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Abstract. At CRYPTO 2012, Knellwolf and Khovratovich presented a differential
formulation of advanced meet-in-the-middle techniques for preimage attacks on hash
functions. They demonstrated the usefulness of their approach by significantly im-
proving the previously best known attacks on SHA-1 from CRYPTO 2009, increasing
the number of attacked rounds from a 48-round one-block pseudo-preimage without
padding and a 48-round two-block preimage without padding to a 57-round one-block
preimage without padding and a 57-round two-block preimage with padding, out of 80
rounds for the full function. In this work, we exploit further the differential view of
meet-in-the-middle techniques and generalize it to higher-order differentials. Despite
being an important technique dating from the mid-90’s, this is the first time higher-
order differentials have been applied to meet-in-the-middle preimages. We show that
doing so may lead to significant improvements to preimage attacks on hash functions
with a simple linear message expansion. We extend the number of attacked rounds on
SHA-1 to give a 62-round one-block preimage without padding, a 56-round one-block
preimage with padding, and a 62-round two-block preimage with padding. We also ap-
ply our framework to the more recent SHA-3 finalist BLAKE and its newer variant
BLAKE2, and give an attack for a 2.75-round preimage with padding, and a 7.5-round
pseudo-preimage on the compression function.

Keywords: Hash function, preimage attack, higher-order differential meet-in-the-
middle, SHA-1, BLAKE, BLAKE2

1 Introduction

A hash function is a cryptographic primitive that is used to compress any binary
string of arbitrary length to one of a fixed predetermined length: H : {0,1}* —
{0,1}™. Hash functions hold a special role among cryptographic primitives, as oper-
ating without a key. This makes the analysis of their security somewhat harder than
for most other primitives, but three notions are commonly used for that purpose:
collision resistance, means that it is hard for an attacker to find two distinct strings
(or messages) m and m’ such that H(m) = H(m’); second preimage resistance means
that it is hard given a predetermined message m to find a distinct message m’ such
that H(m) = H(m'); and preimage resistance means that it is hard given a target ¢
to find a message m such that H(m) = t. The hardness level associated with these
three notions depends on the length of the output of H, and is O(22) for collision
resistance, and O(2") for (second) preimage resistance. In addition to these notions,
it is also common to evaluate the security of hash function through the one of its
building blocks.
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In this work, we give a framework that can be used to attack the preimage resis-
tance of hash functions designed around certain principles. We show the usefulness
of our approach by improving the best known attacks on two popular hash functions:
the first is the NIST standard SHA-1 [15], which is a widely used function originally
designed by the NSA in the 1990’s; the second is the SHA-3 finalist BLAKE [3],
which along with its updated version BLAKE2 is increasingly being used in modern
applications.

Our starting point is the meet-in-the-middle technique, which was first used in
cryptography by Diffie and Hellman in 1977 to attack double-encryption [7]. Its use
for preimage attack is much more recent and is due to Aoki and Sasaki, who used it
as a framework to attack various hash functions, including for instance SHA-0 and
SHA-1 |[2|. The basic principle behind a meet-in-the-middle technique is to exploit
the fact that some value can be computed in two different ways involving different
parts of a secret, which can then be sampled independently of each other. In the case
of hash function cryptanalysis, there is no actual secret to consider, but a similar
technique can nonetheless be exploited in certain cases; we show in more details how
to do so in the preliminaries of §2.

At CRYPTO 2012, Knellwolf and Khovratovich introduced a differential formu-
lation of the meet-in-the-middle framework of Aoki and Sasaki, which they used to
improve the best attacks on SHA-1. One of the main interests of their approach is
that it simplifies the formulation of several advanced extensions of the meet-in-the-
middle technique, and thereby facilitates the search for attack parameters (in the case
of meet-in-the-middle attacks, this roughly corresponds to finding good partitions for
the ‘secret’).

In this work, we further exploit this differential formulation and generalize it
to use higher-order differentials, which were introduced in cryptography by Lai
in 1994 [12]. The essence of this technique is to consider ‘standard’ differential
cryptanalysis as exploiting properties of the first-order derivative of the function
one wishes to analyze; it is then somehow natural to generalize the idea and to
consider higher-order derivatives as well. Let us illustrate this with a small exam-
ple using XOR ‘@’ differences: consider a function f and assume the differential
Aunf 2 f(2)@f(xPDa) = A holds with a good probability; this is the same as saying
that the derivative of f in « is biased towards A. In particular, if f is linear, this
is equal to a constant value f(«), though this is obviously not true in general. Now
consider the value A, f(z)® Ay f(zdf) =f(r)df(x@a)Df(zdB)Df(xdad ),
which corresponds to taking the derivative of f twice, first in «, and then in 5. The
nice point about doing this is that this function may be more biased than A, f was,
for instance by being constant when A, f is linear. This process can be iterated
at will, each time decreasing the algebraic degree of the resulting function until it
reaches zero.

As higher-order differentials are obviously best formulated in differential form,
they combine neatly with the differential view of the framework of Knellwolf and
Khovratovich, whereas using such a technique independently of any differential for-
mulation would probably prove to be much more difficult. As a final motivation for
this generalization, we show a small application to the analysis of the MD4 hash
function [17]. This does not improve the best known preimage attacks [9,20], but
gives a good illustration of the potential of this technique.



Higher-order differentials for the compression function of MD/. The inverse of the
state update function inside the compression function of MD4 is of the form: ¢;_4 <~
(i K 5i) —P(qi—1,qi—2, ¢i—3) —mj, with @ a bitwise Boolean function, <« the oper-
ator for bitwise rotation, and the addition being done modulo 232. Four consecutive
steps of this inverse function can thus be written as:

q3 < (g7 K s7) — DP(g6,q5,q4) — M7

( ) —&( ) —
q2 + (g6 << s6) — D(q5,qa, q3) — M
@ < (g6 K s5) — D( ) —

D(q4,q3,92) — ms

qo < (qa K 54) — P(q3,q2, 1) — M4

If we consider order-2 differentials on mg and mz, with (additive, modulo 23?)
differences concentrated around the most significant bit, that is of the form xxxx----
(an ‘x’ denoting the presence of a difference, a ‘-’ its absence, and a ‘?” an unknown
condition), computing the state update from above on these differences results in a
state qo...3 with differences of the form:

Qs TPTPP-———- g3 —--------- q;:: equal to ¢3
g5 PP g5 TP q;: PP
qy: PP qy: TP qI: PP
qp: 7T q(*]: AR q(];: PPl
For diff. on m7 For diff. on mg For diff. on mg & mr

Thus there is no differences on the value qg; — ¢35 — g3 + g3, nor on q; — ¢ —q +

q2 as can be seen from a simple computation. Hence one obtains a state with no
differences on two out of the four state words with probability one; the differences on
the remaining words also have a high probability. This good differential behaviour
can then be exploited in a later attack!.

Previous and new results on SHA-1 and BLAKE(2). The previous best
preimage attacks on SHA-1 are due to Knellwolf and Khovratovich [11]. In their
paper, they attack reduced versions of the function up to 52 steps for one-block
preimages with padding, 57 steps for one-block preimages without padding, and 60
steps for one-block pseudo-preimages with padding. The latter two attacks can be
combined to give 57 steps two-block preimages with padding. In this work, we present
one-block preimages with padding up to 56 steps, one-block preimages without padding
up to 62 steps, one-block pseudo preimages with padding up to 64 steps, resulting in
two-block preimages with padding up to 62 steps.

The previous best known result for the BLAKE hash function, as far as preimages
are concerned, is a 2.5-round attack by Li and Xu [13]. In a compression function
model, the previous best attack reached 4 rounds [19]. For BLAKE2, the only known
result is a pseudo-preimage attack on the full compression function targeting a small
class of weak preimages of a certain form [8|. In this paper, we give a 2.75-round (resp.
3-round) preimage attack on BLAKE-512 and BLAKE2b, and a 7.5-round (resp.
6.75) pseudo-preimage on the compression functions of the larger (resp. smaller)
variants of BLAKE and BLAKE2

We give a summary of these results in Table 1.

! In the very case of MD4, one can also use very good local collisions from order-1 message dif-
ferences, and higher-order differentials do not typically outperform these; we just gave them for
illustration



Table 1. Existing and new results on SHA-1 and BLAKE(2) (the complexity is given in base-2
logarithm).

Function # blocks # rounds complexity ref.
1 52 158.4 [11]
1 52 156.7 84.3
1 56 159.4 §4.3
SHA-L 2 57 158.8 [11]
2 58 157.9 §4.4
2 62 159.3 §4.4
1 57 158.7 [11]
SHA-1, without padding 1 58 157.4 §4.2
1 62 159 §4.2
1 60 157.4 [11]
SHA-1, pseudo-preimage 1 61 156.4 84.4
1 64 158.7 §4.4
1 25 481 [13]
BLAKE-512 1 2.75 510.3 §5.3
BLAKE2b 1 2.75 511 §5.3
BLAKE-256 c.f., pseudo-preimage 1 6.75 253.9 85.2
BLAKE-512 c.f., pseudo-preimage 1 7.5 510.3 §5.2
BLAKE2s c.f., pseudo-preimage 1 6.75 253.8 85.2
. . 1 12 0 (weak class) 8]
BLAKEZ2b c.f., pseudo-preimage 1 75 510.3 §5.2

2 Meet-in-The-Middle Attacks and the Differential Framework
from CRYPTO 2012

As a preliminary, we give a description of the meet-in-the-middle framework for
preimage attacks on hash functions, and in particular of the differential formulation
of Knellwolf and Khovratovich from CRYPTO 2012 [11].

The relevance of meet-in-the-middle for preimage attacks comes from the fact
that many hash functions are built from a compression function which is an ad hoc
block cipher used in one of the PGV modes [16]. One such popular mode is the so-
called Davies-Meyer, where a compression function h : {0,1}" x {0,1}" — {0,1}¥
compressing a chaining value ¢ with a message m to form the updated chaining value
d = h(c,m) is defined as h(c,m) = f(m,c) +c, with f : {0,1}" x {0,1}* — {0,1}"
a block cipher of key-length and message-length n and v respectively.

Given such a compression function, the problem of finding a preimage of t for h
is equivalent to finding a key m for f such that f(m,p) = ¢ for a pair (p,c), with
¢ = t — p. Additional constraints can also be put on p, such as prescribing it to a
fixed initialization value iv.

In its most basic form, a meet-in-the-middle attack can speed-up the search for a
preimage if the block cipher f can equivalently be described as the composition fz o f;
of two block ciphers f; : K1 x{0,1}¥ — {0,1}" and f2 : K2 x {0,1}" — {0,1}" with
independent key spaces K1, Ko C {0, 1}". Indeed, if this is the case, an attacker can
select a subset {kl,i =1...N;} (resp. {k:?,j = 1...Na}) of keys of K; (resp. K2),



which together suggest N £ N; - Ny candidate keys kiljz £ (Kl k:JZ) for f by setting
f(kz‘lj2a )= fg(kJQ7 ) o fi (kzlv )

Since the two sets {f; (ki,p),i = 1...N;} and {fg_l(k:]z,c),j =1...N3} can be
computed independently, the complexity of testing f(kiljz, p) = ¢ for N keys is only
of O(max(Ni, N2)) time and O(min(Ni, N2)) memory, which is less than N and can
be as low as VN when Nj = Ns.

2.1 Formalizing meet-in-the-middle attacks with related-key
differentials

Let us denote by («, ) N ~ the fact that (Pr) [f(x Da,ydB) =f(r,y) ® ’y] =,
p x,Y

meaning that («, ) is a related-key differential for f that holds with probability p.
The goal of an attacker is now to find two linear sub-spaces D; and Dy of {0,1}™
such that:

DiNDy = {O} (1)

Vo, € Dy 3 Ay € {0,1}Y s.t. (61,0) fT> A 2)
—1

Voo € Dy 4 Ay € {O, 1}1) s.t. (52,0) fQT> As. (3)

Let di and dy be the dimension of D; and Dy respectively. Then for a set M of
messages (1; € {0,1}™ (or more precisely the quotient space of {0,1}™ by Dy @ Ds),
one can define #M distinct sets p; © Dy @ Dy of dimension dy + dy (and size 241+92),
which can be tested for a preimage with a complexity of only O(max(29,2%)) time
and O(min(29,292)) memory. We recall the procedure to do so in Alg. 1.

Algorithm 1: Testing p @ Dy @ D3 for a preimage [11]
Input: Di,D, C {0,1}", p€{0,1}™, p, c
Output: A preimage of ¢+ p if there is one in @ D1 @ D2, L otherwise
Data: Two lists L1, Ly indexed by d2, d1 respectively
1 forall the §3 € Ds do
2 | Li[d2] = fi(n @ 82, p) @ Ao
3 forall the §; € D; do
| Lo[bi] <+ fo ' (n @ 61,0) & Mu
5 forall the (01,92) € D1 x D2 do
L lf L1[52] = L2[51] then

L return u d 61 B 2

8 return |

Analysis of Alg. 1. For the sake of simplicity we assume that d; = dy £ d < 5
The running time of every loop of Alg. 1 is therefore O(2%) (assuming efficient data
structures and equality testing for the lists), and O(2?) memory is necessary for
storing Ly and L. It is also clear that if the condition Lj[d2] = Lo[d1] is met, then
(@6 ®d is a preimage of c+p. Indeed, this translates to fi (u®de, p)DAs = fo L (u®
01,¢) ® Aq, and using the differential properties of D; and Dy for f; and fz, we have
that f; (u®1®d2,p) = f1 (u®d2,p)® A1 and foH (uBF1 D2, c) = fo~ H(uDd1, c) D As.
Hence, f1 (u® 61 ®d2,p) = fo L (p® 61 ®52), and f (@ 6y ® 62, p) = c. This algorithm



therefore allows to search through 22¢ candidate preimages with a complexity of
0O(29), and thus gives a speed-up of 2¢. The complexity of a full attack is hence
0(2v~9).

Comparison with basic meet-in-the-middle. When setting Ay = Ay = 0,
this differential variant of the meet-in-the-middle technique becomes a special case
of the general formulation of the basic technique given above: the key spaces Ky
and /Cy now possess a structure of affine spaces. The advantage of this restriction
comes from the fact that it gives a practical way of searching for the key spaces, as
differential path search is a well-studied area of symmetric cryptanalysis. Another
major advantage is that it makes the formulation of several extensions to this basic
attack very natural, without compromising the ease of the search for the key spaces.
One such immediate extension is obviously to consider non-zero values for A; and A,.
As noted by Knellwolf and Khovratovich, this already corresponds to an advanced
technique of indirect matching in the original framework of Aoki and Sasaki. Further
extensions are detailed next.

2.2 Probabilistic truncated differential meet-in-the-middle

There are two natural ways to generalize the differential formulation of the meet-
in-the-middle, which both correspond to relaxing one of the conditions from above.
First, one can consider differentials of probability less than one (though a high prob-
ability is still usually needed); second, one can consider truncated differentials by
using an equivalence relation ‘=’ instead of the equality (usually taken as a trun-
cated equality: a = b[m] <& a Am = bAm for a,b,m € {0,1}V), denoting by
(a, B) J/;} ~ the fact that Pr [f(x Ga,y®p) = f(z,y) ® 7] = p. Hence equation 2

(z,y)
becomes:

Vo, € Dy 3 Ay € 0,1} st. (51,0) & Ay, (4)
p1

for some probability p; and relation =, and similarly for equation 3.
Again, these generalizations correspond to advanced techniques of Aoki and
Sasaki’s framework, which find here a concise and efficient description.

The only change to Alg. 1 needed to accommodate these extensions is to replace
the equality by the appropriate equivalence relation on line 6. However, the fact that
this equivalence holds no longer ensures that p @ §, € d2 is a preimage, which implies
an increased complexity: firstly, even when it is a preimage, the relation on line 6
might not hold with probability 1 — p1pe2, meaning that on average one needs to test
1/p1p2 times more candidates in order to account for the false negatives; secondly,
if we denote by s the average size of the equivalence classes under = (when using
truncation as above, this is equal to 2¥~" with r the Hamming weight of m), then on
average one needs to check s potential preimages as returned on line 6 before finding
a valid one, in order to account for the false positives. The total complexity of an
attack with the modified algorithm is therefore O((2"~% 4+ s)/p1p2), where p1 and py
are the respective average probabilities for p; and po over the spaces D; and Ds.

2.3 Splice-and-cut, initial structures and bicliques

These two techniques are older than the framework of [11], but are fully compatible
with its differential approach.



Splice-and-cut was introduced by Aoki and Sasaki in 2008 [1]. Its idea is to use
the feedforward of the compression function so as to be able to start the computation
of f; and f> ™! not from p and ¢ but from an intermediate value from the middle of the
computation of f. If one sets f = fs o fo o f; and calls s the intermediate value fgil(c)
(or equivalently fs o f;(p)), an attacker may now sample the functions f;(t — f3(s))
and f» 71(s) on their respective (as always independent) key-spaces when searching a
preimage for ¢. By giving more possible choices for the decomposition of f, one can
hope for better attacks. This however comes at the cost that they are now pseudo-
preimage attacks, as one does not control the value of the IV anymore which is now
equal to t — f3(s).

A possible improvement to a splice-and-cut decomposition is the use of initial
structures [18], which were later reformulated as bicliques [10]. Instead of starting
the computations in the middle from an intermediate value s, the idea is now to start
from a set of multiple values possessing a special structure that spans several rounds.
If the cost of constructing such sets is negligible w.r.t the rest of the computations, the
rounds spanned by the structure actually come for free. In more details, a biclique,
say for fs in the above decomposition of f, is a set {m, D1, Da,Q1,Q2} where m
is a message, D1 and Dy are linear spaces of dimension d, and @ (resp. Q2) is
a list of 2¢ values indexed by the differences d; of Dy (resp. D) s.t. ¥(61,82) €
D1 x Dy Q2[02] = fs(m @ §1 @ d2,Q1[01]). This allows to search the message space
m @ D1 @ Dy in O(2%) with a meet-in-the-middle approach that does not need any
call to fg, essentially bypassing this part of the decomposition.

3 Higher-Order Differential Meet-in-The-Middle

We now describe how to modify the framework of §2 to use higher-order differentials.
Let us denote by ({a1,a2},{51,02}) N ~ the fact that (Pr)[f(x Dar Do,y ®
P )y

B1®B2) ®flz®a,y®B)® flxdary®fB) = f(z,y) ®v] = p , meaning
that ({a1, a2}, {B1,52}) is a related-key order-2 differential for f that holds with
probability p.

Similarly as in §2, the goal of the attacker is to find four linear subspaces
Di1,D12,D21,Da of {0,1}™ in direct sum (cf. equation (5)) such that:

D11 D12 P D2a P D2 (5)

V(5171,(51,2 S D171 X DLQ 3 Al c {0, l}v s.t. ({(5171,(51’2}, {0,0}) fT1> Al (6)
1

V(5271, 52’2 € D271 X D272 d A4, € {O, 1}1) s.t. ({52,1, (5272}, {0, 0}) sz As. (7)

Then M & 611 @ 012 @ 02,1 @ 02,2 is a preimage of ¢+ p if and only if f; (u @ 011 &
(51’2 D 5271 (&) (52,2, C) = fgfl(,u D (5171 (&) 51,2 D (52’1 D 5272,])) which is equivalent by the
equations (6) and (7) to the equality:

fi(p@ o1 @21 ®b22,p) D fo N ® 62,1, D511 ® 61,2,¢)D
Ji(p@d2® 21 @22, p)B = fo H 1 ® 69,0, D11 ® d1,2,0)D (8)
f1(p@dan @ d22,p) & 4y fo @611 @ d12,¢) © Ao

We denote by d; ; the dimension of the sub-space D; ; for i,j = 1,2. Then for a
set M of messages p € {0,1}™) one can define #M affine sub-sets p; ® D11 & D1 2®

7



Dy @ Dgo of dimension dy 1 + di2 + d21 + da2 (since the sub-spaces D;; are in
direct sum by hypothesis), which can be tested for a preimage using (8). This can
be done efficiently by a modification of Alg. 1 into the following Alg. 2.

Algorithm 2: Testing @ D11 @ D12 ® Do 1 @ D for a preimage
Input: Di1,D12,D21,D22 C {0,1}™, € {0,1}™, p, c
Output: A preimage of ¢+ p if there is one in @ D1,1 @ D1,2,®D2,1 @ D22, L otherwise
Data: Six lists:
L1 1 indexed by 81,2, 82,1, 02,2
L1 > indexed by 61,1, 82,1, 02,2
Lo,1 indexed by 61.1,81,2, 62,2
Ls 5 indexed by 81,1, 01,2,02,1
L, indexed by 82,2, 02,1
LQ indexed by (51,1, 51,2
1 forall the §1,2,02,1,022 € D12 X D21 X D22 do
2 L L1’1[51,2, (52,1, (52,2] < fe_l(M @ 61,2 ® 62,1 ©® 62,27 C) 5
3 forall the 011,021,622 € D1,1 X D21 X D22 do
| L12[01,1,62,1,02,0] <= o (1 @ 611 B 02,1 @ 62,2, 0) ;
5 forall the 61,1,01,2,02,2 € D11 X D12 X Da2x do
L Lo1[61,1,01,2,02,2] = f1(n® 611 B O1,2D 2,2,D) ;

7 forall the (51,17(51,2752,1 S D171 X Dl,z X Dg’l do
8 L Ly 2[61,1,01,2,021] <= fi(n® 61,1 B 01,2 D 2,1, D) ;

9 forall the 611,012 € D13 x D12 do
10 L Lo[611,012] < fo " (u ® 611 @ b1,2,¢) D A ;

11 forall the d2,1,822 € D21 X D22 do
12 L L1[02,1,02,2] = f1 (i @ 62,1 @ d2,2,p) ® As

13 forall the 51,17(51,27(52,1,52,2 S D171 X Dl}g X D271 X D212 do
14 if L1,1[01,2,02,1,02,2] ® L1,2[01,1, 02,1, 02,2] ® L1[02,1,02,2) =

L31[61,1,01,2,02,2) ® L2,2[01,1,01,2,02,1] ® L2[d1,1, 61,2] then
15 L return p @ 61,1 @ 61,2 D d2,1 D 2,2

16 return L

Analysis of Alg. 2. If we denote by I and I5 the cost of evaluating of f; and
f271 and Iaien the cost of the test on line 14, then the algorithm allows to test
2d1,1+d1,2+d2,1+d2,2 messages with a Complexity of 2d1,2+d2,1+d2,2 [‘2+2d1,1+d2,1+d2,2 I+
od1,1+d1 2+d2 1 I 4 9d1,1+d124d2 I 42d1,1+d12 I _|_2d2,1+d2,2pl + I'mateh. The algorithm
must then be run 27~ (d1+diatd214d22) times in order to test 2" messages. In the
special case where all the linear spaces have the same dimension d and if we consider
that Iaten is negligible with respect to the total complexity, the total complexity of
an attack is then of : 27744. (234, (217 +-21%) +22¢ . (I + 1)) = 2n— 4+ on=2d —
O(2"= %) where I' is the cost of the evaluation of the total compression function f.
We think that the assumption on the cost of I tch to be reasonable given the small
size of d in actual attacks and the fact that performing a single match is much faster
than computing f.

The factor that is gained from a brute-force search of complexity O(2") is hence of
24 which is the same as for Alg. 1. However, one now needs four spaces of differences
of size 2% instead of only two, which might look like a setback. Indeed the real interest
of this method does not lie in a simpler attack but in the fact that using higher-order



differentials may now allow to attack functions for which no good-enough order-1
differentials are available.

Using probabilistic truncated differentials. Similarly as in §2, Alg. 2 can be
modified in order to use probabilistic truncated differentials instead of probability-1
differentials on the full state. The changes to the algorithm and the complexity eval-
uation are identical to the ones described in §2.2, which we refer to for a description.

4 Applications to SHA-1

4.1 Description of SHA-1

SHA-1 is an NSA-designed hash function standardized by the NIST [15]. It combines
a compression function which is a block cipher with 512-bit keys and 160-bit messages
used in Davies-Meyer mode with a Merkle-Damgard mode of operation [14, Chap. 9].
Thus, the initial vector (IV) as well as the final hash are 160-bit values, and messages
are processed in 512-bit blocks. The underlying block cipher of the compression
function can be described as follows: let us denote by my, ... m15 the 512-bit key as
16 32-bit words. The expanded key wy, ... wrg is defined as:

S ifi <16
| (wims @ wi—g D wi—14 D wi—16) < 1 otherwise.

Then, if we denote by a, b, ¢, d, e a 160-bit state made of 5 32-bit words and initialized
with the plaintext, the ciphertext is the value held in this state after iterating the
following procedure (parametered by the round number 7) 80 times:

t (a K 5)+ (pi+20(b, c, d)+6+ki+20+wi
e+id

d<+ic

c+b< 30

b+ia

a <t

where ‘+’ denotes the integer division, @ 3 are four bitwise Boolean functions, and
ko..3 are four constants (we refer to [15] for their definition).

Importantly, before being hashed, a message is always padded with at least 65
bits, made of a ‘1’ bit, a (possibly zero) number of ‘0’ bits, and the length of the
message in bits as a 64-bit integer. This padding places an additional constraint on
the attacker as it means that even a preimage for the compression function with a
valid IV is not necessarily a preimage for the hash function.

4.2 One-block preimages without padding

We apply the framework of §3 to mount attacks on SHA-1 for one-block preimages
without padding. These are rather direct applications of the framework, the only
difference being the fact that we use sets of differentials instead of linear spaces.
This has no impact on Alg. 2, but makes the description of the attack parameters
less compact.

As was noted in [11], the message expansion of SHA-1 being linear, it is possible
to attack 15 steps both in the forward and backward direction (for a total of 30)



without advanced matching techniques: it is sufficient to use a message difference
in the kernel of the 15 first steps of the message expansion. When applying our
framework to attack more steps (say 55 to 62), we have observed experimentally
that splitting the forward and backward parts around steps 22 to 27 seems to give
the best results. A similar behaviour was observed by Knellwolf and Khovratovich
in their attacks, and this can be explained by the fact that the SHA-1 step function
has a somewhat weaker diffusion when computed backward compared to forward.

We use Alg. 3 to construct a suitable set of differences in the preparation of an
attack. This algorithm was run on input differences of low Hamming weight; these
are kept only when they result in output differences with truncation masks that are
long enough and with good overall probabilities. The sampling parameter () that
we used was 21°; the threshold value ¢ was subjected to a tradeoff: the larger it is,
the less bits are chosen in the truncation mask, but the better the probability of the
resulting differential. In practice, we used values between 2 and 5, depending on the
differential considered.

Algorithm 3: Computing a suitable output difference for a given input differ-

C€11Ce
Input: A chunk f, of the compression function, d;1,d;2 € {0,1}™, a threshold value ¢, a
sample size @), an internal state c.

Output: An output difference S , and a mask Ts for the differential ((d;,1,0:,2), O)i’» S

Data: An array d of n counters initially set to 0.

for ¢ =0 to Q do

Choose p € {0,1}™ at random ;

A fi(pr @i @di2,0) Df (D i1, ¢) ®f;(uDdi2, ¢) @ fi(c);
fori=0ton—1do

L if the & bit of A is 1 then

[< <, " NV R VR

| di] = d[i] + 1;
fori=0ton—1do
if d[i] >t then
L Set the i-th bit of the output difference S to 1;

w

Once input and output differences have been chosen, we use an adapted version
of Alg. 2 from [11] given in Alg. 4 to compute suitable truncation masks.

The choice of the size of the truncation mask d in this algorithm offers a tradeoff
between the probability one can hope to achieve for the resulting truncated dif-
ferential and how efficient a filtering of “bad” messages it will offer. In our ap-
plications to SHA-1, we chose masks of size about min(logy(|D1.1|),logs(|D12|),
logy(]D2,1]),logs(|D2,2])), which is consistent with taking masks of size the dimension
of the affine spaces as is done in [11].

We similarly adapt Alg. 3 from [11] as Alg. 5 in order to estimate the average
false negative probability associated with the final truncated differential.

We conclude this section by giving the statistics for the best attacks that we found
for various reduced versions of SHA-1 in Table 2, the highest number of attacked
rounds being 62. Because the difference spaces are no longer affine, they do not lend
themselves to a compact description and their size is not necessarily a power of 2
anymore. The ones we use do not have many elements, however, which makes them
easy to enumerate.
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Algorithm 4: Find truncation mask T for matching

Input: Di1,D1,2,D21,D22 C {0,1}™, a sample size @, a mask size d.
Output: A truncation mask T € {0,1}" of Hamming weight d.

Data: An array k of n counters initially set to 0.

for ¢ =0 to Q do

Choose p € {0,1}™ at random ;

¢ fl, i)

Choose (6171,61’2762,1762,2) S D1,1 X D1,2 X Dzyl X D2,2 at random;
A fi(p®or1 ®01,2,¢) Bfi(p®dr,1,0) B f1(nddie2,c);

A A (D021 D22,0) Do (1@ S2,2,¢) D fo (1D S22, ¢);
for i=0ton—1do

L if the @ bit of A is 1 then

© 0 N O s W N

| K] k[i] + 15

10 Set the d bits of lowest counter value in k to 1 in T.

Algorithm 5: Estimate the average false negative probability
Input: Di1,D12,D21,D22 C {0,1}™,T € {0,1}", a sample size Q
Output: Average false negative probability c.

Data: A counter k initially set to 0.

for g =0 to Q do

Choose i € {0,1}™ at random ;

¢ f(py i0);

Choose (81,1,01,2,02,1,02,2) € D1,1 X D12 X D21 X D2 2 at random;
A fi(p®d1,1 Bo1,2,¢) D f1(p@o1,1,¢) B f1(p® 2, 0);

A+ A ®f271(u @ 02,1 @ 02,2, ¢) @fzfl(u @ 02,2,¢) @fzfl(u @ 02,2, ¢);
fori=0ton—1do

L if A#7 0" then

© O N O U W N =

| k—k+1;

10 return k/Q

4.3 One-block preimages with padding

If we want the message to be properly padded, 65 out of the 512 bits of the last
message blocks need to be fixed according to the padding rules, and this naturally
restricts the positions of where one can now use message differences. This has in
particular an adverse effect on the differences in the backward step, which Hamming
weight increases because of some features of SHA-1’s message expansion algorithm.
The overall process of finding attack parameters is otherwise unchanged from the
non-padded case. We give statistics for the best attacks that we found in Table 3.
One will note that the highest number of attacked rounds dropped from 62 to 56
when compared to Table 2.

4.4 Two-block preimages with padding

We can increase the number of rounds for which we can find a preimage with a
properly padded message at the cost of using a slightly longer message of two blocks:
if we are able to find one-block pseudo preimages with padding on enough rounds, we
can then use the one-block preimage without padding to bridge the former to the I'V.
Indeed, in a pseudo-preimage setting, the additional freedom degrees gained from
removing any constraint on the IV more than compensate for the ones added by the
padding. We first describe how to compute such pseudo-preimages.

11



Table 2. One block preimage without padding. IV is the number of attacked steps, Split is the
separation step between the forward and the backward chunk, d; ; is the log, of the cardinal of D; ;
and « is the estimate for the false negative probability. The complexity is computed as described
in §3.

N Spl’it d1,1 d172 d2,1 d272 (0% Complexity

58 25 7.6 9.0 9.2 9.0 0.73 157.4
59 25 7.6 9.0 6.7 6.7 0.69 157.7
60 26 6.5 6.0 6.7 6.0 0.60 158.0
61 27 4.7 4.8 5.7 5.8 0.51 158.5
62 27 4.7 4.8 4.3 4.6 0.63 159.0

Table 3. One block preimage with padding. N is the number of attacked steps, Split is the separation
step between the forward and the backward chunk, d; ; is the log, of the cardinal of D; ; and « is
the estimation for false negative probability. The complexity is computed as described in §3.

N Split d1,1 d1’2 d271 dg’z « Complexity

51 23 8.7 8.7 87 87 0.72 155.6
52 23 9.1 9.1 82 8.2 0.61 156.7
53 23 9.1 9.1 3.5 3.5 0.61 157.7
55 25 6.5 6.5 5.9 5.7 0.52 158.2
56 25 6 6.2 72 72 06 159.4

One-block pseudo-preimages. If we relax the conditions on the IV and do not
impose anymore that it is fixed to the one of the specifications, it becomes possible to
use a splice-and-cut decomposition of the function, as well as short (properly padded)
bicliques.

The (reduced) compression function of SHA-1 f is now decomposed into three
smaller functions as f = fa' o f; o fs o f2°, f3 being the rounds covered by the biclique.
The function f; covers the steps sq to e, fo = fo! o f® covers ss to e + 1 through the
feedforward, and fs covers so + 1 to s1 — 1, as shown in Figure 1.

S, 252+1 s1is e: e+l

Fig. 1. A splice-and-cut decomposition with biclique.

Finding the parameters is done in the exact same way as for the one-block preim-
age attacks. Since the bicliques only cover 7 steps, one can generate many of them
from a single one by modifying some of the remaining message words outside of the
biclique proper. Therefore, the amortized cost of their construction is small and con-
sidered negligible w.r.t. the rest of the attack. The resulting attacks are shown in
Table. 4.
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Table 4. One block pseudo-preimage with padding. N is the number of attacked steps, d;,; is the
log, of the cardinal of the set D12 and « is the estimation for false negative probability. The various
splits are labeled as in Figure 1. The complexity is computed as described in §3.

N S1 € S2 d171 dl,z d271 d2,2 « Complexity

61 274920 7.0 7.0 7.5 7.5 0.56 156.4
62 275020 5.8 5.7 7.2 7.2 0.57 157.0
63 275020 6.7 6.7 7.7 7.7 0.57 157.6
64 275020 3 3 4.5 4.7 0.69 158.7

Complexity of the two-block attacks. Using both one-block attacks, it is simple
to mount a two-block attack at the combined cost of each of them. For a given target
¢, one:

1. uses a properly-padded pseudo-preimage attack, yielding the second message
block pge and an IV v,
2. uses a non-padded preimage attack with target ', yielding a first message block

2.

From the Merkle-Damgard structure of SHA-1, it follows that the two-block message
(p1, p2) is a preimage of c.

For attacks up to 60 rounds, we can use the pseudo-preimage attacks of [11];
for 61 and 62 rounds, we use the ones of this section. This results in attacks of
complexities as shown in Table 5.

Table 5. Two-block preimage attacks on SHA-1 reduced to N steps. The pseudo-preimage attacks
followed by ‘x’ come from [11].

N Second block complexity = First block complexity =~ Total Complexity

58 156.3* 157.4 157.9
59 156.7* 157.7 158.3
60 157.5% 158.0 158.7
61 156.4 158.5 158.8
62 157.0 159.0 159.3

5 Applications to BLAKE and BLAKE2

5.1 Description of BLAKE

The hash function BLAKE [3] was a candidate and one of the five finalists of the
SHA-3 competition, that ended in November 2012. Although it was not selected as
the winner, no weaknesses were found in BLAKE and it is accepted as being a very
secure and efficient hash function [6]. More recently, a faster variant BLAKE2 has
been designed [5]; both functions come in two variants with a chaining value of 256
bits (BLAKE-256 and BLAKE2s) and 512 bits (BLAKE-512 and BLAKE2b). The
design of BLAKE is somewhat similar to the one of SHA-1, as being built around
a compression function in Merkle-Damgard mode. It does however feature a few
notable differences: first, the compression function takes two additional inputs to the
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message m and the previous chaining value ¢, in the form of a user-defined salt s and a
block counter ¢. The new chaining value ¢ is thus defined as ¢/ = h(c,m, s, t); second,
the compression function follows the local wide-pipe paradigm which was introduced
by BLAKE’s predecessor LAKE [4], meaning that the state size of the compression
function h is larger than the size of the chaining value c. In particular, this implies
that ¢ is first expanded to form the input to A, and that the output of the latter is
compressed in order to give ¢’. This feature has some important consequences when
analyzing the function and makes some types of attacks harder to perform, as we
will see later. We describe BLAKE-512 in more details, and refer to the specification
document [3| for a full description of the function and of its variants. Similarly, the
changes from BLAKE to BLAKE2 having no impact on our overall attack strategy,
we refer the reader to the specifications of BLAKE2 for more details [5].

Initialization and finalization of the compression function. The state of the
compression function is logically seen as a 4 x 4 array of 64-bit words vg__ 15, making
1024 bits in total. It is initialized from 8 words of incoming chaining value ¢q_ 7, 4
words of salt sg. 4, 2 words of counter ¢y 1 and 8 words of constant kg .7, as shown
below:

Vg U1 V2 U3 o C1 C2 C3
U4y Vs Vg U7 < Cq Cs5 Ce cr
vg Vg V10 V11 50 ko 51 k1 52 B k2 53D k3
V12 V13 V14 V15 t() ® k4 to @ k‘5 t1 @ kﬁ t1 D k’7

The outgoing chaining value ¢, - is defined from the final value of the state v}, 5,
the initial value of the chaining value and the salt as:

ChicoBSsoDU, Dy )y s D sy Dy D vy
A1 ®s1 DV By s D sy DU Dol
Chico®sa DUy D)y Ch e Dsa DDy
i3 Ps3BUsBU; e DSz P UL Bl

Round function. One round of BLAKE is made of eight calls to a ‘quarter-round’
function G; on part of the state:

Go(vo, va,v8,v12)  Gi(vi,vs,v9,v13)  Ga(v2,v6, v10,v14) Gs(vs, v7,v11,015)
Gy (vo, vs,v10,v15)  Gs(vi,v6,v11,v12) Ge(va, v7,08,v13)  Gr(v3,v4,v9,v14)

There are 16 such rounds for BLAKE-5122. Furthermore, because the whole state is
updated twice during one round (once by Go. 3 and once by Gy 7), one such update
will be called a half-round. The function G;(a,b, ¢, d) is defined for round r as:

1: a%a—kb—l—(mgr(%)@kgr(giJrl))
2:d+ (d®a)> 32
3:c+—c+d

4:b0 (bdc)>25

:a%a—l—b—i—(mgr(giﬂ) +k0‘r(21'))
cd < (d®a) > 16

c—c+d

b= (bde)y>11

0 N O ot

with o a round-dependent permutation of {0...15}. The padding is nearly the same
as for SHA-1. The only difference is that a ‘1’ bit is again systematically appended
after the ‘0’ bits (if any). Hence, there are at least 66 bits of padding.

2 There are 14 for BLAKE-256, 12 for BLAKE2b and 10 for BLAKE2s.
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Terminology. As can be seen from the above description, there is an additional
initialization phase for the compression function in BLAKE when compared to most
hash functions and SHA-1 in particular. We choose to call pseudo-preimage on the
compression function a preimage attack that bypasses this initialization and requires
complete freedom for the initial 16-word state, yet that does respect the finalization
(and thence forms an attack for the same level of security than the compression
function, i.e. 512 bits for BLAKE-512). This is a more restrictive model than attack-
ing the underlying block cipher of the compression function in a PGV mode, which
would in itself be a significant attack on a building block of the hash function.

5.2 Pseudo-preimage on the compression function

If we relax the conditions on the initialization of the compression function, we can use
a splice-and-cut approach to mount a pseudo-preimage attack in a straight applica-
tion of the framework, which we did on the BLAKE(2) family. We note that because
of the use of a local-wide-pipe construction, matching in the middle of the compres-
sion function has a complexity the square of the actual security level for preimages.
Therefore we perform the matching phase right on the output of the compression
function.

We mount an attack on the compression function reduced to 7.5 rounds of
BLAKE-512 and BLAKE 2b attacking round 0.5 (resp. 0.25 ) to round 8 (resp.
7.75), and 6.75 rounds of BLAKE-256 and BLAKE2s attacking round 0.75 to round
7.5. We decompose this reduced compression function f as f; o fg o fo. The function
f1 starts at round 5.25 and ends at round 8 (resp. 7.75 for BLAKE2b and 7.5 for
BLAKE2s and BLAKE-256), f ! covers rounds 4 to 0.5 (resp. 0.25 and 0.75 ) , and
f3 is a biclique covering the 0.75 remaining rounds. Finding the parameters of the at-
tack is done similarly as in §4. Since the biclique covers less than one round, it leaves
some of the message words free, which can then be used to generate many similar
bicliques. Therefore, the amortized cost of their construction is small and considered
negligible w.r.t. the rest of the attack. The only message words with differences are
ms € mg in the forward computation and mg & mq; in the backward computation.
As a consequence, the whole message can easily be properly padded.The statistics
of the resulting attacks are shown in Table. 6.

Table 6. One block pseudo-preimage without padding on BLAKE-512 and BLAKE2b; d; ; is the
log, of the cardinal of the set D;; and « is the estimation for false negative probability. The
complexity is computed as described in §3. The various splits are labeled as in Figure 1.

Function Start s1 e s2di,1 di,2 d21 d22 o Complexity
BLAKE-512 0.5 525 8 4 3.0 9.3 4.0 9.5 0.49 510.3
BLAKE2b 0.25 5.257.75 4 4.5 8.0 3.9 3.9 0.41 510.9
BLAKE-256 0.75 525 7 4 4.1 7.2 9.0 9.0 0.64 253.9
BLAKE2s 0.75 525 7 4 4.1 7.2 9.0 9.0 0.68 253.8

5.3 Preimage on the hash function

We now adapt the framework to mount a preimage attack for the larger variants
of BLAKE and BLAKE2. Because of the quick diffusion of BLAKE’s round func-

15



tion (notably due to the fact that every message word is used in every round), we
were unsuccessful when searching for difference spaces resulting in a good meet-
in-the-middle decomposition that simultaneously preserves the initialization of the
compression function.

To overcome this problem, we use a single difference space, in the forward di-
rection only. The use of order-2 differentials proves to be critical at this point, as
no gain could be easily obtained otherwise. More precisely, we use differences of the

type ({a1,a2},{0,0}) «/ZZT 0, meaning that with probability p over the messages m,
P

fm)®f(m & ar) @ f(m @ az) = f(m ® aq ® ap) for a truncation mask 7'. This
equality can be used with Alg. 2 modified as Alg. 6 in an attack. The basic idea at
play here is that after computing f(m), f(m @ «1) and f(m @ ag), one can test the
values of f(m @ a; @ ag) for essentially no additional cost. We give an illustration of
this process in Figure 2.

Me:;a1
f, !
L
" | |
: N
v f —D CPIV
Me:;a2 i

Fig. 2. Speeding-up preimage search with one-way order-2 differentials.

Algorithm 6: Testing p @ D11 @ D 2 for a preimage
Input: Di1,D12 C {0,1}™, p € {0,1}", p, c
Output: A preimage if there is one in p @ D11 @ D1,2, L otherwise
Data: Two lists L1, L2 indexed by 61,2, d1,1 respectively

1 forall the 51,2 € D1’2 do

2 L L1[61,2] = fi(p & 61,2, p)

3 forall the 1,1 € D11 do
| Lefia] < fi(p®éi,c)

5 forall the ((5171,51,2) (S D1’1 X DLQ do
L if L1[61,2] (&) L2[(5171] = f1 (11,7 C) b c EBp then

L return p @ 01,1 B 01,2

8 return |
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Analysis of Alg. 6. The test on line 6 can be performed efficiently by using an
appropriate data structure (typically a hash table), resulting in overall linear time
for the loop on line 5. In line with §2.2, the total complexity of an attack based
on this algorithm thus becomes (27~ 91792(2¢ 4 24)I" + 5)/p, where d; (resp. da) is
the dimension of Dy (resp. Dj2), I' is the cost of calling f;, s the complexity of
retesting and p is the average success probability of the order-2 differentials.

Application to BLAKE(2). We introduce the differences at round 5.25 and let
them propagate with good probability for 2.75 rounds for BLAKE-512 and BLAKE2b.
Like in §5.3 the only message words with differences are ms € mg in the forward
computation and mg €& mi; in the backward computation. As a consequence, the
whole message can easily be properly padded.The attack parameters are found as
before and lead to the attacks in Table 7.

Table 7. The preimage attacks on BLAKE(2); d;,; is the log, of the cardinal of D;; and « is the
estimate for the false negative probability.

Function #rounds dq,1 di1,2 « Complexity
BLAKE-512 275 4.0 9.5 0.6 510.3
BLAKE2b 2.75 3.1 6.9 0.4 511.0
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