ε − y ≥ 0. Then

|Iy(k)| = 1− 1

2
· e−ε(

k+1
2

ε −y) − [1− 1

2
· e−ε(

k− 1
2

ε −y)] =
1

2
· e− 1

2 · (e− 1) · e−|k−εy|.

Case 2: Assume that k− 1
2

ε − y < 0 and k+ 1
2

ε − y ≥ 0. From the fact that
1− 1

2x ≤
1
2 ·

1
x for all x > 0, we obtain

|Iy(k)| = 1− 1

2
· e−ε(

k+1
2

ε −y) − 1

2
· eε(

k− 1
2

ε −y) ≤ 1

2
· e− 1

2 · (e− 1) · e−|k−εy|.

Case 3: Assume that k− 1
2

ε − y < 0 and k+ 1
2

ε − y < 0. Then

|Iy(k)| =
1

2
· e− 1

2 · (e− 1) · e−|k−εy|.

2

By Lemma 3, |Īy(k)| ≤ |Iy(k)|+ 2−n = |Iy(k)|+ 1
2(2b+1)

|Iy−1(k)|. Hence,

log(1/|Īy(k)|) ≥ − log(
1

2
e−

1
2 (e− 1)(1 +

1

2(2b + 1)
)) + log(emin{|k−εy|,|k−εy+ε|})

≥ min{|k − εy|, |k − εy + ε|} ≥ |k − εy| − 1.

Similarly, log( 1
|Īy−1(k)|

) ≥ |k − εy| − 1. Therefore,

∞∑
k=−∞

Pr
r←BCL(δ,b)

[M
CBCLCS
ε (D1, f ; r) =

k

ε
] · |k

ε
− y|

≤
0∑

k=−∞

2 · (1 + δ

2
)|εy−k|−1 · |y − k

ε
|+

∞∑
k=1

2 · (1 + δ

2
)|k−εy|−1 · |k

ε
− y|

≤ 2

ε
· (1 + δ

2
)−1 · [

∞∑
k=1

(
1 + δ

2
)k−1 · k +

0∑
k=−∞

(
1 + δ

2
)−k · (−k + 1)]

= (
1 + δ

2
)−1 · 4

ε
· 1

1− ( 1+δ
2 )2

=
32

ε(1− δ)(1 + δ)(3 + δ)
= O(

1

ε
· 1

1− δ
).

Similarly,
∞∑

k=−∞
Pr

r←BCL(δ,b)
[M

CBCLCS
ε (D2, f ; r) = k

ε ] · |
k
ε − (y − 1)| ≤ O( 1ε ·

1
1−δ ).

When δ = 0 and b = 0, the BCL source degenerates into the uniform source.
Therefore, M

CBCLCS
ε has (BCL(δ, b), O( 1ε ·

1
1−δ ))-utility and (U , O( 1ε ))-utility.

2


