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Abstract

In this paper, we consider a special type of secret sharing scheme known as Visual Cryp-
tographic Scheme (VCS) in which the secret reconstruction is done visually without any
mathematical computation unlike other secret sharing schemes. We put forward an ef-
ficient direct construction of a visual cryptographic scheme for compartmented access
structure which generalizes the access structure for threshold as well as for threshold with
certain essential participants. Up to the best of our knowledge, the scheme is the first pro-
posed scheme for compartmented access structure in the literature of visual cryptography.
Finding the closed form of relative contrast of a scheme is, in general, a combinatorially
hard problem. We come up with a closed form of both pixel expansion as well as relative
contrast. Numerical evidence shows that our scheme performs better in terms of both
relative contrast as well as pixel expansion than the cumulative array based construction
obtained as a particular case of general access structure.

keywords: Compartmented access structure, monotone access structure, probabilistic
VCS, basis matrices.

1 Introduction

A traditional Visual Cryptographic Scheme (VCS) for a set of n participants P = {1, 2, . . . ,
n} is a variant of secret sharing, that encodes a secret image SI into n shares which
are distributed by the dealer among n participants (also known as parties) in the form
of transparencies on which the shares are printed. Such shares have the property that
only “qualified” subsets of participants can visually recover the secret image by carefully
stacking the transparencies.

The first VCS was proposed by Naor and Shamir [12] where they considered the thresh-
old access structure. Threshold access structure is a particular type of access structure
where a fixed positive integer (less than or equal to the number of parties) is considered
to be the threshold value. The qualified sets are those subsets of parties which have car-
dinality greater than or equal to the threshold value and any forbidden sets of parties
have cardinality strictly less than the threshold value. This concept has been extended
in [1,2,5] to general access structures. In the literature of (k, n)-threshold VCS, where k is
the threshold value and n is the number of parties, most of the constructions are realized
by constructing so called basis matrices. The mathematical operation that lies beneath
the physical implementation of the above mentioned schemes is the Boolean operation
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“OR”. However the major problems for any OR-based visual cryptographic scheme are
the huge share size (pixel expansion) and very poor contrast of the reconstructed image.
Several papers have been published to minimize the pixel expansion and to maximize
contrast. One may refer to [3,6,14] for a brief survey. All the works mentioned above fall
under the deterministic model of visual cryptography. They are deterministic in the sense
that when qualified sets of participants stack their shares, the secret image is recovered
with probability 1.

In deterministic schemes the pixel expansion becomes so large that it becomes practi-
cally impossible to implement a scheme if the number of parties is large. To deal with the
pixel expansion, Yang [16] has introduced a new model of visual cryptography in which
the reconstruction of the secret image is probabilistic, but the shares have the same size
of the secret image, i.e., the schemes have no pixel expansion. A first attempt to provide
VCS without pixel expansion was done by Ito et al. in [11]. In both the models, each
pixel is reconstructed “OR”ing the corresponding single pixel contained in the shares.
Such models are called probabilistic, because they give no absolute guarantee on the cor-
rect reconstruction of the original pixel. In some cases, the reconstructed pixel may be
wrong. In deterministic schemes when a qualified set of participants stack their shares
then it must hold that they reconstruct the secret with probability 1. In probabilistic VCS
each pixel can be correctly reconstructed only with a probability given as a parameter
of the scheme. This means that the distribution matrices must be carefully selected in
order to recover the secret and also make the scheme secure. For a probabilistic scheme,
as done in [16], it is possible to define the probabilities of (in)correctly reconstructing
a (black)white pixel, given a qualified set of participants. Since in probabilistic models
the secret pixel is correctly reconstructed with some probability, the quality of the recon-
structed images depends on how big the probability of correctly reconstructing the secret
pixels is. The fundamental works in this area of probabilistic visual cryptography are by
Yang [16,17] and by Cimato et al. [7]. The idea of Yang’s construction is as follows. Given
a (k, n)-threshold access structure first we need to construct basis matrices (S0, S1) to
realize a deterministic (k, n)-VCS. During the share generation phase, the dealer chooses
a column randomly from S0 [resp. S1] if the secret pixel is white [resp. black] and dis-
tributes the ith entry of the chosen column to the ith participant as his share. This idea
was forwarded by Cimato et al. [7] where they proposed the idea of choosing more than one
column randomly and distribute the ith entry of the chosen column to the ith participant
as share. This technique increases the share size and makes the scheme expansible but at
the same time it does increase the probability of correct reconstruction of the secret image.

Arumugam et al. [4] introduced (k, n)∗-VCS to capture a special type of access struc-
ture where one participant is “essential” and he needs the help of any k− 1 parties other
than him, to recover the secret image. Guo et al. [10] generalized (k, n)∗-VCS by consider-
ing (k, n)-VCS with t essential participants. We denote this by the notation t-(k, n)∗-VCS.
Note that in the paper [10], the authors denote (k, n)-VCS with t essential participants by
(k, n, t)-VCS. However, to keep parity with the original paper [4], we adopt the notation
t-(k, n)∗-VCS for 0 ≤ t ≤ k, 2 ≤ k ≤ n as also adopted in [9]. Thus for 0 ≤ t ≤ k ≤ n
and P = {1, 2, 3, . . . , n}, the collection of all minimal qualified sets for the t-(k, n)∗-VCS
is given by {S ⊆ P : 1, 2, . . . , t ∈ S and |S| = k}. Here we have assumed, without loss of
generality, the first t many parties are the essential parties. The secret image is not re-
trieved in the absence of any one of the essential parties. The rationale behind considering
such an access structure was to address the scenario in a large company where a board of
directors are essential any big decision making. In such a case all of the board members
are essential. The case when t equals 1 is the work of Arumugam et al. [4] and when t
equals 0 is the threshold access structure. Praveen et al. [13] considered the probabilistic
model of t-(k, n)∗-VCS while Dutta et al. [8] considered XOR based t-(k, n)∗-VCS. Among
other results they proved that the contrast in the probabilistic model for (k, n)∗-VCS is
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equal to the contrast of the same in deterministic model [4].

1.1 Compartmented Access Structure and Related Notations

In this paper we consider a more general access structure than (k, n)∗ access structure,
known as compartmented access structure. Such an access structure was first considered
by Simmons [15] in the context of secret sharing schemes. In a compartmented access
structure on the set of parties P = {1, 2, . . . , n}, there are different compartments, say
C1, C2, . . . , Cu having the property that Ci ∩Cj = ∅ for all i 6= j with |Ci| = ni and positive
integers k, t1, t2, . . . , tu such that k = t1 + t2 + · · ·+ tu and n = n1 + n2 + · · ·+ nu. The
minimal qualified sets for this access structure are those subsets of P that contain t1 many
parties from C1, t2 many parties from C2, . . . , tu many parties from Cu so that the subsets
contain exactly k many parties. We notice that if there are two compartments C1, C2 with
C1 = {1, 2, . . . , t} and C2 = {t + 1, t + 2, . . . , n} and t1 = t, t2 = k − t then we have the
access structure of a t-(k, n)∗. Thus compartmented access structure is a generalization
of the t-(k, n)∗ access structure. To maintain the parity of notations we denote a VCS
for a compartmented access structure by ~t-(k, ~n)∗-VCS, where the symbols ~t and ~n depict
the vectors (t1, t2, . . . , tu) and (n1, n2, . . . , nu) respectively such that |Ci| = ni for all
i = 1, . . . , u, t1 + t2 + · · ·+ tu = k and n1 + n2 + · · ·+ nu = n.

1.2 Our Contribution

We first give a direct efficient construction of basis matrices that realizes the visual crypto-
graphic scheme on the compartmented access structure. Our construction of basis matrices
is in a recursive manner. Up to the best of our knowledge, the scheme is the first proposed
scheme for compartmented access structure in the literature of visual cryptography. We
come up with a closed form of both pixel expansion as well as relative contrast. Numerical
evidence shows that our scheme performs better in terms of both relative contrast as well
as pixel expansion than the cumulative array based construction obtained as a particular
case of general access structure.

2 The Model and Preliminaries

We follow the standard notations and symbols through out. For the sake of complete-
ness we discuss some of the basic notations and tools needed for this paper. Let P =
{1, 2, 3, . . . , n} denote a set of participants. Let the compartments be C1 = {1, 2, . . . , n1},
C2 = {n1 +1, n1 +2, . . . , n1 +n2}, . . ., Cu = {n1 + · · ·+nu−1 +1, . . . , n1 + · · ·+nu−1 +nu}
so that n1 + · · ·+ nu−1 + nu = n.

Let 2P denote the set of all subsets of P. Let Q ⊂ 2P and F ⊂ 2P , where Q∩F = ∅,
respectively denote the set of all qualified sets and the set of all forbidden sets. The
pair (Q,F) constitutes an access structure on P. We denote the collection of all minimal
qualified sets of participants by Qmin such that Q ∈ Qmin means Q contains exactly t1
many parties from C1, t2 many parties from C2, . . . , tu many parties from Cu so that
total number of parties in Q is k. The collection of all maximal forbidden sets is denoted
by Fmax and is defined by Fmax = {F ∈ F : for all i /∈ F, F ∪ {i} ∈ Q}. The access
structure considered here is monotone i.e., any subset of parties that contains a minimal
qualified set is a qualified set and any subset of a forbidden set is forbidden.

Example 2.1 If P = {1, 2, 3, 4, 5, 6, 7}, C1 = {1, 2}, t1 = 1 and C2 = {3, 4, 5}, t2 = 2
and C3 = {6, 7}, t3 = 2, then Qmin consists of the following minimal qualified subsets of
participants B1 = {1, 3, 4, 6, 7}, B2 = {1, 3, 5, 6, 7}, B3 = {1, 4, 5, 6, 7}, B4 = {2, 3, 4, 6, 7},
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B5 = {2, 3, 5, 6, 7}, B6 = {2, 4, 5, 6, 7}. Note that both {1, 3, 6} and {1, 2, 3, 4, 5} are some
of the members of F , while {1, 2, 3, 4, 5, 6} is a member of Fmax.

Notations: Let S be an n×m Boolean matrix and let X ⊆ P. By S[X] we denote the
matrix obtained by restricting the rows of S to the indices belonging to X. Further, for
any X ⊂ P the vector obtained by applying the boolean OR operation “

∨
”, to the rows

of S[X] is denoted by SX . The Hamming weight of the row vector which represents the
number of ones in the vector SX is denoted by w(SX).
Remark: In this paper, we shall be interested in monotone access structures only. As
a result, in terms of defining our schemes, it is sufficient for us to restrict ourselves to
the minimal qualified sets and maximal forbidden sets only. Recall that Qmin and Fmax

denote respectively the set of minimal qualified sets and maximal forbidden sets.
We are now in a position to give definition of a ~t-(k, ~n)∗-VCS and then the definition

of the basis matrices realizing it.

Definition 2.1 Let P = {1, 2, 3, . . . , n} be a set of participants. A ~t-(k, ~n)∗-VCS on P is
a visual cryptographic scheme such that the following two conditions hold:

1. Any minimal qualified set of participants can recover the secret.

2. Any maximal forbidden set of participants does not have any information about the
secret image.

Definition 2.2 (via Basis Matrices) A ~t-(k, ~n)∗-VCS is realized using two n×m binary
matrices S0 and S1 called basis matrices, if there exist two sets of non-negative real
numbers {αX}X∈Qmin and {tX}X∈Qmin such that the following two conditions hold:

1. (contrast condition) If X ∈ Qmin, then S0
X , the “OR” of the rows indexed by X of

S0, satisfies w(S0
X) ≤ tX − αX ·m; whereas, for S1 it results in w(S1

X) ≥ tX .

2. (security condition) If Y = {i1, i2, . . . , is} ∈ Fmax then the two s×m matrices S0[Y ]
and S1[Y ] obtained by restricting S0 and S1 respectively to rows i1, i2, . . . , is are
identical up to a column permutation.

The number m is called the pixel expansion of the scheme. Also αX and αX · m
respectively denote the relative contrast and contrast of the recovered image reconstructed
by the minimal qualified set X.

3 Construction of Basis Matrices

In this section we describe the method of constructing basis matrices for a monotone
~t-(k, ~n)∗-VCS, where ~t = (t1, t2, . . . , tu), ~n = (n1, n2, . . . , nu) with k = t1 + t2 + · · ·+ tu.
Let P1 = {1, 2, . . . , n1}, P2 = {n1+1, n1+2, . . . , n1+n2},. . . ,Pu = {n1+n2+ · · ·+nu−1+
1, . . . , n1 + n2 + · · ·+ nu−1 + nu} be the compartments in the access structure. We break
the construction process into several simpler parts. Let on the participant set Pi, for
the (ti, ni)-VCS, the basis matrices be S0

i and S1
i and the corresponding pixel expansion

be mi, i = 1, 2, . . . , u. Further, let Sb
i = [Cb

i,1 Cb
i,2 ... Cb

i,mi
], b ∈ {0, 1}, where Cb

i,j

denotes the jth column of Sb
i , where j = 1, 2, . . . ,mi.

We now give describe the steps towards constructing the VCS for compartmented access
structure.
Step 1:
Here we describe the construction method of the basis matrices for ~tij-(kij , ~nij)

∗-VCS,
where ~tij = (ti, tj), kij = ti + tj and ~nij = (ni, nj). For this construction, we consider the
basis matrices (S0

i , S
1
i ) and (S0

j , S
1
j ) for the (ti, ni)-VCS and (tj , nj)-VCS respectively.

Consider the two following matrices
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S0
ij =

[
mjC

0
i,1 mjC

0
i,2 ... mjC

0
i,mi

mjC
1
i,1 mjC

1
i,2 ... mjC

1
i,mi

S0
j S0

j ... S0
j S1

j S1
j ... S1

j

]
and

S1
ij =

[
mjC

0
i,1 mjC

0
i,2 ... mjC

0
i,mi

mjC
1
i,1 mjC

1
i,2 ... mjC

1
i,mi

S1
j S1

j ... S1
j S0

j So
j ... S0

j

]
.

Though Lemma 3.1 (to be proved later), we shall show that the above two matrices
are indeed basis matrices for ~tij-(kij , ~nij)

∗-VCS. Here the notation mjC
b
i,k, b ∈ {0, 1},

stands for the repetition of the Cb
i,k column mj times.

Step 2:
Here we describe the construction method of the basis matrices for ~tijl-(kijl, ~nijl)

∗-VCS
where ~tijl = (ti, tj , tl), kijl = ti + tj + tl and ~nijl = (ni, nj , nl). Consider the two following
matrices

S0
ijl =

[
mlC

0
ij,1 mlC

0
ij,2 ... mlC

0
ij,mij

mlC
1
ij,1 mlC

1
ij,2 ... mlC

1
ij,mij

S0
l S0

l ... S0
l S1

l S1
l ... S1

l

]
and

S1
ijl =

[
mlC

0
ij,1 mlC

0
ij,2 ... mlC

0
ij,mij

mlC
1
ij,1 mlC

1
ij,2 ... mlC

1
ij,mij

S1
l S1

l ... S1
l S0

l S0
l ... S0

l

]
.

Step u− 1:
Construction of basis matrices for ~t12...(u−1)u-(k12...(u−1)u, ~n12...(u−1)u)∗-VCS where ~t12...u =
(t1, t2, . . . , tu), k12...u = t1 + t2 + · · ·+ tu and ~n12...u = (n1, n2, . . . , nu). To construct the
basis matrices, we consider the following matrices (S0

12...(u−1), S
1
12...(u−1)) and (S0

u, S
1
u).

Note that the basis matrices (S0
12...(u−1), S

1
12...(u−1)) is obtained recursively.

Consider the matrices
S0
12...u =

[
muC0

12...(u−1),1 ... mlC
0
12...(u−1),m12...(u−1)

muC1
12...(u−1),1 ... muC1

12...(u−1),m12...(u−1)

S0
u ... S0

u S1
u ... S1

u

]
and

S1
12...u =

[
muC0

12...(u−1),1 ... mlC
0
12...(u−1),m12...(u−1)

muC1
12...(u−1),1 ... muC1

12...(u−1),m12...(u−1)

S1
u ... S1

u S0
u ... S0

u

]
.

Remark: Note that in the above constructions, some of the ti’s may be 1. In that case,
we consider (1, ni)-VCS, although it does not make much sense in terms of practicality
but it does mean that every participant alone can recover the secret. That means the
parties must be given as their shares the secret itself! So the basis matrix S0

i must be the
n×1 column vector [0, 0, 0, . . . , 0]t and S1

i must be the n×1 column vector [1, 1, 1, . . . , 1]t.
This also holds true if ni = 1.

Let us first illustrate the above construction through the following example.

Example 3.1 Let P = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the set of parties and let C1 = {1, 2, 3},
C2 = {4, 5}, C3 = {6, 7, 8, 9} be a partition of P such that t1 = 2, t2 = 2, t3 = 3 (notations
have their usual meanings). Thus here we have the minimal qualified sets for the access
structure as Qmin = {124578, 124689, 124679, 124789, 125678, 125689, 125679, 125789,
134678, 134689, 134679, 134789, 135678, 135689, 135679, 135789, 234678, 234689, 234679,
234789, 235678, 235689, 235679, 235789}. For the sake of simplicity, we avoid the brackets,
i.e., here 124578 stands for the set {1, 2, 4, 5, 7, 8}.

Here we start with the visual cryptographic schemes (2, 3)-VCS, (2, 2)-VCS and (3, 4)-
VCS with t1 = 2, n1 = 3, t2 = 2, n2 = 2 and t3 = 3, n3 = 4 having the basis matrices

as S0
1 =

 1 0 0
1 0 0
1 0 0

 , S1
1 =

 1 0 0
0 1 0
0 0 1

 ; S0
2 =

[
1 0
1 0

]
, S1

2 =

[
1 0
0 1

]
and S0

3 =
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
0 0 1 1 1 0
0 0 1 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

 , S1
3 =


1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1

 .
Now to construct the basis matrices (S0

12,S1
12) realizing the above access structure we

follow the technique described in Section 3. We take the following constituent basis ma-
trices to construct the required matrices

S0
12 =

[
2C0

1,1 2C0
1,2 2C0

1,3 2C1
1,1 2C1

1,2 2C1
1,3

S0
2 S0

2 S0
2 S1

2 S1
2 S1

2

]
and

S1
12 =

[
2C0

1,1 2C0
1,2 2C0

1,3 2C1
1,1 2C1

1,2 2C1
1,3

S1
2 S1

2 S1
2 S0

2 S0
2 S0

2

]

S0
123 =

[
6C0

12,1 6C0
12,2 6C0

12,3 6C0
12,4 6C0

12,5 6C0
12,6 6C1

12,1 6C1
12,2 6C1

12,3 6C1
12,4 6C1

12,5 6C1
12,6

S0
3 S0

3 S0
3 S0

3 S0
3 S0

3 S1
3 S1

3 S1
3 S1

3 S1
3 S1

3

]
and

S1
123 =

[
6C0

12,1 6C0
12,2 6C0

12,3 6C0
12,4 6C0

12,5 6C0
12,6 6C1

12,1 6C1
12,2 6C1

12,3 6C1
12,4 6C1

12,5 6C1
ij,6

S1
3 S1

3 S1
3 S1

3 S1
3 S1

3 S0
3 S0

3 S0
3 S0

3 S0
3 S0

3

]
.

Through the following lemmas, we are going to prove that the above mentioned re-
cursive construction indeed produces basis matrices for the given compartmented access
structure.

Lemma 3.1 Let (S0, S1) be the basis matrices that realize a VCS for a general access
structure (Q,F) on the set of participants P = {r + 1, . . . , r + n} with pixel expansion
m∗. Also let (V 0, V 1) be the basis matrices realizing a (k, r)-threshold VCS on a set of
parties P = {1, 2, . . . , r} with pixel expansion m. If we write V 0 = [C0

1 , C
0
2 , . . . , C

0
m] and

V 1 = [C1
1 , C

1
2 , . . . , C

1
m] where Cb

i denotes the ith column of the matrix V b, b ∈ {0, 1} then
the following matrices (S0, S1) given by

S0 =

[
m∗C0

1 m∗C0
2 ... m∗C0

m m∗C1
1 ... m∗C1

m

S0 S0 ... S0 S1 ... S1

]
and

S1 =

[
m∗C0

1 m∗C0
2 ... m∗C0

m m∗C1
1 ... m∗C1

m

S1 S1 ... S1 S0 ... S0

]
realize a VCS on the participant set P ∪ P = {1, 2, . . . , r, r + 1, . . . , r + n} in which any
minimal qualified set is the union of a minimal qualified set in Qmin with a minimal qual-
ified set in the given threshold scheme.

Proof First we prove the security condition for the above construction. If we can prove
the security condition for any maximal forbidden set in the resulting access structure then
we are done. Now any maximal forbidden set F can arise in two different ways.

Case 1: Let F = P∪D, where D is a (k−1) subset of P. Now since D is a forbidden set in
the (k, r)-threshold VCS therefore it follows that the restricted matrices V 0[D] and V 1[D]
are equal upto a column permutation. Without loss of generality, let V 0[D] = V 1[D].
Then the matrices obtained from them by replicating each column exactly m∗ times should
be equal. That is in our notation, [m∗C0

1 [D] · · ·m∗C0
m[D]] = [m∗C1

1 [D] · · ·m∗C1
m[D]].

Thus, when restricted to F the left (resp. right) portion of S0[F ] is equal to the right
(resp. left) portion of S1[F ]. This proves the security condition for this case.
Case 2: Let F = F ∪P, where F ∈ FM . Now since F is a forbidden set, we may assume

that the restricted matrices (S0[F ], S1[F ]) are equal. Now it is easy to see that when

6



restricted to F the left (resp. right) portion of S0[F ] is equal to the right (resp. left)
portion of S1[F ]. This completes the proof of security condition.

For proving the contrast condition we first mention that the pixel expansion of the
resulting VCS is 2mm∗. Let α and α denote the relative contrasts of the (Q,F)-VCS and
(k, r)-threshold VCS respectively. Let X denote a minimal qualified set in the resulting
access structure. Then X = Q ∪B, where Q ∈ Qmin and B is a k subset of P.
Thus we have, w(S1

X) − w(S0
X) ≥ w(S1

Q) − w(S0
Q) ≥ αm∗. This proves the theorem.

Theorem 3.1 The matrices (S0
12...u, S

1
12...u) from a basis matrices for ~t12...u-(k12...u, ~n12...u)∗-

VCS with pixel expansion 2u−1 · m1m2 · · ·mu, where mi is the pixel expansion of the
(ti, ni)-VCS on the participant set Ci.

Proof: Proof of the theorem follows from the construction method in Section 3 and
applying Lemma 3.1, (u− 1) times.
Remark: There exists VCS for any compartmented access structure ~t-(k, ~n)∗-VCS with
pixel expansion 2u−1 ·m1m2 · · ·mu, where mi is the pixel expansion of the (ti, ni)-VCS
on the participant set Ci. Moreover, letting u = 2, |C1| = 1 and |C2| = n− 1 with t1 = 1
we have Theorem 2.3 in [4]. Also, if u = 2 and |C1| = t and |C2| = n − t with t1 = t we
have Theorem 4 in [10].

3.1 Finding Closed Form for Relative Contrast

Theorem 3.1, ensures the existence of a compartmented VCS. However, finding closed
form of relative contrast is a combinatorially challenging problem. In this section, we
come up with a closed form of relative contrast for compartmented access structure using
canonical threshold VCS. First let us define what a canonical VCS [6] is.

Let c denote a Boolean vector with c obtained from c complementing all its entries.
In Boolean matrices S0 and S1 for i = 0, 1, let fc,i be the multiplicity of the column c in
Si, that is fc,i is the number of times the column c appears in Si.

Definition 3.1 [6] The basis matrices S0 and S1 of a (k, n)-VCS are in canonical form
if, for i = 0, 1, the following two properties are satisfied.

1. For any two columns c and c′ such that wt(c) = wt(c′), it results that fc,i = fc′,i.

2. For any column c, it results that

fc,i =

{
fc,i if k is even
fc,1−i if k is odd.

A (k, n)-VCS whose basis matrices are in canonical form is referred to as a canonical
(k, n)-VCS.

The second condition is too stringent and results in too much of pixel expansion. So
the first condition is later taken to be the sole condition for defining canonical visual
cryptographic scheme. To calculate the closed form of the relative contrast, let us use the
following lemmas.

Lemma 3.2 Let (S0
i , S

1
i ) denote canonical basis matrices for a (ti, ni)-VCS with pixel

expansion mi. Let µb
li,i

denote the number of occurrences of each column of weight li in

the basis matrix Sb
i , where i = 1, 2, ..., u and b ∈ {0, 1}. For a minimal qualified set X, let

us further assume ~Wi
b

= (Cb
X,i,1, C

b
X,i,2, ..., C

b
X,i,mi

) where Cb
X,i,j is the “OR” of the jth

column of the restricted matrix Sb
i [X]. Let Zb

i denote the number of zeros in ~W b
i

Then Zb
i =

∑ni−ti
li=0

(
ni − ti
li

)
µb
li,i

, where i = 1, 2, ..., u, b ∈ {0, 1}.
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Proof: Let us understand the logic behind the counting principle. Let us suppose µ0
li,i

denote the frequency with which each column of weight li occur in basis matrix S0
i . Let

X be a minimal qualified set having ti many parties in it. Observe that for a column
vector ~C if at least one its entries is 1 then the “OR” of all the entries of the column
becomes 1. Thus the “OR” value is 0 if and only if all the entries in the column are 0. We
note that a column with weight li when restricted to X will have all zero entries if the li
many 1’s appear at positions which are not indexed by the indices in X. Therefor, those
li many 1’s can appear anywhere among the (ni − ti) entries left in the column ~C. Now,
each column of weight li appears exactly µ0

li,i
times. Therefore, total number of columns

with weight li and having zeros at the positions which are indexed by X is given by the

expression

(
ni − ti
li

)
µ0
li,i

. Also observe that if a column has weight ni − ti or greater

then it is not possible to get all zeros at the positions indexed by X. At least one 1 must
appear somewhere. Varying li over {0, 1, . . . , ni − ti} we get the required expression for
b = 0. Same is the argument for b = 1.

Lemma 3.3 Let ~W b
12...u = (Cb

X,12...u,1, C
b
X,12...u,2, . . . , C

b
X,12...u,u) where Cb

X,12...u,j de-

notes “OR” of the jth column of the restricted matrix Sb
12...u[X], for the minimal qualified

set X of the access structure ~t12...u-(k12...u, ~n12...u)∗-VCS having pixel expansion m12...u.

Let Zb
12...u denote the number of zeros in ~W b

12...u, where b ∈ {0, 1}.Then

Z0
12...u =

∑
~x=(x1,...,xu)such that wt(~x) is even

Zx1
1 Zx2

2 ... Zxu
u

and
Z1
12...u =

∑
~x=(x1,...,xu)such that wt(~x) is odd

Zx1
1 Zx2

2 ... Zxu
u .

Proof: Let us first write the minimal qualified set X as the disjoint union of parts
X1, X2, . . . , Xu where each Xi is a subset of the ith level participants. Applying Lemma
3.2 separately for each Xi and then patching them up keeping in mind the construction
given in Section 3 we get the result.

The following theorem is now straight-forward.

Theorem 3.2 For a given compartmented access structure ~t12...u-(k12...u, ~n12...u)∗, there
exists a ~t12...u-(k12...u, ~n12...u)∗-VCS with pixel expansion m = 2u−1 m1 m2 · · · mu and

relative contrast
∏u

i=1(Z
0
i−Z

1
i )

m .

4 Probabilistic Construction

In this section we adopt the method of Yang [16] to construct non-expansible, probabilistic
~t-(k, ~n)∗-VCS with the help of basis matrices realizing the same access structure in the
deterministic model of VCS. We first give a generic construction method of probabilistic
VCS realizing any general access structure and then we describe a method that realizes
~t-(k, ~n)∗-VCS with better contrast. In the probabilistic scheme the secret image will be
correctly recovered only with a certain probability. Let Q be a qualified set. Let P

w/w
(Q)

be the probability of correctly reconstructing a white pixel in white from the S0 matrix
and P

w/b
(Q) be the probability of incorrectly reconstructing a black pixel in white from

the S0. Similarly we define the notations Pb/b(Q) and Pb/w(Q). To capture the idea of
probability of correct reconstruction of the secret image we take the differences of the
following probabilities:

Pb/b(Q)− Pb/w(Q) (1)

and
Pw/w(Q)− Pw/b(Q). (2)

8



Now a scheme is said to be β -probabilistic if there exists a positive constant β such that
for any qualified set Q

Pb/b(Q)− Pb/w(Q) ≥ β (3)

and
Pw/w(Q)− Pw/b(Q) ≥ β. (4)

We now give the definition of a β-probabilistic VCS for general access structure as follows.

Definition 4.1 Let (Q,F) denote a general access structure on a set of n participants.
A β-probabilistic (Q,F) is defined by two collection of n × 1 matrices CW and CB such
that

1. There exists β > 0, such that for any minimal qualified set Q ∈ Qmin it must hold
that Pb/b(Q)− Pb/w(Q) ≥ β.

2. For any maximal forbidden set F ∈ Fmax, the two restricted collections {M0[F ] :
M0 ∈ CW } and {M1[F ] : M1 ∈ CB} contain the same matrices with equal frequen-
cies.

We will use this definition to realize a general access structure in the probabilistic
model. First we give a generic construction method of probabilistic VCS for general access
structure based on Ateniese et al.’s construction [5] and Yang’s construction [16]. Later
on we shall show that the direct construction of probabilistic VCS for compartmented
access structure based on the basis matrix construction as described in Section 3 has
better relative contrast and pixel expansion than the construction based on cumulative
array as described below.

4.1 Construction of Probabilistic VCS for General Access Struc-
ture

Let (Q,F) denote a general access structure on a set of n participants. For the sake
of completeness, let us first define the prerequisite terms and then discuss about the
construction method of deterministic VCS for general access structure as explained in [5].

A cumulative map (β, T ) for F is a finite set T along with a mapping β : P → 2P such
that for Q ⊆ P, ⋃

a∈Q
β(a) = T ⇔ Q ∈ Q.

A cumulative map (β, T ) for any access structure can be constructed by using the col-
lection of the maximal forbidden sets Fmax = {F1, F2, . . . , Ft} as follows. Let T =
{T1, T2, . . . , Tt} and for any i ∈ P, let β(i) = {Tj | i /∈ Fj , 1 ≤ j ≤ t}. A cumulative
array for Q can be constructed from the given cumulative mapping of Q. A cumulative
array is a |P| × |T | Boolean matrix, denoted by CA, such that CA(i, j) = 1 if and only if
i /∈ Fj .

Let t = |Fmax|. Let CA be the cumulative array for Q obtained by using the cumu-

lative map. Let Ŝ0 and Ŝ1 be the basis matrices for a (t, t)-VCS constructed by Naor
and Shamir [12]. The basis matrices S0 and S1 for a VCS for the access structure (Q,F)
can be constructed as follows. For any fixed i let ji,1, . . . , ji,gi be the integers j such that
CA(i, j) = 1. The ith row of S0 (S1, resp.) consists of the “OR” of the rows ji,1, . . . , ji,gi
of Ŝ0 (Ŝ1, resp.). Then we have a deterministic (Q,F ,m)-VCS with m = 2t−1.

Construction of Probabilistic VCS for General Access Structure:
If we define CW = {~c : ~c is a column of S0} and CB = {~d : ~d is a column of S1} then
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it is easy to see that these collections realize a probabilistic VCS on (Q,F) with relative
contrast γ = 1

2|Fmax|−1 = β.
Thus we have the following theorem.

Theorem 4.1 Given any monotone access structure (Γqual,ΓForb) on a set of n partici-
pants, there exists a β-probabilistic VCS with β = 1

2|Fmax|−1 , where Fmax denotes the set
of all maximal forbidden sets for the access structure (Γqual,ΓForb).

Now, if we use the above construction method for constructing ~t-(k, ~n)∗-VCS, we have
the following Corollary.

Corollary 1 For any given compartmented access structure ~t-(k, ~n)∗, there exists a β-

probabilistic ~t-(k, ~n)∗-VCS with pixel expansion m = 2sum − 1, where sum =

(
n1

t1 − 1

)
+(

n2
t2 − 1

)
+ · · ·+

(
nu

tu − 1

)
and β = 1

m .

Proof: The proof follows from the fact that in case of compartmented access structure,

|Fmax| =
(

n1
t1 − 1

)
+

(
n2

t2 − 1

)
+ · · ·+

(
nu

tu − 1

)
.

4.2 Construction of Probabilistic ~t-(k, ~n)∗-VCS

Based on the construction as described in Section 3 and the method proposed in [16], we
are going to state the following Theorem.

Theorem 4.2 For a given compartmented access structure ~t12...u-(k12...u, ~n12...u)∗-VCS

there exists a β-~t12...u-(k12...u, ~n12...u)∗V CS with β =
∏u

i=1(Z
0
i−Z

1
i )

m .

4.3 Comparison among the schemes

In this section we provide few numerical evidences in Table 1 to justify that our direct
construction method for compartmented access structure works better in terms of both
pixel expansion as well as relative contrast (or β-probability) than the scheme obtained
through Corollary 1 in Section 4.1.

5 Concluding Remarks and Open Issues

We have considered here an efficient direct construction of a visual cryptographic scheme
for compartmented access structure having a closed form of both pixel expansion as well
as relative contrast. Numerical evidence shows that our scheme performs better in terms
of both relative contrast as well as pixel expansion than the cumulative array based
construction obtained as a particular case of general access structure. Finding better
scheme in terms of relative contrast and pixel expansion could be future direction of
research.
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Access structure m1 m2 m3 mour mCA βour βCA

(2,2),(2,4) 2 8 32 32 1/32 1/32

(2,3),(2,3) 3 3 18 32 1/18 1/32

(2,2),(3,4) 2 6 24 128 1/24 1/128

(2,2),(4,4) 2 8 32 32 1/32 1/32

(2,3),(3,3) 3 4 24 32 1/24 1/32

(2,2),(2,2),(2,2) 2 2 2 32 32 1/32 1/32

(2,3),(2,4) 3 8 48 64 1/48 1/64

(1,3),(2,4) 1 8 16 16 1/16 1/16

(2,5),(2,2) 15 2 60 64 1/60 1/64

(3,5),(2,2) 16 2 32 512 1/32 1/512

(1,5),(2,2) 1 2 4 4 1/4 1/4

(1,2),(2,3),(2,2) 1 3 2 24 32 1/24 1/32

Table 1: Comparison between two schemes: mour and βour stand for the pixel expansion and
the β probability for the scheme as described in Section 4.2 while mCA and βCA stand for
the pixel expansion and the β probability for the scheme as described in Section 4.1
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