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Abstract: Outsourcing paradigm has become a hot research topic in the cryptogra-
phy community, where computation workloads can be outsourced to cloud servers by the
resource-constrained devices, such as RFID tags. The computation of bilinear pairings is
the most expensive operation in pairing-based cryptographic primitives. In this paper, we
present two new algorithms for secure outsourcing the computation of bilinear pairings.
One is secure in the OMTUP model. The other, which provides flexible checkability, is
in the TUP model. Compared with the state-of-the-art algorithms, our proposal is more
efficient.
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1 Introduction

Cloud computing is a new computing paradigm which enables I'T capacities and resources
to be provided as services over the Internet. In recent years, outsourcing paradigm has
become a hot research topic in the cryptography community due to the advancement of
cloud computing, where computation workloads can be outsourced to cloud servers by the
resource-constrained devices, such as RFID tags. As a result, some new challenges [32, 36]
have to be considered, which are shown as follows.

e Security: First of all, the cloud servers may be untrusted, while some sensitive infor-
mation, which should not be leaked to the servers, may be contained in the outsourced
data. Hence, as for the secrecy, it is required that the servers should learn nothing
useful about what it is actually computing.

e Checkability: Some invalid results may be returned due to some cloud servers misbe-
haves. Therefore, the outsourcers should have the ability to verify any failures. It is
clear that the verification must be far more efficient than the outsourced computing
work itself.
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e Security Models: The number and trustability of cloud servers is crucial to study
the security of secure outsourcing algorithms. One untrusted program (OUP) model
allows only one server, which may be malicious, to implement an algorithm. One-
malicious (OMTUP) model (i.e., one-malicious version of two untrusted program)
allows two servers to implement an algorithm, and only one of them could be malicious.
Two untrusted program (TUP) model allows two servers to implement an algorithm
and both of them could be malicious.

On the other hand, the bilinear pairings have become a hot technique in cryptogra-
phy. However, the computation of bilinear pairings is still expensive for some resource-
constrained devices although some efforts have been made to improve its efficiency. Hence,
how to securely outsource such computation has become a hot research topic in cryptogra-
phy community.

1.1 Related Work

The impossibility of secure outsourcing an exponential computation while locally doing
only polynomial time work was proved in [2]. In the computer theory community, the
problem of secure outsourcing expensive computations, such as matrix multiplications and
quadrature [3], sequence comparisons [4, 10], linear algebra computations [1, 7] and linear
programming computations [37], receives considerable attentions.

On the other hand, the problem of secure outsourcing expensive computations receives
more and more attentions in the cryptographic community. The first idea with respect
to this problem was introduced in the so-called “wallets with observers” by Chaumand
Pedersen [17]. The security model for outsourcing cryptographic computations was first
presented by Hohenberger and Lysyanskaya [28] who proposed the first outsource-secure
algorithm for modular exponentiations based on server-aided computation [5, 23, 29, 38|
and precomputation [13, 21, 30, 33].

The notion of ringers to verify computation completion was introduced in [26], which was
followed by the researches [9, 15, 16, 34]. The notion of verifiable outsourcing computation
for arbitrary functions was first formalized by Gennaro et al. [22], which was followed by
plenty of researches [11, 12, 24, 25, 35]. In [22], a protocol which allows the outsourcer
to check the outputs with a non-interactive, computationally sound proof was proposed.
Following the idea in [22], the first practical verifiable computation scheme for high degree
polynomial functions was proposed in [6]. And new approaches were presented by Green et
al. [27] for constructing secure outsourcing attribute-based encryption (ABE), which was
followed by Parno et al. [31] who proposed a multi-function verifiable computation scheme.

The first algorithm for secure delegation of elliptic-curve pairings in the OUP model
was presented in [19], while the disadvantage is that some other expensive operations have
to be carried out by the outsourcer although any server misbehave can be detected with
probability 1.

Recently, Chen et al. [18] presented an outsource-secure algorithm of bilinear pairings in
the OMTUP model. Compared with the algorithm in [19], a distinguishing property of their
proposed algorithm is that the resource-constrained outsourcer never needs to perform any
expensive operations. However, some expensive operations, such as scalar multiplications
and bilinear pairings, have to be performed in the pre-computation.

Tian et al. [35] proposed two algorithms, called Algorithm A and Algorithm B respec-



tively, for secure bilinear pairing outsourcing. Algorithm A, which is also in the OMTUP
model, improves the efficiency of pre-computation compared with that in [18]. Algorithm
B, which is in the TUP model, provides a client a choice to improve the checkability.

Note that an algorithm may require more computations in the OUP model compared
with the OMTUP and TUP models. As for some practical scenarios, the TUP model may
be more well-suited than the OMTUP model. This is because many cloud services may be
based on the same platform provided by a vendor. Also note that an algorithm secure in
the OMTUP model may be insecure in the TUP model.

1.2 Our Contribution

In this paper, we propose two secure outsourcing algorithm for bilinear pairings, called
Pair and FPair respectively. Compared with the state-of-the-art algorithms [18, 35], our
proposals have the following advantages:

The algorithm Pair is in the OMTUP model. Compared with the state-of-the-art al-
gorithms (i.e., algorithm in [18] and Algorithm A in [35], which are both in the OMTUP
model), Pair is more efficient in both the computation of 7" and pre-computation. On the
other hand, FPair, which provides flexible checkability, is in the TUP model, where the
pre-computation is more efficient than the state-of-the-art algorithm, i.e., Algorithm B [35]
(which is also in the TUP model).

1.3 Organization

The rest of the paper is organized as follows: In Section 2, some security definitions for
outsourcing computation are recalled. The new and efficient secure outsourcing algorithms
Pair and FPair for bilinear pairings are presented in Section 3 and Section 4 respectively,
which is followed by the last section to conclude our work.

2 Preliminaries

2.1 Bilinear pairings

Let G1 and G2 be two cyclic additive groups of a large prime order ¢ generated by P;
and P», respectively. Let G be a cyclic multiplicative group of the same order ¢. A bilinear
pairing is a map e : G; X Go — G with the following properties:

1. Bilinear: e(aR,bQ) = e(R, Q)% for all R € G1,Q € Go, and a,b € Ly.
2. Non-degenerate: There exist R € G; and @ € G2 such that e(R, Q) # 1.

3. Computable: There is an efficient algorithm to compute e(R, Q) for all R,Q € Gj.

2.2 Definition of Outsource-Security

Let Alg be a cryptographic algorithm. Roughly speaking, some work was securely out-
sourced to the cloud server U by an honest device T, and (7,U) is an outsource-secure
implementation of Alg if 1) T and U implement Alg, i.e., Alg = TY and 2) the adversary
U’ can learn nothing about the input/output of TV if T is allowed to make oracle access



to U’. Note that U’ may record all of its computation and may be malicious. The formal
definitions [28] are recalled as follows.

Definition 1 (Algorithm with Outsource-1/0) An algorithm Alg obeys the outsource
input/output specification if it takes five inputs, and produces three outputs. The first three
inputs are generated by an honest party, and are classified by how much the adversary A =
(E,U’) knows about them, where E is the adversarial environment that submits adversarially
chosen inputs to Alg, and U’ is the adversarial software operating in place of oracle U. The
first input is called the honest, secret input, which is unknown to both E and U’; the second
is called the honest, protected input, which may be known by E, but is protected from U’;
and the third is called the honest, unprotected input, which may be known by both E and
U'. In addition, there are two adversarially-chosen inputs generated by the environment
E: the adversarial, protected input, which is known to E, but protected from U’; and the
adversarial, unprotected input, which may be known by E and U’. Similarly, the first output
called secret is unknown to both E and U’; the second is protected, which may be known to
E, but not U'; and the third is unprotected, which may be known by both parties of A.

As for the security, E should learn nothing useful about the secret inputs/outputs of
TV even if the malicious software U’ is written by E, which is ensured by the following
definition for outsource-security proposed in [28]:

Definition 2 (Outsource-Security) Let Alg be an algorithm with outsource-1/0. A pair
of algorithms (T,U) are an outsource-secure implementation of Alg if:

1. Correctness: TY is a correct implementation of Alg.

2. Security: For all probabilistic polynomial-time adversaries A = (E,U’), there exist
probabilistic expected polynomial-time simulators (S1,S2) such that the following pairs
of random wvariables are computationally indistinguishable.

e Pair One. EVIEW,eq; ~ EVIEWigear:

— The view that the adversarial environment E obtains by participating in the
following real process:

EVIEW),, = A{(istate’ a},, ) k)
— I(1%,istate™1);
(estatei, jia xép) xflu? Stopi)
aw T
« EQ*EVIEW | i} . },);
(tstate’, ustate’,y’, yli,, yi)
« TU’(ustateifl)

U R L LI LI
(tstate s Thes Thps Thays Tapy

Tgu) ¢ (estate’, yp,yn )}
EVIEW,eq ~ EVIEW! ., if stop' = TRUE.
The real process proceeds in rounds. In the i-th round, the honest (secret,
protected, and unprotected) inputs (z%s, :vzp, x}m) are picked using an honest,
stateful process I to which the environment E does not have access. Then
E, based on its view from the last round, chooses



(a) the value of its estate’ variable as a way of remembering what it did next
time it is invoked;

(b) which previously generated honest inputs (x};s,x;lp,x}'m) to give to TV
(note that E can specify the index j* of these inputs, but not their values);

(c¢) the adversarial, protected input :):Zp;

(d) the adversarial, unprotected input i, ;

(e) the Boolean variable stop’ that determines whether round i is the last

round in this process.

Nezxt, the algorithm TV is run on the inputs (tstate’ !, a:g;s, a:;:p, x{:u, xflp, zl ),
where tstate™! is T’s previously saved state, and produces a new state tstate’
for T, as well as the secret y, protected y}, and unprotected y!, outputs. The
oracle U' is given its previously saved state, ustate’', as input, and the cur-
rent state of U’ is saved in the variable ustate’. The view of the real process
in round i consists of estate’, and the values y; and y',. The overall view
of E in the real process is just its view in the last round (i.e., i for which
stop' = TRUE.).

— The ideal process:

EVIE iideal = {(istatei,xﬁls,xﬁlp,xflu)
— I(1%,istate™1);
(estatel, j°, :L‘flp,‘xfw, stop')

« E(F EVIEW . ),
Tha)i
(astate’, yg, yp, yu)

— Alg(astateiil, x{s, w{;p,
Chr o Th)s
(sstate’, ustate’, Y, Yy,
replace®)

. SU’(ustateifl)

i—1 jt
(sstate T Ty Ty

Tops Tl Ups Ui);
(25, 21) = replacei (¥, Y;)
+(1 = replace’)(y;, y,) :

(estate’, z), z,)}

EVIEW,qeq = EVIEW}, ., if stop' = TRUE:

The ideal process also proceeds in rounds. In the ideal process, there is a
simulator S1 who, shielded from the secret input xﬁls, but given the non-
secret outputs that Alg produces when run all the inputs for round i, decides
to either output the palues (y;,yi) generated by Alg, or replace th‘em with
some other values (Y, Ylf)'. Note that the indicator variable replace’ is a bit
for determining whether y,, will be replaced with Y,). Hence, it is allowed to
query oracle U'; moreover, U’ saves its state as in the real experiment.

o Pair Two. UVIEW,cqi ~ UVIEW,4eal:

— The view that the untrusted software U’ obtains by participating in the real
process described in Pair One. UVIEW,¢q = ustate® if stop' = TRUE.



— The ideal process:

UVIEW!, ., = {(istatez,xzs,x}lp,x}w)
— I(1%,istate™1);
(estate’, j°, l"flp, :L‘fw, stppi)
— E(l%,estate“l,xﬁlp,mzu,
YpYu)i
(astate’, ys, yp: Yu)
— A'l.g(astateifl, ., xip,
T T )i
(sstate’, ustate’) +
/ i—1 .
Sg (ustate )(sstatelfl,

x{u,xfw) : (ustate’)}

UVIEW,geq = UVIEW},, ., if stop' = TRUE:

In the ideal process, we have a stateful simulator So who, equipped with only
the unprotected inputs (x},,, %y, ), queries U'. As before, U' may maintain

state.

Definition 3 (a-Efficient, Secure Outsourcing) The algorithms (T,U) are an a-efficient
implementation of Alg if 1) TU is a correct implementation of Alg and 2) ¥ inputs , the
running time of T is no more than an a-multiplicative factor of the running time of Alg.

Definition 4 (5-Checkable, Secure Outsourcing) The algorithms (T,U) are a B-checkable
implementation of Alg if 1) TV is a correct implementation of Alg and 2) ¥ inputs x, if U’
deviates from its advertised functionality during the execution of TU/(z), T will detect the
error with probability no less than 5.

Definition 5 ((«, 3)-Outsource-Security) The algorithms (T,U) are an («, 5)-outsource-
secure implementation of Alg if they are both a-efficient and [-checkable.

According to the number and trustability of U, the OMTUP and TUP models are defined
as follows [35]:

Definition 6 (OMTUP Model) IfU denotes two noninteractive programs (U1, Us), and
if only one of them U, i € {1,2}, is malicious, the algorithms (T,U) are implemented in
an OMTUP model.

Definition 7 (TUP Model) If U denotes two noninteractive programs (Ui, Us), and if
Ui, Us are malicious, the algorithms (T, U) are implemented in an TUP model.

2.3 Notations

Let PA denote a point addition in G; (or G3), SM denote a scalar multiplication in
G1 (or G2), M denote a modular multiplication in Gr or (Z;), Exp denote a modular
exponentiation in Gr (or Zj), MInv denote a modular inverse in Zj, and P denote a
computation of the bilinear pairings.



3 New Efficient Outsourcing Algorithm of Bilinear Pairings

3.1 Pre-computation

In [18, 35], a subroutine Rand is used to speed up the computations. Similarly, we also
use such a subroutine. The output for each invocation of Rand is a random, independent
tuple (Vi, Vo, vV, 0Va, V3, Vy,e(Va, Vi), e(=V1,V2)), where Vi,V3 € Gy, Vo, Vy € G2 and
v € Zy. Let x = e(V3,Vy) and A = e(—V1, V).

A naive approach to implement this functionality is for a trusted entity to compute a
table in advance and then load it into the memory of T' [18, 35]. For each invocation of
Rand, T just retrieves a new tuple by using the so-called table-lookup method. An efficient
method was proposed in [35] to create such a table by pre-processing a static table with the
EBPV generator [30] which is a well-known preprocessing algorithm. ! The details of the
method is referred to [35].

Similarly, we also use this method to create the table. At first, we generate e(P;, P»),
and then for each tuple perform the following steps:

1. Following the same procedure in [35], create four pairs (vi, V1), (v2,V2), (vs, V3),
(v4, Va), where Vi = v1P1,Va = 0o Py, V3 = v3P; and Vy = vgPs; (It is noted in [30]
that the computation cost of a pair is about £+ h—3 point additions, where k is about
twenties and h is less than 10. It is obvious that this step requires less computations
compared with the computation of bilinear pairings.)

2. Pick a random number v € Zj, and compute vV} and vV5;
3. Compute v' = v3vy (mod ¢) and v" = —v1v9 (mod q);

4. Compute x = e(P, P)"" and X\ = e(Py, P,)"". Tt is clear that y = e(V3,V;) and
A = e(_V1, ‘/2>

5. Store the tuple (Vi, Vo, vVi,vVa, V3, V4, x, A) into the table.

3.2 The Proposed Algorithm

Here, we present a new and more efficient outsource-secure algorithm Pair for bilinear
pairings in the OMTUP model. Similar to [18, 35|, T" outsources its computations to U;
and Uz by invoking Rand. The security requirement is that the adversary A cannot know
any useful information about the inputs/outputs of Pair. Let U;(A,1I) — e(A,II) denote
that U; takes (A,II) and outputs e(A,II), where i = 1,2.

The input of Pair is two random points A € G1, B € G, and the output of Pair is
e(A, B). Note that A and B may be secret or (honest/adversarial) protected and e(A, B)
is always secret, or protected.

Our main trick is to logically split A and B into random looking pieces. Let a; =

!Since the EBPV generator has no limitations on the cyclic groups, it could be trivially applied to the
setting of bilinear pairings [18, 35]. It is conjectured that with a sufficiently large subset of truly random
pairs the output distribution of the EBPV generator is statistically close to the uniform distribution.



e(A—Vi,B—Va), ay =e(V1, B +vVs) and asz = e(A — vVy, Va). Note that

a1 = e(A,Ble(A, —Va)e(—Vi, B)e(Vh, Va)
ay = e(V1,B)e(vlh, V2)
as = e(A, Va)e(—vVq, Va)

Thus, e(A, B) = Aajasas.
Hence, Pair consists of the following steps for outsourcing the computation of bilinear
pairings:

1. Run Rand to obtain a random tuple (Vi, Vo, vVi,0vVa, V3, Vi, x, A);
2. Pick X € Gy and Y € G randomly;

3. Query U in random order as
Ur(A =V, B = Va) = au;
U1(X,Y) — e(X,Y).
Similarly, query Us in random order as
Us(Vi, B 4+ vVa) — au;
U (A — oV, Vo) — as;
Ua(V3, V) — e(V3, Va);
Us(X,Y) — e(X,Y).

4. Finally, check whether or not both U; and Us produce the correct outputs, i.e.,
U1(X,Y) = Ux(X,Y) and Uy(V3,Vy) = x. If it is the case, output Aajasas; oth-
erwise, “error”.

3.3 Security Proof

Theorem 1 In the OMTUP model, the algorithms (T,Uy,Us) are an outsource-secure im-
plementation of Pair, where the input (A, B) may be honest, secret; or honest, protected;
or adversarial, protected.

Proof. The correctness property is straight-forward, and we only prove the security.
The proof is very similar to [18, 28]. Let A = (E,U;,U}) be a probabilistic polynomial-
time adversary that interacts with a probabilistic polynomial-time algorithm 7" in the one-
malicious model.

Firstly, we prove Pair One EVIEW,cq ~ EVIEW,;4eqi (The external adversary, E,
learns nothing.):

If the input (A, B) is anything other than honest, secret, then the simulator S trivially
behaves the same way as in the real execution.

If (A, B) is an honest, secret input, S; performs the following steps: In the i-th round,
S1 ignores the input and instead makes three random queries (P; € G1,Q; € G2) to Uj
and Uj. S; randomly checks two outputs from each software (i.e., e(P;, @;)). If there is an
error, S outputs sz‘ = “error”, Y = ¢, replace’ = 1 and all states are saved. If there is
no error, Sy verifies the remaining outputs. If all checks pass, Sy outputs Y, = ¢, Y; =

- )



replace’ = 0; otherwise, S; picks  randomly and outputs sz‘ =7, Y} =@, replace’ = 1. In
either case, the appropriate states is saved by 5.

Note that the input distributions to (U}, U}) in the ideal and real experiments are compu-
tationally indistinguishable. In the ideal experiment, the inputs are chosen randomly. In the
real experiment, all numbers in the queries made by T is computationally indistinguishable
from random since they are independently re-randomized.

If (U}, U}) is honest in the i-th round, EVIEW?,, ~ EVIEW, . (since T1i:V2) exe-
cutes Pair in the real experiment perfectly and S; simulates with the same outputs in the
ideal experiment). If one of (U7, U}) behaves dishonestly in the i-th round and it is detected
by T and S7 (with probability %), an output of “error” will be given; otherwise, the output
of Pair will be successfully corrupted (with probability %) In the real experiment, the
outputs generated by (Uj,Us) are multiplied together along with a random value, thus a
corrupted output of Pair looks random to E. In the ideal experiment, S7 also simulates
with a random value r € Z%. Thus, EVIEW},, ~ EVIEW},, ., even when one of (U], Uj)

is dishonest. Hence, we can conclude that EVIEW, .1 ~ EVIEW,4ea-

Secondly, we prove Pair Two UVIEW,eq ~ UVIEW;g4eq (The untrusted software,
(U{,US), learns nothing.):

The simulator Sy always performs as follows: In the i-th round, Ss ignores the input
and instead makes three random queries (P; € G1,Q; € G2) to both Uy and Uj. Then Sy
saves its states and the states of (U{,U}). E can easily distinguish between these real and
ideal experiments since the output in the ideal experiment is never corrupted. However,
this information cannot be communicated to (U7, Us) by E since T always re-randomizes
its inputs to (U7, U3) in the i-th round of the real experiment. In the ideal experiment, Ss
always makes random, independent queries for (U{,U}). Thus, for each round i we have
UVIEW!,., ~UVIEW}, .. Hence, we can conclude that UVIEW,eq ~ UVIEW;jeq. O
Theorem 2 In the OMTUP model, the algorithms (T, (U, Us)) are an (O(ﬁ)7 3)-outsource-
secure implementation of Pair.

Proof. The proposed algorithm Pair makes only 1 invocation of Rand, 4 point additions
in G (or G2), and 3 modular multiplications in G in order to compute e(A, B). Also,
the computation for Rand is negligible since we use the table-lookup method. Moreover, it
takes Pair roughly O(logq) multiplications in resulting finite filed to compute the bilinear
pairings. Hence, the algorithms (7, (U1, Us)) are an O( lo{qq)-efﬁcient implementation of
Pair.

By Theorem 1, U; (resp. Usz) cannot distinguish the test queries from the real queries
T makes. If Uy (resp. Us) fails during any execution of Pair, it will be detected with
probability % a

3.4 Efficiency

Here, we compare our proposal with the state-of-the-art algorithms [18, 35]. The com-
parison of the efficiency is presented in Table 1. The comparison of pre-computation is
shown in Table 2. Compared with the algorithm in [18], our proposal is obviously more effi-
cient. Compared with Algorithm B in [35], our proposal is more efficient in pre-computation
phase. On the other hand, shorter tuple is required in our proposal. Thus, more storage
could be saved, which may be crucial to the resource-constrained devices.



Table 1: Efficiency Comparison
‘ Algorithm [18] ‘ Algorithm A [35] ‘ Ours (Pair) ‘

T 5PA+ 4M APA+3M 4PA + 3M
U 8P 6P 6P
Tuple-size 18 10 8
Checkability 3 3 2

Table 2: Comparison of Pre-computations

’ | Algorithm [18] | Algorithm A [35] | Ours ‘
SM 9 3 2
Exp - 2 2
M - 5 2
MInv - 2 -
PA 5(k+h—3) 4(k+h—3)
P 3 - -

4 New Flexible Outsourcing Algorithm of Bilinear Pairings

4.1 Pre-computation

Similarly, a subroutine Rand is also used here to speed up the computations by using the
table-lookup method. The output for each invocation of Rand is a random, independent
tuple (Vi, Vo, Vi, vVa, e(=V1, V2)), where Vi € Gy, Vo € Gaand v € Zy. Let A = e(—=V1, Va).

Also, the method for creating the table is very similar to that in Section 3.1. At first,
we generate e( Py, P»), and then for each tuple perform the following steps:

1. Following the same procedure in [35], create two pairs (vy, V4), (va, V), where Vj =
1)1P1 and VQ = UQPQ;

2. Pick a random number v € Zj, and compute vV} and vV5;
3. Compute v/ = —v1v9 (mod q);
4. Compute A = e(Py, P,)¥. Tt is clear that A\ = e(—V;, V3).

5. Output (Vi, Vo, vVp,vVa, A).

4.2 The Proposed Algorithm

Here, we present a new flexible outsource-secure algorithm FPair for bilinear pairings.
Similarly, the input of FPair is two random points A € G1,B € Ga, and the output of
FPair is e(A4, B). Note that A and B may be secret or (honest/adversarial) protected and
e(A, B) is always secret or protected.

Our main trick is to logically split A and B into random looking pieces with a random
small integer ¢t € {1,---,s}. Let a1 = e(A— V1, B — W), ag = e(V1,B +vVs) and a3 =

10



e(A —vVp,V3). Note that

ar = e(4,
as = e(V1,B)e(vVi, Va)
as = e(A, Va)e(—vVq, Va)

Thus, 0 = e(A, B) = Aajagas.
On the other hand, let o) = e(tA — V|, B — Vj), o = e(V{,B + v'Vj) and of =
e(tA —v'V/,VJ). Note that

o) = e(A B)'e(A —Vy)'e(=V], B)e(V], V)
: e(V{, Ble(v'V, V3)
= e(A,Vy)lte(—v'V{,V3)

Q
N
Il

Thus, o' = e(A, B)! = Nda/ahal, where N = e(=V{, V).
Clearly, we have o' = o/. Hence, FPair consists of the following steps for outsourcing

the computation of bilinear pairings:

1. Run Rand twice to obtain two random tuples (Vi, Vo, vVi,vVa, \) and (V{, V5, o' V], v'V] X);

2. Query U in random order as
Ui(A—=V1,B—V,) = ay;
Ur(V{, B+ v'Vy) — ab;

Ui(tA — 0"V, Vy) — of;

Similarly, query Us in random order as
Us(tA—V{,B —VJ) — o;

Us(Vi, B 4+ vVa) — aa;

U (A — oV, Vo) — as;

3. Compute 0 = Aajagasz and o' = N o ahask;

4. Finally, check whether or not both of = o’ and o € G holds. If it is the case, output
0; otherwise, “error”.

4.3 Proof

Theorem 3 The algorithms (T,Uy,Us) are an outsource-secure implementation of FPair
in the TUP model, where the input (A, B) may be honest, secret; or honest, protected; or
adversarial, protected.

Proof. The correctness property is straight-forward, and we only prove the security.
The proof is very similar to [35]. Let A = (E,U;,U}) be a probabilistic polynomial-
time adversary that interacts with a probabilistic polynomial-time algorithm 7" in the one-
malicious model.

Firstly, we prove Pair One EVIEW,cq ~ EVIEW,;4eqi (The external adversary, E,
learns nothing.):

11



If the input (A, B) is anything other than honest, secret, then the simulator S trivially
behaves the same way as in the real execution.

If (A, B) is an honest, secret input, S; performs the following steps: In the i-th round,

Sj ignores the input and instead selects random points and ¢ € {1,--- , s} for U; and Us to
perform the random queries. S7 checks the responses from Uy and Us. If there is an error, Sy
outputs Y, = “error”, Y, = ¢, replace’ = 1 and all states are saved. If there is no error, Sy

verifies the remaining outputs. If all checks pass, S1 outputs Y; = ¢, Y = ¢, replace’ = 0;
otherwise, S picks o, € G randomly and outputs Y, = o, Y; = ¢, replace’ = 1. In either
case, the appropriate states is saved by 5.

Note that the input distributions to (U}, U}) in the ideal and real experiments are compu-
tationally indistinguishable. In the ideal experiment, the inputs are chosen randomly. In the
real experiment, all numbers in the queries made by T is computationally indistinguishable
from random since they are independently re-randomized.

If (U],U3) is honest in the i-th round, EVIEW! , ~ EVIEW}, . (since T(W1:U2) ex-
ecutes FPair in the real experiment perfectly and S; simulates with the same outputs in
the ideal experiment). If one of (U], Us) behaves dishonestly in the i-th round and it is
detected by T' and S; (with probability (1 — 3—15)2), an output of “error” will be given; oth-
erwise, the output of FPair will be successfully corrupted (with probability 1 — (1 — 3—15)2)
In the real experiment, the outputs generated by (Ui,U}) are multiplied together along
with a random value, thus a corrupted output of FPair looks random to E. In the ideal
experiment, S also simulates with a random value o, € G, which means that U; or(and)
Us has(have) guessed the value ¢ and the order of inputs, and returns wrong results. Thus,
EVIEW!, , ~ EVIEW}, . even when one of (U], U}) is dishonest. Hence, we can conclude
that EVIEWreal ~ EVIEWideal-

Secondly, we prove Pair Two UVIEW,eq ~ UVIEW;g4eq (The untrusted software,
(U{,US), learns nothing.):

The simulator Sy always performs as follows: In the i-th round, Se ignores the input
and instead selects random points and ¢ € {1,---,s} to both U] and Uj. Then S saves
its states and the states of (U7, Uj). E can easily distinguish between these real and ideal
experiments since the output in the ideal experiment is never corrupted. However, this
information cannot be communicated to (Uj,Uj}) by E since T always re-randomizes its
inputs to (Uj,U) in the i-th round of the real experiment. In the ideal experiment, Ss
always makes random, independent queries for (U{,U}). Thus, for each round i we have
UVIEW;fwl ~ UVIEWZdwl. Hence, we can conclude that UVIEW, oo ~ UVIEW,4oq1- O
Theorem 4 The algorithms (T, (Uy,Us)) are an (O(fgg;), (1 — £)?)-outsource-secure im-
plementation of FPair.

Proof. 1t takes the proposed algorithm FPair only 2 invocation of Rand, O(logt) modular
multiplications in G and O(logt) point additions in G (or G2) in order to compute e(A, B).
Also, the computation for Rand is negligible since we use the table-lookup method. We then
claim that the online computation is about O(logs) since t € {1,--- ,s}. On the other hand,
it takes roughly O(logq) multiplications to compute a bilinear pair. Hence, the algorithms

(T, (Uy,Us)) are an O(égg;)—efﬁcien‘c implementation of FPair.

By Theorem 3, U; (resp. Usz) cannot distinguish the test queries from the real queries
T makes. Moreover, the only chance for U; or Us to keep the verification equation holding
but output a faked value is to guess the value t (the reason is very similar to the proof
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of Algorithm B in [35]). If U (resp. Us) fails during any execution of FPair, it will be

detected with probability (1 — 5-)2. 0

4.4 Efficiency

Here, we compare our proposal with Algorithm B [35]. The comparison of the efficiency
is presented in Table 3. The comparison of pre-computation is shown in Table 4. Clearly, as
for the efficiency of T, Algorithm B and our proposal are same, while the pre-computation
of our proposal is superior to that of Algorithm B in efficiency.

Table 3: Efficiency Comparison

‘ Algorithm B [35] ‘ Ours (FPair) ‘
T O(logs) PA + O(logs) M | O(logs) PA + O(logs) M
U 6P 6P
Tuple-size 10 10
Checkability (1-4)° (1—4)?

Table 4: Comparison of Pre-computations

’ ‘ Algorithm B [35] ‘ Ours ‘
SM 6 4
Exp 2 2
M 8 2
MInv 4 -
PA 20k +h—3) |4(k+h—3)

5 Conclusion

In this paper, we propose two new and efficient outsource-secure algorithm for bilinear
pairings. One is more efficient than the state-of-the-art algorithms [18, 35] in both the
computation of T" and pre-computation. The other, which is flexible in the TUP model, is
more efficient than the state-of-the-art algorithm [35] in pre-computation.
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