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Abstract. Recent advances in block-cipher theory deliver security analyses in models where one or
more underlying components (e.g., a function or a permutation) are ideal (i.e., randomly chosen). This
paper addresses the question of finding new constructions achieving the highest possible security level
under minimal assumptions in such ideal models.
We present a new block-cipher construction, derived from the Swap-or-Not construction by Hoang et
al. (CRYPTO ’12). With n-bit block length, our construction is a secure pseudorandom permutation
(PRP) against attackers making 2n−O(logn) block-cipher queries, and 2n−O(1) queries to the underlying
component (which has itself domain size roughly n). This security level is nearly optimal. So far,
only key-alternating ciphers have been known to achieve comparable security using O(n) independent
random permutations. In contrast, we only use a single function or permutation, and still achieve similar
efficiency.
Our second contribution is a generic method to enhance a block cipher, initially only secure as a PRP,
to additionally withstand related-key attacks without substantial loss in terms of concrete security.
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1 Introduction

Several recent works provide ideal-model security proofs for key-alternating (i.e., Even-Mansour
like) ciphers [25,23,14,2,50,16,15,19,26,31,17] and for Feistel-like ciphers [29,20,34,42,38]. In these
proofs, the underlying components (wich are either permutations or functions) are chosen uniformly
at random, and are public, i.e., the attacker can evaluate them. At the very least, these proofs
target pseudorandom permutation (PRP) security: The block cipher, under a secret key, must be
indistinguishable from a random permutation, provided the attacker makes at most q queries to
the cipher, and at most qF queries to the underlying component, for q and qF as large as possible.

Ideal-model proofs imply that the block cipher is secure against generic attacks (i.e., treating
every component as a black box). Heuristically, however, one hopes for even more: Namely, that
under a careful implementation of the underlying component, the construction retains the promised
security level.

Contributions. This paper contributes along two different axes:

- Weaker assumptions. We present a new block-cipher design achieving near-optimal security,
i.e., it remains secure even when q and qF approach the sizes of the block-cipher and component
domains, respectively. Our construction can be instantiated from a function or, alternatively,
from a single permutation. This is the first construction from a function with such security level,
and previous permutation-based constructions all relied on multiple permutations to achieve
such high security.

- Related-key security. We show how to enhance our construction to achieve related-key se-
curity without significantly impacting its efficiency and security. This is achieved via a generic
transformation of independent interest.

This work should not be seen primarily as suggesting a new practical block-cipher construction,
but rather as understanding the highest achievable security level in the model block ciphers are
typically analyzed. The resulting technical questions are fairly involved, and resolving them is where
we see our contributions.

Still, we hope that our approach may inspire designers. Our instantiation from a permutation
gives a possible path for a first proof-of-concept implementation, where one simply takes a single-
round of AES as the underlying permutation. (And in fact, even a simpler object may be sufficient.)

1.1 First contribution: Full-domain security

We start by explaining our construction from a (random) function. Concretely, we consider block-
cipher constructions BC with block length n and key length κ using an underlying keyless function
F with m-bit inputs. We say that BC is (q, qF )-secure (as a PRP) if no attacker can distinguish with
substantial advantage the real world – where it can query qF times a randomly sampled function
F and overall q times the block cipher BCFK (using the function F and a random secret key K) –
from an ideal world where BCFK is replaced by an independent random permutation of the n-bit
strings. (In fact, we typically also allow inverse queries to the block cipher and the permutation.)

Our goal. Let us first look at what can we expect for q and qF when a cipher is (q, qF )-secure.
Clearly, qF ≤ 2m and q ≤ 2n, assuming queries are distinct. However, one can also prove that
(roughly) qF < 2κ is necessary, otherwise, the adversary can mount a brute-force key search attack.
Moreover, q ≤ 2m must also hold (cf. e.g. [28] for a precise statement of these bounds).
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Here, we target (near) optimal security, i.e., we would like to achieve security for q and qF as
close as possible to 2n and 2m, respectively, whenever m ≥ n. That is, the construction should
remain secure even if the adversary can query most of its domain, and of that of the underlying
function F . We note that the question is meaningful for every value of m ≥ n, but we specifically
target the case where m ≈ n, e.g., m = n, or m = n+O(log n).

Previous constructions from functions fall short of achieving this: Gentry and Ramzan [29], and
the recent generalization of their work by Lampe and Seurin [38], use a Feistel-based approach with
m = n/2, and this hence yields (at best) (2n/2, 2n/2)-security. (The work of [38] approaches that
security level for increasing number of rounds.) In contrast, key-alternating ciphers (KACs) have
been studied in several works [23,14,2,50,16,15,19,26,31], and the tightest bounds show them to
be (2n(1−ε), 2n(1−ε))-secure, when using O(1/ε) rounds calling each an (independent) n-bit random
permutation. However, there is no way of making direct use of KACs given only a non-invertible
function.

The WSN construction.Our construction – which we call Whitened Swap-or-Not (WSN) – adds
simple whitening steps to the Swap-or-Not construction by Hoang, Morris, and Rogaway [33], which
was designed for the (different) setting where the component functions are secret-key primitives.
Concretely, the WSN construction, on input X = X0, iterates R times a very simple round structure
of the form

Xi+1 ← Xi ⊕ (Fb(i)(Wi ⊕max{Xi, Xi ⊕Ki}) ·Ki) ,

where Wi and Ki are round keys, max of two strings returns the largest with respect to lexicographic
ordering, and Fb(i)(x) returns the first bit of F (x) in the first half of the rounds, and the second
bit in the second half. (Moreover, · denotes simple scalar multiplication with a bit, i.e., b ·X = X
if b = 1, and 0n else.) In particular, our construction requires F to only output 2 bits. The round
structure is very weak1, and it differs from the construction of [33] in that the same round function
is invoked over multiple rounds, and as this function is public, we use a key Wi to whiten the input.
We prove the following:

Main Theorem. (Informal) The WSN construction forR = O(n) rounds is (2n−O(logn), 2n−O(1))-
secure.

Note that O(n) rounds are clearly asymptotically optimal.2 For some parameter cases, techniques
from [49,47] can in fact be used to obtain a (2n, 2n(1−ε))-secure PRP, at the cost of a higher number
of rounds.

Functions vs. permutations. It is beyond the scope of this paper to assess whether a function
is a better starting point than a permutation in practice. Independently of this, we believe that
studying constructions from functions is a fundamental theoretical problem for at least two reasons.

Foremost, functions are combinatorially simpler than permutations, and thus, providing con-
structions from them (and thus enabling a secure permutation structure) is an important theoretical
question, akin to (and harder than) the problem of building PRPs from PRFs covered by a multi-
tude of papers. Also, practical designs from keyless round functions have been considered (cf. e.g.
[1]).

1 A single round can easily be distinguished from a random permutation with a constant number of queries, as every
input x is mapped to either x or x⊕Ki.

2 Even for one single query, every internal call to F can supply at most one bit of randomness, and the output must
be (information theoretically) indistinguishable from a random n-bit string, and thus Ω(n) calls are necessary.
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In addition, our construction only requires c = 2 output bits, and it is worth investigating
whether such short-output functions are also harder to devise than permutations. We in fact provide
some theoretical evidence that this may not be the case. We prove that an elegant construction by
Hall, Wagner, Kelsey, and Schneier [32] can be used to transform any permutation from n + c
bits to n + c bits into a function from n bits to c bits which is perfectly indifferentiable [44]
from a random function. This property ensures that the concrete security of every cipher using
a function F : {0, 1}n → {0, 1}c is preserved if we replace F with the construction from π, and
allow the adversary access to π and its inverse π−1. The construction makes 2c permutation calls,
and thus makes only sense for small c. In contrast, it should be noted that the only indifferentiable
construction of a permutation from functions is complex and weakly secure [34], and that no suitable
constant-complexity high-security constructions of large-range functions from permutations exist,
the most secure construction being [41,46].

A single-permutation instantiation. With c = 2, combining the WSN construction with the
HWKS construction yields a secure cipher with n-bit block length from a single permutation on
(n + 2)-bit strings. In contrast, we are not aware of any trick to instantiate KACs from a single
permutation retaining provable nearly-optimal security, even by enlarging the domain of the per-
mutation. The only exception is the work of [15], which however only considers two rounds and
hence falls short of achieving full-domain security.

The complexity of the resulting construction matches (asymptotically) that of KACs when tar-
geting (2n−O(logn), 2n−O(1))-security. Nonetheless, a clear advantage of KACs is that their security
degrades smoothly when reducing the number of rounds, whereas here O(n) rounds remain neces-
sary even for (1, 0)-security. We note that in the setting of functions constructions with such smooth
security degradations are not known, even in the simpler setting of [33].

Reducing the key length. Arguably, an obvious drawback of our construction is that the key
length grows with the number of rounds. We note that this is also true for key-alternating ciphers,
and it is not unique to our construction.

It is worth noting that the key length can be reduced via standard techniques without affecting
security, by deriving the round keys from a single (n− d)-bit master key K as Ki ← H(K ‖ 〈i− 1〉)
and Wi ← H(K ‖ 〈R+ i− 1〉) for all i ∈ [R] and a function H : {0, 1}n → {0, 1}n (to be modeled as
random in the proof), where 〈·〉 denotes the (d = dlog(2R) + 1e)-bit binary encoding of an integer
in [2R]. (Note that d = O(log n).) The security proof is fairly straightforward, and omitted – it
essentially accounts to excluding the event that H is queried on one of the values related to the
key, and the reducing the analysis to the one with large keys. This adds an additional qH ·R/2n−d
term to the bound, where qH is the number of queries to H. H can in fact be built from the very
same function F , but this requires a slightly more involved analysis.

1.2 Second contribution: Related-key security

In the second part, we show how to generically make any block-cipher construction secure against
related-key attacks (or RKA secure, for short) while preserving full-domain security and small input
length of the underlying function.

On RKA security. Several attacks over the last two decades (cf. e.g. [8,35,9,10,13,12,11]) have
motivated RKA security as the new golden standard for block-cipher security. As formalized by
Bellare and Kohno [5], RKA security is parameterized by a class of key transformations Φ. Then,
pseudorandomness security defined above is extended to allow the attacker for block-cipher queries

3



of the form (φ,+, X) or (φ,−, Y ) for φ ∈ Φ and X,Y ∈ {0, 1}n, resulting in BCφ(K)(X) and

BC−1φ(K)(Y ).

It is easy to see that WSN is not RKA secure if the class Φ allows for XORing chosen offsets to
individual keys. Querying an input X (with the original key), and querying X⊕∆ while adding ∆ to
K1 results in the same output with probability 1/2. In the random permutation model, two recent
works [26,19] have shown that KACs are RKA secure (for appropriate key scheduling), yet the
resulting construction is only (2n/2, 2n/2)-secure. Here, in contrast, we target full-domain security
of the cipher.

Related-key secure key-derivation. We consider a generic approach to shield ciphers from
related-key attacks using related-key secure key-derivation functions (or RKA-KDF, for short).
These are functions KDF : {0, 1}κ → {0, 1}` with the property that under a random secret key K,
the outputs of KDF(φ(K)), for different φ ∈ Φ, look random and independent. A similar concept
was proposed by Lucks [40], and further formalized by Barbosa and Farshim [3]. For any secure
block cipher BC, the new block cipher computes, for key K and input X, the value BCKDF(K)(X),
and is easily proved to be RKA-secure. Note that this approach is very different from the one used
for standard-model RKA-secure PRF and PRP constructions (as in [4]), which leverage algebraic
properties of PRF constructions.3

Building RKA-KDFs in ideal models may appear too easy: A hash function H : {0, 1}κ →
{0, 1}`, when modeled as a random oracle [6], is a secure RKA-KDF. However, such construction
can be broken in 2κ/2 queries by a simple collision argument.4 If our goal is to achieve security
almost 2n to preserve security of e.g. WSN above, then we need to set κ ≥ 2n. But what if we are
building our block cipher from a primitive with n-bit inputs, like the very same primitive used to
build the block cipher, as in the WSN setting above?

One approach is to use a domain extender in the sense of indifferentiability [44]. The only known
construction with (near) optimal security is due to Maurer and Tessaro [45] (MT), and further
abstracted by Dodis and Steinberger [22]. Unfortunately, instantiations of the MT construction are
very inefficient, and make O(nc) calls to the underlying function for some undetermined (and fairly
large) c.

MT-based RKA-KDFs. As our second contribution, we provide a highly parallelizable construc-
tion of a RKA-KDF from a keyless function with nearly optimal security, i.e., its outputs are
pseudorandom even when evaluated on q = 2n(1−ε) related keys, and the underlying function can
be evaluated qF = 2n(1−ε) times, where ε > 0. Our construction is a variant of the MT construc-
tion. However, while the latter is inefficient as it relies on a complex combinatorial object, called an
input-restricting function family, here, we show that to achieve RKA-KDF security it is sufficient
to use a much simpler hitter [30], which can for instance be built from suitable constant-degree
expander graphs.

Overall, our construction needs O(n) calls to independent n-to-n-bit functions. (It can also
be reformulated to call a single n-to-n-bit function.) We see it as a challenging open problem to
improve the complexity, but we note that this already yields the most efficient known approach to
ensure high related-key security for block ciphers built from ideal primitives.

3 Also, our requirements are stronger than those for non-malleable codes and non-malleable key-derivation [24,27].
4 For example, forQ := 2κ/2, and an additive RKA attack asking for random∆1, . . . ,∆Q, one of the valuesH(K⊕∆i)

is going to collide with constant probability with one of the values H(Xi), for independent κ-bit strings X1, . . . , XQ,
allowing to distinguish.
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Indifferentiability.The question of building a block cipher from a random function which is as
secure as an ideal cipher (with respect to indifferentiability) was studied and solved by [20,34].
In the same vein, indifferentiable KAC-like cipher constructions from permutations have been
given [2,37,31]. While these constructions are related-key secure, their concrete security is fairly
weak.

2 Preliminaries

2.1 Notation

Throughout this paper, we let [n] := {1, . . . , n}. Further, we denote by Fcs(m,n) the set of functions
mapping m-bit strings to n-bit strings, and by Fcs(∗, n) the set of functions {0, 1}∗ → {0, 1}n.
Similarly, we let Perms(n) ⊂ Fcs(n, n) be the set of permutations on {0, 1}n. Given a string X ∈
{0, 1}m, we denote by X[i . . . j] (for i < j) the sub-string consisting of bits i, i + 1, . . . , j − 1, j of
X. We also write X≤i instead of X[1 . . . i]. Further, given another string X ′ ∈ {0, 1}n, we denote
by X ‖X ′ the (m+ n)-bit concatenation of X and X ′.

Algorithms, constructions, and adversaries in this paper are with respect to some (not further
specified) RAM model of computation. We explicitly denote by C[F ] the fact that a construction C
(implementing a function) makes queries to another function F , and we denote by AO the fact that

an adversary A accesses an oracle O. We denote by x
$← S the process of sampling x from the set

S uniformly at random, and by y
$← AO the process of running the randomized algorithm A with

access to a randomized oracle O, and sampling its output y. Also, we denote by AO ⇒ y the event
that the concrete value y is output in the same experiment. In general, we use a notation close to
the one of Bellare and Rogaway’s Game Playing framework [7], which we hope to be self evident.

Additionally, we denote by Pr [X = x] the probability that the random variable takes the value x,
and by E[X] its expected value. Also, the statistical distance between two random variablesX andX ′

is SD(X,X ′) = 1
2

∑
x |Pr [X = x]−Pr [X ′ = x] |, where the sum is over all values which can be taken

by X or X ′. It is well known that if X+ is the set of values x such that Pr [X = x] ≥ Pr [X ′ = x],
then SD(X,X ′) =

∑
x∈X+ (Pr [X = x]− Pr [X ′ = x]).

2.2 Ideal models

Our analyses are in the random function model, where algorithms and adversaries are relative to a

randomly chosen function F
$← Fcs(m, `) for parameters m and `. A variant of the model grants

access to multiple independent random functions F1, . . . , Ft
$← Fcs(m, `), but these can equivalently

be implemented in the single random function model for m′ = m + dlog te, where the individual
functions Fi are obtained as Fi(X) = F (〈i〉 ‖X), with 〈i〉 representing a dlog te-bit encoding of i. We
often denote F = (F1, . . . , Ft) to stress this dual representation explicitly. Therefore, all upcoming
definitions are in the single random function model without loss of generality.

We also recall that we can build a function F from m bits to ` bits by making ` calls to a
function from m + dlog `e bits to a single bit, i.e., F (X) = F ′(〈0〉 ‖X) ‖ · · · ‖F ′(〈` − 1〉 ‖X). The
statement can be made precise via the notion of perfect indifferentiability [44], which we review in
Appendix A.

The definitions of this section also naturally extend to the random permutation model, where
adversaries and algorithms can query one or more random permutations sampled uniformly from
Perms(n). In particular, adversaries are also allowed query the inverses of these permutations.
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2.3 Block ciphers and (related-key) pseudorandomness

Let BC[F ] : {0, 1}κ × {0, 1}n → {0, 1}n be an efficient construction making calls to a function
F ∈ Fcs(m, `). (We generally omit F whenever clear from the context.) We say that BC = BC[F ]
is a (κ, n)-block cipher if BC(K, ·) is a permutation for all κ-bit K and all F ∈ Fcs(m, `), and use
the notation BCK to refer to this permutation. Typically, we assume that BCK and BC−1K are very
efficient to compute given K, where efficiency in particular implies a small number of calls to F .

(Multi-user) PRPs.We require block ciphers to be secure pseudorandom permutations (PRPs) [39].
In particular, we consider a multi-user version of PRP security, which captures joint indistinguisha-
bility of an (a-priori unbounded) number of block-cipher instantiations under different independent
keys. The traditional (single-user) PRP notion is recovered by considering adversaries making
queries for one single key. While the single- and multi-user versions are related by a hybrid argu-
ment, sticking with the latter will allow potentially tighter bounds in the second part of this paper,
as the standard hybrid argument cannot be made very tight given only an overall bound on the
number of queries.

To this end, we consider two security games PRP-bABC,F for b ∈ {0, 1}. In both, F
$← Fcs(m, `) is

initially sampled, as well as independent keys K1,K2, . . .
$← {0, 1}κ, and permutations P1, P2, . . .

$←
Perms(n).5 Then, the adversary A is executed, and is allowed to issue two types of queries:

- Function queries x, returning F (x)
- Construction queries (i, σ, z), where i ∈ N, σ ∈ {−,+}, z ∈ {0, 1}n. For b = 1, the query

returns BCKi(z) (if σ = +, this is a forward query) or BC−1Ki (z) (if σ = −, and this is a backward

query). For b = 0, the query returns Pi(z) or P−1i (z), respectively.

Finally, A outputs a bit, which is also the game’s output. Then, PRP-security of BC is defined via
the following advantage metric

AdvPRP
BC,F (A) := Pr

[
PRP-1ABC,F ⇒ 1

]
− Pr

[
PRP-0ABC,F ⇒ 1

]
.

We also denote by AdvPRP
BC,F (q, qF ) the maximal advantage of an adversary A making at most

q construction queries and qF function queries. Informally, we say that BC is (q, qF )-secure if
AdvPRP

BC,F (q, qF ) is “small”, i.e., negligible in κ.

Related-key secure PRPs. We target the traditional notion of a related-key secure (or RKA-
secure) PRP introduced by Bellare and Kohno [5]. In particular, for a key length κ, we consider a
family Φ ⊆ Fcs(κ, κ) of key transformations. Given a (κ, n)-block cipher BC = BC[F ] as above, we
define the following two games RKA-PRP-1 and RKA-PRP-0. The game RKA-PRP-bABC,F,Φ proceeds

as follows: It first samples F
$← Fcs(m, `), a key K

$← {0, 1}κ, and 2κ independent permutations

Pk′
$← Perms(n) for all κ-bit k′. Then, A issues two types of queries:

- Function queries x, returning F (x)
- Construction queries (σ, φ,X), where σ ∈ {−,+}, φ ∈ Φ, z ∈ {0, 1}n. For b = 1, the query

returns BCφ(K)(z) (if σ = +, this is a forward query) or BC−1φ(K)(z) (if σ = −, and this is a

backward query). For b = 0, the query returns Pφ(K)(z) or P−1φ(K)(z), respectively.

Finally, A outputs a bit, which is also the game’s output. We define the RKA-PRP advantage as

AdvRKA-PRP
BC,F,Φ (A) = Pr

[
RKA-PRP-1ABC,F,Φ ⇒ 1

]
− Pr

[
RKA-PRP-0ABC,F,Φ ⇒ 1

]
.

The advantage measure AdvRKA-PRP
BC,F,Φ (q, qF ) is defined by taking the maximum.

5 As we are sampling infinitely many objects, once can think of sampling these lazily the first time they are needed.
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3 The Whitened Swap-or-Not Construction

3.1 The construction

We present a construction of a block cipher using a function F : {0, 1}n → {0, 1}2, which we refer to
as the Whitened Swap-or-Not construction, or WSN for short. This construction naturally extends
the Shuffle-or-Not construction by Hoang, Morris, and Rogaway [33] to the keyless-function setting.

For any even round number R = 2r, the construction WSN = WSN(R) expects round keys
K1, . . . ,KR and whitening keys W1, . . . ,WR, which are all n-bit strings. Its computation proceeds
as follows, where j(i) = 1 if i ≤ r, and j(i) = 2 else, and we interpret F as two functions F1 and
F2 such that Fj(x) returns the j-th bit of F (x) for j ∈ {1, 2}.

Construction WSN
(R)
K1,...,KR,W1,...,WR

(X): // X ∈ {0, 1}n

X0 ← X
For i = 1, . . . , R do
X ′i−1 ← max{Xi−1, Xi−1 ⊕Ki}
Bi ← Fj(i)(Wi ⊕X ′i−1)
If Bi = 1 then Xi ← Xi−1 ⊕Ki else Xi ← Xi−1
Return XR

In the description, the max of two strings is with respect to the lexicographic order, and note that
its purpose is to elect a unique representant for every pair {X,X⊕Ki}. As in [33], the construction
extends naturally to domains which are arbitrary abelian groups. However, we will stick with the
special case of bit strings in the following.

It is easy to see that the construction can efficiently be inverted given the keys, simply by
reversing the order of the rounds.

3.2 Security of the WSN construction

Compared with the original Swap-or-Not construction, WSN adds at each round a whitening key Wi

to the input of a (publicly evaluable) round function Fj(i), as opposed to using a secret independent
random function Fi (which in particular cannot be queried directly by the adversary). It is a well-
known folklore fact that for a function F : {0, 1}n → {0, 1}, the construction mapping a key W
and an input X to F (W ⊕X) is indistinguishable from a random function under a random secret
key W when F is random and publicly evaluable.

However, the high security of WSN does not follow by simply composing this folklore fact with
the original analysis [33]. This is because the folklore construction can easily be distinguished from

a random function via Θ(2n/2) queries to F (W ⊕ ·) (or a random function f
$← Fcs(n, 1)), and

Θ(2n/2) queries to F .6 To overcome this, a valid black-box instantiation would use a more complex
construction mapping X to F (W1⊕X)⊕· · ·⊕F (Wk⊕X) (analyzed in [28]) for the round functions
within Swap-or-Not. This would however result in roughly Θ(n2) calls to F , as opposed to Θ(n)
achieved by WSN.

6 Roughly, pick X1, . . . , XQ, X
′
1, . . . , X

′
Q to be independent uniform n-bit strings of length n−k, for some k = dlogne

and Q ≈ 2n/2. Then one just queries Yz,i ← F (W ⊕(Xi ‖ z)) and Y ′z,j ← F (X ′j ‖ z) for all i, j ∈ [Q] and z ∈ {0, 1}k.
The distinguisher finally outputs one if and only if there exist i and j such that Yi,z = Y ′j,z for all z ∈ {0, 1}k.
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Security of WSN.The following theorem establishes the concrete security of the WSN construc-
tion with R = 2r rounds.

Theorem 1 (Security of WSN). For all q, qF > 0 and for all r ∈ N, we have

AdvPRP
WSN(2r),F

(q, qF ) ≤ 2
√

2
√
q2n/4

(
1

2
+
q · r + qF

2 · 2n

)r/4
.

The proof of Theorem 1 is given in Section 3.3 below. Note that if r · q + qF = (1− α)2n, then the
above term can be made to be 2−n for r = O(n/α). For example, this allows to infer security for
q = 2n−logn−O(1) and qF = 2n−2.

We also have no reason to believe that the construction would be insecure if we used a function
with a single output bit throughout the evaluation, but we could not find a suitable proof and leave
this analysis as an open problem.

Single-permutation instantiation. The WSN construction can be instantiated from a single
permutation if we are ready to enlarge the domain of the permutation to n + 2 bits. This follows
from a result of independent interest, proved in Appendix B. Namely, we prove that a 2c-call
construction of a function F π ∈ Fcs(n, c) from any permutation π ∈ Perms(n + c) due to Hall,
Wagner, Kelsey, and Schneier [32] is perfectly indifferentiable [44] from a random function. This in
particular implies (by the composition theorem in Appendix A) that we can replace the function F
by our construction and still achieve the same security bound in the random permutation model.

Full-domain security.Two recently published works [49,47] enhance swap-or-not to full-domain
security (i.e., security against q = 2n queries) at the cost of making O(n2) calls to the construction
in the worst-case. (The later work [47] shows how to reduce the complexity to O(n) in the average
case.) One could hope to use their results generically to obtain (2n, 2n(1−ε))-security in our setting.

Unfortunately, these results require security for q = 2n−1, which is unattainable by the above
bound. By inspecting the proof of Theorem 1, it is however not hard to verify that a version
of the WSN construction with independent round functions F1, . . . , FR can be made to achieve
(2n−1, 2n(1−ε))-security (in essence, this is because one can easily reduce the exponential term in

the bound to
(
1
2 + qF+q

2·2n
)r/4

) and the results from [49,47] can be used in a black-box way.

Nevertheless, we point out that in contrast to the small-domain setting of [49,47], here we are
mostly targeting a large n (e.g., n = 128), for which 2n(1−ε) security can be largely sufficient. The
additional cost may thus not be necessary.

3.3 Proof of Theorem 1

Our proof shares similarities with the original analysis of Swap-or-Not [33], but dealing with the
setting where the function F is public requires a careful extension and different techniques. To
this end, we follow an approach used in previous works by Lampe, Patarin, and Seurin [36], and
by Lampe and Seurin [38] to reduce security analyses for PRP constructions in ideal models to a
non-adaptive analysis. (With some extra care due to the fact that we deal with the multi-user PRP
security notion.) In particular, we are first going to prove that the WSN construction, restricted to
half of its rounds, satisfies a weaker non-adaptive security requirement, which we introduce in the
following paragraph.
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Non-adaptive security. Let BC = BC[F ] be a (κ, n)-block cipher construction based on some
function F : {0, 1}m → {0, 1}`. Now, let us fix a set of tuples TF = {(xi, yi)}i∈[qF ] with xi ∈ {0, 1}m

and yi ∈ {0, 1}` for all i ∈ [qF ], and such that every xi appears only in one pair in TF . Moreover,
let us fix a sequence X of q distinct inputs such that X[j] = (ij , Xj) for all j ∈ [q], where ij ∈ N
and Xj ∈ {0, 1}n.

Then we consider two processes – sampling two sequences Y and Y′ of q n-bit strings – defined
as follows:

- Y (the real world distribution) is obtained by sampling random κ-bit strings K1,K2, . . .
$←

{0, 1}κ, sampling a random F
$← Fcs(m, `) conditioned on satisfying F (xi) = yi for all i ∈ [qF ],

and finally letting Y[j]← BC[F ]Kij (Xj) for all j ∈ [q].

- Y′ (the ideal world distribution) is obtained by sampling random permutations P1, P2, . . .
$←

Perms(n), and letting Y[j]← Pij (Xj) for all i ∈ [q].

Then, we define the advantage metric

AdvNCPAPRP
BC,F (X, TF ) := SD(Y,Y′) ,

where SD denotes statistical distance. Moreover, let AdvNCPAPRP
BC,F (q, qF ) denote the maximum of

AdvNCPAPRP
BC,F (X, TF ) taken over all q-sequences X and all sets TF of size qF .

From non-adaptive to adaptive security.We make use of the following lemma. The proof is
very similar to previous works [36,38] and makes crucial use of Patarin’s H-coefficient method [48].
The main difference is that our version deals with the multi-user PRP security notion. (A self-
contained version of the proof is found in Appendix G.)

Given a (κ, n)-block cipher BC[F ] relying on a function F : {0, 1}m → {0, 1}`, then let BC[F1] ◦
BC−1[F2] be the (2κ, n)-block cipher which relies on two functions F1, F2 : {0, 1}m → {0, 1}`, and
which on input X ∈ {0, 1}n and given key K1 ‖K2 ∈ {0, 1}2κ, returns BC[F2]

−1
K2

(BC[F1]K1(X)).
The following lemma tells us that if BC is non-adaptively secure (as in the above notion), then
BC ◦ BC−1 is adaptively secure in the sense of being a secure PRP for attackers making both
forward and backward queries.

Lemma 1 (Non-adaptive ⇒ Adaptive Security). For all q, qF , we have

AdvPRP
BC[F1]◦BC−1[F2],(F1,F2)

(q, qF ) ≤ 4 ·
√

AdvNCPAPRP
BC[F ],F (q, qF ) .

Note that a stronger version of this statement (essentially without the square root) can be proved [43,18]
in the setting where qF = 0.

Non-adaptive analysis of WSN. We first adopt a slightly different representation of the WSN

construction. In particular, let WSN
(r)

= WSN
(r)

[F ] be the construction relying on a function
F : {0, 1}n → {0, 1} which operates as the original WSN construction for r rounds, but always uses
the the function F (instead of using one function F1 for the first half, and the function F2 for the
second half of the evaluation). Then, it is easy to see that

WSN(2r)[F1, F2] = WSN
(r)

[F1] ◦
(
WSN

(r)
[F2]

)−1
, (1)

where in particular we have used the fact that the inverse of WSN is just the WSN itself, with round
and whitening keys scheduled in the opposite order.
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The key element of our proof is the following lemma, which, combined with Lemma 1 and
Equation (1) immediately yields Theorem 1.

Lemma 2 (Non-adaptive security of WSN). For all q and qF , and N = 2n,

AdvNCPAPRP

WSN
(r)

[F ],F
(q, qF ) ≤ 1

2
q
√
N

(
1

2
+
q · r + qF

2N

)r/2
.

Proof (Of Lemma 2). We fix a sequence of q distinct queries X, as well as a set TF of qF input-
output pairs. For now, we only consider the single-key setting, i.e., all queries X[j] are of the same
index ij = 1, and thus we omit these indices ij . (We argue below how the multi-user case follows
easily from our proof.) Denote the randomly chosen round keys as K = (K[1], . . . ,K[r]) and the
corresponding whitening keys as W = (W[1], . . . ,W[r]).

We are going to consider the evolution of the evaluation of WSN on these inputs simultaneously,
and denote the joint state after t ∈ {0}∪ [r] rounds as Xt = (Xt[1], . . . ,Xt[q]), with X0 = X. With
U uniformly distributed on the set of q distinct n-bit strings, we are going to upper bound

AdvNCPAPRP

WSN
(r)

[F ],F
(X, TF ) = SD(Xr,U) .

For any i ∈ [q], denote by Qt[i] the set of input-output pairs corresponding to the t F queries
made to compute Xt[i] from X0[i]. Let now Ut,i be a uniformly distributed value on the set St,i :=
{0, 1}n \ {Xt[1], . . . ,Xt[i − 1]}, and let Ut,i to be a uniform (q − i)-tuple of distinct strings from
St,i+1. Then, for all t ∈ {0} ∪ [r],

SD(Xt,U) ≤
q∑
i=1

SD((X≤i−1t ,Ut,i−1), ((X
≤i
t ,Ut,i))

≤
q∑
i=1

SD((Q≤i−1t ,X≤i−1t , Ut,i,Ut,i), (Q
≤i−1
t ,X≤it ,Ut,i))

=

q∑
i=1

SD((Q≤i−1t ,X≤it ), (Q≤i−1t ,X≤i−1t , Ut,i)) =

q∑
i=1

E [SD(Xt[i], Ut,i)] . (2)

since SD(f(X), f(Y )) ≤ SD(X,Y ) for all f,X, Y , and the i-th expectation in the sum is over Q≤i−1t ,
X≤i−1t ,W≤t, and K≤t.

For all a ∈ St,i, we now we define the random variable pt,i(a) as the probability that Xt[i] = a

conditioned on the actual values taken by the random variables Q≤i−1t , X≤i−1t ,W≤t,K≤t. (In
particular, pt,i(a) is a random variable itself, as it is a function of these random variables.) Also,
let Ni := N − i+ 1. Then, by Cauchy-Schwarz and Jensen’s inequalities, we obtain

E [SD(Xt[i], Ut,i)] =
1

2
· E

 ∑
a∈St,i

∣∣∣∣pt,i(a)− 1

Ni

∣∣∣∣


≤ 1

2
·
√
N

√√√√√E

 ∑
a∈St,i

(
pt,i(a)− 1

Ni

)2
 .

(3)
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We are going to give a recursive formula for E[∆t,i], where

∆t,i :=
∑
a∈St,i

(
pt,i(a)− 1

Ni

)2

.

Note that ∆0,i = E[∆0,i] = 1− 1
Ni

. It is now convenient to assume that Q≤i−1t , X≤i−1t , K≤t, W≤t

are fixed to some values (and thus so are ∆t,i and pt,i(a)), and we are going to study E[∆t+1,i],

where the expectation is now over X≤i−1t+1 , K[t + 1], W[t + 1] and Q≤i−1t+1 . In particular, define Qb
(for b ∈ {0, 1}) to be the set of all inputs of queries to F for which we know the corresponding
output, i.e., x ∈ Qb if (x, b) ∈ TF or (x, b) ∈ Qt[j] for some j ∈ [i− 1]. Moreover let Q := Q0 ∪ Q1

and Q := |Q|, and note that Q ≤ t · (i− 1) + qF .

With the above being fixed, we are now considering the random experiment where we sample
K[t+ 1] and W[t+ 1], and we are going to compute the expectation of ∆t+1,i in this experiment.
More concretely, we define a function ϕ : St,i → St+1,i (which is also a random variable, as it
depends on St+1,i, K[t+ 1] and W[t+ 1]) as follows:

ϕ(a) =



a if (1) max{a⊕K[t+ 1], a} ⊕W[t+ 1] ∈ Q0, or
(2) a⊕K[t+ 1] /∈ St+1,i

and max{a⊕K[t+ 1], a} ⊕W[t+ 1] /∈ Q, or
(3) a⊕K[t+ 1] ∈ St,i and max{a⊕K[t+ 1], a}⊕W[t+ 1] /∈ Q,

a⊕K[t+ 1] if (4) max{a⊕K[t+ 1], a} ⊕W[t+ 1] ∈ Q1, or
(5) a /∈ St+1,i and max{a⊕K[t+ 1], a} ⊕W[t+ 1] /∈ Q.

Note that ϕ is a bijection. Indeed, if Xt[i] = a implies Xt+1[i] = a′ (where a′ ∈ {a, a⊕K[t+ 1]}),
then ϕ(a) = a′ (this corresponds to exactly one of the first four cases), and otherwise we let
ϕ(a) = a. Also note that ϕ does not depend (directly) on Q≤i−1t+1 , only on St+1,i, K[t+ 1], W[t+ 1],

and Q≤i−1t . Using both the bijectivity of ϕ as well as the linearity of expectation,

E [∆t+1,i] =
∑
a∈St,i

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2
]
.

Recall that the expectation here is over the choice of Q≤i−1t+1 , K[t+ 1] and W[t+ 1]. We prove the
following lemma in Appendix C.

Lemma 3. For all a ∈ St,i,

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
=
(

1− 3
4
Ni(N−Q)

4·N2

)(
pt,i(a)− 1

Ni

)2
+ 1

4
N−Q
N2 ∆t,i .

We can thus replace E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
in the above, and using the fact that∆t,i =

∑
a∈St,i(pt,i(a)−

1
Ni

)2, this simplifies to

E [∆t+1,i] =
∑
a∈St,i

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2
]
≤
(

1− Ni · (N −Qt)
2 ·N2

)
∆t,i ,
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Procedure MAIN:

// Game RKA-KDF-b, b ∈ {0, 1}

F
$← Fcs(m,n), G

$← Fcs(∗, `)
K

$← {0, 1}κ

b′
$← AF,Eval

Return b′

Procedure Eval(φ):

// Game RKA-KDF-b, b ∈ {0, 1}
If b = 0 then
Return KDF[F ](φ(K))

Else return G(φ)

Procedure F(x):

Return F (x)

Fig. 1. RKA-KDF security. The procedure Eval, in both games, takes as input a function φ ∈ Φ. Also, the notation
G(φ) denotes G applied to some unique bit-encoding of the function φ.

where Qt = t(i−1)+qF . Now, we come back to thinking of X≤i−1t , K≤t and W≤t as being randomly
chosen (rather than fixed), and evaluate E[∆t,i] recursively. The above in particular implies that

E[∆t,i] ≤
(

1− Ni·(N−Q)
2·N2

)
E[∆t−1,i], and thus

E[∆r,i] ≤
(

1− Ni · (N −Qr−1)
2 ·N2

)r
≤
(

1

2
+
r · q + qF

2N

)r
.

Now, we can put this together with (2) and (3), and see that

SD(Xr,Uq) ≤
1

2
q ·
√
N ·

(
1

2
+
r · q + qF

2N

)r/2
.

Note that for the multi-user case, the proof is essentially the same, with slightly more complex
notation. The only difference is that we define St,i and all related quantities only with respect to
the previous queries for the same key / user. The upper bounds are the same however, as they only
depend on N , q and qF . This concludes the proof of Lemma 2. ut

4 Related-Key Security

4.1 Related-key secure key derivation

We consider the general notion of a related-key secure key-derivation function, or RKA-KDF for
short. Informally, for a class of key-transformation functions Φ ⊆ Fcs(κ, κ), this is a function
KDF : {0, 1}κ → {0, 1}` such that KDF(φ(K)) gives independent, pseudorandom values for every
φ ∈ Φ. A similar notion was considered by Lucks [40] and by Barbosa and Farshim [3].

Formal definition. Let KDF[F ] : {0, 1}κ → {0, 1}` be a construction that calls a function
F : {0, 1}m → {0, 1}n. In Figure 1, we define the security games RKA-KDF-0 and RKA-KDF-1
involving an adversary A and a class of key transformations Φ ⊆ Fcs(κ, κ). In the real world (Game
RKA-KDF-0), the adversary A makes queries to a random function F via the F oracle and can
obtain evaluations of KDF[F ](φ(K)) for multiple φ ∈ Φ of its choice via the Eval oracle, and these
values should be indistinguishable from random values, which are returned by the Eval oracle in
the ideal world (i.e., in Game RKA-KDF-1). The RKA-KDF-advantage is then defined as

AdvRKA-KDF
KDF,F,Φ (A) = Pr

[
RKA-KDF-0AKDF,F,Φ ⇒ 1

]
− Pr

[
RKA-KDF-1AKDF,F,Φ ⇒ 1

]
,

and AdvRKA-KDF
KDF,F,Φ (q, qF ) is obtained by maximizing the above over all adversaries making q queries

to Eval and making qF queries to F via the F oracle.
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Remark 1. An alternative definition has the Eval oracle return G(φ(K)) for a random function

G
$← Fcs(κ, `). Our choice is better suited to the composition theorem below, and shifts the burden

of dealing with the combinatorics of Φ to the RKA-KDF security proof.

The composition theorem.We can compose an arbitrary (`, n)-block cipher construction BC[F ]
and a key-derivation function KDF : {0, 1}κ → {0, 1}` using the same function F , into a new (κ, n)
block cipher BC = BC[F,KDF] such that

BCK(X) = BCKDF(K)(X) . (4)

for every K ∈ {0, 1}κ and X ∈ {0, 1}n. The following theorem shows that if BC is a secure PRP
and KDF is RKA-KDF secure, then the composition BC is a related-key secure PRP. Note that the
fact that we consider multi-user PRP security is central in allowing us a tight reduction.

Theorem 2 (The Composition Theorem). Let BC = BC[F,KDF] be the (κ, n)-block cipher
defined above, and assume that BC makes at most t calls to F upon each invocation. Let Φ ⊂
Fcs(κ, κ) be a class of key transformations. Then, for all q, qF ,

AdvRKA-PRP
BC,F,Φ

(q, qF ) ≤ 2 · AdvRKA-KDF
KDF,F,Φ (q, qF + q · t) + AdvPRP

BC,F (q, qF ) .

Proof (Sketch). One uses RKA-KDF security to transition from RKA-PRP-1 to a setting where
each query (φ, x) to the block cipher is replied with an independent key Kφ as BCKφ(x), i.e., we
map every φ with an independent κ-bit key Kφ. This is exactly PRP-1 (except that users are now
identified by elements of Φ) and results in the additive term AdvRKA-KDF

KDF (q, qF + q · t) in the bound
by a standard reduction. Similarly, one uses RKA-KDF security to transition from RKA-PRP-0 to
a setting where each query (φ, x) to the block cipher is replied with an independent permutation
Pφ, and this exactly maps to PRP-0, and results in another additive term AdvRKA-KDF

KDF (q, qF + q · t).
The final bound follows by the triangle inequality. ut

Note that in a similar way, if KDF and BC use different functions F and F ′, then we can reduce
AdvRKA-KDF

KDF,F,Φ (q, qF + q · t) to AdvRKA-KDF
KDF,F,Φ (q, qF ).

4.2 Efficient RKA-KDF-secure construction

This section presents an RKA-KDF-secure construction from a (small number of) random functions
F : {0, 1}n → {0, 1}n approaching (2n(1−ε), 2n(1−ε))-security. (As we argue below, this can be
turned into a construction from a single function F : {0, 1}n → {0, 1} with standard tricks.) Our
construction will guarantee Φ-RKA-KDF-security for every class Φ ⊆ Fcs(κ, κ) with the following
two properties for (small) parameters γ, λ ∈ [0, 1]:

γ-collision resistance. Pr
[
K

$← {0, 1}κ : φ(K) = φ′(K)
]
≤ γ for any two distinct φ, φ′ ∈ Φ.

λ-uniformity. For any φ ∈ Φ, we have that SD(K,φ(K)) ≤ λ for K
$← {0, 1}κ, i.e., φ(K) is λ-close

to uniform for a random key K.

For example, Φ⊕ = {K 7→ K ⊕∆ : ∆ ∈ {0, 1}κ} is both 0-collision-resistant and 0-uniform.
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Combinatorial hitters. Our construction makes use of the standard combinatorial notion of a
hitter [30], which we introduce with a slightly different parameterization than what used in the
literature. Consider a family of functions E = (E1, . . . ,Et) such that Ei : {0, 1}κ → {0, 1}n.

Definition 1 (Hitters). The functions E = (E1, . . . ,Et) with Ei : {0, 1}κ → {0, 1}n are an (α, β)-
hitter if for all subsets Q ⊆ {0, 1}n with |Q| ≤ β · 2n, Pr [K ← {0, 1}κ : ∀i ∈ [t] : Ei(K) ∈ Q] ≤ α.

In our setting, we are going to have β = 2−nε (for some (small) ε > 0, and in particular
1 − β ≥ 1

2) and α = 2−n. There are polynomially-computable explicit constructions of hitters (cf.
e.g. [30] for an overview) with sufficiently good parameters for our purposes, where

κ = 2n+O(log(1/α)) = O(n) , t = O(log(1/α)) = O(n) . (5)

Appendix D gives further details about a concrete example of a “reasonably”’ cheap construction
relying on random walks on constant-degree expander graphs. We will require our hitters to be
injective, i.e., for any two inputs X and X ′, there must exist i such that Ei(X) 6= Ei(X

′). It is easy
to enforce injectivity for any hitter by just adding O(κ/n) functions to the family.

The MT Construction.We now present our construction of an RKA-KDF-secure function, which
follows the framework of Maurer and Tessaro [45]. Let E = (E1, . . . ,Et) be such that Ei : {0, 1}κ →
{0, 1}n. Moreover, let Fi,j : {0, 1}n → {0, 1}2κ+n for i ∈ [t] and j ∈ [r], Gj : {0, 1}n → {0, 1}` for
j ∈ [r]. For simplicity, denote F = (Fi,j)i∈[t],j∈[r] and G = (Gi)i∈[t].

The MT[E, F,G] construction operates as follow. (Here, � denotes multiplication of (2κ + n)-
bit-strings interpreted as elements of the corresponding extension field F22κ+n .)

Construction MT[F,G](K): // K ∈ {0, 1}κ

(1) For all j ∈ [r], compute

S[j]←

(
t⊙
i=1

Fi,j(Ei(K))

)
[1 . . . n] .

(2) Compute K ′ ←
⊕r

j=1Gi(S[i]) .
(3) Return K ′.

RKA-KDF security. The above construction is indifferentiable from a random oracle [45,22]
whenever E is a so-called input-restricting function family. While this combinatorial property would
also imply RKA-KDF security, explicit constructions of such function families require a very large
t = O(nc) for a large constant c, as discussed in [22].

Here, in contrast, we show that for RKA-KDF security it is sufficient if E is a good hitter. The
following theorem summarizes the concrete parameters of our result. The complete proof is found
in Appendix E. We give some intuition further below.

Theorem 3 (RKA-KDF-Security of MT). Let E be an (α, β = qF /2
n)-injective hitter. Moreover,

let Φ ⊆ Fcs(κ, κ) be a (γ, λ)-well behaved set of key transformations. Then, for all adversaries A
making q queries to Eval, qF queries to the F -functions, and qG queries to the G-functions,

AdvRKA-KDF
MT,(F,G),Φ(A) ≤ 4rt

2n
+ q(α+ λ) + q2γ + q ·

(
qG + q

2n

)r
.
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Instantiations.Let us target security for qF = q = 2n(1−ε) (e.g., ε = O(1/n)), ` = n, and additive
attacks Φ = Φ⊕ with γ = λ = 0. First note that because we want α ≈ 2−n and β = 2−εn, then we can
use E with κ = O(n) and t = O(n) by (5). Moreover, we need to ensure that 2r(1−n) ·2n(1−ε)(r+1) < 1
or alternatively r(nε − 1) > n(1 − ε), which is true for r = r(ε) = Ω(1−εε ), and r = O(n) for
ε = O(1/n).

Therefore, the construction evaluates a linear number of functions with linear output O(n), or
alternatively, O(n2) single-bit functions {0, 1}n → {0, 1}. This can be turned into evaluating O(n2)
one single function {0, 1}n+2 logn+O(1) → {0, 1}.7 Improving upon this appears a significant barrier.

The MT construction can be combined with the WSN construction above to obtain an RKA-
secure block cipher with (2n(1−ε), 2n(1−ε))-security via Theorem 2 for any class Φ with small λ, γ.

Overview of the proof of Theorem 3. We explain here the basic ideas behind the proof of
Theorem 3.

To start with, it is convenient to first consider a toy construction, using only t functions F =
(Fi)i∈[t] with Fi ∈ Fcs(n, `), in conjunction with a hitter E = (E1, . . . ,Et) as above. On input

K ∈ {0, 1}κ, it outputs
⊕t

i=1 Fi(Ei(K)). Also, let us only consider RKA-KDF attackers which make
all qF of their F queries beforehand, and only then query Eval on inputs φ1, . . . , φq, where the φi
functions are such that φi(K) is uniform for a uniform K.

Assume without loss of generality the uniform key K is sampled after the F -queries have been
made. Since E is an (α, β = qF /2

n)-hitter, then by the union bound, for every k ∈ [q] there
exists some i∗(k) such that Ei∗(k)(φk(K)) was not queried to Fi∗(k) in the first phase, except with

probability q · α. Therefore, for all k ∈ [q], the value
⊕t

i=1 Fi(Ei(φk(K))) is individually uniform,
even given the transcript of the F queries, but unfortunately, this does not guarantee independence
of these outputs. Indeed, for two k and k′, we may well have i∗(k) = i∗(k′), and we cannot exclude
that for all i 6= i∗(k) both values Fi(Ei(φk(K))) and Fi(Ei(φk′(K))) are known as part of the
F -queries made in the first phase. Then, the output values for k and k′ are clearly correlated.

Instead, by using two rounds with functions (Fi,j)i∈[t],j∈[r] and (Gj)j∈[r] (where Fi,j ∈ Fcs(n, n)

and Gj ∈ Fcs(n, `)), we would generate values Sk[j]←
⊕t

i=1 Fi,j(Ei(φk(K))) hoping that, in addi-
tion to being individually uniform as above, Sk[j] and Sk′ [j] are unlikely to collide for any k 6= k′.

If the final output of the construction is
⊕r

j=1Gj(Sk[j]), the above would imply security: Indeed,
with very high probability, we can show that for every k, there is going to always exist some
j∗ such that Sk[j

∗] was never queried to Gj∗ previously directly by the attacker (because of the
individual uniformity of the value) and that no other k′ 6= k is such that Sk′ [j

∗] = Sk[j
∗]. (Exploiting

independence of the Sk[j]’s, the probability that such j∗ does not exist can be made very small, of
the order

( qG+q
2n

)r
.)

There is a final catch. Imagine we are in the above “unfortunate” setting, i.e., for two k and k′

and j ∈ [r], we have i∗(k) = i∗(k′), and for all i 6= i∗(k), Fi,j(Ei(φk(K))) and Fi,j(Ei(φk′(K))) are
known. Then, the fact that Sk[j] and Sk′ [j] collided is already determined by the transcript of the
F queries, independent of Fi∗(k),j(Ei∗(k)(φk(K))). Our approach to address this problem is to make
the output of the F -values larger (roughly 2κ + n bits) and to use multiplication. This will make
sure that given that any two partial product defined by the F queries as above will not collide
(over 2κ+ n bits), and thus (by the fact that multiplication with truncation gives a universal hash
function), the final products, truncated at n bits, will also be unlikely to collide.

7 Note that we can play a bit with parameters, and given a function F : {0, 1}n → {0, 1}, interpret it as a function

{0, 1}n
′+2 log(n′) → {0, 1} for a suitable n′ only marginally smaller than n, and obtain an instantiation of our

construction with respect to n′ still making roughly O(n2) calls to F .
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A Indifferentiability

We briefly review the notion of indifferentiability by Maurer et al [44] as needed in this paper.
Let C[G] : {0, 1}m → {0, 1}` be a construction from a function G : {0, 1}a → {0, 1}b. We say that

C is indifferentiable from a random function if C[G], for G
$← Fcs(a, b), is “as good as” a randomly

chosen function F
$← Fcs(m, `) in a setting where an adversary is given access to both C[G] and the

underlying function G. This is formalized by requiring the existence of a simulator S, accessing F ,
which mimics the behavior of G in a way that makes real and ideal worlds indistinguishable.
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Formal definition. For an adversary A and a simulator S, the indifferentiability advantage is

Advindiff
C[G],G,S(A) = Pr

[
G

$← Fcs(a, b) : AC[G],G ⇒ 1
]
− Pr

[
F

$← Fcs(m, `) : AF,SF ⇒ 1
]
.

Similarly, for a construction C[π] from a permutation π ∈ Perms(a), we define

Advindiff
C[π],π,S(A) = Pr

[
π

$← Perms(a) : AC[π],π,π−1 ⇒ 1
]
− Pr

[
F

$← Fcs(m, `) : AF,SF ⇒ 1
]
.

Note that in the latter case, the simulator S simulates both the behavior of π and π−1 queries. We
are going to call queries to the first oracle (i.e., either C[G], C[π] or F ) construction queries, and
queries to the second oracle (either G, π, π−1, or SF ) primitive queries.

In this paper, we are going to only consider an information-theoretic version of indifferentiability.

Definition 2 (Indifferentiability). A construction C[Σ] (where Σ is either a permutation or a
function) is (ε, s)-indifferentiable from a random function if there exists a simulator S such that for
all adversary A making q construction queries, and qΣ primitive queries, Advindiff

C[Σ],Σ,S(A) ≤ ε(q, qΣ),
and where additionally, upon each invocation via a primitive queries, the simulator Σ makes at most
s queries. Moreover, the simulator answers each query in time polynomial in qΣ.

We say that C[Σ] is perfectly indifferentiable if it is (0, 1)-indifferentiable.

Composition theorem.We use the following fact below, which follows from general composition
theorems [44,21] adapted to the specific case of block ciphers considered in this paper.

Theorem 4 (Composition theorem for block ciphers). Let BC = BC[F ] be a (κ, n)-block
cipher making at most t calls to a function F : {0, 1}m → {0, 1}`, and let C[Σ] be a construction
using a primitive Σ which is (ε, s)-indifferentiable from a random function. Consider the (κ, n)-block
cipher BC′ = BC′[Σ] = BC[C[Σ]], i.e., calls to F are replaced by calls to C[Σ]. Then,

AdvPRP
BC′[Σ],Σ(q, qΣ) ≤ AdvPRP

BC[F ],F (q, s · qΣ) + 2 · ε(t · q, qΣ) .

B From Permutations to Functions

In this section, we revisit the security of a construction by Hall, Wagner, Kelsey, and Schneier [32]
to build a random function F : {0, 1}n → {0, 1}c from a permutation π : {0, 1}n+c → {0, 1}n+c. In
particular, here we show that their construction achieves the stronger notion of perfect indifferen-
tiability defined above in Appendix A, and thus can be used to replace (in a black-box way) the
function F in the WSN construction. Note that in [32], only indistinguishability was shown. We
believe that this result is of interest beyond the scope of this paper.

The construction. Let π : {0, 1}n+c → {0, 1}n+c be a permutation. The 2c-query construction
FC [π] : {0, 1}n → {0, 1}c proceeds as follows, on input X ∈ {0, 1}n: It outputs the c-bit value Z∗

such that π(X ‖Z∗) is the smallest element in {π(X ‖Z) : Z ∈ {0, 1}c}, where smallest is according
to lexicographic order. (Or any other total order on strings.)
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Security. The following theorem establishes security of F in terms of indifferentiability.8

Theorem 5 (Indifferentiability of F). The construction Fc = Fc[π] is perfectly indifferentiable
from a random function.

Proof. We need to prove that there exists a simulator S such that Advindiff
F,π,S(A) = 0 for all adversaries

A, and moreover, S simulates a permutation from Perms(n+c), together with its inverse, and makes

at most one single query to a given function F
$← Fcs(n, c) upon each invocation.

To help with the definition of the simulator, for a function f ∈ Fcs(n, c) and a permutation
τ ∈ Perms(n + c), we define a new permutation π[τ, f ] ∈ Perms(n + c). To this end, for every
x ∈ {0, 1}n, we define

y∗x = min {τ(x ‖ z) : z ∈ {0, 1}c}
and yx = τ(x ‖ f(x)). Note that y∗x is the output of τ on input x ‖Fc[τ ](x) and thus if f = Fc[τ ],
yx = y∗x. The permutation π[τ, f ] is such that

π[τ, f ](x ‖ z) =


y∗x if τ(x ‖ z) = yx, i.e., f(x) = z
yx if τ(x ‖ z) = y∗x
τ(x ‖ z) else.

In other words, π[τ, f ] re-arranges τ to assign π[τ, f ](x ‖ f(x)) the smallest value among τ(x ‖ z′)
for z′ ∈ {0, 1}c. Clearly, given τ , π[τ, f ](x ‖ z) can be computed with a single query to f and 2c

queries to τ . Moreover, note that the inverse π−1[τ, f ] is

π−1[τ, f ](y) =


τ−1(yx) if y = y∗x
τ−1(y∗x) if y = yx
τ−1(y) else.

Note that the check y = y∗x and y = yx can be implemented by first computing τ−1(y), which
returns x ‖ z, and then querying τ(x ‖ z′) for all z′ 6= z, as well as f(x). In particular, π−1[τ, f ] can
also be evaluated with one query to f , given τ .

The simulator S now simply does the following when given oracle access to f : It maintains a

random permutation τ
$← Perms(n + c) (implemented via lazy sampling), and on a forward query

x ‖ z, replies as π[τ, f ](x ‖ z), and on inverse query y it replies as π−1[τ, f ](y). By the above, this
requires one f query per evaluation.

Therefore, to prove perfect indifferentiability, it is enough to prove that (Fc[π], π) (for π
$←

Perms(n+ c)) and (f, π[τ, f ]) (for f
$← Fcs(n, c) and τ

$← Perms(n+ c)) are identically distributed.
This can be done in two steps:

1. First, note that Fc[π[τ, f ]] = f . This is because on input x, Fc outputs z such that π[τ, f ](x ‖ z)
is smallest. This must be z = f(x), because π[τ, f ] is such that π[τ, f ](x ‖ f(x)) = y∗x, which is
the smallest value among τ(x ‖ z′), and thus also among π[τ, f ](x ‖ z′).

2. Therefore, it suffices to show that the permutation π[τ, f ] is uniformly distributed. This is
because π[τ, f ] is obtained by sampling a random permutation τ , and then for all x, swapping
y∗x with the output of x ‖ z for a randomly chosen z = f(x). This gives a uniform random
permutation.

This concludes the proof. ut
8 We note that a previous version of this paper had a somewhat more cumbersome yet equivalent description of

the simulator. The simpler and far more elegant description using π[τ, f ] was suggested to us by an anonymous
reviewer we wish to thank.
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C Proof of Lemma 3

For every a ∈ St,i, we now define now two subsets partitioning {0, 1}n × {0, 1}n, i.e., the key space
for round t+ 1:

WK+
a := {(w, k) : a⊕ k ∈ St,i ∧ max{a⊕ k, a} ⊕ w /∈ Q}

WK−a := {(w, k) : a⊕ k /∈ St,i ∨ max{a⊕ k, a} ⊕ w ∈ Q}

It is easy to see that ∣∣WK+
a

∣∣ = Ni · (N −Q) ,
∣∣WK−a ∣∣ = N2 −Ni · (N −Q)

because for every a we have exactly |St,i| = Ni values of k such that a⊕ k ∈ St,i, and moreover, we
have (for each such value k) exactly N −Q possible values of w with max{a, a⊕ k}⊕w /∈ Q. Also,
note that for (w, k) ∈ WK−a ,

E
[
(pt+1,i(ϕ(a))− 1/Ni)

2
∣∣∣K[t+ 1] = k,W[t+ 1] = w

]
= pt,i(a)2 ,

whereas for (w, k) ∈ WK+
a ,

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2 ∣∣∣K[t+ 1] = k,W[t+ 1] = w

]
=

(
pt,i(a) + pt,i(a⊕ k)

2
− 1

Ni

)2

.

Putting all of this together, we obtain

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
=

= 1
N2

∑
k,w

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2 ∣∣∣K[t+ 1] = k,W[t+ 1] = w

]

=
1

N2

 ∑
(w,k)∈WK−a

(
pt,i(a)− 1

Ni

)2
+

∑
(w,k)∈WK+

a

(
pt,i(a)+pt,i(a⊕k)

2 − 1
Ni

)2
=
(

1− Ni(N−Q)
N2

)(
pt,i(a)− 1

Ni

)2
+ N−Q

N2

∑
y∈St,i

(
pt,i(a)+pt,i(y)

2 − 1
Ni

)2
,

where we have used the structure of WK+
a , and the fact that for every y ∈ St,i there exists k such

that a⊕ k = y, and corresponding N −Q values of w. In particular, we can expand∑
y∈St,i

(
pt,i(a)+pt,i(y)

2 − 1
Ni

)2
= 1

4

∑
y∈St,i

((
pt,i(a)− 1

Ni

)
+
(
pt,i(y)− 1

Ni

))2
= Ni

4 ·
(
pt,i(a)− 1

Ni

)2
+ 1

4∆t,i ,

where we have used in passing the fact that
∑

y∈St,i(pt,i(a)− 1
Ni

) = 0. When we plug this back into
the above, we then get

E

[(
pt+1,i(ϕ(a))− 1

Ni

)2]
=

(
1− 3

4
Ni(N−Q)

4·N2

)(
pt,i(a)− 1

Ni

)2

+ 1
4
N−Q
N2 ∆t,i .

This concludes the proof of Lemma 3.
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D Hitters based on Random Walks

One fairly efficient way to build suitable hitters for our purposes is to use random walks on a
constant-degree expander graph.

Expanders and random walks. In particular, we consider D-regular (I.e., every vertex has de-
gree D) undirected graphs G = (V,E) where V = {0, 1}n, which in particular are explicit, i.e.,
given v ∈ V and i ∈ [D], the i-th neighbor of v can be computed efficiently. As usual, we denote
by λ(G) the second largest eigenvalue (in absolute value, and normalized by D) of the adjacency
matrix of G, and call 1−λ(G) the spectral gap. (Note that we always have λ(G) ≤ 1, with λ(G) = 1
corresponding to the situation that G is bipartite.)

A random walk of length t on G is a sequence of random variables X1, . . . , Xt, where X1
$←

{0, 1}n, and Xi is obtained by selecting uniformly a random neighbor of Xi−1 for all i ∈ [t]. In
particular, representing such a random walk requires only n + (t − 1) logD random bits, because
the graph is D-regular.

The following theorem is a standard result in expander-graph theory. (Cf. e.g. Vadhan’s excellent
monograph on pseudorandomness for a proof [51].)

Theorem 6. Let G = (V,E) be a D-regular graph, then for any set B ⊆ V with |B|/|V | ≤ δ, and
a random walk X1, X2, . . . , Xt on G,

Pr [∀i ∈ [t] : Xi ∈ B] ≤ (δ + λ(G)(1− δ))t .

Example: Hitter constructions. One particular example of a computationally simple graph
which is sufficient to give us a good hitter is given by the Margulis-Gabber-Galil construction
already. The parameters are not great, but as this perhaps the simplest expander constructions, we
show that obtain (asymptotically) reasonable parameters even for this simple construction.

The graph is over V = {0, 1}n/2 × {0, 1}n/2, and we interpret its vertices (x, y) as elements of
Z2n/2 × Z2n/2 , and each vertex (x, y) is connected to the 8 vertices

(x± 2y, y), (x± (2y + 1), y), (x, y ± 2x), (x, y ± (2x+ 1)).

It is well known that for this graph we have λ(G) ≤ 5/8
√

2 < 0.9. Note that representing a random
walk of length t takes n+ 3t bits, and given a set B such that |B| ≤ 1

2 · 2
n, in order to ensure the

(δ, ε)-hitting property for say ε = 2n, we need

(0.95)t ≤ ε ,

and hence it is sufficient to set

t = log(1/ε)/ log(1/0.95) ≤ 14n .

In particular, this gives a family of t ≤ 14n functions, where Ei : {0, 1}43n → {0, 1}n, and Ei(X)
outputs the i-th step of the random walk on G.

Note that the above parameters can be substantially improved by using better expander graphs.

E Proof of Theorem 3

The proof of Theorem 3 proceeds via a sequence of games, which we first describe and then an-
alyze. A formal pseudo-code description of these games is provided in Figures 2 and 3. In these

descriptions, the notation X
∪← {a} is a shorthand for X ← X ∪ {a}.
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Procedure MAIN: // G0 - G3

D ← ∅
K

$← {0, 1}κ

b
$← AF,G,Eval

Return b

Procedure Eval(φ): // G0

If φ /∈ D then

D ∪← {φ}
For all j ∈ [r] do

S[j]←
(⊙t

i=1 Fi,j(Ei(φ(K)))
)≤n

If TG[j, S[j]] = ⊥ then

TG[j, S[j]]
$← {0, 1}`

T[φ]←
⊕r

j=1 TG[j, S[j]]
Return T[φ]

Procedure Fi,j(x): // G0 - G3

If TF [i, j, x] = ⊥ then

TF [i, j, x]
$← {0, 1}2κ+n

Return TF [i, j, x]

Procedure Eval(φ): // G1

If φ /∈ D then

D ∪← {φ}
For all j ∈ [r] do

S[j]←
(⊙t

i=1 Fi,j(Ei(φ(K)))
)≤n

J ← {j ∈ [r] : TG[j, S[j]] = ⊥}
T[φ]

$← {0, 1}`
If J = ∅ then
T[φ]←

⊕r
j=1 TG[j, S[j]]

Else
Z ← T[φ]⊕

⊕
j /∈J TG[j, S[j]]

(Yj)j∈J
$←
{

(yj)j∈J :
⊕

j∈J yj = Z
}

For all j ∈ J do
TG[j, S[j]]← Yj

Return T[φ]

Procedure Gj(y): // G0, G1

If TG[j, y] = ⊥ then

TG[j, y]
$← {0, 1}`

Return TG[j, y]

Fig. 2. Description of games in proof of Theorem 3. Procedures MAIN and Fi,j for i ∈ [t] and j ∈ [r] are
common to all games G0 - G3. Procedures Eval and G are specified for games G0 and G1 only.

The main sequence of games.We start with Game G0, which represents the real world. There,
TF and TG are the function tables of the F and G functions, i.e., TF [i, j, x] and TG[j, y] for
x, y ∈ {0, 1}n, i ∈ [t] and j ∈ [r], are meant to store the output values of Fi,j(x) and Gj(y) sampled
lazily by the procedures Fi,j and Gj . Similarly, T[φ] keeps the value returned by Eval on input φ ∈ Φ.
The set D stores the values φ for which T[φ] has been set, and note that for ease of presentation
we explicitly set TG-values within Eval, even though we could equally well call Gj for j ∈ [r].

The next game, Game G1, although seemingly more involved, preserves the functionality of G0

while moving closer to the ideal world. Only the way in which Eval(φ) queries are replied is changed:
Now, the value T[φ] is set foremost to a random value. Then, we compute the set J of indices j ∈ [r]
for which the value TG[j, S[j]] is unset. If J happens to be empty, then T[φ] is rewritten to its actual
value. However, otherwise, the procedure samples random values for the unset TG[j, S[j]]’s with
the property that they all add up (together with the TG[j, S[j]] values which are already set) to
the randomly chosen T[φ].

Game G2 is similar to Game G1, with two differences: The values TG[j, S[j]] for j ∈ J are not set
directly in the evaluation of Eval(φ) any more. Rather, we first set T′G[j, S[j]] to the corresponding
Yj , and only within a later Gj(y) query, if T′G[j, y] 6= ⊥ but TG[j, y] = ⊥, we set TG[j, y]← T′G[j, y].
Note in particular that TG[j, y] and T′G[j, y], at any point in time, are either equal or at least one
of them is ⊥. We use the notation TG[j, y] ∨ T′G[j, y] to denote ⊥ if both of the values are ⊥, and
otherwise to equal z ∈ {0, 1}` if (at least) one of the two values equal z. Our change does not affect
the behavior, provided we re-redefine J to include those values for which TG[j, j] = T′G[j, y] = ⊥
and we replace usages of TG[j, y] by TG[j, y] ∨ T′G[j, y].

Another modification in G2 is the introduction of a flag bad, which is initially set to false. The
flag bad turns true when one of the two following things happen:

22



Procedure Eval(φ): // Game G2 , G3

If φ /∈ D then

D ∪← {φ}
For all j ∈ [r] do

S[j]←
(⊙t

i=1 Fi,j(Ei(φ(K)))
)≤n

J ← {j ∈ [r] : TG[j, S[j]] = T′G[j, S[j]] = ⊥}
T[φ]

$← {0, 1}`
If J = ∅ then
bad← true

T[φ]←
⊕r

j=1(TG[j, S[j]] ∨ T′G[j, S[j]])

Else
Z ← T[φ]⊕

⊕
j /∈J (TG[j, S[j]] ∨ T′G[j, S[j]])

(Yj)j∈J
$←
{

(yj)j∈I :
⊕

j∈J yj = Z
}

For all j ∈ J do
T′G[j, S[j]]← Yj
QG[j, S[j]]← φ

Return T[φ]

Procedure Gj(y): // Game G2

If TG[j, y] = ⊥ then

TG[j, y]
$← {0, 1}`

If T′G[j, y] 6= ⊥ then
φ← QG[j, y]
If ∀j′ ∈ [r] \ {j} :

TG[j′, Sφ[j′]] 6= ⊥ then
bad← true

TG[j, y]← T′G[j, y]
Return TG[j, y]

Procedure Gj(y): // Game G3

If TG[j, y] = ⊥ then

TG[j, y]
$← {0, 1}`

If T′G[j, y] 6= ⊥ then
φ← QG[j, y]
If ∀j′ ∈ [r] \ {j} :

TG[j′, Sφ[j′]] 6= ⊥ then
bad← true

Else
TG[j, y]← T′G[j, y]

Return TG[j, y]

Fig. 3. Description of games in proof of Theorem 3 (Cont’d). Procedures Eval and G in the definition of
games G2 and G3. The boxed instruction is only executed in Game G2, but not in G3. For φ ∈ D, we use the notation
Sφ[j] to denote the n-bit value S[j] defined in the process of computing Eval(φ).

- When answering an Eval(φ) query, the set J is empty.

- When answering a query Gj(y) such that TG[j, y] = ⊥ but T′G[j, y] 6= ⊥ (i.e., this value was set
when answering an earlier Eval(φ) query, but was not queried directly), all other values Sφ[j′]
set while answering the same Eval(φ) query have been queried already directly to Gj′ .

Note that in the description in Figure 3, we use the notation QG[j, y] to keep track, for every y
such that T′G[j, y] 6= ⊥, of the input φ of the eval query which has set this value.

Finally, Game G3 just modifies G2 so that during an Eval(φ) query T[φ] is never overwritten
and is always random, and similarly an Gj query always returns a random value, and in particular
when bad is set to true, the value TG[j, y] is not overwritten with T′G[j, y].

Game transitions.First off, note that G0 behaves as the real world, i.e., we have Pr
[
GA0 ⇒ 1

]
=

Pr
[
RKA-KDF-0AMT ⇒ 1

]
. Furthermore, despite substantial syntactical differences, Games G0 and

G1 are identical in their behavior. Indeed, if J = ∅, it is clear that an Eval query is answered as in
G0. However, this is true even if J 6= 0. In G0, we would have sampled random TG[j, S[j]] for all
j ∈ J , and then computed T[φ] as

⊕r
j=1 TG[j, S[j]]. However, in this case, the joint distribution of

T[φ] and {TG[j, S[j]]}j∈J is exactly uniform over the set of possible tuples of |J | + 1 values such
that

⊕
j∈J TG[j, S[j]]⊕T[φ] =

⊕
j /∈J TG[j, S[j]]. This distribution can be sampled by choosing |J |

out of |J | + 1 values uniformly at random and independently, and setting the remaining one to
satisfy the above constraint. In particular, the choice of which |J | values are chosen at random is
irrelevant, and this is exactly what we exploit to move from G0 to G1. In other words, we have
Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
. It is also not hard to see that, as we argue above, G2 only postpones

the setting of TG[j, S[j]] to the first point in time where Gj is queried directly on input S[j], but
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otherwise the game behaves identically to G1, and thus Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2 ⇒ 1

]
. Finally, the

game G3 behaves as the ideal world, since every query is replied randomly. This is because whenever
we pick a random vector (Yj)j∈J , then at most all but one of these values are ever output as part
of G-queries, and thus these answers are also random and independent by the above. Therefore,

Pr
[
GA3 ⇒ 1

]
= Pr

[
RKA-KDF-1AMT ⇒ 1

]
.

Thus,
AdvRKA-KDF

MT (A) = Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]
.

On the other hand, Games G2 and G3 behave identically as long as bad is not set to true, and
thus by the fundamental lemma of game playing [7],

AdvRKA-KDF
MT (A) = Pr

[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]
≤ Pr

[
GA3 sets bad

]
. (6)

Therefore, the rest of the analysis is devoted to upper bounding Pr
[
GA3 sets bad

]
. In particular, we

prove the following lemma, which is the core of the proof.

Lemma 4 (Bad-event Analysis). For A making q Eval queries, qF F-queries and qG G-queries,

Pr
[
GA3 sets bad

]
≤ 4rt

2n
+ q(α+ λ) + q2γ + q ·

(
qG + q

2n

)r
.

Proof. One key observation to upper bound the probability that GA3 sets bad is that in Game G3,
all Eval-, F- and G-queries are answered randomly and independently, regardless of whether bad has
been set to true or not during the game. Therefore, we can equivalently think of executing Game
G3 until A outputs its decision bit, and only then check (according to the history) whether bad
was set to true at some point. Now, assume the queries φ1, . . . , φq have been made to Eval in this
order, and denote by Sk[j] the value S[j] computed when processing φk, and let Gj be the set of
inputs of Gj queries made by A. Then, if bad is true at the end of G3, there must be a k ∈ [q]
such that for all j ∈ [r] one of the following two facts is true: (1) There exists k′ < k such that
Sk′ [j] = Sk[j], (2) Or Sk[j] ∈ Gj .

Therefore, it will be simpler to consider Game G depicted in Figure 4 – which captures exactly
the above – and the probability that it outputs true. Note in particular that we can defer the
computation of the Sl[j] values to the end of A’s interaction, as A’s view is independent of those,
as Eval(φ) queries are answered randomly. Thus Pr

[
GA3 sets bad

]
≤ Pr

[
GA ⇒ true

]
.

A bit more formally, assume A makes without loss of generality q Eval-queries, qF F-queries
and qG G-queries. Then, for every k ∈ [q] and j ∈ [r], denote by BADk,j the event that there exists
k′ < k such that Sk[j] = Sk′ [j] or Sk[j] ∈ Gj . Denote BADk :=

∧r
j=1 BADk,j and BAD =

∨q
k=1 BADk.

Clearly, Pr
[
GA ⇒ true

]
= Pr [BAD].

We are going to define a series of other events that are going to help us in the analysis of Pr [BAD]:

The collision event. For all j ∈ [r], at any point of time during A’s execution, for an input X ∈
{0, 1}κ, let IF,j(X) be the set of indices i ∈ [t] such that Ei(X) ∈ Fi,j . Here, we define the event
COLLj which occurs if at the end of A’s execution in Game G, right before sampling K, there
exist two distinct κ-bit inputs X 6= X ′ with the properties that (1) I = IF,j(X) = IF,j(X ′) 6= ∅,
(2) there exists i ∈ I such that Ei(X) 6= Ei(X

′), and (3) we have a “partial” collision⊙
i∈I

TF [i, j,Ei(X)] =
⊙
i∈I

TF [i, j,Ei(X
′)] .

Moreover, we let COLL :=
∨r
j=1 COLLj , i.e., the event that COLLj occurs for some j ∈ [r].
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Procedure MAIN: // Game G

q ← 0
For all i ∈ [t] and j ∈ [r] do Fi,j ← ∅
For all j ∈ [r] do Gj ← ∅
b

$← AF,G,Eval

K
$← {0, 1}κ

For all k = 1, . . . , q do
For all j ∈ [r] do
For all i ∈ [t] do
If TF [i, j,Ei(φk(K))] = ⊥ then

TF [i, j,Ei(φk(K))]
$← {0, 1}2κ+n

Sk[j]←
(⊙t

i=1 TF [i, j,Ei(φk(K))]
)

[1 . . . n]
If ∀j ∈ [r]: (∃k′ < k : Sk′ [j] = Sk[j]) ∨ Sk[j] ∈ Gj then
Return true

Return false

Procedure Fi,j(x): // Game G

If TF [i, j, x] = ⊥ then

Fi,j
∪← {x}, TF [i, j, x]

$← {0, 1}2κ+n
Return TF [i, j, x]

Procedure Gj(y): // Game G

If TG[j, y] = ⊥ then

Gj
∪← {y}, TG[j, y]

$← {0, 1}`
Return TG[j, y]

Procedure Eval(φ): // Game G

If T[φ] 6= ⊥ then

q ← q + 1, φq ← φ, T[φ]
$← {0, 1}`

Return T[φ]

Fig. 4. Description of Game G in the proof of Theorem 3.

The hitting event. For every k ∈ [q], consider the event HITk that for all i ∈ [t], we have
that Ei(φ(K)) ∈ F , where F = ∪i,jFi,j . (Note that |F| ≤ qF .) Moreover, denote by HIT :=∨q
k=1HITk the event that HITk occurs for some k ∈ [q].

We prove the following three lemmas in Section F, which are used to conclude the proof.

Lemma 5 (Bounding the collision probability). Pr [COLL] ≤ 4rt
2n .

Lemma 6 (Bounding the hitting probability). Pr [HIT] ≤ q(α+ λ).

Lemma 7 (Bounding the BAD-probability). Pr
[
BAD

∣∣COLL ∧ HIT
]
≤ q2γ + q ·

( qG+q
2n

)r
.

To conclude our proof, it is enough now to combined the three lemmas, observing that

Pr [BAD] ≤ 4rt

2n
+ q(α+ λ) + q2γ + q ·

(
qG + q

2n

)r
, ,

concluding the proof of Lemma 4. ut

F Proof of Lemmas

Proof (Of Lemma 5). Fix j ∈ [r] and fix two κ-bit inputs X 6= X ′. Assume that COLLj occurs,
i.e., at the end of A’s execution because of a partial collision between X and X ′, we have (1)
I = IF,j(X) = IF,j(X ′) 6= ∅, (2) there exists i ∈ I such that Ei(X) 6= Ei(X

′), and (3) we have a
“partial” collision ⊙

i∈I
TF [i, j,Ei(X)] =

⊙
i∈I

TF [i, j,Ei(X
′)] . (7)

There are two cases. First, assume that the above collision in (7) is not on 02κ+n. Then, there
must have been a point in time, during A’s execution, where A has made an F query of the form
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Fi∗,j(Ei∗(X)) for some i∗ ∈ [t] such that IF,j(X) = IF,j(X ′) \ {i∗}, Ei∗(X) 6= Ei∗(X
′), and after

answering the query ⊙
i∈IF,j(X)∪{i∗}

TF [i, j,Ei(X)] =
⊙

i∈IF,j(X′)

TF [i, j,Ei(X
′)]

Or this happen symmetrically for X ′. Note that the equality is satisfied in the above situation with
probability at most 2−2κ−n because ⊙

i∈IF,j(X)

TF [i, j,Ei(X)] 6= 0

and TF [i∗, j,Ei∗(X)] is chosen uniformly. Moreover, there are at most 2t chances for this to happen
(t chances for X and X ′ each). Thus, by the union bound, the probability of a partial collision for
X and X ′ on a non-zero value is 2t2−2κ−n. The case that both sides of (7) are 0 is easy to exclude:
This means that at least one (in fact two) of the involved 2t TF values is 0. This happens with
probability at most 2t2−2κ−n.

Hence, the overall probability that COLLj occurs because of X and X ′ is at most 4t2−2κ−n. The
final bound on COLL follows by taking the union bound over all X,X ′ and over all j ∈ [r]. ut

Proof (Of Lemma 6). By the union bound, we have

Pr [HIT] ≤
q∑

k=1

Pr [HITk] =

q∑
k=1

Pr [∀i ∈ [t] : Ei(φ(K)) ∈ F ] .

However, because Φ is λ-uniform, we can upper bound

Pr [∀i ∈ [r] : Ei(φ(K)) ∈ F ] ≤ Pr [∀ ∈ [y : Ei(K) ∈ F ] + λ ≤ α+ λ ,

where the last property comes from the fact that |F| ≤ qF and that E is a (qF /2
n, ε)-hitter. And

therefore, overall, we have

Pr [HIT] ≤ q(α+ λ) ,

as desired. ut

Proof (Of Lemma 7). To save on space, we assume here tacitly that HIT and COLL do not happen,
without mentioning this conditioning explicitly. In fact, we assume that TF and TG have been
partially fixed arbitrarily during the execution of A in some arbitrary way (which will be irrelevant
for the proof) with the sole constraint that both HIT and COLL have not occurred. In the following,
we also assume without loss of generality that φk(K) 6= φk′(K) for all k 6= k′, and this just results
in the term q2γ being added to the bound.

We first upper bound the probability that BADk,j happens for some fixed k ∈ [q] and j ∈ [r].
By the union bound and the definition of BADk,j ,

Pr [BADk,j ] ≤
∑
y∈Gj

Pr [Sk[j] = y] +
∑
k′<k

Pr [Sk[j] = Sk′ [j]] .
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Let Ik,j be the the set of i ∈ [t] such that Ei(φk(K)) ∈ Fi,j . Note that since HITj did not happen,
then Ik,j is a proper subset of [t]. Then, also note that

Sk[j] =

Aj,k � ⊙
i/∈Ik,j

Xk,j,i

 [1 . . . n] .

where Xk,j,i := TF [i, j,Ei(φk(K))] and Ak,j :=
⊙

i∈Ik,j Xk,j,i. Therefore, when computing Sk[j], all

values Xk,j,i for i /∈ Ik,j are generated randomly and freshly after A’s execution is terminated, and
in particular independent of Gj . Therefore, for any y ∈ Gj (and conditioned on Gj and Fi,j being
given for all i ∈ [t])

Pr [Sk[j] = y] =
∑

z∈{0,1}2κ
Pr

Aj,k � ⊙
i/∈Ik,j

Xk,j,i = y ‖ z

 ≤ 22κ · t

22κ+n
=

t

2n
,

by the Schwartz-Zippel Lemma and the fact that Aj,k �
⊙

i/∈Ik,j Xk,j,i − y‖z is a polynomial of
degree at most t in the Xk,j,i’s over the extension field F22κ+n .

Now, for k′ < k, we note that

Pr [Sk′ [j] = Sk[j]] =
∑

z∈{0,1}2κ
Pr

Aj,k � ⊙
i/∈Ik,j

Xk,j,i ⊕Aj,k′ �
⊙
i/∈Ik′,j

Xk′,j,i = 0n ‖ z

 .

Note that we have two cases here: If Ik,j = Ik′,j and Ei(φk(K)) = Ei(φk′(K)) for all i ∈ Ik,j , then
we must have Aj,k 6= Aj,k′ for otherwise COLL would have happened. Otherwise, the two products
differ in at least one variable. Either way, Aj,k �

⊙
i/∈Ik,j Xk,j,i ⊕ Aj,k′ �

⊙
i/∈Ik′,j

Xk′,j,i ⊕ 0n ‖ z is

non-zero polynomial of degree at most 2t in the extension field F22κ+n , and thus

Pr [Sk′ [j] = Sk[j]] ≤ 22κ · 2t

22κ+n
=

2t

2n

by the Schwartz-Zippel Lemma. Therefore, overall we get

Pr [BADk,j ] ≤
t(2q + qG)

2n
.

Now note that for fixed k, the events BADk,j are independent, and thus

Pr [BADk] =

r∏
j=1

Pr [BADk,j ] ≤
(
t(2q + qG)

2n

)r
.

And by the union bound, Pr [BAD] ≤ q
(
t(2q+qG)

2n

)r
. ut

G Proof of Lemma 1

The proof is based on the H-coefficient method by Patarin [48], using the notation of Chen and
Steinberger [16], and is very similar to the approach of Lempe and Seurin [38].

Here, we give a new proof for completeness considering the slightly more general notion of
multi-user PRP security we deal with in this paper.
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Setup of the lemma. First, fix a sequence TF = (x1, y1), . . . , (xqF , yqF ) such that xi ∈ {0, 1}m
and yi ∈ {0, 1}` for all i ∈ [qF ], and let

X = ((i1, X1), . . . , (iq, Xq))

be another sequence such that ij ∈ N and Xj ∈ {0, 1}n for all j ∈ [q], and for all j, j′ such that
ij = ij′ and j 6= j′, we have Xj 6= Xj′ . Then, for every sequence Y = (Y1, . . . , Yq) such that Yj 6= Yj′

whenever ij = ij′ , let p(Y |X, TF ) be the probability BCKij [F ](Xj) = Yj for all j ∈ [q], where F is

a randomly sampled function from Fcs(m, `) with the constraint that F (xi) = yi for all i ∈ [qF ],

and K1,K2, . . .
$← {0, 1}κ are independent keys. Also, let Y(X) be the set of such sequences Y ,

and N(X) = |Y(X)|.
Note that we can connect these quantities with the statement of the Lemma by noting that for

all TF and for all X,

AdvNCPAPRP
BC,F (X, TF ) =

1

2

∑
Y ∈Y(X)

∣∣∣∣p(Y |X, TF )− 1

N(X)

∣∣∣∣
≤ AdvNCPAPRP

BC,F (q, qF ) =: ε .

By an averaging argument this implies that for every X and TF , there exists some set Y ′(X, TF ) ⊆
Y(X) such that:

- |Y ′(X, TF )| ≥ (1−
√
ε) · |Y(X)|

- For all Y ∈ Y ′(X, TF ),

p(Y |X, TF ) ≥ (1−
√
ε) · 1

N(X)
.

We can now continue with the proof.

Transcripts. Let A an attacker in the (multi-user) PRP game for BC[F1] ◦ BC−1[F2], i.e., in
either of PRP-1 or PRP-0. We assume without loss of generality that the attacker is deterministic.
Moreover, it makes overall exactly q block cipher queries. Similarly, it makes exactly qF queries to
F1 and qF queries to F2. Finally, it never makes a redundant block cipher query, i.e., if it has made
a forward query (i,X), returning Y , it never makes a later backward query (i, Y ), and vice versa.

Then, its interaction can be represented by a transcript

τ = ((x11, y
1
1), . . . , (x1qF , y

1
qF

), (x21, y
2
1) . . . , (x2qF , y

2
qF

), (i1, σ1, X1, Y1), . . . , (iq, σq, Xq, Yq)) ,

where x1, . . . , xq ∈ {0, 1}m, y1, . . . , yq ∈ {0, 1}`, i1, . . . , iq ∈ N, X1, Y1, . . . , Xq, Yq ∈ {0, 1}n, and
σ1, . . . , σq ∈ {+,−}. The meaning of this is that A, in its interaction, has made queries x11, . . . , x

1
qF

to F1, x
2
1, . . . , x

2
qF

to F2 (receiving answers y11, . . . , y
1
qF

and y21, . . . , y
2
qF

, respectively), and queried
the block cipher for all j ∈ [q] either on (ij , Xj) as a forward query (if σj = +) and received answer
Yj , or on (ij , Yj) as a backward query (if σj = −) and received answer Xj . Note that the order of
the queries in the transcript is irrelevant, as the actual ordering can be reconstructed inductively
due to the uniqueness of the queries and A being deterministic.

We now denote by Treal and Tideal the random variables representing the transcripts occur-
ring in an interaction with A in games PRP-1A

BC[F1]◦BC−1[F2],(F1,F2)
and PRP-0A

BC[F1]◦BC−1[F2],(F1,F2)
,

respectively. Then, fix the transcript

τ = ((x11, y
1
1), . . . , (x1qF , y

1
qF

), (x21, y
2
1) . . . , (x2qF , y

2
qF

), (i1, σ1, X1, Y1), . . . , (iq, σq, Xq, Yq))
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which is compatible with A (i.e., it can occur in an interaction with A). Denote

TFi = ((xi1, y
i
1), . . . , (x

i
qF
, yiqF ))

for i = 1, 2, as well as

X = ((i1, X1), . . . , (iq, Xq)) , Y = ((i1, Y1), . . . , (iq, Yq)) .

Moreover, we use the shorthand Pr [TFi ] = Pr
[
∀j ∈ [qF ] : Fj(x

i
j) = yij

]
for i = 1, 2. Also, let Z =

Y ′(X, TF1) ∩ Y ′(Y , TF2). Then, using the independent of F1 and F2, as well as of the keys

Pr [Treal = τ ] = Pr [TF1 ] · Pr [TF2 ]
∑
Z

p(Z|X, TF1) · p(Z|Y , TF2)

≥ Pr [TF1 ] · Pr [TF2 ]
∑
Z∈Z

p(Z|X, TF1) · p(Z|Y , TF2)

≥ Pr [TF1 ] · Pr [TF2 ] (1− 2
√
ε)
|Z|

N(X)2

≥ Pr [TF1 ] · Pr [TF2 ] (1− 2
√
ε)
N(X)

N(X)2

≥ (1− 4
√
ε)
Pr [TF1 ] · Pr [TF2 ]

N(X)
= (1− 4

√
ε)Pr [Tideal = τ ] .

To conclude the proof, we use the following simple argument, which is at the core of Patarin’s
H-coefficient method. Let T + be the set of valid transcripts for A such that Pr [Tideal = τ ] ≥
Pr [Treal = τ ]. Then, using well-known properties of the statistical distance

AdvPRP
BC[F1]◦BC[F2]−1,(F1,F2)

(A) ≤ SD(Treal, Tideal)

=
∑
τ∈T +

(Pr [Tideal = τ ]− Pr [Treal = τ ])

≤ 4
√
ε
∑
τ∈T +

Pr [Tideal = τ ] ≤ 4
√
ε .

This concludes the proof of Lemma 1.
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