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Abstract. This paper addresses the secure outsourcing problem for large-scale matrix computation to
a public cloud. We propose a novel public-key weave ElGamal encryption (WEE) scheme for encrypting
a matrix over the field Zp. The scheme has the echelon transformation property. We can apply a series
of elementary row/column operations to transform an encrypted matrix under our WEE scheme into
the row/column echelon form. The decrypted result matches the result of the corresponding operations
performed on the original matrix. For security, our WEE scheme is shown to be entry irrecoverable for
non-zero entries under the computational Diffie-Hellman assumption.
By using our WEE scheme, we propose five secure outsourcing protocols of Gaussian elimination,
Gaussian-Jordan elimination, matrix determinant, linear system solver, and matrix inversion. Each
of these protocols preserves data privacy for clients (data owners). Furthermore, the linear system
solver and matrix inversion protocols provide a cheating-resistant mechanism to verify correctness of
computation results. Our experimental result shows that our protocols gain efficiency significantly for
an outsourcer. Our outsourcing protocol solves a linear system of n = 1, 000 equations and m = 1, 000
unknown variables about 472 times faster than a non-outsourced version. The efficiency gain is more
substantial when (n,m) gets larger. For example, when n = 10, 000 and m = 10, 000, the protocol can
solve it about 56, 274 times faster. Our protocols can also be easily implemented in parallel computation
architecture to get more efficiency improvement.
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1 Introduction

Outsourcing large-scale computations for engineering and business is an important use of
cloud computing. A resource-constrained outsourcer can move his computational task to a
cloud server (CS), which holds massive computation resources. Two major concerns for an
outsourcer are security and efficiency gain. The security concern originates from the fact that
CSs are usually managed by commercial companies, which are outside the trust domain of
outsourcers. An outsourcer wants to preserve data privacy when outsourcing computational
tasks over sensitive information, e.g., personal health records and shopping history, etc.
Furthermore, an outsourcer may need to verify CS’s computing results, since CS may be lazy
and just return incorrect answers without any computation. For efficiency, an outsourcer’s
computation time should be substantially less than the time of performing the original task
on his own.

Many approaches on securely outsourced computation are based on symmetric-key set-
tings [1, 2, 8, 26, 27]. An outsourcer encrypts his own data to CS. Only the outsourcer himself
can decrypt and verify the returned results. In this paper, we consider a different outsourcing
scenario, shown in Figure 1, which captures the public-key concept for secure outsourcing.
Data analyzer (DA) and data owners are two different roles. DA publishes his public-keys for
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Fig. 1. Secure outsourcing data analytic computation scenario.

a data owner (client) to encrypt his data Ψ . The encrypted Ψ̃ is sent to CS for computation.

The result Ans(Ψ̃) is sent to DA for decryption and verification of correctness. This asym-
metric setting is suitable in some applications, such as network flow characteristic finding
and data-mining on distributed databases.

Contributions. In this paper, we propose outsourcing protocols of algebraic compu-
tation under the considered scenario. We focus on the Gaussian elimination (GE) and its
related algebraic computations including solving a system of linear equations and computing
inversion and determinant of a matrix. We propose a novel public-key weave ElGamal en-
cryption (WEE) scheme for encrypting a matrix over Zp. Our WEE scheme has the echelon
transformation (ET) property for a matrix over Zn×mp . The ET-property allows us to apply a
series of elementary row/column operations (over Zp) to transform an encrypted matrix into
an encrypted row/column echelon form. The decrypted result matches the result of the cor-
responding operations performed on the original matrix. For our WEE encryption scheme,
an adversary cannot recover non-zero entries of an encrypted matrix if the computational
Diffie-Hellman (CDH) problem is hard.

To outsource GE computation, a client uses the WEE scheme to encrypt his matrix
A ∈ Zn×mp as Ã. CS performs echelon transformation on Ã and gives the result matrix Ã′

to DA. Similarly, a client can outsource Gaussian-Jordan elimination (GJE), and matrix
determinant computations without exposing input matrices. Furthermore, we propose two
privacy-preserving and verifiable outsourcing protocols for solving linear systems and finding
matrix inversion. DA can verify integrity and correctness of CS’s returned results. Therefore,
these two protocols are cheating-resistant against dishonest CSs.

Table 1 demonstrates the performance of our outsourcing protocols. In each protocol,
an outsourcer (DA in our scenario) keeps at most n+m private keys for decryption. Every
protocol needs only two trips of communication: a client gives his encrypted matrix to CS
and CS sends the computed result to the outsourcer. The decryption cost for an outsourcer
is substantially less than that of performing the original computation himself.

We compare our outsourcing protocols with some recently related works in Table 1. The
fully homomorphic encryption (FHE) approach allows a client to encrypt his data Ψ to CS.
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Table 1. Performance of Our Algebraic Computation Outsourcing Protocols

Outsourcing Outsourcer Computation CS Communication Cheating- Computational model
protocol private key Encryption Decryption computation #(trip) #(element) resistance Client-server Data analytic

GE n+m O(nm) O(nm) O(n2m) 2 2nm+ 2 No O O
matrix determinant 1 O(n2) O(1) O(n3) 2 n2 + 3 No O O
linear system solver n O(n2) O(n) O(n3) 2 2n2 + 2n+ 2 Yes O O
matrix inversion n O(n2) O(n2) O(n3) 2 2n2 + n+ 2 Yes O O

Other Approaches
FHE approach on Ψ O(1) O(|Ψ |) O(|Ans(Ψ)|) O(Ψ) 2 2 · O(|Ψ |) Yes O O

linear system solver [2] ≈ 2n O(n2) O(n) O(n3) 2 n2 + n No O X
matrix inversion [27] ≈ 2n O(n2) O(n2) O(n3) 2 2n2 Yes O X
matrix determine [26] ≈ 2n O(n2) O(n) O(n3) 2 2n2 Yes O X
linear system solver [8] λn2 + n O(n2) O(n) O(n3) 2 n2 + n Yes O X
- The proposed GE/GJE outsourcing protocols can be applied to n ×m rectangle matrices. The proposed linear system solver,
matrix inversion, and matrix determinant outsourcing protocols are applied to n× n invertible matrices.

CS can do arbitrary computation on Ψ̃ for DA. This approach is theoretically simple. How-
ever, a bottleneck occurs in implementing the existing FHE schemes [31]. The outsourcing
protocols in [2, 8, 26, 27] use random echelon row and column operations over R to encrypt
input matrices. However, they are for the symmetric-key setting, and not applicable in our
scenario of public-key setting. Apparently, public-key computations are more expensive than
symmetric-key ones. Thus, our protocols are less efficient than the protocols in [2, 8, 26, 27].
Nevertheless, our experiments show that our approach can help an outsourcer gain effec-
tive efficiency. For example, our outsourcing protocol solves a linear system of n = 1, 000
equations and m = 1, 000 unknown variables about 472 times faster than a non-outsourced
version. The efficiency gain is more substantial when (n,m) gets larger. For example, when
n = 10, 000 and m = 10, 000, the protocol can solve it about 56, 274 times faster.

The model of secure two-party (or multi-party) computation is similar to computation
outsourcing. The parties cooperatively compute a specific function without exposing their
input data. However, the model usually requires each client to participate the whole compu-
tation. It is not suitable in our considered computation scenario. Thus, we do not take these
approaches into account in our comparison.

Related works. Securely outsourced computation has attracted considerable interest in
the past. The breakthrough of Gentry’s fully homomorphic encryption (FHE) scheme [18]
provided a generic solution for an external agent to perform arbitrary computations on
encrypted data. Many improvements were proposed for providing a better efficiency [6, 9, 34,
19]. Some generic solutions for verifiable outsourcing computations [10, 17] were proposed by
using FHE schemes. Nevertheless, the performance of the existing FHE scheme are still far
away from practicality [31].

In the past few years, many secure outsourcing protocols have been designed for alge-
braic computations [1, 2, 5, 8, 15, 24, 26, 27, 29]. Atallah et al. [2] designed some protocols for
outsourcing scientific computations, such as matrix multiplication, matrix inversion, linear
system solver, sorting, and string pattern matching. The general idea is to disguise input
data before outsourcing them to CSs. Lei et al. [26, 27] proposed two secure outsourcing
protocols for large matrix inversion and determinant computations with cheating-resistant
mechanism. They also provided explicit protocol evaluation to show the efficiency gain of
a client. A rigorous security proof for their protocols remains opened. Benjamin and Atal-
lah [5] and Atallah and Frikken [1] proposed two private-preserving and cheating-resistant
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outsourcing protocols for matrix multiplication computation. The former protocol [5] is built
on the assumption of two non-colluding servers, and thus vulnerable to colluding attacks.
The later protocol [1] uses one un-trusted server only. It is provably secure based on the use
of Shamir’s secret sharing scheme [33]. The computation cost for a client is O(t2n2), where
n2 is the size of an input matrix and t is the threshold in the secret sharing scheme.

In 2007, Kiltz et al. [24] proposed secure two-party protocols for various core problems
in linear algebra, such as computing the rank of a matrix and solving a system of linear
equations. The core of the protocols exploits the property of linearly recurrent sequences
and their relation to the minimal polynomial of a matrix. The construction is provably-
secure based on the use of additively homomorphic encryption schemes and Yao’s garbled
circuit protocol [35]. In their protocols, the overall communication complexity is roughly
O(n2). The round complexity is polylog(n), which is better than n0.275 of the communication
efficient protocol [32]. Mohassel [29] proposed a non-interactive protocols with verification for
outsourcing matrix multiplication. The construction uses a number of public-key encryption
schemes with limited homomorphic properties. They also proposed outsourcing protocols for
solving a system of linear equations and computing matrix inversion. These protocols have
a constant round communication and O(n2 log n) computations cost for a client.

In 2012, Fiore and Gennaro [15] addressed the problem of public verification on out-
sourced computation for large polynomial evaluation and matrix multiplications. The result
of an outsourced computation can be verified by a third party without secret keys.

There are some other kinds of works that are functionally and conceptually related to
this research.

– Secure multi-party computation (SMPC). An SMPC protocol is for two (or more) par-
ties to jointly evaluate a function while preserving the privacy of each party’s input.
Yao’s garbled circuit [35] is the best known generic solution for SMPC. Many subsequent
works [12, 23] made the computation increasingly practical even in the presence of mali-
cious parties. Some works addressed the problem of balanced work load for each party [7,
21].

– Cooperative algebraic computation. This kind of protocol is for a set of parties (or
databases) to cooperatively solve an algebraic problem. Each party holds a portion of
input data and obtains a partial answer in the end of protocol execution. There were
protocols for solving a system of linear equations [11, 13, 30, 32] and computing matrix
multiplication [14, 22], etc.

– Server-aided computation. This kind of protocol is for a resource-constrained client to
perform heavy cryptographic computations by using computing power of the server. There
were protocols for RSA computation [3, 28] and modular exponentiation [20].

2 Preliminaries

In this section, we explain the notation in the paper and introduce the Gaussian elimination
method.
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Algorithm 1 Gaussian Elimination
Input: A = [ai,j ]n×m = [a1 · · · an]>

Output: a row echelon form of A and a permutation vector π = (π1, π2, . . . , πn)
1: initialize a permutation vector π ← (1, 2, . . . , n);
2: for k = 1 to n do
3: find a nonzero az,k ∈ {ai,k : k ≤ i ≤ n};
4: if no such az,k exists then
5: error ”A is singular”;
6: end if
7: πk ↔ πz;
8: ak ↔ az;
9: for i = k + 1 to n do

10: ai ← ai − (ai,k/ak,k) · ak;
11: end for
12: end for
13: return (A, π)

2.1 Notations

A bold uppercase letter An×m = [ai,j]n×m is an n ×m matrix, where ai,j ∈ Zp is the entry
of the i-th row and j-th column. A bold lowercase letter xn×1 = [xi]n×1 is an n× 1 column
matrix, where xi ∈ Zp is the i-th row entry. xn×1 can be either an n-dimension or an n-tuple
vector (x1, x2, . . . , xn). We simply use A and x to represent An×m and xn×1 when their sizes

are clearly understood. A> and x> are the transpose matrices of A and x. Let x
$←− X denote

that x is randomly drawn from the set X .

2.2 Gaussian Elimination (GE) Method

The Gaussian elimination (GE) method uses a sequence of elementary row operations to
transform an n×m matrix A = [a1 · · · an]> into a row echelon form matrix, whose bottom
left corner is filled with zeros. This process is known as the row echelon transformation.
The GE method can be performed over any field, e.g., R or Zp. There are three types of
elementary row operations:

– Row swapping, denoted by aα ↔ aβ, swaps rows aα and aβ.
– Row multiplication, denoted by aα ← δ · aα, multiplies a row aα with a non-zero scalar δ.
– Row addition, denoted by aβ ← aβ + δ · aα, add one row aα multiplied with a non-zero

scalar δ to another row aβ.

The Gaussian elimination is shown in Algorithm 1. The pivoting process in lines 2-8
selects a nonzero entry from {ak,k, ak+1,k, . . . , an,k} as the pivot element. The main loop in
lines 9-11 uses row addition operation ai ← ai − δ · ak to eliminate the entries below ai,k (in
the same column) into zeros. The algorithm needs O(n2m) arithmetic operations.

3 Our Weave ElGamal Encryption (WEE) Scheme

The scheme is a multiple ElGamal encryption scheme [4, 16, 25]. The key generation algorithm
generates n key pairs 〈si, Si = gsi〉ni=1 for rows and m key pairs 〈tj, Tj = gtj〉mj=1 for columns.
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Fig. 2. The encryption idea of our WEE scheme.

For an n×m matrix A = [ai,j]n×m, a client picks a random r ∈ {1, 2, . . . , p−2} and encrypts
A as

gr, Ã = [ai,jS
r
i T

r
j ]n×m

The client uses Sri ’s and T rj ’s to encrypt A in a weaved form, which is shown in Fig. 2. The

entries of Ã have a homomorphism-like property, called the ET-property later, for elementary
row operations in the GE method over Zp.

3.1 The Construction

Our WEE scheme Π = (KG,Enc,Dec) consists of key generation algorithm KG, encryp-
tion algorithm Enc, and decryption algorithm Dec.

– KG(λ, n,m) → (PK,SK). This algorithm takes as input a security parameter λ and
integers (n,m), and does the following.
• Generate a λ-bit secure prime p = 2q+ 1 (q is also a prime) and a generator g for the

cyclic group Z∗p.
• Pick random integers si, tj ∈ [1, p− 2] and compute Si = gsi and Tj = gtj , 1 ≤ i ≤ n,

1 ≤ j ≤ m.
• The public and private key pair is (PK,SK), where PK = {p, g, 〈Si〉ni=1, 〈Tj〉mj=1} and
SK = {〈si〉ni=1, 〈tj〉mj=1}.

– Enc(PK,A)→ (V, Ã). This algorithm picks a random integer r ∈ {1, 2, . . . , p− 2} and

encrypts the input matrix A = [ai,j]n×m as V ← gr, Ã← [ai,jS
r
i T

r
j ]n×m.

– Dec(SK, V, Ã) → A. This algorithm uses the private key SK to decrypt Ã = [ãi,j]n×m
as A← [ãi,j/V

si+tj ]n×m.

Correctness. The decrypted result is correct since ai,j ← ãi,j/V
si+tj = ai,jS

r
i T

r
j /(g

r)si(gr)tj .

3.2 The Echelon Transformation (ET) Property

In this section, we give the definition of the echelon transformation property over a field F
and show that our WEE scheme has such a property.

Definition 1 (ET-Property over Fields). Let Φ : A→ Ã be a matrix encryption scheme
with entries in a field F. We say that Φ has the echelon transformation (ET) property over

field F if, after transforming Ã into an echelon form Ã′ by a series of elementary row
operations, the decrypted result of Ã′ matches the result of the corresponding operations
performed on the original A.
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Theorem 1. Our WEE scheme Π has the ET-property over Zp.

Proof. Let Ã = [ã1 · · · ãn]> be the encrypted n × m matrix A under Π. Let PKi =
{p, g, Si, 〈Tj〉mj=1} be the public keys for encrypting the i-th row ai and PKi,j = {p, g, Si, Tj}
be the public key for encrypting ai,j. The following checks correctness of each elementary
operation.

– Row swapping. For ãα ↔ ãβ, the ciphertexts of two rows are unchanged.
– Row multiplication. For ãα ← δ · ãα,

δ · Enc(PKα, aα) = δ · [aα,jSrαT rj ]1×m = [(δ · aα,j)SrαT rj ]1×m = Enc(PKα, δ · aα)

– Row addition. For ãβ ← ãβ + (ãβ,α/ãα,α) · ãα,

Enc(PKβ, aβ) +
Enc(PKβ,α, aβ,α)

Enc(PKα,α, aα,α)
· Enc(PKα, aα)

= [aβ,jS
r
βT

r
j ]1×m +

aβ,αS
r
βT

r
α

aα,αSrαT
r
α

· [aα,jSrαT rj ]1×m

= [(aβ,j +
aβ,α
aα,α
· aα,j)SrβT rj ]1×m = Enc(PKβ, aβ +

aβ,α
aα,α
· aα)

The decrypted results are the results of the corresponding operations on A. ut

3.3 Security Analysis

In this section, we show that our WEE scheme Π = (KG, Enc, Dec) for encrypting a
matrix A ∈ Zn×mp is entry irrecoverable for non-zero entries1 if the CDH assumption holds.
We consider the following entry recovery (ER) security game between a challenger C and an
adversary A.

Setup phase. C runs KG(λ, n,m) to generate the public and private key pair (PK,SK)
and gives PK to A.

Challenge phase. C randomly picks an n×m matrix A = [ai,j]n×m, encrypts it as Ã, and

sends Ã to A.
Guess phase. A outputs his guess ai,j of an entry ai,j.

The advantage of A winning the ER game is defined as

AdvERA := Pr[ai,j = ai,j : for an entry ai,j].

We say that Π is entry irrecoverable if no poly-time A can win the ER security game
with a non-negligible AdvERA (in λ).

1 In our WEE encryption scheme, we do not consider the privacy for A’s zero entries. If ai,j is zero, the encrypted
ãi,j is also zero. In the original ElGamal encryption scheme, the plaintext set M = Z∗p. To ensure validity of the
GE method, we need to extend the group Z∗p to the field Zp = Z∗p ∪ {0}. However, the ciphertext of zero message
is zero in most ElGamal-like encryption schemes. It is interesting to find a secure public-key encryption scheme
that supports GE computations over Zp, or a field F, and hides zero entries.
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Definition 2 (CDH Assumption over G). Given gu, gv ∈ G = 〈g〉, computing guv is
intractable. That is, the advantage

AdvCDH
B := Pr[B(g, gu, gv) = guv]

is negligible for any poly-time algorithm B.

Theorem 2. Our WEE scheme Π is entry irrecoverable for non-zero entries if the CDH
assumption holds.

Proof. We construct an algorithm BCDH attacking the CDH assumption in Algorithm 2 by
using an adversary A attacking our WEE scheme Π under the ER security game.

Algorithm 2 BCDH

Input: (n,m), (p, g, gu, gv), (A, Π)
Output: guv

1: for i = 1 to n do
2: pick αi

$←− {1, 2, . . . , p− 2} and compute Si ← (gu)αi ;
3: end for
4: for j = 1 to m do

5: pick βj
$←− {1, 2, . . . , p− 2} and compute Tj ← (gu)βj ;

6: end for
7: set PK ← {p, g, 〈Si〉ni=1, 〈Tj〉mj=1};
8: set V ← gv and pick Ã = [ãi,j ]

$←− Zn×mp ;

9: ai,j ← A(V, Ã);
10: return ãi,j/ai,j

BCDH takes the parameters (n,m), CDH problem instantiation (p, g, gu, gv), and algo-
rithms (A, Π) as inputs. In the setup phase of lines 1-6, BCDH simulates the system public
key PK = {p, g, 〈Si〉ni=1, 〈Tj〉mj=1} for A by using gu. The private keys 〈si〉ni=1 and 〈tj〉mj=1 are
implicitly set as (unknown) 〈αiu〉ni=1 and 〈βju〉mj=1, respectively. In the challenge phase of

lines 7-8, BCDH simulates the challenged (V, Ã) for A by setting V = gv. Each entry ãi,j is
implicitly set as ai,jg

uv with an (unknown) ai,j ∈ Zp. In the guess phase of lines 9-10, if A
outputs his guess ai,j for ai,j correctly, BCDH computes guv ← ãi,j/ai,j correctly. Therefore,
the advantage of BCDH breaking the CDH assumption is:

AdvCDH
BCDH

= Pr[BCDH(g, gu, gv) = guv] = Pr[ai,j = ai,j : ai,j ← A(V, Ã)] = AdvERA .

Thus, if there exists a poly-time adversary A who can win the ER security game against
our WEE scheme Π with a non-negligible advantage, A can be used to break the CDH
assumption. ut

4 Our Outsourcing Protocols for Algebraic Computations

By using our WEE schemeΠ = (KG, Enc, Dec), we can construct our outsourcing protocols
for GE, GJE, matrix determinant, linear system solver, and matrix inversion computations.
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System model. We consider the computation architecture as shown in Figure 1. A
resource-constrained DA wants to outsource his data analysis task on a clients’ data to CS,
which is assumed to be honest-but-curious (semi-honest). CS is honest in his computational
tasks, but will try his best to retrieve the inputted client’s data and outputted result. Fur-
thermore, in some of our protocols, we also consider CS as an ”active” attacker. For example,
CS may send an invalid result to DA. The communication channels among CS, clients, and
DA are assumed to be secure. The transmitted information can be authenticated by the
receiver. We can use the secure communication protocols, such as TLS, to establish the
channels. In our system, we assume that DA’s computation and communication capabilities
are the same as the resourced-constrained clients. DA needs CS’s help to accomplish his
expensive computation on data analysis. In addition, we assume that the private-keys of DA
and clients would not be leaked to an unauthorized party.

An outsourcing protocol consists of the following phases:

– Initialization phase: DA sets up the system, generates his public- and private-key pair,
and publishes the public keys.

– Outsourcing phase: A client submits his encrypted data to CS.
– Acquirement phase: DA computes the final result from the CS’s computed result.
– (Optional) Verification phase: DA checks correctness of CS’s computed result.

4.1 The GE/GJE Outsourcing Protocol

– Initialization phase. DA chooses parameters (λ, n,m), generates (PK,SK)← KG(λ, n,m)
and publishes PK.

– Outsourcing phase. A client encrypts his input matrix A as (V, Ã) ← Enc(PK,A)

and submits it to CS. CS performs the GE algorithm over Zp to obtain (Ã′, π)← GE(Ã)

and gives (V, Ã′, π) to DA.

– Acquirement phase. DA applies π on 〈si〉ni=1 and computes the answer A← Dec(SK, V, Ã′).

Efficiency. In this protocol, DA needs to store |SK| = n+m private keys. For encryption,
a client needs n+m+ 1 modular exponentiations to compute V = gr, 〈Sri 〉ni=1, and 〈T rj 〉mj=1,

and 2nm modular multiplications to compute Ã = [ai,jS
r
i T

r
j ]n×m. For decryption, the DA

needs nm− (min{m− 1, n− 1})2/2 operations of modular addition, exponentiation, inverse,
and multiplication to compute ai,j ← ãi,j/V

si+tj for the upper triangular part of A′. CS
performs O(n2m) arithmetic operations in the GE algorithm. For communication, the client
uploads 1 +nm group elements to CS and CS gives 1 +nm (at most) group elements to DA.

Remark. The Gaussian-Jordan elimination (GJE) method is a variant of the GE method.
It transforms a matrix into its reduced echelon form via a series of elementary row/column
operations. The GJE outsourcing protocol is similar to the GE outsourcing protocol.

4.2 The Matrix Determinant Outsourcing Protocol

The following shows our matrix determinant outsourcing protocol for an invertible matrix
A ∈ Zn×np . CS first uses the GE method, without applying row multiplication operations, to

transform the encrypted matrix Ã into its echelon form Ã′. CS then computes the encrypted
determinant value det(Ã) = (−1)|π| ·

∏
i ã
′
i,i for DA, where |π| is the number of row swappings

in performing the GE algorithm.
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– Initialization phase. DA chooses parameters (λ, n), generates (PK,SK)← KG(λ, n, n),
computes K =

∑n
i=1(si + ti), and publishes PK.

– Outsourcing phase. A client encrypts his input matrix A as (V, Ã) ← Enc(PK,A)
and submits it to CS. CS performs the GE algorithm over Zp, with applying row swapping

and addition operations only, to obtain (Ã′, π)← GE(Ã). CS then computes det(Ã) =

(−1)|π| ·
∏

i ã
′
i,i and gives (V, det(Ã)) to DA.

– Acquirement phase. DA computes the answer

det(A) = det(Ã)/V K . (1)

Correctness. Due to the ET-property of Π, the diagonal entries of Ã′ are a′1,1S
r
1T

r
1 ,

a′2,2S
r
2T

r
2 , . . ., a′n,nS

r
nT

r
n . The encrypted determinant value is

det(Ã) = (−1)|π| ·
n∏
i=1

a′i,iS
r
i T

r
i = (−1)|π| ·

n∏
i=1

a′i,i · gr
∑n
i=1(si+ti).

Thus, DA can compute the answer by Equation (1).
Efficiency. In this protocol, DA needs to store one private key K only. The matrix

encryption cost is the same as that in our GE/GJE outsourcing protocol for n = m. For de-
cryption, DA needs only one modular exponentiation, inverse, and multiplications to obtain
the answer det(A). CS performs O(n3) arithmetic operations in the GE algorithm. For com-
munication, the client uploads 1 + n2 group elements to CS and CS gives 2 group elements
to DA.

4.3 The Linear System Solver Outsourcing Protocol

The following shows our linear system solver outsourcing protocol for a system Ax = b,
where A is an n × n invertible matrix. CS uses the GE method to transform the linear
system’s augmented matrix G = [A|b] into its row echelon form G′, and solves it by using
the back substitution method.

– Initialization phase. DA chooses parameters (λ, n), generates (PK,SK)← KG(λ, n, n+
1), and publishes PK.

– Outsourcing phase. A client encrypts the system’s augmented matrix G = [A|b] as

(V, G̃)← Enc(PK,G) and submits it to CS. CS performs the GE algorithm over Zp to

obtain (G̃′, π) ← GE(G̃), where G̃′ = [Ã′|b̃′]. Then, CS solves Ã′x̃ = b̃′ for x̃ via the
back substitution method and gives (V, x̃) to DA.

– Verification phase. DA checks whether Ãx̃ = b̃ holds. If not, he rejects the computed
result x̃ and accepts x̃ otherwise.

– Acquirement phase. If DA accepts x̃, he computes

x← [x̃i/(V
tn+1−ti)]n×1 (2)

Correctness. We have G̃′ = [ã′i,j |̃b′i,n+1], where G̃′’s upper n × (n + 1) part consists of
nonzero rows. CS computes the solution x̃n, x̃n−1, . . ., x̃1 by the back substitution method
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as follows.

x̃n =
b̃′n,n+1

ã′n,n
=
b′n,n+1

a′n,n
·
T rn+1

T rn

x̃n−1 =
b̃′n−1,n+1 − ã′n−1,n · x̃n

ã′n−1,n−1
=
b′n−1,n+1S

r
n−1T

r
n+1 − a′n−1,nSrn−1T rn · xn

T rn+1

T rn

a′n−1,n−1S
r
n−1T

r
n−1

=
b′n−1,n+1 − a′n−1,n · xn

a′n−1,n−1
·
T rn+1

T rn−1
...

x̃1 =
b̃′1,n+1 −

∑n
`=2 ã

′
1,` · x̃`

ã′1,1
=
b′1,n+1S

r
1T

r
n+1 −

∑n
`=2 a

′
1,`S

r
1T

r
` · x`

T rn+1

T r`

a′1,1S
r
1T

r
1

=
b′1,n+1 −

∑n
`=2 a

′
1,` · x`

a′1,1
·
T rn+1

T r1

Thus, the client can compute the answer x = (x1, x2, . . ., xn) by Equation (2).
Efficiency. In this protocol, DA needs to store n private keys. The encryption cost is the

same as that in our GE/GJE/matrix determinant outsourcing protocol. DA needs only n
operations of modular addition, exponentiation, inverse, and multiplication to compute the
answer x. For verification, DA needs n2 operations of modular multiplications and n(n− 1)
operations of modular addition. CS performs O(n3) and O(n2) arithmetic operations in
the GE and back substitution methods, respectively. For communication, the client uploads
n2 + n+ 1 group elements to CS and CS gives n2 + n+ 1 group elements to the DA.

4.4 The Matrix Inversion Outsourcing Protocol

The following shows our matrix inversion outsourcing protocol for an invertible matrix A ∈
Zn×np . CS uses the GJE method to transform the matrix G̃ = [Ã|̃I] into its reduced row

echelon form G′ = [I|B̃]. B̃ is the encrypted A−1.

– Initialization phase. DA chooses parameters (λ, n), generates (PK,SK)← KG(λ, n, 2n),
and publishes PK.

– Outsourcing phase. A client encrypts the matrix G = [A|I] as (V, G̃)← Enc(PK,G)

ans submits it to CS. CS performs the GJE algorithm over Zp to obtain G̃′ = [I|B̃] ←
GJE(G̃) and gives (V, B̃) to the DA.

– Acquirement phase. DA obtains B̃ = [̃bi,n+j]n×n and computes

B = [̃bi,j/V
tn+j−ti ]n×n (3)

– Verification phase. DA performs the following check steps ` times:
• Pick a random nonzero vector r ∈ Zm×1p .
• Compute c = B(Ar)− Ir.
• If c 6= 0, DA rejects B and abort.

If B passes the above check steps, DA accepts the answer A−1 = B.
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Correctness. In the outsourcing phase, the transformed matrix B̃ is based on the GJE
algorithm. Thus, the correctness of Equation (3) can be checked easily due to the ET-property
of our WEE scheme.

Efficiency. In this protocol, DA needs to store |{tn+1, . . . , t2n}| = n private keys. For
encryption, a client needs 3n+ 1 modular exponentiations to compute V = gr, 〈Sri 〉ni=1, and

〈T rj 〉2nj=1, and 2n2 + n modular multiplications to compute G̃. For decryption, DA needs n2

operations of modular addition, exponentiation, inverse, and multiplication to compute B.
For verification, DA needs O(` · n2) arithmetic operations. CS performs O(n3) arithmetic
operations in the GJE algorithm. For communication, the client uploads n2 + n + 1 group
elements to CS and CS gives n2 + 1 group elements to DA.

4.5 Security of Our Outsourcing Protocols

Base on our system model and assumptions (in the beginning of Section 4), we give a
security analysis for each of our outsourcing protocols as follows. Recall that the main goal
is to preserve a client’s input and output data privacy against CS. An optional goal is to
ensure correctness of CS’s computed results by a verification mechanism.

Input/Output data privacy. In our GE/GJE and matrix determinant protocols, the
privacy of a client’s original A is preserved by our WEE scheme. In the outsourcing phase,
CS cannot decrypt any nonzero entry ã′′i,j of an intermediate matrix Ã′′ in the process of

transforming Ã to Ã′. The reason is as follows. By the ET-property of our WEE scheme, we
have that ã′′i,j = a′′i,jS

r
i T

r
j . If CS can decrypt ã′′i,j as a′′i,j, he can compute a′′′i,j = ãi,j/(ã

′′
i,j/a

′′
i,j)

and obtain π−1(a′′′i,j) in A. It contradicts the security property of our WEE scheme. Thus,
our GE/GJE and matrix determinant protocols preserve a client’s input data privacy. For

output data privacy, in our GE/GJE protocol, the result Ã′ is also an encryption of our
WEE scheme. In our matrix determinant protocol, since CS does not have K (or SK), CS

cannot decrypt det(Ã) due to the hardness of the CDH assumption.
Similarly, our linear system solver protocol preserves a client’s input data privacy against

CS. The linear system (A,b) is encrypted by our WEE scheme. Our linear system solver
protocol preserves output data privacy as well. In the outsourcing phase, CS obtains x̃ =
(x1(T

r
n+1/T

r
1 ), . . . , xn(T rn+1/T

r
n)). If CS can decrypt x̃i = xi(T

r
n+1/T

r
i ) to obtain xi, he can

compute b′′′i = b̃′/(x̃i/xi) and obtain π−1(b′′′i ) in b. It leads to a contradiction of the security of
our WEE scheme. Thus, the output privacy in our linear system solver protocol is preserved.

In our matrix inversion protocol, a client’s original A is encrypted as G̃ = [Ã|̃I]. The
privacy of A is ensured as the previous protocols. For output privacy, the privacy of the
result matrix B is preserved. Since B̃ = [bi,j(T

r
i )−1T rn+j] is an encryption of WEE scheme by

regarding (T ri )−1 as Sri and T rn+j as Tj in our original scheme description.
Output data verification. In our linear system solver protocol and matrix inversion

protocols, DA can verify correctness of CS’s computed results. In the linear system solver
protocol, DA checks whether Ãx̃ = b̃ to verify CS’s computation. If CS is honest in compu-
tation, DA has an x̃ that satisfies Ãx̃ = b̃. If CS is dishonest in computation, the probability
that CS outputs a correct x̃ to pass DA’s verification is (1

p
)n = ( 1

2λ
)n, which is negligible in

the security parameter λ.
In the verification procedure of our matrix inversion protocol, if CS is honest in compu-

tation, DA has B = A−1 and BA = I. If CS is dishonest in computation, DA accepts B
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with probability ≤ 1/2`, which is negligible in `. The reason is as follows. Let Z = BA− I. If
B 6= A−1, at least one entry of Z is nonzero, say, zi,j 6= 0. Let ci =

∑n
k=1 di,krk = di,jrj + x.

We have

Pr[ci = 0] = Pr[x = 0] Pr[ci = 0|x = 0] + Pr[x 6= 0] Pr[ci = 0|x 6= 0]

≤ Pr[x = 0] Pr[rj = 0] + Pr[x 6= 0] Pr[rj = 1]

=
1

2
(Pr[x = 0] + Pr[x 6= 0]) =

1

2
.

The probability of verification failure in each iteration is Pr[c = 0] ≤ Pr[ci = 0] ≤ 1
2
.

Therefore, after ` verification steps, the total probability pf of verification failure is pf ≤
(Pr[c = 0])` ≤ 1

2`
.

5 Performance Evaluation

We implement our linear system solver outsourcing protocol and evaluate its efficiency. In
the first experiment, we demonstrate the essential gain of efficiency for DA, the outsourcer.
The second experiment demonstrates the computation time for CS to solve linear systems
in a parallel computing environment. We set the security parameter λ = 1, 024, i.e., p is a
1, 024-bit prime. Our randomly generated linear system (has a unique solution) contains n
equations and n unknown variables over the finite field Zp.

All experiments are run on an HP ProLiant DL165 G7 machine, which has an AMD
Opteron 6128 2.0 GHz octa-core processor with four 8 GB unregistered DDR3-1333 memory
modules. The machine runs Debian 7.6 AMD64 version with 128 GB swap space. The ma-
chine has a software RAID-0 device of 1 TB Ext4 partition for system usage and a software
RAID-0 device of 4 TB Ext4 partition for experiment usage. We use POSIX threads for
parallel programming and GNU multiple precision arithmetic library version 6.0.0 for big
numbers.

5.1 Experimental Results

The numerical data of our first experiment are shown in Table 2. In this experiment, DA
and client use one CPU core and CS uses eight CPU cores. In the baseline evaluation, TDA

and TCS are the computation time of DA and CS to solve a linear system, respectively. In
our protocol, TEnc is the computation time of a client to encrypt his matrix and TDec is the
computation time of DA to decrypt the final answer. The efficiency gain α is define as

α :=
TDA

TDec

We can see that α is greater than 1 for our chosen n’s. Thus, it is worth for DA to outsource
the computation by using our protocol.α is more substantial when n gets larger, such as,
α ≈ 472 when n = 1, 000 and α ≈ 56274 when n = 10, 000. Figure 3(a) shows the efficiency
gain α of selective n’s.

Table 3 shows numerical data of our second experiment. Tk is the computation time for
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Table 2. Experiment Result of Our Linear System Solver Outsourcing Protocol

Matrix size Baseline Our protocol Efficiency gain
n |[A|b]n×(n+1)| |xn×1| TDA TCS TEnc (client) TDec (DA) α = TDA/TDec

50 331 KB 6.48 KB 69.83 ms 65.33 ms 103.78 ms 55.58 ms 1.26×
60 475 KB 7.78 KB 113.72 ms 92.13 ms 124.63 ms 64.93 ms 1.75×
70 645 KB 9.08 KB 177.35 ms 126.16 ms 146.50 ms 74.53 ms 2.38×
80 841 KB 10.37 KB 261.72 ms 172.41 ms 169.06 ms 84.21 ms 3.11×
90 1.04 MB 11.67 KB 369.19 ms 214.65 ms 194.68 ms 94.64 ms 3.90×
100 1.28 MB 12.96 KB 503.79 ms 274.36 ms 217.85 ms 102.37 ms 4.92×
110 1.55 MB 14.26 KB 679.08 ms 343.75 ms 241.46 ms 110.78 ms 6.13×
120 1.84 MB 15.56 KB 863.50 ms 411.82 ms 267.69 ms 118.83 ms 7.27×
130 2.16 MB 16.85 KB 1.10 sec 497.51 ms 293.34 ms 128.13 ms 8.59×
140 2.50 MB 18.16 KB 1.37 sec 526.14 ms 321.94 ms 139.08 ms 9.85×
150 2.87 MB 19.44 KB 1.68 sec 581.09 ms 347.89 ms 145.40 ms 11.55×
1000 127 MB 130 KB 8.33 min 1.30 min 5.21 sec 1.06 sec 471.51×
2000 507 MB 260 KB 1.11 hr 9.77 min 18.13 sec 1.95 sec 2049.23×
3000 1.11 GB 389 KB 3.77 hr 32.20 min 37.33 sec 2.84 sec 4778.87×
4000 1.98 GB 519 KB 8.88 hr 1.26 hr 1.03 min 3.97 sec 8052.39×
5000 3.09 GB 649 KB 17.46 hr 2.45 hr 1.54 min 4.76 sec 13205.04×
6000 4.65 GB 778 KB 1.26 day 4.25 hr 2.18 min 5.52 sec 19721.74×
7000 6.06 GB 908 KB 2.01 day 6.86 hr 2.94 min 6.62 sec 26233.23×
8000 7.91 GB 1.01 MB 3.02 day 10.38 hr 3.88 min 7.35 sec 35500.41×
9000 10.01 GB 1.14 MB 4.30 day 14.98 hr 4.91 min 8.21 sec 45252.13×
10000 12.36 GB 1.27 MB 5.94 day 20.72 hr 6.12 min 9.12 sec 56273.68×

the CS to solve a linear system by using k CPU cores in parallel, k = 2, 4, 8. The speedup
ratio βk is define as

βk =
T1
Tk

It represents the speedup ratio of using k CPU cores in parallel for computation. Table 3
shows that multiple CPU cores are better used when n gets larger. For example, if the CS
uses 8 CPU cores, β8 ≈ 5.78 when n = 500 and β8 ≈ 7.11 when n = 5, 000. Figure 3(b)
shows the trend of the speedup ratios β2, β4, and β8 for different numbers of CPU cores and
variables.

6 Conclusion

In this paper, we propose a novel WEE scheme for encrypting a matrix over Zp. The
scheme has the nice ET-property over Zp. Based on our WEE scheme, we propose five
privacy-preserving and efficient outsourcing protocols for GE, GJE, matrix determinant,
linear system solver, and matrix inversion. The linear system solver and matrix inversion
protocols have cheating-resistant mechanisms. The experimental results show that our pro-
tocols have significant efficiency gain for a client. In practice, our works could be used in
privacy-preserving cloud computing, statistical data analysis, machine learning tasks, etc.

The directions for our future works include the following.

- To find an encoding method from R to Zp for our outsourcing protocols. In most appli-
cations, the linear algebraic computations are on real number set R.

- To design cheating-resistant mechanisms for all of our outsourcing protocols. Now we
only have cheating-resistant mechanisms for the linear system solver and matrix inversion
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Fig. 3. Our experimental results

Table 3. Experiment Result of Solving Linear System in Parallel

1 Core 2 Cores speedup 4 Cores speedup 8 Cores speedup
n T1 T2 T1/T2 T4 T1/T4 T8 T1/T8

50 73.89 ms 88.01 ms 0.84× 75.06 ms 0.98× 68.78 ms 1.07×
60 121.24 ms 106.61 ms 1.14× 115.09 ms 1.05× 94.72 ms 1.28×
70 184.64 ms 153.80 ms 1.21× 161.29 ms 1.16× 128.62 ms 1.45×
80 264.85 ms 208.14 ms 1.27× 201.02 ms 1.32× 168.85 ms 1.57×
90 369.31 ms 277.37 ms 1.33× 254.84 ms 1.45× 221.66 ms 1.67×
100 503.78 ms 364.60 ms 1.39× 285.52 ms 1.76× 282.17 ms 1.79×
200 4.02 sec 2.46 sec 1.63× 1.46 sec 2.76× 1.02 sec 3.93×
300 13.58 sec 7.90 sec 1.72× 4.60 sec 3.09× 2.70 sec 5.03×
400 32.11 sec 18.23 sec 1.76× 9.88 sec 3.25× 5.90 sec 5.44×
500 1.04 min 35.38 sec 1.77× 18.85 sec 3.32× 10.83 sec 5.78×
600 1.80 min 1.00 min 1.79× 32.02 sec 3.37× 18.15 sec 5.95×
700 4.66 min 1.59 min 1.80× 50.09 sec 3.43× 28.37 sec 6.05×
800 4.27 min 2.35 min 1.81× 1.24 min 3.44× 41.26 sec 6.20×
900 6.06 min 3.33 min 1.82× 1.75 min 3.46× 58.38 sec 6.22×
1000 8.32 min 4.56 min 1.83× 2.39 min 3.48× 1.30 min 6.41×
2000 1.13 hr 35.95 min 1.88× 18.69 min 4.62× 9.76 min 6.92×
3000 3.74 hr 2.01 hr 1.86× 1.04 hr 4.60× 32.19 min 6.96×
4000 8.89 hr 4.75 hr 1.87× 2.45 hr 4.63× 1.26 hr 7.06×
5000 17.38 hr 9.30 hr 1.87× 4.77 hr 4.64× 2.44 hr 7.11×

protocols. Furthermore, it is also interesting to design public verifiable mechanism so that
every one can verify correctness of CS’s computed results via public information.

- To find an IND-CPA matrix encryption scheme with the ET-property.
- To develop secure outsourcing protocols for other core algebraic computations, such as

least square computation and characteristic analysis, etc.
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