
Improved All-Subkeys Recovery Attacks on

FOX, KATAN and SHACAL-2 Block Ciphers

Takanori Isobe and Kyoji Shibutani

Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

{Takanori.Isobe,Kyoji.Shibutani}@jp.sony.com

Abstract. The all-subkeys recovery (ASR) attack is an extension of the meet-in-the-middle
attack, which allows evaluating the security of a block cipher without analyzing its key
scheduling function. Combining the ASR attack with some advanced techniques such as the
function reduction and the repetitive ASR attack, we show the improved ASR attacks on the
7-round reduced FOX64 and FOX128. Moreover, the improved ASR attacks on the 119-, 105-
and 99-round reduced KATAN32, KATAN48 and KATAN64, and the 42-round reduced SHACAL-2

are also presented, respectively. As far as we know, all of those attacks are the best single-key
attacks with respect to the number of attacked rounds in literature.

Key words: block cipher, meet-in-the-middle attack, all-subkeys recovery attack

1 Introduction

Since the meet-in-the-middle (MITM) attack was applied to KTANTAN [7], a lot of its improvements
have been introduced such as the splice-and-cut technique [4], the initial structure [24], the biclique
cryptanalysis [6, 19], the internal state guess [14, 10], the sieve-in-the-middle technique [9] and the
parallel-cut technique [23]. Since the MITM attack basically exploits the weakness in the key
scheduling function, it was believed that a block cipher having a strong key scheduling function
has enough immunity against the MITM attack.

Isobe and Shibutani proposed the all-subkeys recovery (ASR) approach at SAC 2012 as an
extension of the MITM attack [16], and showed several best attacks on block ciphers having
relatively complex key scheduling function including CAST-128 [1], SHACAL-2 [13], FOX [18] and
KATAN [8]. One of the advantages of the ASR attack compared to the basic MITM attack is that
it does not need to take the key scheduling function into account, since it recovers all subkeys
instead of the master key. Thus, it has been shown that the MITM attack may be more applicable
to block ciphers. Moreover, the ASR approach enables us to evaluate the lower bounds on the
security against key recovery attack for a block cipher structure, since the ASR attack is applicable
independently from the underlying key scheduling function. For Feistel schemes, such lower bounds
were shown by using the ASR attack with a couple of its improvements such as the function
reduction in [17]. For instance, the function reduction reduces the number of subkeys required to
compute the matching state by exploiting degrees of freedom of plaintext/ciphertext pairs. Then,
the number of attacked rounds can be increased by the ASR attack. Therefore, in order to more
precisely evaluate the security of a block cipher against the ASR attack, the following natural
question arises: Are those advanced techniques applicable to other structures such as Lai-Massey
and LFSR-type schemes?

In this paper, we first apply the function reduction technique to Lai-Massey, LFSR-type and
source-heavy generalized Feistel schemes to extend the ASR attacks on those structures. Then,
we further improve the attacks on those structures by exploiting structure dependent properties
and optimizing data complexity in the function reduction. For instance, the ASR attack with
the function reduction on FOX can be improved by using the keyless one-round relation in Lai-
Massey scheme. Moreover, combined with the repetitive ASR approach , which optimizes the data
complexity when using the function reduction, the attack on FOX can be further improved. Those

c©IACR 2014. This article is a minor revision of the version published by Springer-Verlag available at
http://dx.doi.org/10.1007/978-3-662-46706-0 6.

Table 1. Summary of Attacks on FOX64/128, KATAN32/48/64 and SHACAL-2 (Single-Key Setting)

algorithm attack type # attacked rounds time memory data reference

FOX64

Integral 5 2109.4 Not given 29 CP [26]∗

Impossible Diff. 5 280 Not given 240 CP [27]∗

ASR 6 2124 2124 15 CP this paper

ASR 7 2124 2123 230.9 CP this paper

FOX128

Integral 5 2205.6 Not given 29 CP [26]

Impossible Diff. 5 2144 Not given 272 CP [27]

ASR 5 2228 2228 14 KP [16]

ASR 6 2221 2221 26 CP this paper

ASR 7 2242 2242 263 CP this paper

KATAN32

ASR 110 277 275.1 138 KP [16]

Differential 114 277 Not given 231.9 CP [2]

ASR 119 279.1 279.1 144 CP this paper

KATAN48
ASR 100 278 278 128 KP [16]

ASR 105 279.1 279.1 144 CP this paper

KATAN64
ASR 94 277.1 279.1 116 KP [16]

ASR 99 279.1 279.1 142 CP this paper

SHACAL-2
ASR 41 2500 2492 244 KP [16]

ASR 42 2508 2508 225 CP this paper

∗ While the 6- and 7-round attacks on FOX64 were presented in [26, 27], the time

complexities of both attacks exceed 2128.

results are summarized in Table 1. As far as we know, all of the results given by this paper are the
best single-key attacks with respect to the number of attacked rounds in literature⋆ We emphasize
that our improvements keep the basic concept of the ASR attack, which enables us to evaluate the
security of a block cipher without analyzing its key scheduling function. Therefore, our results are
considered as not only the best single-key attacks on the specific block ciphers but also the lower
bounds on the security of the target block cipher structures independently from key scheduling
functions.

The rest of this paper is organized as follows. Section 2 briefly reviews the previously shown
techniques including the all-subkeys recovery approach, the function reduction and the repet-
itive all-subkeys recovery approach. The improved all-subkeys recovery attacks on FOX64/128,
KATAN32/48/64 and SHACAL-2 are presented in Sections 3, 4 and 5, respectively. Finally, we con-
clude in Section 6.

2 Preliminary

2.1 All-Subkeys Recovery Approach [16]

The all-subkeys recovery (ASR) attack was proposed in [16] as an extension of the meet-in-the-
middle (MITM) attack. Unlike the basic MITM attack, the ASR attack is guessing all-subkeys
instead of the master key so that the attack can be constructed independently from the underlying
key scheduling function.

Let us briefly review the procedure of the ASR attack. First, an attacker determines an s-
bit matching state S in a target n-bit block cipher consisting of R rounds. The state S can be
computed from a plaintext P and a set of subkey bits K(1) by a function F(1) as S = F(1)(P,K(1)).
Similarly, S can be computed from the corresponding ciphertext C and another set of subkey bits

⋆ In the related-key setting, the attacks on the 174-, 145-, 130- and 44-round reduced KATAN32, KATAN48,
KATAN64 and SHACAL-2 were presented, respectively [20, 15].

2

K(2) by a function F(2) as S = F−1
(2) (C,K(2)). Let K(3) be a set of the remaining subkey bits,

i.e., |K(1)| + |K(2)| + |K(3)| = R · ℓ, where ℓ denotes the size of each subkey. For a plaintext P

and the corresponding ciphertext C, the equation F(1)(P,K(1)) = F−1
(2) (C,K(2)) holds when the

guessed subkey bits K(1) and K(2) are correct. Since K(1) and K(2) can be guessed independently,
we can efficiently filter out the incorrect subkeys from the key candidates. After this process, it
is expected that there will be 2R·ℓ−s key candidates. Note that the number of key candidates
can be reduced by parallel performing the matching with additional plaintext/ciphertext pairs. In
fact, using N plaintext/ciphertext pairs, the number of key candidates is reduced to 2R·ℓ−N ·s, as
long as N ≤ (|K(1)| + |K(2)|)/s. Finally, the attacker exhaustively searches the correct key from
the remaining key candidates. The required computations (i.e. the number of encryption function
calls) of the attack in total Ccomp is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·ℓ−N ·s. (1)

The number of required plaintext/ciphertext pairs is max(N, ⌈(R · ℓ − N · s)/n⌉), where n is the
block size of the target cipher. The required memory is about min(2|K(1)|, 2|K(2)|)×N blocks, which
is the cost of the table used for the matching.

2.2 Improvements on All-Subkeys Recovery Approach

In the ASR attack, the number of the subkeys required to compute the state S from P or C,
i.e., K(1) or K(2), is usually dominant parameter in the required complexities. Thus, in general,
reducing those subkeys K1 and K2 will make the ASR attack applicable to more rounds. In the
followings, we briefly review and introduce a couple of techniques to reduce such subkeys required
to compute the matching state.

Function Reduction Technique. For Feistel ciphers, the function reduction technique that
directly reduces the number of involved subkeys was introduced in [17]. The basic concept of
the function reduction is that fixing some plaintext bits, ciphertext bits or both by exploiting
degrees of freedom of a plaintext/ciphertext pair allows an attacker to regard a key dependent
variable as a new subkey. As a result, substantial subkeys required to compute the matching state
are reduced. By using the function reduction, the lower bounds on the security of several Feistel
ciphers against generic key recovery attacks were given in [17]. Note that a similar approach was
presented in [11] for directly guessing intermediate state values, while in the function reduction,
equivalently transformed key values are guessed.

Suppose that the i-th round state Si is computed from the (i− 1)-th round state Si−1 XORed
with the i-th round subkey Ki by the i-th round function Gi, i.e., Si = Gi(Ki ⊕ Si−1). For
clear understanding, we divide the function reduction into two parts: a key linearization and an
equivalent transform as follows.

– Key Linearization. Since the i-th round function Gi is a non-linear function, the i-th round
subkey Ki cannot pass through Gi by an equivalent transform. The key linearization tech-
nique, which is a part of the function reduction, exploits the degree of freedom of plain-
texts/ciphertexts to express Si as a linear relation of Si−1 and Ki, i.e., Si = Li(Si−1,Ki),
where Li is a linear function. Once Si is represented by a linear relation of Si−1 and Ki, Ki

can be forwardly moved to a next non-linear function by an equivalent transform. Note that, if
the splice-and-cut technique [4] is used with the key linearization, Ki can be divided into both
forward and backward directions.

– Equivalent Transform. After the key linearization, the i-th round subkey Ki is replaced
with a new subkey K ′

i to pass through a non-linear function. However, in order to reduce the
involved subkey bits on the trails to the matching state, all-subkeys on the trails affected by
K ′

i are also replaced with new variables by an equivalent transform. Consequently, the number
of subkeys required to compute the matching state can be reduced. For the Feistel ciphers, it
is easily done by replacing all-subkeys in the even numbered rounds Kj with K ′

j(= K ′
1 ⊕Kj),

where j is even.

3

The splice-and-cut technique [4], which was originally presented in the attack of the two-key
triple DES [21], was well used in the recent meet-in-the-middle attacks [3, 6, 7, 19, 24]. It regards that
the first and last rounds are consecutive by exploiting degree of freedom of plaintext/ciphertexts,
and thus any round can be the start point. In general, the splice-and-cut technique is useful to
analyze the specific block cipher that key-dependency varies depending on the chunk separation.
However, in the ASR approach, the splice-and-cut technique does not work effectively, since the
ASR treats all-subkeys as independent variables to evaluate the security independently from the
key scheduling function. On the other hand, the function reduction exploits degrees of freedom of
plaintexts/ciphertexts to reduce subkey bits required to compute the matching state, and does not
use relations among subkeys. Therefore, the function reduction technique is more useful and suitable
for the ASR approach than the splice-and-cut technique. However, as mentioned in the description
of the key linearization, the combined use of the splice-and-cut and the function reduction in the
key linearization is also possible, e.g. the attack on Feistel-1 [17] and the attack on SHACAL-2 in
this paper.

Repetitive All-Subkeys Recovery Approach. Since the function reduction exploits the degree
of freedom of plaintexts/ciphertexts, it sometimes causes an attack infeasible due to lack of available
data. For such cases, we introduce a variant of the all-subkeys recovery approach called repetitive

all-subkeys recovery approach that repeatedly applies the all-subkeys recovery to detect the correct
key. The variant can reduce the required data for each all-subkeys recovery phase, though the
total amount of the required data is unchanged. Note that a similar technique, called inner loop
technique, was used in [5, 23] for reducing the memory requirements. The repetitive all-subkeys
recovery approach is described as follows.

1. Mount the ASR attack with N plaintext/ciphertexts, where N is supposed to be less than
(|K(1)| + |K(2)|)/s, then put the remaining key candidates into a table T1. The number of
expected candidates is |K(1)|+ |K(2)| −N · s.

2. Repeatedly mount the ASR attack with different N plaintext/ciphertexts. If the remaining
candidate match with ones in T1, such candidates are put into another table T2. The number
of expected candidates is |K(1)|+ |K(2)| − 2 ·N · s.

3. Repeat the above processes until the correct key is found, i.e., M = (|K(1)| + |K(2)|)/(N · s)
times.

When the above procedure is repeated M (≥ 2) times, the computational costs to detect K(1)

and K(2) are estimated as

Ccomp = (max(2|K(1)|, 2|K(2)|)×N)×M + (2|K(1)|+|K(2)|−N ·s) +

· · ·+ (2|K(1)|+|K(2)|−(M−1)·N ·s).

While the required data in total is (|K(1)|+ |K(2)|)/s (= ((|K(1)|+ |K(2)|)/(M · s)) ·M), each ASR
approach is done with N = (|K(1)|+|K(2)|)/(M ·s) data, which is M times less than that required in

the basic ASR attack. The required memory is about max(2|K(1)|+|K(2)|−N ·s,min(2|K(1)|, 2|K(2)|)×N)
blocks, which is the cost for the table used in the matching. We demonstrate the effectiveness of
the proposed variant in the attack on the reduced FOX in Section 3.

3 Improved All-Subkeys Recovery Attacks on FOX64 and FOX128

In this section, we present the improved ASR attacks using the function reduction and the repet-
itive ASR approach on the 6- and 7-round reduced FOX64 and FOX128 block ciphers. After short
descriptions of FOX64 and FOX128, the function reduction on FOX64 is presented. Then, we show
how to construct the attack on the 6-round FOX64, and how to extend it to the 7-round variant
by using the repetitive ASR approach. Similarly, the function reduction on FOX128, the attack on
the 6-round FOX128, and the attack on the 7-round FOX128 with the repetitive ASR approach are
introduced, respectively.

4

f32 f64 KiKi

ororor

FOX64 FOX128

Li−1 Ri−1

Li Ri

LLi−1 LRi−1 RLi−1RRi−1

LLi LRi RLi RRi

Fig. 1. Round Functions of FOX64 and FOX128

f32 K1 or

or

L0L0

L1L1

R0 = CON1 ⊕ L0R0 = CON1 ⊕ L0

R1R1

OK′

1

= or(f32(CON1, K1))

K′

1 = f32(CON1, K1)

Fig. 2. Key Linearization of FOX64

3.1 Descriptions of FOX64 and FOX128

FOX [18], also known as IDEA-NXT, is a family of block ciphers designed by Junod and Vaudenay
in 2004. FOX employs a Lai-Massey scheme including two variants referred as FOX64 and FOX128

(see Fig. 1).
FOX64 is a 64-bit block cipher consisting of a 16-round Lai-Massey scheme with a 128-bit key.

The i-th round 64-bit input state is denoted as two 32-bit words (Li−1 || Ri−1). The i-th round
function updates the input state using the 64-bit i-th round key Ki as follows:

(Li||Ri) = (or(Li−1 ⊕ f32(Li−1 ⊕Ri−1,Ki))||Ri−1 ⊕ f32(Li−1 ⊕Ri−1,Ki)),

where or(x0||x1) = (x1||(x0 ⊕ x1)) for 16-bit x0, x1. f32 outputs a 32-bit data from a 32-bit input
X and two 32-bit subkeys LKi and RKi as (sigma4(mu4(sigma4(X⊕LKi)) ⊕ RKi) ⊕LKi), where
sigma4 denotes the S-box layer consisting of four 8-bit S-boxes and mu4 denotes the 4 × 4 MDS
matrix. Two 32-bit subkeys LKi and RKi are derived from Ki as Ki = (LKi||RKi).

FOX128 is a 128-bit block cipher consisting of a 16-round modified Lai-Massey scheme with a
256-bit key. The i-th round 128-bit input state is denoted as four 32-bit words (LLi−1 || LRi−1

|| RLi−1 || RRi−1). The i-th round function updates the input state using the 128-bit i-th round
key Ki as follows:

(LLi||LRi) = (or(LLi−1 ⊕ φL)||LRi−1 ⊕ φL),

(RLi||RRi) = (or(RLi−1 ⊕ φR)||RRi−1 ⊕ φR),

where (φL||φR) = f64((LLi−1 ⊕ LRi−1)||(RLi−1 ⊕RRi−1),Ki). f64 outputs a 64-bit data from a
64-bit input X and two 64-bit subkeys LKi and RKi as (sigma8(mu8(sigma8(X ⊕LKi)) ⊕ RKi)
⊕LKi), where sigma8 denotes the S-box layer consisting of eight 8-bit S-boxes and mu8 denotes
the 8×8 MDS matrix. Two 64-bit subkeys LKi and RKi are derived from Ki as Ki = (LKi||RKi).

3.2 Function Reduction on FOX64

Key Linearization (Fig. 2). If the value of L0 ⊕ R0 is fixed to a constant CON1, the input
of f32 is fixed as f32(CON1,K1). By regarding f32(CON1,K1) as a 32-bit new key K ′

1, K
′
1 is

XORed to L0 and R0. Since or is a linear operation, the state after the first round is expressed as
(L1||R1) = (or(L0) ⊕ OK ′

1)||(R0 ⊕K ′
1), where OK ′

1 = or(K ′
1) (see Fig. 2). This implies that the

first round keys linearly affect L1 and R1.

5

Equivalent Transform (Fig. 3). In the second round, OK ′
1 and K ′

1 are XORed with LK2 in
the first and last operations of f32 function. Let LK ′

2 = LK2 ⊕ K ′
1 ⊕ OK ′

1, K1′′ = K1′ ⊕ LK2,
and OK1′′ = or(OK ′1 ⊕ LK2) be new keys. Then f32 function contains K ′

2 (= LK ′
2||RL2), and

K ′′
1 and OK1′′ linearly affect outputs of the second round.

In the third round, OK ′′
1 and K ′′

1 are also XORed with LK3 in the first and last operations of
f32 function. Let LK ′

3 = LK3⊕K ′′
1 ⊕OK ′′

1 , K1′′′ = K1′′⊕LK2, and OK1′′′ = or(OK ′′1⊕LK2)
be new keys (see Fig. 3).

Note that the same technique can be applied to the inverse of FOX64, because the round function
of FOX64 has the involution property.

3.3 Attack on the 6-Round FOX64

In this attack, we use the following one-round keyless linear relation of the Lai-Massey construction.

or−1(Li+1)⊕Ri+1 = Li ⊕Ri.

From this equation, the 16-bit relation is obtained as follows

((L
(1)
4 ⊕ L

(3)
4)||L

(3)
4)⊕ (R

(3)
4 ||R

(1)
4) = (L

(3)
3 ||L

(1)
3)⊕ (R

(3)
3 ||R

(1)
3),

where L
(j)
i and R

(j)
i are the j-th byte of Li and Ri, respectively, and L

(3)
i and R

(3)
i are the most

significant bytes ,i.e., Li = {L
(3)
i ||L

(2)
i ||L

(1)
i ||L

(0)
i } and Ri = {R

(3)
i ||R

(2)
i ||R

(1)
i ||R

(0)
i }.

Forward Computation in F(1) : For given {K ′
2, LK

′
3, RK

′(3)
3 , RK

′(1)
3 , K

′′′(3)
1 , K

′′′(1)
1 , OK

′′′(3)
1 ,

OK
′′′(1)
1 }, (L

(3)
3 ||L

(1)
3)⊕ (R

(3)
3 ||R

(1)
3) is computable. Since (K

′′′(3)
1 || K

′′′(1)
1) and (OK

′′′(3)
1 ||OK

′′′(1)
1)

linearly affect (L
(3)
3 ||L

(1)
3) and (R

(3)
3 ||R

(1)
3), respectively, we can regard (K

′′′(3)
1 ||K

′′′(1)
1)⊕(OK

′′′(3)
1 ||OK

′′′(1)
1)

as a new 16-bit key XORK1. Then, (L
(3)
3 ||L

(1)
3)⊕(R

(3)
3 ||R

(1)
3) is obtained from 112(= 64+32+8+8)

bits of the key {K ′
2, LK

′
3, RK

′(3)
3 , RK

′(1)
3 } and linearly-dependent 16-bit key XORK1.

Backward Computation in F(2) : ((L
(1)
4 ⊕L

(3)
4)||L

(3)
4)⊕ (R

(3)
4 ||R

(1)
4) is obtained from 112 (=64

+ 32 + 16) bits of the key {K6, LK5, RK
(1)
5 , RK

(3)
5 }. Using the indirect matching technique [3],

8 bits out of 16 bits of XORK1 are moved to the left half of the matching equation. Then, the left
and right halves of the equation contains 120 bits of the key, i.e., |K(1)| = |K(2)| = 120.

Evaluation. When the parameter N = 15, the time complexity for finding the involved 240-bit
key is estimated as

Ccomp = max(2120, 2120)× 15 + 2240−15·16 = 2124.

The required data for the attack is only 15 (=max(15, ⌈(240−15·16)/64⌉)) chosen plaintext/ciphertext
pairs, and the required memory is estimated as about 2124 (=min(2120, 2120) × 15) blocks.

3.4 Attack on the 7-Round FOX64

If the function reduction is applied as well in the backward direction, the 7-round attack is feasible,
i.e., the relation of L7 ⊕ R7 is fixed to a constant CON2. Due to the involution property of the

FOX64 round function, ((L
(1)
4 ⊕L

(3)
4) || L

(3)
4) ⊕ (R

(3)
4 ||R

(1)
4) is also obtained from 112 (=64 + 32 +

8 + 8) bits of the key and linearly-dependent 16-bit key XORK2. In this attack, we further regard
XORK1⊕XORK2 as a 16-bit new key. Then, similar to the attack on the 6-round FOX64, the left
and right halves of the equation contain 120 bits of the key, i.e., |K(1)| = |K(2)| = 120.

6

f32

f32

f32

f32

f32

or

or

or

or

or

or

K1

K2

K3

K′

2

K′

3

K′′′

1OK′′′

1

L0L0 R0 = CON1 ⊕ L0R0 = CON1 ⊕ L0

LK′

2

LK′

3

RK2

RK3

ssss

ssss

ssss

ssss

K′

1 = f32(CON1, K1)
OK′

1 = or(K′

1)
LK′

2 = LK2 ⊕ K′

1 ⊕ OK′

1

K′′

1 = K′

1 ⊕ LK2

OK′′

1 = or(OK′

1 ⊕ LK2)
LK′

3 = LK3 ⊕ K′′

1 ⊕ OK′′

1

K′′′

1 = K′′

1 ⊕ LK3

OK′′′

1 = or(OK′′

1 ⊕ LK3)
K′

2 = LK′

2||RK2

K′

3 = LK′

3||RK3

Fig. 3. Function Reduction of FOX64

Repetitive ASR Approach. Recall that plaintexts and ciphertexts need to satisfy the 32-bit
relations, L0 ⊕ R0 = CON1 and L7 ⊕ R7 = CON2. The required data for finding such pairs is
equivalently estimated as the game that an attacker finds 32-bit multicollisions by 32-bit-restricted
inputs. It has been known that an n-bit t-multicollision is found in t!1/t · 2n·(t−1)/t random data
with high probability [25].

In the basic ASR approach, at least 15 (= 240/16) multicollisions are necessary to detect the
240-bit involved key. To obtain such pairs with a high probability, it require 232.55(= 15!1/15 ·
232·(14)/15) plaintext/ciphertext pairs. However, it is infeasible, since the degree of freedom of
plaintexts is only 32 bits.

In order to overcome this problem, we utilize the repetitive all-subkeys recovery approach with
M = 2 variant. In each all-subkeys recovery phase, the required data is reduced to 8 and 7. Then,
such eight 32-bit multicollisions are obtained from 229.9 plaintext/ciphertext pairs with a high
probability. Thus, we can obtain the required data by exploiting free 32 bits.

Evaluation. The time complexity for finding the involved 240 bits key is estimated as

Ccomp = (max(2120, 2120)× 8)× 2 + (2240−8·16) = 2124.

The remaining 208(= 448 − 240) bits are obtained by recursively applying all-subkeys recovery
attacks. The time complexity for this phase is roughly estimated as 2106(=208/2+2) using 4 (=
⌈208/64⌉) plaintext/ciphertext pairs.

The required data is 230.9(= 229.9 × 2) plaintext/ciphertext pairs, and the required memory is
about 2123 (=max(2240−128,min(2120, 2120)× 8)) blocks.

3.5 Function Reduction on FOX128

Key Linearization (Fig. 4). If two 16-bit relations of LL0 ⊕ LR0 and RL0 ⊕RR0 are fixed to
CON1 and CON2, respectively, the input of f64 is fixed as f64(CON1 || CON2,K1). By regarding
f64(CON1||CON2,K1) as a 64-bit new key K ′

1 = KL′
1||KR′

1, KL′
1 and KR′

1 are XORed to {LR0

and LR0} and {RR0 and RR0}, respectively. The state after the first round is expressed as follows
(see Fig. 4).

(LL1||LR1||RL1||RR1) =

(or(LL0)⊕OKL′
1)||(LR0 ⊕KL′

1)||(or(RL0)⊕OKR′
1)||(RR0 ⊕KR′

1),

where OKL′
1 = or(KL′

1) and OKR′
1 = or(KR′

1). This implies that the first round keys linearly
affect LL1, LR1, RL1 and RR1.

Equivalent Transform (Fig. 4). The equivalent transform is done similar to FOX64 as shown
in Fig. 4.

7

f64

f64

f64

f64

f64

oror

oror

oror

oror

oror

oror

K1

K2

K3

K′

2

K′

3

LL0LL0
RL0RL0

LR1LR1 RR1RR1

= CON1= CON1 = CON2= CON2

OKL′′′

1 OKR′′′

1

KL′′′

1

KR′′′

1

KL′

1||KR′

1 = f64(CON1||CON2, K1)
OKL′

1 = or(KL′

1)
OKR′

1 = or(KR′

1)

LK′

2 = LK2⊕
((OKL′

1 ⊕ KL′

1)||(OKR′

1 ⊕ KR′

1))
LK2 = LKL2||LKR2

KL′′

1 = KL′

1 ⊕ LKL2

KR′′

1 = KR′

1 ⊕ LKR2

OKL′′

1 = or(OKL′

1 ⊕ LKL2)
OKR′′

1 = or(OKR′

1 ⊕ LKR2)
K′

2 = LK′

2||RK2

LK′

3 = LK3⊕
((OKL′′

1 ⊕ KL′′

1)||(OKR′′

1 ⊕ KR′′

1))
LK3 = LKL3||LKR3

KL′′′

1 = KL′′

1 ⊕ LKL3

KR′′′

1 = KR′′

1 ⊕ LKR3

OKL′′′

1 = or(OKL′′

1 ⊕ LKL3)
OKR′′′

1 = or(OKR′′

1 ⊕ LKR3

K′

3 = LK′

3||RK3

RK3 = RKL3||RKR3

Fig. 4. Function Reduction of FOX128

3.6 Attack on the 6-Round FOX128

We use the following one-round keyless linear relation of the modified Lai-Massey construction,

or−1(LLi+1)⊕ LRi+1 = LLi ⊕ LRi.

From this equation, the 16-bit relation is obtained as follows:

((LL
(1)
4 ⊕ LL

(3)
4)||LL

(3)
4)⊕ (LR

(3)
4 ||LR

(1)
4) = (LL

(3)
3 ||LL

(1)
3)⊕ (LR

(3)
3 ||LR

(1)
3).

Forward Computation in F(1) : For given {K ′
2, LK

′
3, RKL

′(3)
3 , RKL

′(1)
3 , KL

′′′(3)
1 , KL

′′′(1)
1 ,

OKL
′′′(3)
1 , OKL

′′′(1)
1 }, (LL

(3)
3 ||LL

(1)
3) ⊕ (LR

(3)
3 ||LR

(1)
3) is computable. Since (KL

′′′(3)
1 ||KL

′′′(1)
1)

and (OKL
′′′(3)
1 ||OKL

′′′(1)
1) linearly affect the matching states (LL

(3)
3 ||LL

(1)
3) and (LR

(3)
3 ||LR

(1)
3),

respectively, we are able to regard (LK
′′′(3)
1 ||LK

′′′(1)
1) ⊕ (OKL

′′′(3)
1 ||OKL

′′′(1)
1) as a new 16-bit key

XORK1. Then, (LL
(3)
3 ||LL

(1)
3)⊕ (LR

(3)
3 ||LR

(1)
3) is obtained from 208 (=128 + 64 + 8 + 8) bits of

the key {K ′
2, LK

′
3, RKL

′(3)
3 , RKL

′(1)
3 } and linearly-dependent 16 bits key XORK1.

Backward Computation in F(2) : ((LL
(1)
4 ⊕ LL

(3)
4)||LL

(3)
4)⊕ (LR

(3)
4 ||LR

(1)
4) is obtained from

208 (=128 + 64 + 16) bits of the key {K6, LK5, RKL
(1)
5 , RKL

(3)
5 }. Using the indirect matching

technique, 8 bits out of 16-bit XORK1 are moved to the left half of the matching equation. Then,
the left and right halves of the equation contain 216 bits of the key, i.e., |K(1)| = |K(2)| = 216.

Evaluation. When the parameter N = 26, the time complexity for the involved 432 bits is
estimated as

Ccomp = max(2216, 2216)× 26 = 2221.

The remaining 352 (= 768− 416) bits are obtained by recursively applying the all-subkeys recov-
ery attack. The time complexity for determining the remaining subkeys is roughly estimated as
2177.6(=352/2+1.6) using 2 (= ⌈352/128⌉) plaintext/ciphertext pairs.

The required data is only 26 chosen plaintext/ciphertext pairs, and the required memory is
about 2221 (=min(2216, 2216)× 26) blocks.

3.7 Attack on the 7-Round FOX128

If the function reduction is also used in the backward direction, the 7-round attack is feasible, i.e.,
two 16-bit relations of LL7 ⊕ LR7 and RL7 ⊕RR7 are fixed to CON3 and CON4, respectively.

8

Due to the involution property of the FOX128 round function, ((LL
(1)
4 ⊕ LL

(3)
4) || LL

(3)
4) ⊕

(LR
(3)
4 ||LR

(1)
4) is also obtained from 208 (=128 + 64 + 8 + 8) bits of the key and linearly-

dependent 16 bits key XORK2. In this attack, we further regard XORK1 ⊕ XORK2 as a 16
bit new key. Then, similar to the attack on the 6-round FOX128, the left and right halves of the
equation contain 216 bits of the key, i.e., |K(1)| = |K(2)| = 216.

Repetitive ASR Approach. Recall that plaintexts and ciphertexts need to satisfy 64-bit (32×2)
relations, LL0 ⊕ LR0 and RL0 ⊕ RR0, and LL7 ⊕ LR7 and RL7 ⊕ RR7, respectively. The cost
is equivalently estimated as the game that an attacker finds 64-bit multicollisions with 64-bit-
restricted inputs.

In the basic ASR approach, at least 27(= 432/16) multicollisions are needed to detect the 432-
bit involved key. To obtain such pairs with a high probability, it requires 265.1(= 27!1/27 ·264·(26)/27)
pairs. However, it is infeasible, since the degree of freedom of plaintexts is only 64 bits.

We utilize the repetitive all-subkeys recovery approach with M = 2 variant. In each all-subkeys
recovery phase, the required data is reduced to 13 and 14. Such 14 64-bit multicollisions are
obtained, given 262.0 plaintext/ciphertext pairs with high probability.

Evaluation. The time complexity for finding involved 432 bits of the key is estimated as

Ccomp = (max(2216, 2216)× 14)× 2 + 2432−16·14 = 2224.

The remaining 480(= 896−432) bits are obtained by recursively applying the all-subkeys recovery
attack. The time complexity for this phase is roughly estimated as 2242(=480/2+2) using 4 (=
⌈480/128⌉) plaintext/ciphertext pairs.

The required data is 263.0(= 262.0 × 2) plaintext/ciphertext pairs, and the required memory is
about 2242 blocks.

4 Improved All-Subkeys Recovery Attacks on KATAN32/48/64

In this section, we show that the function reduction techniques are applicable to KATAN32/48/64,
then we improve the ASR attacks on KATAN32/48/64 block ciphers by 9, 5 and 5 rounds, respec-
tively.

After a short description of KATAN, we show how to apply the function reduction to KATAN32 in
detail. Then, the detailed explanation for the attack on the 119-round reduced KATAN32 is given. For
KATAN48 and KATAN64, the detailed explanations for applying the function reductions are omitted,
since the analysis is done similar to KATAN32.

4.1 Description of KATAN

KATAN [8] family is a feedback shift register-based block cipher consisting of three variants: KATAN32,
KATAN48 and KATAN64 whose block sizes are 32-, 48- and 64-bit, respectively. All of the KATAN ciphers
use the same key schedule accepting an 80-bit key and 254 rounds. The plaintext is loaded into two
shift registers L1 and L2. In each round, L1 and L2 are shifted by one bit, and the least significant
bits of L1 and L2 are updated by fb(L2) and fa(L1), respectively. The bit functions fa and fb are
defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ k2i,

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ k2i+1,

where L[x] denotes the x-th bit of L, IR denotes the round constant, and k2i and k2i+1 denote
the 2-bit i-th round key. Note that for KATAN family, the round number starts from 0 instead of 1,
i.e., KATAN family consists of round functions starting from the 0-th round to the 253-th round. Li

1

or Li
2 denote the i-th round registers L1 or L2, respectively. Let IRi be the i-th round constant.

For KATAN48 or KATAN64, in each round, the above procedure is iterated twice or three times,
respectively. All of the parameters for the KATAN ciphers are listed in Table 2.

9

Table 2. Parameters of KATAN Family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

Table 3. Conditions for 8-bit Function Reductions

Key bit State bits to be fixed

k1 X[0], L0

1[2], X[3]

k3 X[1], L0

1[1], X[4]

k5 X[2], L0

1[0], X[5]

k7 X[3], X[0], X[6]

k9 X[4], X[1], X[7]

k11 X[5], X[2], X[8]

k13 X[6], X[3], X[9]

k15 X[7], X[4], X[10]

The key scheduling function of KATAN ciphers copies the 80-bit user-provided key to k0, ..., k79,
where ki ∈ {0, 1}. Then, the remaining 428 bits of the round keys are generated as follows:

ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 for i = 80, ..., 507.

4.2 Function Reduction on KATAN32

Key Linearization. In the i-th round function of KATAN32, two key bits k2i and k2i+1 are linearly
inserted into states Li

1[0] and Li
2[0], respectively, these states are not updated in the i-th round.

Thus, the key linearization technique is not necessary.

Equivalent Transform. Let us consider how linearly-inserted key bits are used in the following
round functions. For instance, k1 is linearly inserted to L1

1[0], and the updated state L1
1[0] is

described as (X[0]⊕ k1), where X[i] is defined as

X[i] = L0
2[18− i]⊕ L0

2[7− i]⊕ (L0
2[12− i] · L0

2[10− i])⊕ (L0
2[8− i] · L0

2[3− i]),

where L0
2[−i] = Li

2[0]. For computing fa(L1), the state L
1
1[0] = (X[0]⊕ k1) is used in the following

five positions,

– L4
2[3] : ((X[0] ⊕ k1) · IR

4) is XORed with k8. If X[0] is fixed to a constant CON1, a new key
k′8 is defined as ((CON1 ⊕ k1) · IR

4)⊕ k8.

– L6
2[5] : ((X[0]⊕ k1) · L

6
1[8]) = ((X[0]⊕ k1) · L

0
1[2]) is XORed with k12. If L

0
1[2] is also fixed to

a constant CON2, a new key k′12 is defined as ((CON1 ⊕ k1) · CON2)⊕ k12.

– L8
2[7] : (X[0]⊕ k1) is directly XORed with k16. A new key k′16 is defined as (CON1⊕ k1)⊕ k16.

– L9
2[8] : ((X[0]⊕k1) ·L

9
1[5]) = ((X[0]⊕k1) · (X[3]⊕k7)) is XORed with k18. If X[3] is also fixed

to a constant CON3, a new key k′18 is defined as ((CON1 ⊕ k1) · (CON3 ⊕ k7))⊕ k18.

– L13
2 [12] : (X[0]⊕k1) is directly XORed with k26. A new key k′26 is defined as (CON1⊕k1)⊕k26.

Thus, by fixing X[0], L0
1[2] and X[3] to constants and defining new key bits k′8, k

′
12, k

′
16, k

′
18 and

k′26, we can omit one key bit k1, i.e., we can compute without k1 in the forward direction. Note
that CON1, CON2 and CON3 are not restricted to constant values. Even if CON1, CON2 and
CON3 are expressed by only key bits, we can define new keys in the same manner.

10

Conditions for Function Reduction. Table 3 shows conditions for 8-bit function reductions.
If these 14 bits of L0

1[0], L
0
1[2], L

0
1[2], X[0], . . . , X[10] are fixed to constants or expressed by only

key bits, then we can eliminate 8 bits of the key, k1, k3, k5, k7, k9, k11, k13 and k15, in the forward
computation of KATAN32.

Let us explain how to control X[0] and X[10] by exploiting the degree of freedom of plaintexts.
X[0] to X[10] are expressed as follows:

X[0] = L0

2[18]⊕ L0

2[7]⊕ (L0

2[12] · L
0

2[10])⊕ (L0

2[8] · L
0

2[3]),

X[1] = L0

2[17]⊕ L0

2[6]⊕ (L0

2[11] · L
0

2[9])⊕ (L0

2[7] · L
0

2[2]),

X[2] = L0

2[16]⊕ L0

2[5]⊕ (L0

2[10] · L
0

2[8])⊕ (L0

2[6] · L
0

2[1]),

X[3] = L0

2[15]⊕ L0

2[4]⊕ (L0

2[9] · L
0

2[7])⊕ (L0

2[5] · L
0

2[0]),

X[4] = L0

2[14]⊕ L0

2[3]⊕ (L0

2[8] · L
0

2[6])⊕ (L0

2[4] · (Y [0]⊕ k0)),

X[5] = L0

2[13]⊕ L0

2[2]⊕ (L0

2[7] · L
0

2[5])⊕ (L0

2[3] · (Y [1]⊕ k2)),

X[6] = L0

2[12]⊕ L0

2[1]⊕ (L0

2[6] · L
0

2[4])⊕ (L0

2[2] · (Y [2]⊕ k4)),

X[7] = L0

2[11]⊕ L0

2[0]⊕ (L0

2[5] · L
0

2[3])⊕ (L0

2[1] · (Y [3]⊕ k6)),

X[8] = L0

2[10]⊕ (Y [0]⊕ k0)⊕ (L0

2[4] · L
0

2[2])⊕ (L0

2[0] · (Y [4]⊕ k8)),

X[9] = L0

2[9]⊕ (Y [1]⊕ k2)⊕ (L0

2[3] · L
0

2[1])⊕ ((Y [0]⊕ k0) · (Y [5]⊕ k10),

X[10] = L0

2[8]⊕ (Y [2]⊕ k4)⊕ (L0

2[2] · L
0

2[0])⊕ ((Y [1]⊕ k2) · (Y [6]⊕ k12),

where
Y [0] = L0

1[12]⊕ L0

1[7]⊕ (L0

1[5] · L
0

1[8])⊕ (L0

1[3] · IR
0),

Y [1] = L0

1[11]⊕ L0

1[6]⊕ (L0

1[4] · L
0

1[7])⊕ (L0

1[2] · IR
1),

Y [2] = L0

1[10]⊕ L0

1[5]⊕ (L0

1[3] · L
0

1[6])⊕ (L0

1[1] · IR
2),

Y [3] = L0

1[9]⊕ L0

1[4]⊕ (L0

1[2] · L
0

1[5])⊕ (L0

1[0] · IR
3),

Y [4] = L0

1[8]⊕ L0

1[3]⊕ (L0

1[1] · L
0

1[4])⊕ (X[0] · IR4),

Y [5] = L0

1[7]⊕ L0

1[2]⊕ (L0

1[0] · L
0

1[3])⊕ (X[1] · IR5),

Y [6] = L0

1[6]⊕ L0

1[1]⊕ (X[0] · L1[2])⊕ (X[2] · IR6).

X[0], . . . , X[3] are easily fixed to constants by controlling 4 bits of L0
2[18], L

0
2[17], L

0
2[16] and

L0
2[15] (4-bit condition). X[4], . . . , X[8] contain key bits in AND operations. If L0

2[4] = L0
2[3] =

L0
2[2] = L0

2[1] = L0
2[0] = 0, those key bits are omitted from the equations (5-bit condition). Then

X[4] to X[7] are also fixed to constants by controlling 4 bits of L0
2[14], L

0
2[13], L

0
2[12] and L0

2[11]
(4 bit condition). In X[8], k0 is also linearly inserted. If (L0

2[10]⊕ Y [0]⊕ (L0
2[4] · L

0
2[2])) is fixed to

a constant by controlling L0
2[10], then X[8] is expressed as the form of CON ⊕ k0, which depends

only on key bits, where CON is an arbitrary constant.
In X[9] and X[10], 4 bits of Y [0], Y [1], Y [5] and Y [6] are needed to be fixed. These values are

controlled by L0
1[12], L

0
1[11], L

0
1[7] and L0

1[6]. If the other bits are fixed by L0
2[9] and L0

2[8], X[9]
and X[10] are expressed by only key bits.

Therefore, if plaintexts satisfy 23 (= 3 + 4 + 5 + 4 + 1 + 4 + 2) bit conditions described in
Table 3, 8 bits of the key are able to be omitted when mounting the ASR attack.

Procedure for Creating Plaintexts. We show how to create plaintexts satisfying the conditions.
By using the equations of X[0] to X[10] and Y [0] to Y [6], such plaintexts are easily obtained as
follows.

1. Set 18 predetermined values of L0
1[0], L

0
1[1], L

0
1[2], X[0], . . . , X[10], Y [0], Y [1], Y [5] and Y [6].

2. Choose values of free 9 bits of L0
2[5], L

0
2[6], L

0
2[7], L

0
1[3], L

0
1[4], L

0
1[5], L

0
1[8], L

0
1[9] and L0

1[10].
3. Obtain L0

2[8], . . . , L
0
2[13] from equations of X[5], . . . , X[10], and L0

1[6] and L0
1[7] from equations

of Y [5] and Y [6], respectively.
4. Obtain L0

2[14], . . . , L
0
2[18] from equations of X[0], . . . , X[4], and L0

1[11] and L0
1[12] from equa-

tions of Y [0] and Y [1], respectively.
5. Repeat steps 2 to 4 until the required number of plaintexts are obtained.

4.3 Attacks on 119-Round KATAN32

Let us consider the 119-round variant of KATAN32 starting from the first (0-th) round. In this
attack, L69

2 [18] is chosen as the matching state.

11

Table 4. Conditions for 4-bit Function Reductions

Key bit State bits to be fixed

k1 X ′[0], X ′[1], L0

1[6], L
0

1[7], X
′[8], X ′[9]

k3 X ′[2], X ′[3], L0

1[4], L
0

1[5], X
′[10], X ′[11]

k5 X ′[4], X ′[5], L0

1[2], L
0

1[3], X
′[12], X ′[13]

k7 X ′[6], X ′[7], L0

1[0], L
0

1[1], X
′[14], X ′[15]

Forward Computation in F(1) : L69
2 [18] depends on 83 subkey bits. This implies that L69

2 [18]
can be computed by a plaintext P and 83 bits of subkeys. More specifically, L69

2 [18] = F(1)(P,K(1)),
where K(1) ∈ {k0, ..., k70, k72, . . ., k76, k80, k83, k84, k85, k89, k93, k100} and |K(1)| = 83. If the
function reduction technique with the 23-bit condition of plaintexts is used, 8 bits of {k1, k3, k5,
k7, k9, k11, k13, k15} can be omitted in computations of F(1). Thus, L

69
2 [18] is computable with

75(= 83 − 8) bits. In addition, since 4 bits of {k68, k75, k85, k100} linearly affect L69
2 [18], we can

regard k68 ⊕ k75 ⊕ k85 ⊕ k100 as a new key kf . Thus, 72(= 75 − 4 + 1) bits are involved in the
forward computation.

Backward Computation in F(2) : In the backward computation starting from the 118-th

round, the matching state L69
2 [18] is computed as L69

2 [18] = F−1
(2) (C,K(2)), where K(2) ∈ {k138,

k150, k154, k158, k160, k162, k165, k166, k168, k170, k172, . . . k237}, and |K(2)| = 76. Since 4 bits of
{k138, k160, k165, k175} linearly affect L69

2 [18], we can regard k138 ⊕ k160 ⊕ k165 ⊕ k175 as a new key
kb. Furthermore, by the indirect matching, kb is moved to the forward computation, then kb⊕kf is
regarded as a new key in F(1). Thus, 72(= 76− 4) bits are involved in the backward computation.

Evaluation. For the 119-round reduced KATAN32, the matching state S is chosen as L69
2 [18]

(1-bit state). When N = 144 (≤ (72 + 72)/1), the time complexity for finding K(1) and K(2) is
estimated as

Ccomp = max(272, 272)× 144 = 279.1.

The required data is only 144 chosen plaintext/ciphertext pairs in which the 23 bits of each plaintext
satisfy conditions. The required memory is about 279.1 blocks.

Finally, we need to find the remaining 94(= 119 × 2 − 144) bits of subkeys by using the
simple MITM approach in the setting where K(1) and K(2) are known. The time complexity and
the required memory for this process are roughly estimated as 249(= 248 + 246) and 246 blocks,
respectively. These costs are obviously much less than those of finding K(1) and K(2).

4.4 Function Reduction on KATAN48

Table 4 shows conditions for 4-bit function reductions, where X ′[i] is defined as:

X ′[i] = L0
2[28− i]⊕ L0

2[19− i]⊕ (L0
2[21− i] · L0

2[13− i])⊕ (L0
2[15− i] · L0

2[6− i]).

If these values are fixed to target constants, we can eliminate the key bits in the computation of
KATAN48.

X ′[0], . . . , X ′[6] are fixed by controlling 7 bits of L0
2[22], . . . , L

0
2[28] (7 bit condition).X

′[7], . . . , X ′[15]
contain key bits in AND operations. If L0

2[8] = L0
2[7] =, . . . ,= L0

2[1] = L0
2[0] = 0, these key bits are

omitted from these equations (9 bit condition). Then X ′[7], . . . , X ′[15] are also fixed by controlling
9 bits of L0

2[13], . . . , L
0
2[21] (9 bit condition).

Therefore, if plaintexts satisfy 33 (= 8 + 7 + 9 + 9) bit conditions described in Table 4, 4 bits
of the key are able to be omitted when mounting the ASR attack.

4.5 Attacks on 105-Round KATAN48

Let us consider the 105-round variant of KATAN48 starting from the first (0-th) round. In this
attack, L61

2 [28] is chosen as the matching state.

12

Table 5. Conditions for 2-bit Function Reductions

Key bit State bits to be fixed

k1 X ′′[0], X ′′[1], X ′′[2], L0

1[6], L
0

1[7], L
0

1[8], X
′′[9], X ′′[10], X ′′[11],

k3 X ′′[3], X ′′[4], X ′′[5], L0

1[3], L
0

1[4], L
0

1[5], X
′′[12], X ′′[13], X ′′[14],

Forward Computation in F(1) : L61
2 [28] depends on 79 subkey bits. This implies that L61

2 [28]
can be computed by a plaintext P and 79 bits of subkeys. More specifically, L61

2 [28] = F(1)(P,K(1)),
where K(1) ∈ {k0, ..., k68, k70, k71, k72, k75, k77, k78, k81, k85, k87, k92} and |K(1)| = 79. If the
function reduction technique with the 33-bit condition of plaintexts is used, 4 bits of k1, k3, k5, k7
can be omitted in computations of F(1). Thus, L

61
2 [28] is computable with 75(= 79 − 4) bits. In

addition, 3 bits of {k75, k81, k92} linearly affect L61
2 [28]. Thus, we can regard k75 ⊕ k81 ⊕ k92 as a

new key. By using indirect matching, kf = k75 ⊕ k81 ⊕ k92 is moved to F(2). Then, 72(= 75 − 3)
bits are involved in the forward computation.

Backward Computation in F(2) : In the backward computation starting from the 104-th round,

the matching state L61
2 [28] is computed as L61

2 [28] = F−1
(2) (C,K(2)), where K(2) ∈ {k122, k128, k130,

k134, k136, k138, k140, k141, k142, k144, . . . k209}, and |K(2)| = 75. 4 bits of {k122, k130, k140, k141}
linearly affect L61

2 [28]. Thus, we can regard kb = k122⊕k130⊕k140⊕k141 as a new key. Furthermore,
we define kf⊕kb as a new key. Then, 72(= 75−4+1) bits are involved in the backward computation.

Evaluation. For the 105-round reduced KATAN48, the matching state S is chosen as L61
2 [28] (1-bit

state). When N = 144 (≤ (72+ 72)/1), the time complexity for finding K(1) and K(2) is estimated
as

Ccomp = max(272, 272)× 144 = 279.1.

The required data is only 144 chosen plaintext/ciphertext pairs. The required memory is about
279.1 blocks.

Finally, we need to find the remaining 66 (= 105 × 2 − 144) bits of subkeys by using the
simple MITM approach in the setting where K(1) and K(2) are known. The time complexity and
the required memory for this process are roughly estimated as 234(= 234 + 232) and 232 blocks,
respectively. These costs are obviously much less than those of finding K(1) and K(2).

4.6 Function Reduction on KATAN64

Table 5 shows conditions for 2-bit function reductions, where X ′′[i] is defined as:

X ′′[i] = L0
2[38− i]⊕ L0

2[25− i]⊕ (L0
2[33− i] · L0

2[21− i])⊕ (L0
2[14− i] · L0

2[9− i]).

If these values are fixed to target constants, we can eliminate the key bits in the computation of
KATAN64.

X ′′[0], . . . , X ′′[9] are fixed by controlling 10 bits of L0
2[29], . . . , L

0
2[38] (10 bit condition). X ′′[10],

. . ., X ′′[14] contain key bits in AND operations. If L0
2[4] =, . . . ,= L0

2[0] = 0, these key bits are omit-
ted from these equations (5 bit condition). Then X ′′[10], . . . , X ′′[14] are also fixed by controlling 5
bits L0

2[18], ..., L
0
2[23] (5 bit condition).

Therefore, if plaintexts satisfy 29 (= 9 + 10 + 5 + 5) bit conditions described in Table 5, 2
bits of the key are able to be omitted when mounting the ASR attack.

4.7 Attacks on 99-Round KATAN64

Let us consider the 99-round variant of KATAN64 starting from the first (0-th) round. In this attack,
L57
2 [38] is chosen as the matching state.

13

Forward Computation in F(1) : L57
2 [38] depends on 74 subkey bits. This implies that L57

2 [38]
can be computed by a plaintext P and 74 bits of subkeys. More specifically, L57

2 [38] = F(1)(P,K(1)),
where K(1) ∈ {k0, ..., k66, k70, k71, k72, k75, k77, k81, k88} and |K(1)| = 74. If the function reduc-
tion technique with the 29-bit condition of plaintexts is used, 2 bits of k1, k3 can be omitted in
computations of F(1). Thus, L

57
2 [38] is computable with 72(= 74 − 2) bits. In addition, 3 bits of

{k71, k77, k88} linearly affect L57
2 [38]. Thus, we can regard k71 ⊕ k77 ⊕ k88 as a new key. Then,

70(= 72− 3 + 1) bits are involved in the forward computation.

Backward Computation in F(2) : In the backward computation starting from the 98-th round,

the matching state L57
2 [38] is computed as L57

2 [38] = F−1
(2) (C,K(2)), where K(2) ∈ {k114, k116,

k120, k122, k124, k126, k128, k130, . . . k197}, and |K(2)| = 75. 3 bits of {k114, k122, k131} linearly
affect L57

2 [38]. Thus, we can consider k114 ⊕ k122 ⊕ k131 as a new key, and move it to the forward
computation by the indirect matching. Then, 72(= 75 − 3) bits are involved in the backward
computation.

Evaluation. For the 99-round reduced KATAN64, the matching state S is chosen as L57
2 [38] (1-bit

state).
When N = 142 (≤ (72 + 70)/1), the time complexity for finding K(1) and K(2) is estimated as

Ccomp = max(272, 270)× 142 = 279.1.

The required data is only 142 chosen plaintext/ciphertext pairs. The required memory is about
277.1 blocks.

Finally, we need to find the remaining 56(= 99× 2− 142) bits of subkeys by using the simple
MITM approach in the setting where K(1) and K(2) are known. The time complexity and the
required memory for this process are roughly estimated as 228 and 228 blocks, respectively. These
costs are obviously much less than those of finding K(1) and K(2).

5 Improved All-Subkeys Recovery Attack on SHACAL-2

This section presents the ASR attacks on SHACAL-2 with the function reduction techniques. Then,
we propose a 42-round attack on SHACAL-2, based on the 41-round attack on SHACAL-2 [13].

5.1 Description of SHACAL-2

SHACAL-2 [13] is a 256-bit block cipher based on the compression function of SHA-256 [12]. It
was submitted to the NESSIE project and selected in the NESSIE portfolio [22].

SHACAL-2 inputs the plaintext to the compression function as the chaining variable, and inputs
the key to the compression function as the message block. First, a 256-bit plaintext is divided into
eight 32-bit words A0, B0, C0, D0, E0, F0, G0 and H0. Then, the state update function updates
eight 32-bit variables, Ai, Bi, ..., Gi, Hi in 64 steps as follows:

T1 = Hi ⊞Σ1(Ei)⊞ Ch(Ei, Fi, Gi)⊞Ki ⊞Wi,

T2 = Σ0(Ai)⊞Maj(Ai, Bi, Ci),

Ai+1 = T1 ⊞ T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di ⊞ T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,

where Ki is the i-th step constant, Wi is the i-th step key (32-bit), and the functions Ch, Maj,
Σ0 and Σ1 are given as follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

14

HLi||HRi HRiHLi

WLi||WRi WLi WRi

Fig. 5. Splice and Cut of SHACAL-2

After 64 steps, the function outputs eight 32-bit words A64, B64, C64, D64, E64, F64, G64 and H64

as the 256-bit ciphertext. Hereafter pi denotes the i-th step state, i.e., pi = Ai||Bi||...||Hi.
The key scheduling function of SHACAL-2 takes a variable length key up to 512 bits as the

inputs, then outputs 64 32-bit step keys. First, the 512-bit input key is copied to 16 32-bit words
W0, W1, ..., W15. If the size of the input key is shorter than 512 bits, the key is padded with zeros.
Then, the key scheduling function generates 48 32-bit step keys (W16, ...,W63) from the 512-bit
key (W0, ...,W15) as follows:

Wi = σ1(Wi−2)⊞Wi−7 ⊞ σ0(Wi−15)⊞Wi−16, (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10).

5.2 Function Reduction on SHACAL-2

In the round function of SHACAL-2, a round key Wi is inserted to the state Ti by an arithmetic
addition operation. We show that the splice and cut framework is applicable by using the partial
key linearization technique.

The computation of T1 is expressed as

T1 = (Hi ⊞Wi)⊞Σ1(Ei)⊞ Ch(Ei, Fi, Gi)⊞Ki.

In a straight way, the computation of (Hi ⊞ Wi) is not divided into two parts as (HLi ⊞

WLi)||(HRi ⊞ WRi) due to the carry bit between these computations, where HLi and WLi

denote the higher x-bits of Hi and Wi, respectively, and HRi and WRi are the lower (32−x)-bits
of Hi and Wi. If HRi is fixed to 0, it is equivalent to (HLi ⊞ WLi)||(HLi ⊕ WRi). Then, it
allows us to independently compute these two parts without dealing with carry bits. Therefore, by
using the splice and cut framework, 32 key bits of one round is divided into forward and backward
computations as shown in Fig. 5.

However, we can not reduce the number of involved key bits by using an equivalent transform. It
is because that the involved 32-bit key Wi is used at least eight times in the forward and backward
directions. In order to fully control values in each state, more than 512(32 × 8) bits of conditions
are required.

5.3 Attacks on 42-Round SHACAL-2

We show that the splice and cut framework [4] is applicable to SHACAL-2 by using the key lin-
earization technique. Then we extend the 41-round attack [16] by one more round. In particular,
the splice and cut technique is done in the first round, and the higher 15 bits are move to the back-
ward computation, and the lower 17 bits are move to the forward computation. Then we choose
the lowest 1 bit of A17 as the matching point.

Forward Computation in F(1) : The lowest 1 bit of A17 can be computed from the 16-th state
p16 and the lowest 1 bit of W16, since the other bits of W16 are not affected to the lower 1 bit of A17.
Thus, the matching state S (the lowest 1 bit of A17) is calculated as S = F(1)(P,K(1)), where K(1) ∈
{the lower 17 bits of W0,W1, ...,W15, the lowest 1 bit of W16} and |K(1)| = 498(= 32×15+1+17).

15

Backward Computation in F(2) : We utilize the following observation [16].

Observation 1 The lower t bits of Aj−10 are obtained from the j-th state pj and the lower t bits
of three subkeys Wj−1, Wj−2 and Wj−3.

From Observation 1, the matching state S (the lowest 1 bit of A17) can be computed as S =
F−1

(2) (C,K(2)), where K(2) ∈ {the higher 15 bits of W0, W27, ...,W41, the lowest 1 bits of W24, W25

and W26}. Thus, |K(2)| = 498(= 32× 15 + 1× 3 + 15).

Evaluation. The matching state S is the lowest 1 bit of A17, |K(1)| = 498 and |K(2)| = 498. Thus,
using 996 chosen plaintext/ciphertext pairs (i.e. N = 244 ≤ (498 + 498)/1), the time complexity
for finding all-subkeys is estimated as

Ccomp = max(2498, 2498)× 996 + 21344−996 = 2508.

The required data is 225(= 996× 215) chosen plaintext/ciphertext pairs, since 15 bits of plaintext
are not controlled in the backward computation when using the splice and cut technique. The
required memory is 2508 (= min(2498, 2498) × 996) blocks.

6 Conclusion

The concept of the ASR attack is quite simple, which recovers all-subkeys instead of the master
key, but useful to evaluate the security of block cipher structures without analyzing key scheduling
functions. Thus, it is valuable to study its improvements to design a secure block cipher. We first
observed the function reduction technique, which improved the ASR attack and was originally
applied to Feistel schemes. Then, with some improvements such as the repetitive ASR approach,
we applied the function reduction to other block cipher structures including Lai-Massey, generalized
Lai-Massey, LFSR-type and source-heavy generalized Feistel schemes.

As applications of our approach, we presented the improved ASR attacks on the 7-, 7-, 119-,
105-, 99-, and 42-round reduced FOX64, FOX128, KATAN32, KATAN48, KATAN64 and SHACAL-2. All
of our results updated the number of attacked rounds by the previously known best attacks. We
emphasize that our attacks work independently from the structure of the key scheduling function.
In other words, strengthening the key scheduling function does not improve the security against
our attack. It implies that our results give the lower bounds on the security of the target structures
such as Lai-Massey scheme rather than the specific block ciphers against generic key recovery
attack. Therefore, we believe that our results are useful for a deeper understanding the security of
the block cipher structures.

References

1. C. Adams, “The CAST-128 encryption algorithm.” RFC-2144, May 1997.
2. M. R. Albrecht and G. Leander, “An all-in-one approach to differential cryptanalysis for small block

ciphers.” in SAC (L. R. Knudsen and H. Wu, eds.), vol. 7707 of LNCS , pp. 1–15, Springer, 2013.
3. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, “Preimages for step-reduced SHA-2.” in

ASIACRYPT (M. Matsui, ed.), vol. 5912 of LNCS , pp. 578–597, Springer, 2009.
4. K. Aoki and Y. Sasaki, “Preimage attacks on one-block MD4, 63-step MD5 and more.” in SAC

(R. Avanzi, L. Keliher, and F. Sica, eds.), vol. 5381 of LNCS , pp. 103–119, Springer, 2008.
5. E. Biham, O. Dunkelman, N. Keller, and A. Shamir, “New attacks on IDEA with at last 6 rounds.”

J. Cryptology , vol. 28(2), pp. 209–239, 2015.
6. A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full AES.” in ASI-

ACRYPT (D. H. Lee and X. Wang, eds.), vol. 7073 of LNCS , pp. 344–371, Springer, 2011.
7. A. Bogdanov and C. Rechberger, “A 3-subset meet-in-the-middle attack: Cryptanalysis of the

lightweight block cipher KTANTAN.” in SAC (A. Biryukov, G. Gong, and D. R. Stinson, eds.),
vol. 6544 of LNCS , pp. 229–240, Springer, 2010.

8. C. D. Cannière, O. Dunkelman, and M. Knežević, “KATAN and KTANTAN - a family of small and
efficient hardware-oriented block ciphers.” in CHES (C. Clavier and K. Gaj, eds.), vol. 5747 of LNCS ,
pp. 272–288, Springer, 2009.

16

9. A. Canteaut, M. Naya-Plasencia, and B. Vayssière, “Sieve-in-the-middle: Improved MITM attacks.”
in CRYPTO (1) (R. Canetti and J. A. Garay, eds.), vol. 8042 of LNCS , pp. 222–240, Springer, 2013.

10. I. Dinur, O. Dunkelman, and A. Shamir, “Improved attacks on full GOST.” in FSE (A. Canteaut,
ed.), vol. 7549 of LNCS , pp. 9–28, Springer, 2012.

11. O. Dunkelman, G. Sekar, and B. Preneel, “Improved meet-in-the-middle attacks on reduced-round
DES.” in INDOCRYPT (K. Srinathan, C. P. Rangan, and M. Yung, eds.), vol. 4859 of LNCS , pp. 86–
100, Springer, 2007.

12. FIPS, “Secure Hash Standard (SHS).” Federal Information Processing Standards Publication 180-4.
13. H. Handschuh and D. Naccache, “SHACAL.” NESSIE Proposal (updated), Oct. 2001. Available from

https://www.cosic.esat.kuleuven.be/nessie/updatedPhase2Specs/SHACAL/shacal-tweak.zip.
14. T. Isobe, “A single-key attack on the full GOST block cipher.” in FSE (A. Joux, ed.), vol. 6733 of

LNCS , pp. 290–305, Springer, 2011.
15. T. Isobe, Y. Sasaki, and J. Chen, “Related-key boomerang attacks on KATAN32/48/64.” in ACISP

(C. Boyd and L. Simpson, eds.), vol. 7959 of LNCS , pp. 268–285, Springer, 2013.
16. T. Isobe and K. Shibutani, “All subkeys recovery attack on block ciphers: Extending meet-in-the-

middle approach.” in SAC (L. R. Knudsen and H. Wu, eds.), vol. 7707 of LNCS , pp. 202–221, Springer,
2013.

17. T. Isobe and K. Shibutani, “Generic key recovery attack on Feistel scheme.” in ASIACRYPT (1)
(K. Sako and P. Sarkar, eds.), vol. 8269 of LNCS , pp. 464–485, Springer, 2013.

18. P. Junod and S. Vaudenay, “FOX : A new family of block ciphers.” in SAC (H. Handschuh and M. A.
Hasan, eds.), vol. 3357 of LNCS , pp. 114–129, Springer, 2004.

19. D. Khovratovich, G. Leurent, and C. Rechberger, “Narrow-bicliques: Cryptanalysis of full IDEA.” in
EUROCRYPT (D. Pointcheval and T. Johansson, eds.), vol. 7237 of LNCS , pp. 392–410, Springer,
2012.

20. J. Lu and J. Kim, “Attacking 44 rounds of the SHACAL-2 block cipher using related-key rectangle
cryptanalysis.” IEICE Transactions, vol. 91-A, no. 9, pp. 2588–2596, 2008.

21. R. C. Merkle and M. E. Hellman, “On the security of multiple encryption.” Commun. ACM , vol. 24,
no. 7, pp. 465–467, 1981.

22. NESSIE consortium, “NESSIE portfolio of recommended cryptographic primitives.” 2003. Available
from https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf.

23. I. Nikolic, L. Wang, and S. Wu, “The parallel-cut meet-in-the-middle attack.” Cryptography and Com-
munications, vol. 7(3), p. 331–345, 2015.

24. Y. Sasaki and K. Aoki, “Finding preimages in full MD5 faster than exhaustive search.” in EURO-
CRYPT (A. Joux, ed.), vol. 5479 of LNCS , pp. 134–152, Springer, 2009.

25. K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, “Birthday paradox for multi-collisions.” in ICISC
(M. S. Rhee and B. Lee, eds.), vol. 4296 of LNCS , pp. 29–40, Springer, 2006.

26. W. Wu, W. Zhang, and D. Feng, “Integral cryptanalysis of reduced FOX block cipher.” in ICISC
(D. Won and S. Kim, eds.), vol. 3935 of LNCS , pp. 229–241, Springer, 2005.

27. Z. Wu, Y. Luo, X. Lai, and B. Zhu, “Improved cryptanalysis of the FOX block cipher.” in INTRUST
(L. Chen and M. Yung, eds.), vol. 6163 of LNCS , pp. 236–249, Springer, 2009.

17

