
On the discrete logarithm problem in

finite fields of fixed characteristic

Robert Granger1⋆, Thorsten Kleinjung2⋆⋆, and Jens Zumbrägel1⋆ ⋆ ⋆

1 Laboratory for Cryptologic Algorithms
School of Computer and Communication Sciences

École polytechnique fédérale de Lausanne, Switzerland
2 Institute of Mathematics, Universität Leipzig, Germany

{robert.granger,thorsten.kleinjung,jens.zumbragel}@epfl.ch

Abstract. For q a prime power, the discrete logarithm problem (DLP) in F×
q consists in finding, for

any g ∈ F×
q and h ∈ 〈g〉, an integer x such that gx = h. For each prime p we exhibit infinitely many

extension fields Fpn for which the DLP in F×
pn can be solved in expected quasi-polynomial time.

1 Introduction

In this paper we prove the following result.

Theorem 1. For every prime p there exist infinitely many explicit extension fields Fpn for which
the DLP in F×

pn can be solved in expected quasi-polynomial time

exp
(
(1/ log 2 + o(1))(log n)2

)
. (1)

Theorem 1 is an easy corollary of the following much stronger result, which we prove by
presenting a randomised algorithm for solving any such DLP.

Theorem 2. Given a prime power q > 61 that is not a power of 4, an integer k ≥ 18, polyno-
mials h0, h1 ∈ Fqk [X] of degree at most two and an irreducible degree l factor I of h1X

q − h0,

the DLP in F×
qkl

where Fqkl
∼= Fqk [X]/(I) can be solved in expected time

qlog2 l+O(k). (2)

To deduce Theorem 1 from Theorem 2, note that thanks to Kummer theory, when l = q− 1
such h0, h1 are known to exist; indeed, for all k there exists an a ∈ Fqk such that I = Xq−1−a ∈
Fqk [X] is irreducible and therefore I | Xq − aX. By setting q = pi > 61 for any i ≥ 1 (odd for
p = 2), k ≥ 18 with k = o(log q), l = q − 1 = pi − 1 and finally n = ik(pi − 1), applying (2)
proves that the DLP in this representation of F×

pn can be solved in expected time (1). As one

can compute an isomorphism between any two representations of F×
pn in polynomial time [43],

this completes the proof. Observe that by using the same argument one may also replace the
prime p in Theorem 1 by any prime power that is not a power of 4.

In order to apply Theorem 2 to the DLP in F×
pn with p fixed and arbitrary n, one should first

embed the DLP into one in an appropriately chosen F×
qkn

. By this we mean that q = pi should

be at least n−2 (so that h0, h1 may exist) but not too large, and that 18 ≤ k = o(log q), so that
the resulting complexity (2) is given by (1) as n → ∞. Proving that appropriate h0, h1 ∈ Fqk [X]
exist for such q and k would complete our approach and prove the far stronger result that the
DLP in F×

pn can be solved in expected time (1) for all sufficiently large n. However, this seems

⋆ Supported by the Swiss National Science Foundation via grant number 200021-156420.
⋆⋆ This work was mostly done while the author was with the Laboratory for Cryptologic Algorithms, EPFL,

Switzerland, supported by the Swiss National Science Foundation via grant number 200020-132160.
⋆ ⋆ ⋆ This work was mostly done while the author was with the Institute of Algebra, TU Dresden, Germany, supported

by the Irish Research Council via grant number ELEVATEPD/2013/82.

to be a very hard problem, even if heuristically it would appear to be almost certain. What is
striking about Theorem 2 is that in contrast to all finite field DLP algorithms from the past
thirty years, it is rigorous, and our algorithm is therefore guaranteed to work once an appropriate
field representation is found.

Note that if one could prove the existence of an infinite sequence of primes p (or more
generally prime powers) for which p− 1 is quasi-polynomially smooth in log p, then the Pohlig-
Hellman algorithm [47] (discovered independently by Silver) would also give a rigorous – and
deterministic – quasi-polynomial time algorithm for solving the DLP in such fields, akin to
Theorem 1. However, such a sequence is not known to exist and even if it were, Theorem 1 is
arguably more interesting since our algorithm exploits properties of the fields in question rather
than just the factorisation of the order of their multiplicative groups. Furthermore, the fields to
which our algorithm applies are explicit, whereas it may be very hard to find members of such
a sequence of primes (or prime powers), should one exist.

Gauss was probably the first to define discrete logarithms – or indices, as he called them, with
respect to a primitive root – noting their usefulness for computing n-th roots modulo primes [19,
art. 57–60]. Since he suggested the use of look-up tables for this purpose, the algorithm he
used for computing logarithms in the tiny examples to which he applied the technique was
almost certainly just tabulation via exponentiation. However, Gauss noted in art. 58 that the
table need only consist of indices for primes, implicitly assuming that integers less than the
modulus can be factorised efficiently. In the early 1920s Kraitchik developed this observation
into what is now called the Index Calculus Method (ICM) [40, 41]; evidently a very natural
idea, it was also discovered independently by Cunningham at around the same time, see [54],
and rediscovered by Adleman [1], Merkle [45] and Pollard [48] in the late 1970s. In this context
the ICM proceeds by first defining a factor base consisting of primes up to some smoothness
bound B. One then searches for multiplicative relations between elements of the factor base;
one can do this for instance by computing random powers of the primitive root g modulo p
and storing those which are B-smooth. These relations between factor base elements (and g)
each induce a linear equation between their logarithms with respect to g, and once there are
sufficiently many relations the logarithms of the factor base elements can be computed via a
linear algebra elimination. The second phase of the ICM consists of computing the logarithm
of a target element h which is not B-smooth. In this setting one can multiply h by random
powers of g until the product is B-smooth, at which point its logarithm is easily determined.
Exploiting the distribution of Lp(1/2)-smooth integers amongst integers less than p [14, 12, 13]
gives a heuristic Lp(1/2) algorithm for the DLP in F×

p [1]; here, as is usual for such algorithms,
we use the following measure of subexponentiality:

Lp(α, c) = exp((c+ o(1))(log p)α(log log p)1−α),

where for simplicity we sometimes suppress the subscript, the constant c, or both. The algorithm
just described can be made rigorous for both prime fields and fixed characteristic extension
fields [49, 18].

In 1984 Coppersmith proposed the first heuristic L(1/3, c) algorithm for fields of the form
F2n [10, 11] with the constant c being a periodic function of n satisfying (32/9)1/3 < c < 41/3.
Coppersmith’s algorithm exhibits similar periodic behaviour for extensions fields of any fixed
characteristic. In 1994 Adleman proposed the Function Field Sieve (FFS) [2] – an analogue of
the famous Number Field Sieve [42] – which can also be seen as a generalisation of Coppersmiths
algorithm. This was refined by Adleman and Huang in 1999, achieving a heuristic complexity of
L(1/3, (32/9)1/3) for extension fields of any fixed characteristic [3].

For fixed characteristic extension fields, the main difference between the L(1/2) and L(1/3)
algorithms is that during relation generation the former generates elements of degree ≈ n and
searches for sufficiently many which are Õ(n1/2)-smooth (where the Õ indicates suppressed log
factors), whereas algorithms of the latter type generate elements of degree Õ(n2/3) and search for

2

sufficiently many which are Õ(n1/3)-smooth. In the former case the elements can be generated
uniformly and so one can apply smoothness results to obtain a rigorous algorithm. Crucially, for
the L(1/3) algorithms the elements generated are not uniformly distributed amongst elements
of that degree and hence the complexity analysis is only heuristic. A second difference is that
during the individual logarithm phase of the L(1/3) algorithms one needs to recursively express
a target element as a product of irreducible elements of lower degrees – with one iteration of this
process being known as an elimination of that element – which produces a tree with the target
element at its root and the elements produced by this process at its nodes. After sufficiently
many iterations the elements at the leaves of this tree will be contained entirely in the factor
base and so the logarithm of the target element can easily be computed via backtracking. Since
this process descends through elements of lower and lower degree, the individual logarithm phase
is also known as the descent.

In order to obtain algorithms of better complexity – at least for the first phase of the ICM
– there are two natural directions that one could explore: firstly, one could attempt to generate
relations between elements of lower degree, which heuristically would have a higher probability
of being smooth; or secondly, one could attempt to generate relations which have better than
expected smoothness properties (or possibly a combination of both). The second idea is perhaps
far less obvious and more nuanced than the first; indeed until recently it does not seem to have
been appreciated that it was even a possibility, most likely because from an algorithm analysis
perspective it is desirable that the expected smoothness properties hold. For nearly three decades
there was no progress in either direction; the only development in fixed characteristic being a
practical improvement [36], while for so-called medium characteristic fields – those for which the
base field cardinality satisfies q = Lqn(1/3) – a slight reduction in the constant was achieved,
to c = 31/3 ≈ 1.44 [37] and to c = 21/3 ≈ 1.26 [30], the latter using a clever method to amplify
one relation into many others. Note that we mention the medium characteristic developments
because they can be applied to fixed characteristic extensions for appropriate extension degrees.
Given the immense importance of the DLP to public key cryptography ever since its inception
in 1976 [17], this plateau in progress could have been taken as strong evidence of the problem’s
hardness. However, in 2013 a series of algorithmic breakthroughs occurred which demonstrated
that for fixed characteristic fields the DLP is, at least heuristically, far easier than originally
believed.

In particular, in February 2013, Göloğlu, Granger, McGuire and Zumbrägel showed that for
binary (and more generally fixed characteristic) fields of a certain form, relation generation for
degree one elements runs in heuristic polynomial time, as does computing the logarithms of degree
two elements using a technique which eliminates them on the fly, i.e., individually and quickly [20,
21], which was previously the bottleneck in the descent when using the standard techniques. This
was the first example of the second idea alluded to above as it demonstrated how to generate
relations which are 1-smooth for arbitrarily large degree, completely contradicting the usual
smoothness heuristics. However, the efficient elimination of higher degree elements remained an
unresolved problem. For fields of essentially the same form Joux independently gave: a degree one
relation generation method which is isomorphic to that of Göloğlu et al.; a very different degree
two elimination method; and a new small degree element elimination method which resulted in
an algorithm with heuristic complexity L(1/4 + o(1)) [32, 31]. Combinations and variations of
these techniques led to several large scale DLP computations and records [33, 23, 34, 24, 35, 27,
28, 22, 25], the largest of which at the time of writing was in the field F29234 .

Then in June 2013, for fields of the same form and of bitlength λ, Barbulescu, Gaudry, Joux
and Thomé announced a heuristic quasi-polynomial time algorithm (referred to hereafter as the
original QPA) for solving the DLP [5], which has complexity

λO(log λ). (3)

Since (3) is smaller than L(α) for any α > 0, it is asymptotically the most efficient algorithm
known for solving the DLP in finite fields of fixed characteristic. It also results in an immediate

3

L(α + o(1)) algorithm when q = Lqn(α) for 0 ≤ α < 1/3. The principal idea behind the
elimination steps of the original QPA may be viewed as a generalisation of Joux’s degree two
elimination method [31], which finds the logarithms of all translates of a degree two element
simultaneously via the collection of suitable relations and a subsequent linear algebra elimination.

The principal idea† behind our new QPA may be viewed as a generalisation of the degree two
elimination method of [21]. In particular, for an element of degree 2d that we wish to eliminate,
observe that over a degree d extension of the base field it factors into a product of d irreducible
quadratics. Applying the degree two elimination method of [21] to any one of these quadratics
enables one to rewrite the quadratic as a product of linear elements over the degree d extension
of the base field. To return to the original base field one simply applies the relevant norm, which
takes the linear elements to powers of irreducible elements of order dividing d and the quadratic
element back to the original element which was to be eliminated, thus completing its elimination.
If the target element has degree a power of two then this elimination can be applied recursively,
halving the degree (or more) of the elements in the descent tree upon each iteration. Central
to our proof of Theorem 2 is our demonstration that this recursive step can always be carried
out successfully. For the purpose of building a full DLP algorithm which may be applied to any
target element, one can use a Dirichlet-type theorem due to Wan [53, Thm. 5.1] to ensure that
any field element is equivalent to an irreducible of degree a power of two only slightly larger
than the extension degree of the field in question.

A remarkable property of the above descent method is that it does not require any smooth-
ness assumptions about non-uniformly distributed polynomials, in contrast to all previous index
calculus algorithms, including the original QPA. So while the polynomial time relation gener-
ation techniques of [21, 31] in a sense resisted smoothness heuristics, our new descent method
completely eliminates them. We emphasise that our new QPA is radically different from the
original QPA of Barbulescu et al., while it is its very algebraic nature that makes our rigorous
analysis possible. Given the essential use of smoothness heuristics in the original QPA, as well
as one other heuristic, it seems unlikely that it can be made rigorous, even if the existence of
appropriate field representations are assumed or proven. Furthermore, while not of central in-
terest to the results of the present paper, we remark that our elimination steps are extremely
practical, even for relatively small fields [46, 39], whereas the bitlengths for which the original
QPA becomes effective have yet to be determined.

Questions worthy of future consideration include whether or not there exists a polynomial
time algorithm (either rigorous or heuristic) for the DLP in fixed characteristic fields, or even
harder, what is the true complexity of the DLP in the fixed characteristic case? Note that a result
of F.R.K. Chung implies that for fields of our form any element can be represented as a product
of a polynomial number of linear elements [9, Thm. 8]. Hence there is no representational barrier
to obtaining a polynomial time algorithm, when the factor base consists of linear elements.

The sequel is organised as follows. In Section 2 we describe our algorithm and explain why
the steps are sufficient for our purpose. We then give a brief review of the FFS in Section 3 and
fix some notation. In Section 4 we provide details of the building block behind our new descent
and explain why its successful application implies Theorem 2, and hence Theorem 1. Finally, in
Section 5 we complete the proof of these theorems by demonstrating that the descent step is
indeed always successful.

2 The algorithm

As per Theorem 2, let q > 61 be a prime power that is not a power of 4 and let k ≥ 18 be
an integer; the reasons for these bounds are explained in Sections 4 and 5. We also assume
there exist h0, h1, I ∈ Fqk [X] with deg(h0), deg(h1) ≤ 2 and I a degree l irreducible factor of

h1X
q − h0. Finally, let g ∈ F×

qkl
and let h ∈ 〈g〉 be the target element for the DLP to base g.

† This approach was first made public in a preliminary version [26] of this article.

4

We now present our algorithm, which differs slightly from the traditional ICM as described
in Section 1 in that it does not first compute the logarithms of the factor base elements and
then apply a descent strategy. Instead, one computes many descents for elements of the form
gαhβ (just one more than the number of factor base elements suffices) and then applies a linear
algebra elimination. This approach and its analysis was first used by Enge and Gaudry [18],
however the algorithm and argument we present follows very closely those used by Diem in the
context of the elliptic curve DLP [16]. A small but important difference between our algorithm
and Diem’s is that we cannot assume that we know the factorisation of the order of the relevant
group, since the fastest proven factorisation algorithms have complexity L(1/2) [49, 52, 44] and
are therefore insufficient for our purpose.

Input: A prime power q > 61; an integer k ≥ 18; a positive integer l; polynomials h0, h1, I ∈ Fqk [X]

with deg(h0), deg(h1) ≤ 2 and I a degree l irreducible factor of h1X
q − h0; g ∈ F×

qkl
and h ∈ 〈g〉.

Output: An integer x such that gx = h.

1. Let N = qkl − 1, let F = {F ∈ Fqk [X] | degF ≤ 1, F 6= 0} ∪ {h1} and denote its elements by

F1, . . . , Fm, where m = |F| = q2k (or q2k − 1 if deg h1 ≤ 1).
2. Construct a matrix R = (ri,j) ∈ (Z/NZ)(m+1)×m and column vectors α, β ∈ (Z/NZ)m+1 as

follows. For each i with 1 ≤ i ≤ m + 1 choose αi, βi ∈ Z/NZ uniformly and independently at
random and apply the (randomised) descent algorithm of Section 4 to gαihβi to express this as

gαihβi =
m∏

j=1

F
ri,j
j .

3. Compute a lower row echelon form R′ of R by using invertible row transformations; apply these
row transformations also to α and β, and denote the results by α′ and β′.

4. If gcd(β′
1, N) > 1, go to Step 2.

5. Return an integer x such that α′
1 + xβ′

1 ≡ 0 (mod N).

We now explain why the algorithm is correct and discuss the running time, treating the
descent in Step 2 as a black box algorithm for now. Henceforth, we assume that any random
choices used in the descent executions are independent from each other and of the randomness
of α and β. For the correctness, note that gα

′
1hβ

′
1 = 1 holds after Step 3, since the first row of R′

vanishes. Thus for any integer x such that α′
1 + xβ′

1 ≡ 0 (mod N) we have gx = h, provided
that β′

1 is invertible in Z/NZ.

Lemma 1. After Step 3 of the algorithm the element β′
1 ∈ Z/NZ is uniformly distributed.

Therefore, the algorithm succeeds with probability ϕ(N)/N , where ϕ denotes Euler’s phi function.

Proof. We follow the argument from [18, Sec. 5] and [16, Sec. 2.3]. As h ∈ 〈g〉, for any fixed
value βi = b ∈ Z/NZ the element gαihb is uniformly distributed over the group 〈g〉, therefore
the element gαihβi is independent of βi. As the executions of the descent algorithm are assumed
to be independent, we have that the row (ri,1, . . . , ri,m) is also independent of βi. It follows
that the matrix R is independent of the vector β. Then the (invertible) transformation matrix
U ∈ (Z/NZ)(m+1)×(m+1) is also independent of β, so that β′ = Uβ is uniformly distributed over
(Z/NZ)m+1, since β is. From this the lemma follows. ⊓⊔

Regarding the running time, for Step 3 we note that a lower row echelon form of R can be
obtained using invertible row transformations as for the Smith normal form, which along with the
corresponding transformation matrices can be computed in polynomial time [38], so that Step 3
takes time polynomial inm and logN . Furthermore, from [50] we obtainN/ϕ(N) ∈ O(log logN).
Altogether this implies that the DLP algorithm has quasi-polynomial expected running time

5

(in logN), provided the descent is quasi-polynomial. We defer a detailed complexity analysis of
the descent to Section 4.

Observe that the algorithm does not require g to be a generator of F×
qkl

, which is in practice
hard to test without factorising N . In fact, the algorithm gives rise to a Monte Carlo method for
deciding group membership h ∈ 〈g〉. Indeed, if a discrete logarithm logg h has been computed,
then obviously h ∈ 〈g〉; thus if h 6∈ 〈g〉, we always must have gcd(β′

1, N) > 1 in Step 4.

Practitioners may have noticed inefficiencies in the algorithm. In particular, in the usual
index calculus method one precomputes the logarithms of all factor base elements and then
applies a single descent to the target element to obtain its logarithm. Moreover, one usually
first computes the logarithm in F×

qkl
/F×

qk
, i.e., one ignores multiplicative constants and therefore

includes only monic polynomials in the factor base, obtaining the remaining information by
solving an additional DLP in F×

qk
. However, the setup as presented simplifies and facilitates our

rigorous analysis.

3 Overview of the Function Field Sieve

In this section we briefly review the classical FFS and describe some of the recent techniques.
The knowledgeable reader may omit this section, having familiarised themself with the notation
via a brief look at Fig. 1.

Given the embedding of Fpn into Fqkl as described in the introduction, we focus purely on the

latter. A relation in Fqkl is an equality of products of elements in F×
qkl

, or, equivalently, a linear

combination of logarithms of elements in F×
qkl

whose sum is zero. All variants of the FFS rely

on the following basic method for obtaining relations. Let R = Fqk [X,Y] and let f1, f2 ∈ R be
two irreducible polynomials such that R12 = R/(f1, f2) is a finite ring surjecting onto the target
field Fqkl . Furthermore, for i = 1, 2, let Ri = Fqk [X,Y]/(fi) and Zi ∈ R such that the quotient
field Quot(Ri) is a finite extension of the rational function field Quot(Qi) where Qi = Fqk [Zi].
This is summarised in Fig. 1.

R = Fqk [X,Y]

R1 = Fqk [X,Y]/(f1) Fqk [X,Y]/(f2) = R2

Q1 = Fqk [Z1] Fqk [Z2] = Q2

R12 = Fqk [X,Y]/(f1, f2)

Fqkl

ϕ1 ϕ2

π

Fig. 1: Setup for the FFS

Via the maps π, ϕ1 and ϕ2, logarithms in F×
qkl

can be extended to a notion of logarithms

in Ri \ (π ◦ ϕi)
−1(0), i = 1, 2. Therefore, relations can also be viewed as linear combinations of

logarithms of elements in R1 and in R2 whose sum is zero. It is always implicitly assumed that
all logarithms are defined, i.e., that the sets (π ◦ ϕi)

−1(0), i = 1, 2, are avoided.

A polynomial P ∈ R gives rise to a relation by decomposing P mod fi in Ri for i = 1, 2
(and mapping down to R12 or Fqkl if desired). Sufficiently many non-trivial relations amongst

6

elements of a set of bounded size allow one to compute logarithms in this set. If the multiplicative
closure of such a set is F×

qkl
, arbitrary logarithms can be computed by expressing an element

as a product of elements of this set. As was described in Section 1, this is done by following
a descent strategy in which elements, also called special-Q, are recursively rewritten as ‘easier’
elements using relations as above.

In the classical FFS the polynomials f1, f2 are chosen such that their degrees are as low
as possible, typically of the form f1 = Y − a(X), f2 =

∑d
j=0 bj(X)Y j with degX(a) = e,

degX(bj) < e and de > l, and Z1 = Z2 = X so that the extensions Quot(Ri)/Quot(Qi), i = 1, 2,
are of degree 1 and degree d, respectively. By choosing P as a low-degree polynomial, the degrees
of the norms NQuot(Ri)/Quot(Qi)(P mod fi), i = 1, 2, are not too big and therefore the chance of
both norms splitting into low-degree polynomials is sufficiently high. With judiciously selected
parameters this gives a heuristic running time of L(1/3).

The main difference between the classical FFS and the recent variations [21, 31, 5] is where
the relation generation begins. In the recent variations a product of low-degree polynomials
P̃ =

∏
P̃j in R1 is constructed in such a way that it can be lifted to a low-degree polynomial

P ∈ R and such that its reduction P mod f2 is of sufficiently low degree, where by low degree we
mean that the norm has low degree. This can be achieved by choosing q to be of the order of l,
f1 = Y −Xq† and f2 of low degree. Then R1 = Fqk [X] and low-degree polynomials F,G ∈ R1

give rise to relations via

P̃ = F qG− FGq = G
∏

α∈Fq

(F − αG) =
∏

P̃j , (4)

since F q (resp. Gq) can be expressed as a degree degF (resp. degG) polynomial in Y , and thus P̃
can be lifted to a low-degree polynomial P . This yields a heuristic polynomial time algorithm
for finding relations between elements of Fqkl that are, via π, ϕ1 and ϕ2, images of polynomials
of bounded degree.

In the descent phase it is advantageous to choose f2 such that its degree in X or in Y is
one (cf. [25] and [31] respectively), which implies that Quot(R2) = Quot(Q2) with Z2 = Y or
Z2 = X, respectively. More precisely, writing f2 = h1X − h0 or f2 = h1Y − h0 respectively,
with hi ∈ Q2, i = 0, 1, implies R2 = Fqk [Z2][

1
h1
]. Up to the logarithm of h1, the logarithm of a

polynomial of R1 can be related to the logarithm of a corresponding polynomial in R2 (the same
polynomial for Z2 = X and a Frobenius twist for Z2 = Y) which allows one to view a special-Q
(the element to be eliminated) as coming from R1 or from R2. In the latter case, the condition
that a polynomial Q ∈ R2, a lift of the special-Q element, divides P mod f2 for a P arising
via (4), can be expressed as a bilinear quadratic system which gives, for appropriate parameter
choices, an algorithm with heuristic running time L(1/4 + o(1)).

In the other case, namely the special-Q element being lifted to Q ∈ R1, a certain set of
polynomials in R1 containing Q is chosen in such a way that pairs F,G from this set generate
via (4) sufficiently many relations with P mod f2 splitting into polynomials of sufficiently low
degree. Solving a linear system of equations then expresses the logarithm of the special-Q element
as a linear combination of logarithms of polynomials in R2 of sufficiently low degree (and h1),
resulting in the original QPA.

Actually, the relations in the original QPA (and in [31]) are generated in a slightly differ-
ent manner by applying linear fractional transformations to the polynomial A = Xq − X =

† An interesting historical aside is that this specialisation was also proposed by Shinohara et al in January 2012
in order to half the size of the factor base when q is a power of the characteristic [51, Sec. 4.1], but its impact
on relation generation was not considered. Furthermore, in December 2012 Joux used f1 = Y −Xd for medium
characteristic fields with prime base fields [30], which does not help in finding a relation, but does allow one
to generate many relations once one has been found, via transformations of the roots. Viewed in this context
the selection of f1 = Y − Xq in [20] and [32] is a very natural (and indeed fertile) one, even if the ensuing
approaches diverge in terms of field representation, relation generation and small degree elements elimination.

7

∏
α∈Fq

(X − α). The subgroup PGL2(Fq) ⊂ PGL2(Fqk) is the largest subgroup fixing this poly-

nomial, so that the action of PGL2(Fqk)/PGL2(Fq) on A produces q3k−qk

q3−q
polynomials, each

splitting into linear polynomials and whose only non-zero terms correspond to the monomials
Xq+1, Xq, X and 1.

4 The descent

In this section we detail the building block behind our new descent and explain why its successful
application implies Theorem 2. In the terminology of the previous section, the setup for Fqkl has
f1 = Y −Xq and f2 = h1Y −h0 with hi ∈ Fqk [X] of degree at most two for i = 0, 1, with h1X

q−h0
having an irreducible factor I of degree l, i.e., R12 = Fqk [X,Y]/(f1, f2) surjects onto Fqkl .

† This

implies R1 = Fqk [X] and R2 = Fqk [X][1
h1
]. We assume (without loss of generality) that h0 and h1

are coprime. By the phrase “rewriting a polynomial Q (in R1 or R2) in terms of polynomials Pi

(in R1 or R2)” we henceforth mean that in the target field the image of Q equals a product
of powers of images of Pi. Since h1 appears in almost every relation, we adjoin it to the factor
basis F , and for the sake of simplicity it is suppressed in the following description.

4.1 On-the-fly degree two elimination

In this subsection we review the on-the-fly degree two elimination method from [21], adjusted
for the present framework. In [6] the affine portion of the set of polynomials obtained as linear
fractional transformations of Xq −X is parameterised as follows. Let B be the set of B ∈ Fqk

such that the polynomial Xq+1 − BX + B splits completely over Fqk , the cardinality of which

is approximately qk−3 [6, Lemma 4.4]. Scaling and translating these polynomials means that all

the polynomials Xq+1 + aXq + bX + c with c 6= ab, b 6= aq and B = (b−aq)q+1

(c−ab)q split completely
over Fqk whenever B ∈ B.

LetQ (viewed as a polynomial inR2) be an irreducible quadratic polynomial to be eliminated.
We let LQ ⊂ Fqk [X]2 be the lattice defined by

LQ = {(w0, w1) ∈ Fqk [X]2 | w0h0 + w1h1 ≡ 0 (mod Q)}. (5)

In the case that Q divides w0h0 + w1h1 6= 0 for some w0, w1 ∈ Fqk , then Q = w(w0h0 + w1h1)
for some w ∈ F×

qk
, since the degree on the right hand side is at most two. Therefore, the relation

generated from P = w0Y +w1 ∈ R relates Q with w0X
q+w1 = (w

1/q
0 X+w

1/q
1)q ∈ R1 (and h1).

We will say in this case that the lattice is degenerate.
In the other (non-degenerate) case, LQ has a basis of the form (1, u0X + u1), (X, v0X + v1)

with ui, vi ∈ Fqk . Since the polynomial P = XY +aY +bX+c maps to 1
h1
((X+a)h0+(bX+c)h1)

in R2, Q divides P mod f2 if and only if (X + a, bX + c) ∈ LQ. Note that the numerator of
P mod f2 is of degree at most three, thus it can at worst contain a linear factor besides Q. If

the triple (a, b, c) also satisfies c 6= ab, b 6= aq and (b−aq)q+1

(c−ab)q ∈ B, then P mod f1 splits into linear
factors and thus Q has been rewritten in terms of linear polynomials.

Algorithmically, a triple (a, b, c) satisfying all conditions can be found in several ways. Choos-
ing aB ∈ B, considering (X+a, bX+c) = a(1, u0X+u1)+(X, v0X+v1) and rewriting b = u0a+v0
and c = u1a+ v1 gives the condition

B =
(−aq + u0a+ v0)

q+1

(−u0a2 + (−v0 + u1)a+ v1)q
. (6)

By expressing a in an Fqk/Fq basis, (6) results in a quadratic system in k variables [22]. Using
a Gröbner basis algorithm the running time is exponential in k. Alternatively, and this is one

† One can equally well work with f2 = h1X−h0 with hi ∈ Fqk [Y] of degree at most two, where h1(X
q)X−h0(X

q)
has a degree l irreducible factor, as proposed in [25], with all subsequent arguments holding mutatis mutandis.

8

of the key observations for the present work, equation (6) can be considered as a polynomial
of degree q2 + q in a whose roots can be found in polynomial time in q and in k by taking a
GCD with aq

k
− a in Fqk [a] [21]. One can also check for random (a, b, c) such that the lattice

condition holds, whether Xq+1 + aXq + bX + c splits into linear polynomials, which happens
with probability q−3. Each such instance is also polynomial time in q and in k.

These degree 2 elimination methods will fail when Q divides h1X
q − h0, because this would

imply that the polynomial P mod f1 = Xq+1+aXq+bX+c is divisible by Q whenever P mod f2
is, a problem first discussed in [8]. Such polynomials Q or their roots will be called traps of level 0.

Similarly, these degree 2 elimination methods might also fail when Q divides h1X
qk+1

− h0, in
which case such polynomials Q or their roots will be called traps of level k.

Note that for Kummer extensions, i.e., when h1 = 1 and h0 = aX for some a ∈ Fqk , there are
no traps and hence much of the following treatment is not required for proving only Theorem 1.
However, it is essential to consider traps for proving the far more general Theorem 2.

4.2 Elimination requirements

As briefly explained in the introduction, the on-the-fly degree two elimination method can be
transformed into an elimination method for irreducible even degree polynomials. We now present
a theorem which states that under some assumptions this degree two elimination is guaranteed
to succeed, and subsequently demonstrate that it implies Theorem 2.

An element τ ∈ Fqk for which [Fqk(τ) : Fqk] = 2d is even and h1(τ) 6= 0, is called a trap

root if it is a root of h1X
q − h0 or h1X

qkd+1

− h0, or if
h0

h1
(τ) ∈ Fqkd . Note that the sets of trap

roots is invariant under the absolute Galois group of Fqk . A polynomial in R1 or R2 is said to
be good if it has no trap roots; the same definitions are used when the base field of R1 and R2

is extended. This definition encompasses traps of level 0, of level kd, and the case where for
Q 6= h1 the lattice LQ is degenerate.

Theorem 3. Let q > 61 be a prime power that is not a power of 4, let k ≥ 18 be an integer
and let h0, h1 ∈ Fqk [X] be of degree at most two with h1X

q − h0 having an irreducible degree l
factor. Moreover, let d ≥ 1 be an integer, let Q ∈ Fqkd [X], Q 6= h1 be an irreducible quadratic
good polynomial, and let (1, u0X + u1), (X, v0X + v1) be a basis of the lattice LQ in (5). Then
the number of solutions (a,B) ∈ Fqkd × B of (6) resulting in good descendents is at least qkd−5.

This theorem is of central importance for our rigorous analysis and is proven in Section 5.

4.3 Degree 2d elimination and descent complexity

Now we demonstrate how the on-the-fly degree two elimination gives rise to a method for elim-
inating irreducible even degree polynomials, which is the crucial building block for our descent
algorithm. As per Theorem 3, let q > 61 be a prime power that is not a power of 4, let k ≥ 18,
and let h0, h1, I as before.

Proposition 1. Let Q ∈ R2, Q 6= h1, be an irreducible good polynomial of degree 2d. Then Q
can be expressed in terms of at most q + 2 irreducible good polynomials of degrees dividing d, in
an expected running time polynomial in q and in d.

Proof. Over the extension Fqkd the polynomial Q splits into d irreducible good quadratic poly-
nomials; let Q′ be one of them. Since Q′ 6= h1 is good it does not divide w0h0 + w1h1 6= 0 for
some w0, w1 ∈ Fqkd . By Theorem 3, with an expected polynomial number of trials, the on-the-fly
degree two elimination method for Q′ ∈ Fqkd [X] produces a polynomial P ′ ∈ Fqkd [X,Y] such
that P ′ mod f1 splits into a product of at most q + 1 good polynomials of degree one over Fqkd

and such that (P ′ mod f2)h1 is a product of Q′ and a good polynomial of degree at most one.

9

Let P be the product of all conjugates of P ′ under Gal(Fqkd/Fqk). Since the product of all con-
jugates of a linear polynomial under Gal(Fqkd/Fqk) is the d1-th power of an irreducible degree d2
polynomial for d1 and d2 satisfying d1d2 = d, the rewriting assertion of the proposition follows.

The three steps of this method – computing Q′, the on-the-fly degree two elimination (when
the second or third approach listed above for solving (6) is used), and the computation of the
polynomial norms – all have running time polynomial in q and in d, which proves the running
time assertion. ⊓⊔

By recursively applying Proposition 1 we can express a good irreducible polynomial of degree
2e, e ≥ 1, in terms of at most (q+2)e linear polynomials. The final step of this recursion, namely
eliminating up to (q + 2)e−1 quadratic polynomials, dominates the running time, which is thus
upper bounded by (q + 2)e times a polynomial in q.

Lemma 2. Any nonzero element in Fqkl can be lifted to an irreducible good polynomial of de-
gree 2e, provided that 2e > 4l.

Proof. By the effective Dirichlet-type theorem on irreducibles in arithmetic progressions [53,
Thm. 5.1], for 2e > 4l the probability of irreducibility for a random lift is lower bounded by
2−e−1. One may actually find an irreducible polynomial of degree 2e which is good, since the
number of possible trap roots (< qk2

e−1+2) is much smaller than the number (> qk(2
e−l)2−e−1)

of irreducibles produced by this Dirichlet-type theorem. ⊓⊔

Putting everything together, this proves the quasi-polynomial expected running time of the
descent and therefore the running time of our algorithm in Section 2, establishing Theorem 2.

Note that for q = Lqkl(α), just as in [5], the complexity stated in Theorem 2 is L(α+ o(1)),

which is therefore better than the classical FFS for α < 1
3 .

Finally note that during an elimination step, one need not use the basic building block as
stated, which takes the norms of the linear polynomials produced back down to Fqk . Instead,
one need only take their norms to a subfield of index 2, thus becoming quadratic polynomials,
and then recurse, as depicted in Fig. 2.

1 2 2
eFqkn

Fq2kn 1 2

Fq4kn 1 2

...

...

F
q2

e−2kn 1 2

F
q2

e−1kn 1 2

Fig. 2: Elimination of irreducible polynomials of degree a power of 2 when considered as elements of Fqk [X]. The
arrow directions տ,← and ց indicate factorisation, degree 2 elimination and taking a norm with respect to the
indicated subfield, respectively. (We have suppressed the rare cases, where linear polynomials are already in a
subfield of index 2.)

10

5 Proof of Theorem 3

In this section we prove Theorem 3, which by the arguments of the previous section demonstrates
the correctness of our algorithm and our main theorems.

5.1 Notation and statement of supporting results

Let K = Fqkd with kd ≥ 18, let L = Fq2kd be its quadratic extension, and let Q be an irreducible
quadratic polynomial in K[X] such that (1, u0X + u1), (X, v0X + v1) is a basis of its associated
lattice LQ in (5). Then Q is a scalar multiple of −u0X

2 + (−u1 + v0)X + v1.
Let B be the set of B ∈ K such that the polynomial Xq+1 − BX + B splits completely

over K. Using an elementary extension of [29, Theorem 5] the set B can be characterised as the
image of K \ Fq2 under the map

u 7→
(u− uq

2

)q+1

(u− uq)q2+1
. (7)

By this and (6), in order to eliminate Q we need to find (a, u) ∈ K × (K \ Fq2) satisfying

(u− uq
2

)q+1(−u0a
2 + (−v0 + u1)a+ v1)

q − (u− uq)q
2+1(−aq + u0a+ v0)

q+1 = 0.

The two terms have a common factor (u− uq)q+1 which motivates the following definitions. Let
α = −u0, β = u1 − v0, γ = v1 and δ = −v0 with α, β, γ, δ ∈ K, as well as

D =
U q2 − U

U q − U
=

∏

ǫ∈Fq2\Fq

(U − ǫ),

E = U q − U =
∏

ǫ∈Fq

(U − ǫ),

F = αA2 + βA+ γ = α(A− ρ1)(A− ρ2) with ρ1, ρ2 ∈ L,

G = Aq + αA+ δ and

P = Dq+1F q − Eq2−qGq+1 ∈ K[A,U].

Note that F equals Q(−A) (up to a scalar), so that deg(F) = 2, F is irreducible and ρ1, ρ2 /∈ K.
We consider the curve C defined by P = 0 and are interested in the number of (affine) points
(a, u) ∈ C(K) with u /∈ Fq2 . More precisely, we want to prove the following.

Theorem 4. Let q > 61 be a prime power that is not a power of 4. If the conditions

(∗) ρq1 + αρ2 + δ 6= 0

(∗∗) ρq1 + αρ1 + δ 6= 0

hold then there are at least qkd−1 pairs (a, u) ∈ K × (K \ Fq2) satisfying P (a, u) = 0.

The relation of the two conditions to the quadratic polynomial Q as well as properties of
traps are described in the following propositions.

Proposition 2. If condition (∗) is not satisfied, then Q divides h1X
q − h0, i.e., Q is a trap

of level 0. If condition (∗∗) is not satisfied, then Q divides h1X
qkd+1

− h0, i.e., Q is a trap of
level kd. In particular, if Q is a good polynomial then conditions (∗) and (∗∗) are satisfied.

Proposition 3. Let (a, u), (a′, u′) ∈ K × (K \ Fq2) be two solutions of P = 0 with a 6= a′,
corresponding to the polynomials Pa = XY + aY + bX + c and Pa′ = XY + a′Y + b′X + c′,
respectively. Then Pa mod f1 and Pa′ mod f1 have no common roots. Furthermore, the common
roots of Pa mod f2 and Pa′ mod f2 are precisely the roots of Q.

11

Now we explain how (for q > 61 not a power of 4) Theorem 3 follows from the above theorem
and the propositions. Since the irreducible quadratic polynomial Q is good, the lattice LQ is
non-degenerate so that a basis as above exists, and by Proposition 2 the two conditions of
Theorem 4 are satisfied. The map (7) is q3 − q : 1 on K \ Fq2 , hence there are at least qkd−4

solutions (a,B) ∈ K × B of (6), which contain at least qkd−4 different values a ∈ K. Observe

that a trap root τ that may occur in this situation is a root of h1X
q − h0, or of h1X

qkd
′
+1 − h0

for d′ | d
2 , or it satisfies h0

h1
(τ) ∈ Fqkd/2 . The cardinalities of these trap roots is at most q

kd
2
+3.

By Proposition 3 a trap root can appear in Pa mod fj for at most two values a, at most once

for j = 1 and at most once for j = 2. Hence there are at most q
kd
2
+4 < qkd−5 values a for which

a trap root appears in Pa mod fj , j = 1, 2. Thus there are at least qkd−5 different values a for
which a solution (a,B) leads to an elimination into good polynomials. This finishes the proof of
Theorem 3, hence we focus on proving the theorem and the two propositions above.

5.2 Outline of the proof method

The main step of the proof of the theorem consists in showing that, subject to conditions (∗)
and (∗∗), there exists an absolutely irreducible factor P1 of P that lies already in K[A,U]. Since
the (total) degree of P1 is at most q3 + q, restricting to the component of the curve defined
by P1 and using the Weil bound for possibly singular plane curves gives a lower bound on the
cardinality of C(K) which is large enough to prove the theorem after accounting for projective
points and points with second coordinate in Fq2 . This argument is given in the next subsection
before dealing with the more involved main step.

For proving the main step the action of PGL2(Fq) on the variable U is considered. An ab-
solutely irreducible factor P1 of P is stabilised by a subgroup S1 ⊂ PGL2(Fq) satisfying some
conditions. The first step is to show that, after possibly switching to another absolutely irre-
ducible factor, there are only a few cases for the subgroup. Then for each case it is shown that
the factor is defined over K[A,U] or that one of the conditions on the parameters is not satisfied.

The propositions are proven in the final subsection.

5.3 Weil bound

Let C1 be the absolutely irreducible plane curve defined by P1 of degree d1 ≤ q3+q2. Corollary 2.5
of [4] shows that

|#C1(K)− qkd − 1| ≤ (d1 − 1)(d1 − 2)q
kd
2 .

Since degA(P1) ≤ q2 + q there are at most q4 + q3 affine points with u ∈ Fq2 . The number of
points at infinity is at most d1 ≤ q3 + q2 < q4. Denoting by C1(K)̃ the set of affine points in
C1(K) with second coordinate u 6∈ Fq2 one obtains

|#C1(K)̃ | > qkd − (q4 + q3)− d1 − (d1 − 1)(d1 − 2)q
kd
2 > qkd − q

kd
2
+8 ≥ qkd−1,

since kd ≥ 18, thus proving the theorem if there exists an absolutely irreducible factor P1 defined
over K[A,U].

5.4 PGL2 action

Here the following convention for the action of PGL2(Fq) on P1 and on polynomials is used.

A matrix

(
a b
c d

)
∈ PGL2(Fq) acts on P1(M), where M is an arbitrary field containing Fq, by

(x0 : x1) 7→

(
a b
c d

)
(x0 : x1) = (ax0 + bx1 : cx0 + dx1) or, via P1(M) = M ∪ {∞}, by x 7→ ax+b

cx+d .

This is an action on the left, i.e., for σ, τ ∈ PGL2(Fq) and x ∈ P1(M) the following holds:

12

σ(τ(x)) = (στ)(x). On a homogeneous polynomial H in the variables (X0 : X1) the action of

σ =

(
a b
c d

)
is given by Hσ(X0 : X1) = H(aX0+bX1 : cX0+dX1). This is an action on the right,

satisfying H(στ) = (Hσ)τ . In the following we will usually use this action on the dehomogenised
polynomials given by Hσ(X) = H(aX+b

cX+d), clearing denominators in the appropriate way.

The polynomial P ∈ (K[A])[U] is invariant under PGL2(Fq) acting on the variable U ; this can

be checked by considering the actions of

(
1 b
0 1

)
,

(
a 0
0 1

)
and

(
0 1
1 0

)
, and noticing that PGL2(Fq)

is generated by these matrices. Let

P = s

g∏

i=1

Pi, Pi ∈ (K[A])[U], s ∈ K[A],

be the decomposition of P in (K[A])[U] into irreducible factors Pi and possibly reducible s.
Notice that smust divide F q and Gq+1, hence it divides a power of gcd(F,G). As F is irreducible,
gcd(F,G) is either constant or of degree two. In the latter case ρ1 is a root of G contradicting
condition (∗∗). Therefore one can assume that s ∈ K is a constant.

Let

P = F q
q3−q∏

i=1

(U − ri), ri ∈ K(A),

be the decomposition of P in K(A)[U]. Then PGL2(Fq) permutes the set {ri} and, since fixed
points of PGL2(Fq) lie in Fq2 but ri /∈ Fq2 , the action is free. Since #PGL2(Fq) = q3 − q the
action is transitive.

Therefore the action on the decomposition over K[A,U] is also transitive (adjusting the Pi

by scalars in K[A] if necessary). Denoting by Si ⊂ PGL2(Fq) the stabiliser of Pi it follows that all
Si are conjugates of each other, thus they have the same cardinality and hence q3 − q = g ·#Si.
Moreover the degree of Pi in U is constant, namely #Si, and also the degree of Pi in A is
constant, thus g | q2 + q = degA(P). In particular, q − 1 | #Si.

5.5 Subgroups of PGL2

The classification of subgroups of PSL2(Fq) is well known [15] and allows to determine all
subgroups of PGL2(Fq) [7]. Since #Si is divisible by q − 1 (in particular #Si > 60), only the
following subgroups are of interest (per conjugation class only one subgroup is listed):

1. the cyclic group

(
∗ 0
0 1

)
of order q − 1,

2. the dihedral group

(
∗ 0
0 1

)
∪

(
0 1
∗ 0

)
of order 2(q−1) and, if q is odd, its two dihedral subgroups

{(a 0
0 1

)
| a 6= 0 a square

}
∪
{(0 1

c 0

)
| c 6= 0 a square

}
and

{(a 0
0 1

)
| a 6= 0 a square

}
∪
{(0 1

c 0

)
| c not a square

}
,

both of order q − 1,

3. the Borel subgroup

(
∗ ∗
0 1

)
of order q2 − q,

4. if q is odd, PSL2(Fq) of index 2,

5. if q = q′2 is a square, PGL2(Fq′) of order q
′3 − q′ = q′(q − 1), and

6. PGL2(Fq).

13

In the last case P is absolutely irreducible, thus it remains to investigate the first five cases
which are treated in the next subsection.

Remark: The condition q > 61 rules out some small subgroups as A4, S4, and A5. In many
of the finitely many cases q ≤ 61 the proof of the theorem also works (e.g., q not a square and
q− 1 ∤ 120). The condition of q not being a power of even exponent of 2 eliminates the fifth case
in characteristic 2; removing this condition would be of some interest.

5.6 The individual cases

Since the stabilisers Si are conjugates of each other, one can assume without loss of generality
that S1 is one of the explicit subgroups given in the previous subsection. Then the polynomial
P1 is invariant under certain transformations of U , so that P1 and P can be rewritten in terms
of another variable as stated in the following.

If a polynomial (in the variable U) is invariant under U 7→ aU , a ∈ F×
q , it can be considered

as a polynomial in the variable V = U q−1. For the polynomials D and Eq−1 one obtains

D =
V q+1 − 1

V − 1
and Eq−1 = V (V − 1)q−1.

Similarly, in the case of odd q, if a polynomial is invariant under U 7→ aU for all squares

a ∈ F×
q , it can be rewritten in the variable V ′ = U

q−1

2 . For D and Eq−1 this gives

D =
V ′2q+2 − 1

V ′2 − 1
and Eq−1 = V ′2(V ′2 − 1)q−1.

If a polynomial is invariant under U 7→ U + b, b ∈ Fq, it can be considered as a polynomial
in Ṽ = U q − U which gives

D = Ṽ q−1 + 1 and Eq−1 = Ṽ q−1.

Combining the above yields that a polynomial which is invariant under both U 7→ aU ,
a ∈ F×

q , and U 7→ U + b, b ∈ Fq, can be considered as a polynomial in W = Ṽ q−1 = (U q−U)q−1.
For D and Eq−1 one obtains

D = W + 1 and Eq−1 = W.

This is now applied to the various cases for S1.

The cyclic case Rewriting P and P1 in terms of V = U q−1 one obtains

P =
(V q+1 − 1

V − 1

)q+1
F q − V q(V − 1)q

2−qGq+1

and degV (P1) = 1, i.e., P1 = p1V −p0 with pi ∈ K[A], gcd(p0, p1) = 1, max(deg(p0), deg(p1)) = 1
and it can be assumed that p0 is monic.

The divisibility P1 | P transforms into the following polynomial identity in K[A]:

(pq+1
0 − pq+1

1

p0 − p1

)q+1
F q = pq1p

q
0(p0 − p1)

q2−qGq+1.

The degree of the first factor on the left hand side is either q2 + q or q2 − 1 (if p0 − ζp1 is
constant for some ζ ∈ µq+1(Fq2) \ {1}). Since the degrees of the other factors are all divisible
by q, the latter case is impossible. Since deg(F) = 2 one gets deg(F q) = 2q. Furthermore,
deg((p0p1)

q) ∈ {q, 2q}, deg((p0 − p1)
q2−q) ∈ {0, q2 − q} and deg(Gq+1) = q2 + q which implies

deg(p0 − p1) = 0, deg(p0) = deg(p1) = 1 since q > 2.

14

Let p0 − p1 = c1 ∈ K; in the following ci will be some constants in K. Since the first factor
on the left hand side is coprime to p0p1, it follows

pq+1
0 − pq+1

1

p0 − p1
= c2G, F = c3p0p1 and cq+1

2 cq3 = cq
2−q

1 .

Exchanging ρ1 and ρ2, if needed, one obtains

p0 = A− ρ1, p1 = A− ρ2, c3 = α and c1 = ρ2 − ρ1.

Considering the coefficient of Aq in the equation for G gives c2 = 1 and evaluating this equation
at A = ρ2 gives

ρq1 + αρ2 + δ = 0.

This means that condition (∗) does not hold.

The dihedral cases The case of the dihedral group of order 2(q− 1) is considered first. Then,
as above, P and P1 can be expressed in terms of V , and, since P and P1 are also invariant under
V 7→ 1

V , they can be expressed in terms of W+ = V + 1
V . This gives degW+

(P1) = 1 and with
Z = µq+1(Fq2) \ {1}

Dq+1V − q2+q
2 =

∏

ζ∈Z

(W+ − (ζ + ζq))
q+1

2 and

PV − q2+q
2 =

(∏

ζ∈Z

(W+ − (ζ + ζq))
q+1

2

)
F q − (W+ − 2)

q2−q
2 Gq+1.

In characteristic 2 each factor of the product over Z appears twice, thus justifying their expo-
nent q+1

2 .

By writing P1 = p1W+ − p0, with pi ∈ K[A], gcd(p0, p1) = 1, max(deg(p0), deg(p1)) = 2
and p0 being monic, the divisibility P1 | P transforms into the following polynomial identity
in K[A]: (∏

ζ∈Z

(p0 − (ζ + ζq)p1)
q+1

2

)
F q = pq1(p0 − 2p1)

q2−q
2 Gq+1.

Again the degree of the first factor on the left hand side must be divisible by q (respectively,
q
2 in characteristic 2), and since p0 − (ζ + ζq)p1 can be constant or linear for at most one sum
ζ + ζq, the degree of the first factor must be q2 + q for q > 4. Also the degree of p0 − 2p1 must
be zero since q > 3 and thus the degree of p1 is 2.

In even characteristic p0 − 2p1 = p0 is a constant, thus p0 = 1 (p0 is monic). The involution
ζ 7→ ζq = ζ−1 on Z has no fixed points, and, denoting by Z2 a set of representatives of Z modulo
the involution, one obtains

∏

ζ∈Z2

(1− (ζ + ζq)p1) = c1G, F = c2p1 and cq+1
1 cq2 = 1.

Modulo F one gets F | c1G − 1 which implies c1 ∈ K. Thus c2 ∈ K, p1 ∈ K[A] and therefore
P1 ∈ K[A,U].

In odd characteristic the factor corresponding to ζ = −1, namely (p0 + 2p1)
q+1

2 , is coprime
to the other factors in the product and coprime to p1(p0−2p1). Hence p0+2p1 must be a square
and its square root must divide G. Moreover, one gets F = c1p1. Since p0−2p1 = c2 is a constant
and p0 is monic, one gets c1 = 2α, implying p1 ∈ K[A]. Since p0+2p1 = 4p1+ c2 is a square, its
discriminant is zero, thus c2 ∈ K and hence P1 ∈ K[A,U].

15

If S1 is one of the two dihedral subgroups of order q − 1 (which implies that q is odd), the

argumentation is similar. The polynomials P and P1 are expressed in terms of V ′ = U
q−1

2 and

then, since U 7→ 1
cU becomes V ′ 7→ c−

q−1

2
1
V ′ with c−

q−1

2 = ±1, in terms of W ′
+ = V ′ + 1

V ′ or
W ′

− = V ′ − 1
V ′ , respectively. In the first case P is rewritten as

PV ′−(q2+q) =
(∏

ζ∈Z′

(W ′
+ − (ζ + ζ−1))

q+1

2

)
F q − (W ′

+ − 2)
q2−q

2 (W ′
+ + 2)

q2−q
2 Gq+1

where Z ′ = µ2(q+1)(Fq2) \ {±1}. By setting P1 = p1W
′
+ − p0 with pi ∈ K[A], gcd(p0, p1) = 1,

max(deg(p0), deg(p1)) = 1 and p0 being monic, one obtains

(∏

ζ∈Z′

(p0 − (ζ + ζ−1)p1)
q+1

2

)
F q = p2q1 (p0 − 2p1)

q2−q
2 (p0 + 2p1)

q2−q
2 Gq+1.

Since one of p0± 2p1 is not constant, the degree of the right hand side exceeds the degree of the
left hand side for q > 5 which is a contradiction.

In the second case P is rewritten as

PV ′−(q2+q) =
(∏

ζ∈Z′

(W ′
− − (ζ − ζ−1))

q+1

2

)
F q −W ′q2−q

− Gq+1

and by setting P1 = p1W
′
− − p0 with pi ∈ K[A], gcd(p0, p1) = 1, max(deg(p0), deg(p1)) = 1 and

p0 being monic, one obtains
(∏

ζ∈Z′

(p0 − (ζ − ζ−1)p1)
q+1

2

)
F q = p2q1 pq

2−q
0 Gq+1.

Considering the degrees for q > 3 it follows that p0 must be constant and hence p1 is of degree
one. Since p1 is coprime to the first factor on the left hand side, it must divide F q which implies
ρ1 = ρ2 ∈ K, contradicting the irreducibility of F .

The Borel case In this case, rewriting P and P1 in terms of W = (U q − U)q−1 gives

P = (W + 1)q+1F q −W qGq+1

and degW (P1) = 1, P1 = p1W − p0, with pi ∈ K[A], gcd(p0, p1) = 1, max(deg(p0), deg(p1)) = q
and p1 being monic. Then the divisibility P1 | P transforms into the following polynomial identity
in K[A]:

(p0 + p1)
q+1F q = p1p

q
0G

q+1.

From deg(Gq+1) = q2 + q, deg(p1p
q
0) ≥ q and deg(F q) = 2q it follows that the degree of p0 + p1

must be q. This implies deg(F q) = deg(p1p
q
0), thus deg(p0) ≤ 2 and therefore deg(p1) = q, since

q > 2, and deg(p0) = 1.
Since p0 + p1 is coprime to p0p1, it follows

p0 + p1 = c1G, p1 = p̃q, F = c2p̃p0 and cq+1
1 cq2 = 1

for a monic linear polynomial p̃ ∈ K[A].
Exchanging ρ1 and ρ2, if needed, one obtains

p̃ = A− ρ1, p0 = c3(A− ρ2), c1 = 1, c2 = 1 and c3 = α.

Evaluating p0 + p1 = G at A = 0 gives

ρq1 + αρ2 + δ = 0.

This means that condition (∗) does not hold.

16

The PSL2 case This case can only occur for odd q, and then P splits as P = sP1P2 with a
scalar s ∈ K. The map U 7→ aU for a non-square a ∈ Fq exchanges P1 and P2. Since PSL2(Fq)
is a normal subgroup of PGL2(Fq), P2 is invariant under PSL2(Fq) as well. By rewriting P in

terms of W ′ = (U q − U)
q−1

2 one obtains

P = (W ′2 + 1)q+1F q −W ′2qGq+1 = sP1(W
′)P1(−W ′).

Denoting by p0 ∈ K[A] the constant coefficient of P1 ∈ (K[A])[W ′] this becomes modulo W ′

F q = sp20

which implies ρ1 = ρ2 ∈ K, contradicting the irreducibility of F .

The case PGL2(Fq′) Since PGL2(Fq′) ⊂ PSL2(Fq) in odd characteristic, one can reduce this
case to the previous case as follows.

Let I1 ⊂ {1, . . . , g} be the subset of i such that Si is a conjugate of S1 by an element in
PSL2(Fq), and let I2 = {1, . . . , g} \ I1. These two sets correspond to the two orbits of the action
of PSL2(Fq) on the Si (or Pi). Both orbits contain #I1 = #I2 = g

2 elements and an element in
PGL2(Fq) \ PSL2(Fq) transfers one orbit into the other.

Let P̃j =
∏

i∈Ij
Pi, j = 1, 2, then P splits as P = sP̃1P̃2, s ∈ K, and both P̃j , j = 1, 2, are

invariant under PSL2(Fq). Notice that the absolute irreducibility of P1 and P2 was not used in
the argument in the PSL2 case.

This completes the proof of Theorem 4.

5.7 Traps

In the following Proposition 2 and Proposition 3 are proven.
Let Q be an irreducible quadratic polynomial in K[X] such that (1, u0X+u1), (X, v0X+v1)

is a basis of the lattice LQ, so that Q is a scalar multiple of −u0X
2+(−u1+v0)X+v1 = F (−X)

and has roots −ρ1 and −ρ2. By definition of LQ the pair (h0, h1) must be in the dual lattice
(scaled by Q), given by the basis (u0X + u1,−1), (v0X + v1,−X).

For the assertions concerning conditions (∗) and (∗∗), assume that ρ1, ρ2 ∈ L \K and that

ρq1 + αρj + δ = 0

holds for j = 1 or j = 2.
First consider the case j = 2, i.e., condition (∗). To show that −ρi, i = 1, 2, are roots of

h1X
q − h0 it is sufficient to show this for the basis of the dual lattice of LQ given above. For

(u0X + u1,−1) one computes

−(−ρq1)− u0(−ρ1)− u1 = ρq1 − αρ1 − β + δ = −αρ2 − αρ1 − β = 0,

and for (v0X + v1,−X) one obtains

−(−ρ1)(−ρq1)− v0(−ρ1)− v1 = (−ρq1 − δ)ρ1 − γ = αρ1ρ2 − γ = 0.

Therefore h1X
q − h0 is divisible by Q, which is then a trap of level 0.

In the case j = 1 an analogous calculation shows that −ρi, i = 1, 2, are roots of h1X
qkd+1

−h0,
namely for (u0X + u1,−1) one has

−(−ρq
kd+1

2)− u0(−ρ2)− u1 = ρq1 − αρ2 − β + δ = −αρ1 − αρ2 − β = 0

and for (v0X + v1,−X) one gets

−(−ρ2)(−ρq
kd+1

2)− v0(−ρ2)− v1 = (−ρq1 − δ)ρ2 − γ = αρ1ρ2 − γ = 0

17

Therefore h1X
qkd+1

− h0 is divisible by Q, which is then a trap of level kd. This finishes the
proof of Proposition 2.

Regarding Proposition 3, note that a solution (a,B) gives rise to the polynomial Pa =
a(u0X + (Y + u1)) + ((Y + v0)X + v1). If, for j = 1 or j = 2, ρ is a root of Pa mod fj for two
different values of a, then ρ is a root of u0X + (Y + u1) mod fj and of (Y + v0)X + v1 mod fj .
Since

−X(u0X + (Y + u1)) + (Y + v0)X + v1 = −u0X
2 + (−u1 + v0)X + v1 = F (−X),

which equals Q up to a scalar, it follows that ρ is also a root of Q. Furthermore, in the case j = 1
the polynomial Pa mod f1 splits completely, so that ρ ∈ K, contradicting the irreducibility of
Q, finishing the proof of Proposition 3.

This completes the proof of Theorem 3.

Acknowledgements

The authors are indebted to Claus Diem for explaining how one can obviate the need to compute
the logarithms of the factor base elements, and wish to thank him also for some enlightening
discussions.

References

1. Leonard M. Adleman. A subexponential algorithm for the discrete logarithm problem with applications to
cryptography. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, SFCS ’79,
pages 55–60, Washington, DC, USA, 1979. IEEE Computer Society.

2. Leonard M. Adleman. The function field sieve. In Leonard M. Adleman and Ming-Deh Huang, editors,
Algorithmic Number Theory, volume 877 of Lecture Notes in Computer Science, pages 108–121. Springer
Berlin Heidelberg, 1994.

3. Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete logarithms over finite
fields. Inform. and Comput., 151(1-2):5–16, 1999.

4. Yves Aubry and Marc Perret. A Weil theorem for singular curves. In Arithmetic, geometry and coding theory
(Luminy, 1993), pages 1–7. de Gruyter, Berlin, 1996.

5. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In Advances in Cryptology—
EUROCRYPT 2014, volume 8441 of LNCS, pages 1–16. Springer, 2014.

6. Antonia W. Bluher. On xq+1 + ax+ b. Finite Fields and Their Applications, 10(3):285–305, 2004.
7. Peter J. Cameron, Gholam R. Omidi, and Behruz Tayfeh-Rezaie. 3-designs from PGL(2, q). Electron. J.

Combin., 13(1):Research Paper 50, 11, 2006.
8. Qi Cheng, Daqing Wan, and Jincheng Zhuang. Traps to the bgjt-algorithm for discrete logarithms. LMS

Journal of Computation and Mathematics, 17:218–229, 2014.
9. Fan-Rong K. Chung. Diameters and eigenvalues. J. Amer. Math. Soc., 2(2):187–196, 1989.

10. Don Coppersmith. Evaluating logarithms in GF(2n). In Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, STOC ’84, pages 201–207, New York, NY, USA, 1984. ACM.

11. Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE Trans. Inf. Theor.,
30(4):587–594, 1984.

12. Nicolaas G. De Bruijn. On the number of positive integers ≤ x and free of prime factors > y. Indagationes
Mathematicae, 13:50–60, 1951.

13. Nicolaas G. De Bruijn. On the number of positive integers ≤ x and free of prime factors > y, II. Indagationes
Mathematicae, 28:239–247, 1966.

14. Karl Dickman. On the frequency of numbers containing prime factors of a certain relative magnitude. Arkiv
för Matematik, Astonomi och Fysik, 22A (10):1–14, 1930.

15. Leonard E. Dickson. Linear groups: With an exposition of the Galois field theory. Teubner, Leipzig, 1901.
16. Claus Diem. On the discrete logarithm problem in elliptic curves. Compositio Mathematica, 147:75–104, 1

2011.
17. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theor., 22(6):644–

654, September 2006.
18. Andreas Enge and Pierrick Gaudry. A general framework for subexponential discrete logarithm algorithms.

Acta Arithmetica, 102:83–103, 2002.
19. Carl F. Gauss. Disquisitiones Arithmeticae. Translated by Arthur A. Clarke. Yale University Press, 1965.

18

20. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the function field sieve and the
impact of higher splitting probabilities. Available from eprint.iacr.org/2013/074, 15th Feb 2013.

21. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On the function field sieve and the
impact of higher splitting probabilities. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology—
CRYPTO 2013, volume 8043 of LNCS, pages 109–128. Springer, 2013.

22. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Solving a 6120-bit DLP on a desktop
computer. In Selected Areas in Cryptography—SAC 2013, volume 8282 of LNCS, pages 136–152. Springer,
2014.

23. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Logarithms in GF (21971).
NMBRTHRY list, 19/2/2013.

24. Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Discrete Logarithms in GF (26120).
NMBRTHRY list, 11/4/2013.

25. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ’128-bit secure’ supersingular binary
curves - (or how to solve discrete logarithms in F24·1223 and F212·367). In Advances in Cryptology—CRYPTO
2014, volume 8617 of LNCS, pages 126–145. Springer, 2014.

26. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the powers of 2. Available from eprint.iacr.

org/2014/300, 29th Apr 2014.

27. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Discrete logarithms in the Jacobian of a genus 2
supersingular curve over GF (2367). NMBRTHRY list, 30/1/2014.

28. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Discrete Logarithms in GF (29234). NMBRTHRY
list, 31/1/2014.

29. Tor Helleseth and Alexander Kholosha. x2
l
+1 + x+ a and related affine polynomials over GF(2k). Cryptogr.

Commun., 2(1):85–109, 2010.

30. Antoine Joux. Faster index calculus for the medium prime case. application to 1175-bit and 1425-bit finite
fields. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology—EUROCRYPT 2013,
volume 7881 of LNCS, pages 177–193. Springer, 2013.

31. Antoine Joux. A new index calculus algorithm with complexity L(1/4+o(1)) in small characteristic. In Tanja
Lange, Kristin Lauter, and Petr Lisonĕk, editors, Selected Areas in Cryptography—SAC 2013, volume 8282
of LNCS, pages 355–379. Springer, 2014.

32. Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic.
Available from eprint.iacr.org/2013/095, 20th Feb 2013.

33. Antoine Joux. Discrete Logarithms in GF (21778). NMBRTHRY list, 11/2/2013.

34. Antoine Joux. Discrete Logarithms in GF (24080). NMBRTHRY list, 22/3/2013.

35. Antoine Joux. Discrete Logarithms in GF (26168). NMBRTHRY list, 21/5/2013.

36. Antoine Joux and Reynald Lercier. The function field sieve is quite special. In Claus Fieker and David R.
Kohel, editors, Algorithmic number theory (Sydney, 2002), volume 2369 of LNCS, pages 431–445. Springer,
2002.

37. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case. In Serge Vaudenay,
editor, Advances in Cryptology—EUROCRYPT 2006, volume 4004 of LNCS, pages 254–270. Springer, 2006.

38. Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith and Hermite normal
forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

39. Thorsten Kleinjung. Discrete logarithms in GF(21279). NMBRTHRY list, 17/10/2014.

40. Maurice Kraitchik. Théorie des nombres, volume 1. Paris: Gauthier-Villars, 1922.

41. Maurice Kraitchik. Recherches sur la théorie des nombres, volume 1. Paris: Gauthier-Villars, 1924.

42. Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development of the number field sieve, volume
1554 of Lecture Notes in Mathematics. Springer, Heidelberg, 1993.

43. Hendrik W. Lenstra, Jr. Finding isomorphisms between finite fields. Math. Comp., 56(193):329–347, 1991.

44. Hendrik W. Lenstra, Jr. and Carl Pomerance. A rigorous time bound for factoring integers. J. Amer. Math.
Soc., 5(3):483–516, 1992.

45. Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Stanford University, Stanford,
CA, USA, 1979.

46. Cecile Pierrot and Antoine Joux. Discrete logarithm record in characteristic 3, GF(35·479) a 3796-bit field.
NMBRTHRY list, 15/9/2014.

47. Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing logarithms over gf(p) and
its cryptographic significance (corresp.). IEEE Trans. Inf. Theory, 24(1):106–110, 1978.

48. John M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics of Computation,
32:918–924, 1978.

49. Carl Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. In Discrete algorithms and
complexity (Kyoto, 1986), volume 15 of Perspect. Comput., pages 119–143. Academic Press, Boston, MA,
1987.

50. J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois
J. Math., 6:64–94, 1962.

19

51. Naoyuki Shinohara, Takeshi Shimoyama, Takuya Hayashi, and Tsuyoshi Takagi. Key length estimation of
pairing-based cryptosystems using ηt pairing. In Mark D. Ryan, Ben Smyth, and Guilin Wang, editors,
Information Security Practice and Experience, volume 7232 of Lecture Notes in Computer Science, pages
228–244. Springer Berlin Heidelberg, 2012.

52. Brigitte Vallée. Generation of elements with small modular squares and provably fast integer factoring
algorithms. Math. Comp., 56(194):823–849, 1991.

53. Daqing Wan. Generators and irreducible polynomials over finite fields. Mathematics of Computation, 66:1195–
1212, 1997.

54. A. E. Western and Jefferey C. P. Miller. Tables of indices and primitive roots. Royal Society Mathematical
Tables, vol. 9, Cambridge University Press, 1968.

20

