
Neeva: A Lightweight Hash Function

Khushboo Bussi1, Dhananjoy Dey2, Manoj Kumar2, B.K. Dass1

1Department of Mathematics, University of Delhi,
Delhi-110 007, INDIA.

khushboobussi7@gmail.com, dassbk@rediffmail.com
2Scientific Analysis Group, DRDO, Metcalfe House Complex,

Delhi-110 054, INDIA.
{dhananjoydey, manojkumar}@sag.drdo.in

February 4, 2016

Abstract

RFID technology is one of the major applications of lightweight cryptogra-
phy where security and cost both are equally essential or we may say that
cost friendly cryptographic tools have given more weightage. In this paper,
we propose a lightweight hash, Neeva-hash satisfying the very basic idea of
lightweight cryptography. Neeva-hash is based on sponge mode of iteration
with software friendly permutation which provides great efficiency and re-
quired security in RFID technology. The proposed hash can be used for
many application based purposes.

Keywords: Hash function, Lightweight cryptography, Present, Quark,
Sponge construction, Spongent

1 Introduction

When we think about the advancement of today’s world, the very first thing comes
into our mind is the ‘Internet’ and with it, ‘how secure it is’. One of the important
tasks in front of cryptographers is to preserve the privacy, authentication as well
as integrity of the messages which we want to send through insecure channel like
internet. Hash functions have a significant role in cryptography. It maps messages
of arbitrary length into a fixed length digest. They were used to check the integrity
of message initially but now they are being used in each and every field of online
world. They are the building blocks of today’s digital world. The online banking
transactions would not be secured enough without hash functions, password pro-
tected systems would not exist without it, even the android phones would have
lost their charm without that extra feature of pattern lock which is an application
of hash functions (SHA-1). In the mentioned examples, we don’t only need to
manage privacy and integrity but also sometimes authentication (keyed hash) and

1

many other features and this is done by standard dedicated hash functions such as
SHA-224, SHA-256, SHA-384, SHA-512 (collectively called SHA-2 [SS]) and now
SHA-3 [RPCK] can also be counted in this list. MD5 [Ber] and SHA-1 [CMR] are
outdated due to their low security and SHA-2 are excessively used worldwide for
data integrity, privacy, digital signatures and for many more purposes. SHA-3 has
got standardised in Aug, 2015 by NIST and now can be used in the applications of
hash function. Dedicated hash functions usually need more memory size hence cost
to achieve the normal efficiency and required security. A decent trade-off between
efficiency and security is what we are looking in a standard hash function.

Size plays an important role in today’s world as it can be seen in many small
computing devices that are used in day-to-day life. These small embedded de-
vices like barcodes, biometrics, smart cards, RFIDs (Radio frequency identification)
based devices which play a very prominent part of today’s modern world where
integrity, authentication and compactness are needed. The “Internet of Things”
which comprises a network of physically small things needed in electronics, soft-
ware and sensors for exchanging data between the objects. The compactness can be
understood by the limitation on size or battery power and here comes lightweight
cryptography. As the name suggests, it would be light in the sense that the mem-
ory part is restricted, i.e., low cost in the hardware but performance doesn’t get
halted. In this case, we need to have a good trade-off between storage and secu-
rity. Lightweight cryptography ensures that the algorithm would be efficient and
secured (majorly preimage resistant) at the lower cost. Its main aim is to achieve
“low cost” subjected to good efficiency in hardware as well as software and se-
curity of algorithm. We don’t want to keep the information secret forever, hence
low-embedded devices do not need security more than what is required. Many
lightweight ciphers have been proposed since then which includes many block ci-
pher as well as stream cipher like HIGHT [HSH], IDEA [WPS], NEOKEON [DPR],
PRESENT [BKLP], Grain-128a [HJM] and many more can be added in the list.
Most of them are not a novel design, instead constructed on the existed designs to
assure their security and performance are upto the mark.

Lightweight hash functions are integral part of lightweight cryptography. It has
vast applications in smart cards technology, RFID tags [Fin] not just for tracking
the shipping materials but also for every grocery item and many others. There
excess demand in every sector, viz., industries, education, services etc. says it
all. These hash functions target on low cost of implementation without compro-
mising much on efficiency and provides necessary security. We have sponge based
lightweight hash like QUARK [Aum], PHOTON [GPP], SPONGENT [BKL] which
provide good trade-off between efficiency and security. There are few designs of
lightweight hash functions which are based on stream cipher, i.e., BEAN [KOJ]
which could be used as random number generators and have been successfully
used in many applications.

Lightweight cryptography is still under exploring phase. We don’t have proper
standard lightweight hash or lightweight block ciphers but as already mentioned
many have been introduced lately. A lot of research and analysis are going on for
their betterment so that it can be used for further applications and providing an
upcoming area of research.

2

Neeva-hash

In this paper we propose a lightweight hash function, Neeva-hash1. From now
onwards we call this hash as Neeva-hash. This paper is organised in the following
manner: In section 2, lightweight cryptography is briefly discussed, we describe our
proposed lightweight hash scheme in section 3 and its analysis is shown in section
4.

2 Lightweight Cryptography

Cost, security, and efficiency are the three major dimensions of lightweight cryp-
tography. The standardization of lightweight ciphers has not taken place yet, so
any design whether it’s a conventional one or unconventional novel structure is
welcomed with keeping in mind its related cost, power consumption and crypto-
graphic security and performance needed in today’s world. Few of the lightweight
ciphers have been designed initially like Crypto1 is a stream cipher with 48-bit key
designed for RFID tags [Sol], Cryptomeria cipher is a Feistel based block cipher
used in encryption on DVD audio discs, Kindle is a stream cipher with 128-bit
key and used in Amazon kindle. Because of their specified use and low cost they
are used very much but been broken recently [BLR]. In the last decade, massive
designs been introduced in lightweight ciphers. Many lightweight block ciphers
and stream ciphers are there in the usage. Present, is one of the important ultra
lightweight block cipher and been extensively used in many lightweight block ci-
pher based hash. After SHA-3 competition many sponge based hash functions, for
example Quark – sponge construction based hash with non-linear Boolean func-
tions available in the digest size of 256-bit, 176-bit and 136-bit, Photon – sponge
like construction and AES like primitive as internal permutation available in the
digest size 256-bit and 160-bit, Spongent – sponge construction with Present per-
mutations and counter available in the digest size 88-bit, 128-bit, 160-bit 224-bit
and 256-bit, even Keccak (small) can be used as lightweight hash with r = 40,
c = 160 and digest size is 160-bit where r is the rate and c is capacity, are designed
and used extensively for their good efficiency and software friendly designs.

The security of sponge based designs depends on their capacity. A sponge
function is been found indifferentiable from a random oracle upto 2c/2 computation.
For n-bit sponge based hash function and n > c, the security bound for collision
resistant is 2c/2 and for second preimage resistant, it has been reduced to 2c/2. If the
sponge construction is hermetic (underlying permutation doesn’t have structural
distinguishes) and has a reasonable small rate (r) then security bound for preimage
resistant has been reduced to 2n−r [BKL].

3 Proposed Scheme

The scheme proposed in this paper is based on sponge construction. Here initial
register is of b-bit and b = r+c where r is rate and c is capacity of the state b. The
state b is of 256-bit. The rate and capacity is 32-bit and 224-bit respectively, viz.,

1“Neeva” is a Punjabi word which literally means “low”. Here we are using Neeva to explain
the small memory size required for this hash hence the low cost

3

r = 32, c = 224. As in sponge construction, message block will be xored to the most
significant 32-bit of the initial register. Message is padded so it can be divided into
the blocks of 32-bit. The initial state s0 is of all zeroes i.e., s0 = 0r||0c, first message
block is xored and initial register is updated. Here we have sixteen 16-bit words
in the updated register. We apply Present S-box (4 × 4) on these sixteen words
in parallel for confusion. Then first, second and third word is updated by xoring
with fourth word and keeping fourth word unchanged. This unbalanced Feistal
structure is applied in parallel on four 64-bit strings of the register to provide
word wise diffusion but this alone would not be enough. For overall diffusion
throughout the 256-bit register, there is a 8-bit left rotation of the register and
then we add round constants to it. Addition is done as addition modulo 216. The
register is updated and this whole comprises to one round. So here we have three
basic operations for confusion and diffusion, i.e., S-Box layer for confusion, xoring
and rotation will provide overall diffusion and modular addition will remove fixed
patterns. The whole process will be repeated for 31 more rounds i.e., in total 32
rounds. So, every message block will go through these 32 rounds.

The sponge construction processed in three phases as follows:

(i) Initialization Phase

The message can be of arbitrary length. The padded message should be a
multiple of 32-bit. For that we need an unambiguous padding rule. Given an
input message M of length ` bits, append the bit 1 to end of M , and then
append k ‘0’ bits and 1 at the end of it where k is the smallest positive integer
satisfying the following equation.

k ≡ (−`− 2) mod 32

For sponge based hash function, we need to have a message blocks of size of
rate.

M ||Pad(M) = M1||M2|| · · · ||Mt,

where each Mi is a 32-bit block.

(ii) Absorbing Phase

The first message block is xored with most significant 32-bit of initial register,
s0 (i.e., 256-bit register of all zeroes) and then permutation f applies on it.
Permutation f is 32 times composition of function g.

where

g(x) = (rotl8(F (S(x))))�216 RCj

and

f = g ◦ g · · · ◦ g︸ ︷︷ ︸
32−times

where S is the Present S-box (4 × 4) acting in parallel, F is the Feistal
structure defined earlier (shown in the figure 2) and RCj, 0 ≤ j ≤ 31 are the
32 round constants written in the end of the paper.

4

Neeva-hash

In the processing of one message block, 32 times g acts on the register. This
keeps happening till all message blocks are absorbed. In the absorbing phase,
the initial register asi is updated by the following manner:

asi = f(asi−1 ⊕Mi||0c),

for 1 ≤ i ≤ t and as0 = s0 is initial register.

(iii) Squeezing Phase

The most significant 32-bit of the final register of absorbing phase are taken
out and then permutation f applies on the same register and the most sig-
nificant 32-bit are taken again. This process continues and every time most
significant 32-bit are taken out. These bits then concatenated till we get
224-bit required digest i.e., we need to apply f permutation six more times
to get a digest size of 224-bit. In the squeezing phase, ssi is updated by the
following manner:

ssi = f(ssi−1) for 1 ≤ i ≤ 7 and ss0 = ast.

Figure 1 describes the phases of sponge construction [BDPA].

Figure 1: Three Stages of sponge construction

3.1 The Compression Function

The compression function of proposed scheme is based on sponge construction [BDPA].
Suppose we want to compute Neeva-hash of a message M . Message M is padded
and divided into the 32-bit blocks and then the first message block M1 is xored
to the state. After applying the Present S-box in parallel, the updated register is
divided in sixteen 16-bit words on which we apply Feistel structure on every 64-bit
parallely. After a 8-bit left rotation, it is added to a round constant. The updated
register after modular addition is the output of first round. It keeps feeding to the
next round till 32 rounds. This is the absorbing phase of compression function as
message is getting absorbed here. If we have more than one message block, then

5

after the first block absorption, its output will be taken as an updated register and
the next message block will be xored to updated register and again whole of the
steps would be repeated for this message block. We keep processing all the message
blocks in this manner till they get exhausted and this would end absorption phase.
In squeezing phase, the most significant 32-bit of final register of absorbed phase is
taken out. Then we apply permutation f on the updated register and every time
we take out the most significant 32-bit. This is done six more times and all these
seven 32-bit are concatenated to get the output of 224-bit. Hash digest of 224-bit
would usually provide security of 2112 and here c = 224 which implies that collision
security would be 2112 which is good with respect to today’s security requirement.

3.2 Mode of Operation

After initialization, all the message blocks are first absorbed on which we apply
the permutations. Each message block is processed by f which is a composition of
32 times of g. Once message blocks are exhausted then we start taking first 32-bit
after every f application, to have a digest of 224-bit. This would need application
of f seven times. The following figure describes the processing of one message
block with Neeva-hash.

input : M1,M2, . . . ,Mt

for i = 1 to t do
Ai ← CVi−1 ⊕Mi, CV0 = 032||0224

for j = 0 to 31 do

B
(j)
i ← S(j)(Ai) Apply S-box 64 times in parallel

B
(j)
i = b

(j)
0 ||b

(j)
1 || · · · ||b

(j)
15 , b

(j)
m → 16-bit words, 0 ≤ m ≤ 15

for k = 0 to 3 do
for l = 0 to 2 do

b
(j)
4k+l ← b

(j)
4k+l ⊕ b

(j)
4k+3

end

B
(j)
i ← b

(j)
0 ||b

(j)
1 || · · · ||b

(j)
15

end

B
(j)
i ← rotl8(B

(j)
i)

B
(j)
i ← B

(j)
i �216 RCj

end

CVi ← B
(31)
i

end

return At ← B
(31)
t ;

r = 0, 1 . . . , 6;
zr ←MSB32(f

r(At))
H = z0||z1||z2||z3||z4||z5||z6

Algorithm 1: Neeva-hash Function

6

Neeva-hash

Figure 2: Neeva-hash function

7

4 Analysis of Neeva-hash

In this section we will discuss the analysis of Neeva-hash. The test values have
been given in the end of the paper.

4.1 Efficiency of Neeva-hash Function

In this subsection we are analysing the efficiency of Neeva-hash with one of the
popular lightweight hash functions, Spongent-224. The following table provides
the comparison in the efficiency of Neeva-hash with Spongent-224 on an Intel core
2 duo 32-bit OS E8400 @ 3 Ghz processor with 1 GB RAM.

File Size Spongent-224 Neeva-hash
(in MB) (in Sec) (in Sec)

1 1.44 0.65
5 3.06 2.53
10 5.87 4.99

This shows that the efficiency of Neeva-hash is better than Spongent-224 which
makes it really software friendly.

The speed of this hash algorithm has been calculated as almost 12067 cy-
cles/bytes which seems fairly good in context to hardware.

4.2 Avalanche Effect

A message M of length 1024-bit is taken and its Neeva-hash(M) is calculated.
While calculating Neeva-hash it will be padded before dividing it into the blocks of
32-bit which means we would have 33 message blocks. Now change in the ith bit in
message M will generate Mi files where 1 ≤ i ≤ 1024. The hamming distance of Mi

from M exactly 1. We then calculate Neeva-hash(Mi), thus compute the hamming
distance di, between Neeva-hash(Mi) and Neeva-hash(M) for 1 ≤ i ≤ 1024 and
finally the hamming distances in the corresponding 32-bit words of the hash values
are computed.

The results have been shown in the following table with the maximum, the
minimum, the mode and the average value of hamming distances.

Changes W1 W2 W3 W4 W5 W6 W7 Spongent-224 Neeva-hash

Max 24 24 24 25 25 26 23 136 137
Min 8 7 5 7 7 8 8 89 89
Mode 16 15 17 16 16 16 18 113 113
Mean 16.03 15.77 16.03 16.06 15.97 16.07 15.98 111.84 111.91

Table 1: Hamming Distances

The following figure shows the hamming distance range of 1024 files which is
coming out to be almost uniform i.e change in one bit of the input brings ≈ 50%
change in output digest of hash.

8

Neeva-hash

Figure 3: Hamming Distances range of the 1024 files

4.3 Differential Characteristics

Differential attack was presented by Biham and Shamir in 1990 on DES block
cipher [BS].This attack exploits the high probability differences in input and output
of an encryption scheme. High probability input and output differences of the
non-linear components (e.g., S-box in this case, as modular addition is not counted
here because we try to apply differential cryptanalysis of the modified version of
our proposed hash function by replacing modular addition of constants with xor
operation with the round constants) are used to form differential trail of the sponge
f function by joining 1 round high probability differentials trails. The modified
f function uses a 4 × 4 Present S-box as its only non- linear component now.
Maximum differential probability for arbitrary input difference producing a output
difference in a single S-box application is 4

16
= 2−2 [Wan]. This value ensures that

even if there is only one active S-box in each round, still differential attack will
require 264 chosen plaintexts to distinguish the first 32-bit of Neeva-hash.

Now, we see whether differential cryptanalysis is applicable on Neeva-hash.
This hash function is using PRESENT S-box in their construction. In the modified
version of Neeva-hash, atleast one bit input difference causes an active S-box after
one round and 1 more active S-box after second round if it occurs in the most
significant byte of the word of updated register. The number of active S-boxes is
12 after 9-rounds. If we keep continuing in this way till all 32-rounds, the number of
active S-boxes would reach to 50. Then, the minimum number of active S-boxes is
50 (Here we have taken the input difference in the first sixteen most significant bits).
Hence the maximal probability of finding a differential characteristic is (2−2)50,
i.e., 2−100. This means we require 2100 chosen plaintexts to distinguish the most
significant 32-bit of the output whereas by birthday paradox this chosen plaintexts
is 216 (for most significant 32-bit of the output) which is comparatively very small
as compared to 2100. It shows that differential cryptanalysis is not applicable to
modified version of Neeva-hash hence it will not applicable on Neeva-hash.

9

4.4 Bit-Variance Test

Bit Variance is one of the statistical tests for the randomness of the hash digest.
It basically tests the change in the hash output when input bits are changed.
It measures the uniformity in each bit of the output. Given an input message,
all the changes in the input are accounted and output is calculated for each of
the change. Then, for each digest bit the probabilities of taking on the values
of 1 and 0 are measured considering all the outputs produced by applying input
message bit changes. If the probability, Pi(1) = Pi(0) = 1/2 for all digest bits
i = 1, . . . , 224 then, the Neeva-hash function has attained maximum performance
in view of bit variance test [KZ]. Since it is computationally infeasible to consider
all input message bit changes, we have evaluated the results for only up to 1024
files, viz. M,M1,M2, . . . ,M1024 which we have generated for conducting avalanche
effect, and found the following results:

The experiments were performed on 1024 different messages (which we have
taken in avalanche test). This hash function passes the bit-variance test. Plotting
the probability (Figure 4) of each of the bits (224-bit), we see that the average
probability is approximately 0.50.

Figure 4: The probability of the bit position

4.5 Near-collision resistant

A hash function is called near-collision resistant if it is computationally infeasible
to find two different inputs with hash output differ in small number of bits i.e.,
for two different messages M and M ′, their Neeva-hash values are almost same
(differ in small number of bits), which means hamming weight of (H(M)⊕H(M ′))
is relatively small (upto 16-bit). To check the near-collision resistance we have
taken 100,000 files and checked xor of hamming distance of Neeva-hash of two
random files from the lot. So, we need to choose two files out of 100,000 files that

would be

(
100000

2

)
which is 4,999,950,000 files. After analyzing, it shows the

minimum and maximum hamming weight of the hash of these files comes as 66
and 162 respectively. The hamming weight 113 comes maximum number of times
i.e. 266,272,292.

10

Neeva-hash

No. of files having the difference between 92 and 132

(92 ≤ #files ≤ 132) = 4, 967, 495, 075(i.e., 99.35%)

That means more than 99% of files give hamming distance between 112 ± 20
which is good with respect to the fact that they won’t give any near-collision
attack as for near-collision the hamming distance of two files needs to be really
small viz. upto 16-bit. Hence by the analysis results Neeva-hash shows resistant
to near-collision attack.

5 Conclusion

In this paper we have proposed a lightweight hash function, Neeva-hash, based on
sponge construction with a software friendly permutation. It gives the collision
resistance 2112 which is good with respect to today’s security requirements. Anal-
ysis of this hash function includes avalanche effect, a heuristic proof of differential
characteristics, bit variance test and near-collision resistant test. It satisfies all the
properties needed for an RFID tag and pseudo random number generator. It seems
a good option for lightweight hash and can be used in many of its applications.

References

[Aum] J. P. Aumasson, Quark: A Lightweight Hash, 2012. Available online at
https://131002.net/quark/quark_full.pdf

[BDPA] G. Bertoni, J. Daemen, M. Peeters & G. V. Assche, The Keccak SHA-
3 Submission, Jan 2011. Available online at http://keccak.noekeon.

org/

[Ber] T. Berson, Differential Cryptanalysis mod 232 with Applications to MD5,
in Advances in Cryptology Eurocrypt’92, LNCS, vol.0658, Springer,
1993.

[BKLP] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin & C. Vikkelsoe, PRESENT: An Ultra-
Lightweight Block Cipher, CHES, LNCS, vol. 4727, Springer 2007.

[BKL] A. Bogdanov, M. Knežević & G. Leander et. al., Spongent : A
Lightweight Hash Function, Cryptographic Hardware and Embedded
Systems, LNCS, vol. 6917, Springer, 2011. Available online at https:

//eprint.iacr.org/2011/697.pdf

[BLR] A. Biryukov, G. Leurent & A. Roy, Cryptanalysis of the “Kindle” Ci-
pher, Selected Areas in Cryptography, LNCS, vol. 7707, Springer, 2012.

[BS] E. Biham & A. Shamir, Differential Cryptanalysis of the Full 16-round
DES, Advances in Cryptology- CRYPTO’92, LNCS, vol. 740, Springer,
1993.

11

https://131002.net/quark/quark_full.pdf
http://keccak.noekeon.org/
http://keccak.noekeon.org/
https://eprint.iacr.org/2011/697.pdf
https://eprint.iacr.org/2011/697.pdf

[CMR] C. Canniére, F. Mendel & C. Rechberger, Collisions for 70-Step SHA-1:
On the Full Cost of Collision Search, Selected Areas in Cryptography,
LNCS, vol. 4876, Springer, 2007.

[DPR] J. Daemen, M. Peeters, V. Rijmen & G.V. Assche, Nessie Proposal:
NEOKEON, 2000. Available online at https://gro.neokeon.org/

neokeon-spec.pdf

[Fin] K. Finkenzeller, RFID Handbook, third edition, Wiley publications,
2010.

[GPP] J. Guo, T. Peyrin & A. Poschmann, The PHOTON Family of
Lightweight Hash Functions, 2011. Available online at https://eprint.
iacr.org/2011/609.pdf

[HJM] M. Hell, T. Johansson & W. Meier, Grain: A Stream Cipher for Con-
strained Environments, International Journal of Wireless and Mobile
Computing, vol. 2(1), Inderscience, 2007.

[HSH] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang,
J. Lee, K. Jeong, H. Kim, J. Kim & S. Chee, HIGHT: A New Block
Cipher Suitable for Low-Resource Device, Cryptographic Hardware and
Embedded Systems, LNCS, vol. 4249, Springer, 2006.

[KOJ] N. Kumar, S. Ojha, K. Jain & S.Lal, BEAN: A Lightweight Stream Ci-
pher, International conference on Security of information and networks,
ACM, 2009.

[KZ] D. Karras & V. Zorkadis, A Novel Suite of Tests for Evaluating One-Way
Hash Functions for Electronic Commerce Applications, IEEE, 2000.

[RPCK] A. Regenscheid, R. Perlner, S. Chang, J. Kelsey, M. Nandi & S.
Paul, Status Report on the First Round of the SHA- 3 Crypto-
graphic Hash Algorithm Competition, NIST Internal Reports 7620, 2009.
Available online at http://csrc.nist.gov/groups/ST/hash/sha-3/

Round1/documents/sha3_NISTIR7620.pdf

[Sol] H. Soleimany, Studies in Lightweight Cryptography, PhD Thesis, Aalto
University, 2014.

[SS] S. Sanadhya & P. Sarkar, Attacking Step Reduced SHA-2 Family in
a Unified Framework, Available online at http://eprint.iacr.org/

2008/271.pdf

[Wan] M. Wang, Differential Cryptanalysis of PRESENT,

[WPS] L. Wie, T. Peyrin, P. Sokolowski, S. Ling, J. Pieprzyk & H. Wang, On
the (In)Security of IDEA in Various Hashing Modes, Foundations of
Software Engineering, LNCS, vol. 7549, Springer, 2012.

12

https://gro.neokeon.org/neokeon-spec.pdf
https://gro.neokeon.org/neokeon-spec.pdf
https://eprint.iacr.org/2011/609.pdf
https://eprint.iacr.org/2011/609.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/sha3_NISTIR7620.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/sha3_NISTIR7620.pdf
http://eprint.iacr.org/2008/271.pdf
http://eprint.iacr.org/2008/271.pdf

Neeva-hash

Test Vectors

Test values of the three inputs are given below:

Neeva-hash(a) = 52ca54ca ad4617dc b051b2c4 cc6c1c9e
92753d16 47a22405 aa912c08

Neeva-hash(ab) = 0a163ca8 02692371 b2d1a303 5da3bb8f
5e9b08ee 82e2d5f4 1e532c1a

Neeva-hash(abc) = b0c8be3d fcbc3886 439256e1 fe568253
5d58c7dd 9124dbc3 6cc37c91

13

Round Constants

RC0 = c7b119402be75b5fe34230e1c6de7511503b802a96a7f546fd02a80d8cb27863

RC1 = 6990c02e24cf9ab94c057e4e08726162dccb97ca280e1ccb6db961615a126f97

RC2 = ff223911f7f604c272d7ec72db58b760669de33dee6be0202550c439d270f05e

RC3 = f5a6c2820cac1ab3b263f3f68b1d3c53118bb9d52521bd520eb7a1e5a3cb9e5b

RC4 = 1612115e8201b0311ea4d23d2bb3f906832a60191b4181d9f3f2a22b9671f3ba

RC5 = d299ae33da1d4ed5ed9c5c77047b758fe01bb24d4801a33b8050013fbb396b14

RC6 = 1d18fe11cd6aa678cfe053451418e7dbb8b382220290ebd42291a6ff6c4c1743

RC7 = 4afc5e1277a7355ec0b5a2231a9e2ccc02f555d4739836567bcdef91d914cfe2

RC8 = ece8b0d3361a8b569fe8cecb31b9ecd7e730d51ab9f94b620357d728fdbeda72

RC9 = 1e5d2b7bfca2f0cce303b2bf33be3dc4ce60882398bb64f60b7adb092bface29

RC10 = 89a2a6a2baf87b8705ead75447d16334479ad1f87a467e1245e036f2119df0eb

RC11 = 96b970981eb889eb988a96bf01fc1dd13a0c119519ffe34590a0fe36c225749e

RC12 = 10f20d64be3da2783114fe4dfaef826db18e6e25cf42ff6f22a604a3496878d6

RC13 = 104d1cdde66f47312729c321e0ca3b99d39b754672e3910d6a4ddc204a7989f6

RC14 = 3b346ce05703de7eb2719130af1b426660aac3243e43b2234b95c10d28d13528

RC15 = 786d780921f9490b94476162609fd9e100c2fdb347fe2208086b1d8fc2459661

RC16 = 888460b5299cee14e2095e0676c4ee73aef17819767cd8ee9223162928c83763

RC17 = e80f465c9f7cfc78a49539b737812cbcdcd37347cf4d4025ac70a24356ef05d3

RC18 = ce366bd878a9218786f4fddef33e2ad51012edbde19085f0ebcee84638fa7126

RC19 = 76a45e9feb2c4123370448278054b494b62d481b5c8403a1cab5529bea62b745

RC20 = adf6d3e93166a6f892b0a9d59d55a1a51ca11b9cb530d7f5d50946dd9ceeda2c

RC21 = 3246b10c987b174fd9f598444a5c42e9ea390cf5c4c5a5fdba7e0a08f59d2f10

RC22 = 9f3903e5338b6415d92b4707462d4ef82844f7897dcf8f702e131c062682a99a

RC23 = 70ff29c4c11f18008dd533acd7248c9b0a642ebaf42b4fb20898288b394e5f33

RC24 = cb8befdfdf5b238b1c730c0bf30855bbc7a0bfa5ae3516ab7edd326f5611ae48

RC25 = dfeb28672f6bcfc1afb3d11a97bbe65fc0ffb97d526913fca74d7e995ba9a3a6

RC26 = 9f7f4896467352c824c941af49866c11246f4529d55c0b1110b9047575249533

RC27 = 79990702621c531145378996444dc267629c221a9d6fc3d75be71d704ae1bac2

RC28 = 5f6731bf692923f1b6d1dce74905c7ca504acba3d0b95bc79d7787025783e5cf

RC29 = ec1d0d8ddd6b5d8dcf1c5a759fae7dc0c206489bc8f14d8d9e4a6bcb2287c7c3

RC30 = fc2d8fd04b8f582fadd6205ca979b648a2c6fc9b00ca8b389cd94a3ef90ad435

RC31 = 40e308b38501c4273130a587906a0ccc5461f947f201759b50b61dd32adedb9a

14

	Introduction
	Lightweight Cryptography
	Proposed Scheme
	The Compression Function
	Mode of Operation

	Analysis of Neeva-hash
	Efficiency of Neeva-hash Function
	Avalanche Effect
	Differential Characteristics
	Bit-Variance Test
	Near-collision resistant

	Conclusion

