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Abstract

The AKS (Agrawal-Kayal-Saxena) algorithm is the first ever deterministic polynomial-
time primality-proving algorithm whose asymptotic run time complexity is O(log12+ε n),
where ε > 0. Despite this theoretical breakthrough, the algorithm serves no practical
use in conventional cryptologic applications, as the existing probabilistic primality tests
like ECPP in conjunction with conditional usage of sub-exponential time deterministic
tests are found to have better practical running time. Later, the authors of AKS test
improved the algorithm so that it runs in O(log10.5+ε n) time. A variant of AKS test
was demonstrated by Carl Pomerance and H. W. Lenstra, which runs in almost half
the number of operations required in AKS. This algorithm also suffers impracticality.
Attempts were made to efficiently implement AKS algorithm, but in contrast with the
slightest improvements in performance which target specific machine architectures, the
limitations of the algorithm are found highlighted. In this paper we present our analy-
sis and observations on AKS algorithm based on the empirical results and statistics of
certain parameters which control the asymptotic running time of the algorithm. From
this analysis we refine AKS so that it runs in O(log4+ε n) time.

1 Introduction

In the later part of 20th century, the primality testing problem ’PRIMES’ had its long
stay in the complexity classes NP-Hard, NP and ZPP. Numerous probabilistic primality
tests were developed [4][5][8] and probabilistic tests based on ECPP techniques are being
used even now in conventional Cryptologic applications [7][15]. In 2002 Agrawal, Kayal and
Saxena proved that ’PRIMES is in P’ by developing a deterministic primality test whose
running time is a polynomial in the number of bits required to represent the input number
n [1]. The authors essentially gave a polynomial upper bound for the number of a values,
which act as witnesses for the polynomial congruence (X+a)n ≡ xn+a mod (Xr−1, n) which
is true iff n is a prime power. However, the asymptotic time complexity of the algorithm
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is O˜(log12 n) which is extremely larger than the present Elliptic Curve Primality Proving
techniques[15]. In 2004, the authors reduced the time complexity to O˜(log10.5 n) [9] and
in 2005 Lenstra [24] proposed a variant of AKS which runs in O˜(log7 n) time. However,
both of these improvements are only of theoretical interest. Even though AKS happened to
be a breakthrough, it suffers impracticality due to the expensive computations involved in
each step and its storage requirements[17]. This motivated us to study the second version
of AKS algorithm and observe the issues in its working so as to extract the information
which would help make the algorithm practical. For implementation, we used the PARI C
library [18] which supports large integer arithmetic.

Section 2 presents the AKS algorithm version 2 and its time complexity. Section 3
provides a brief account of few existing implementations and the observations made by
their authors. Section 4 briefly presents the details of our implementation. In Section 5 we
discuss several experiments we conducted on and the results thus obtained. A variant of
AKS is also presented based on our observations. We conclude with Section 6 with a brief
mentioning of our future work.

2 Algorithm & its Complexity

Section 2.1 presents the second version of AKS proposed in 2004 and section 2.2 describes
the time complexity. Henceforth, we use the the term ’AKS’ as a substitute for ’AKS version
2’ as well as the paper containing it [9].

2.1 The Algorithm

Algorithm 1: AKS V2

Data: An Integer n ∈ Z
Result: A string ”Prime” or ”Composite”
begin1

Step 1: If n is of form ab then output ”Composite”;2

Step 2: Choose smallest r such that or(n) ≥ blog2 nc;3

Step 3: If 1 < GCD(a, n) < n for some a < r then output ”Composite”;4

Step 4: If n ≤ r output ”Prime”;5

Step 5: for a← 1 to b
√
φ(r) log nc do6

if (X + a)n 6≡ xn + a mod (Xr − 1, n) then7

output ”Composite”;8

Step 6: output ”Prime”;9

end10

Step 1 of the algorithm verifies whether n = ab for some a, b > 2. If it so happens
then it returns ”Composite”. Step 2 chooses an r such that ’Order of n with respect to
mod r’, i.e., or(n) is greater than blog2 nc. or(n) is the least k such that nk ≡ 1(mod r).
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AKS proves that there exists such an r in the range, [3, log5 n] and also that step 4 returns
”Prime” in the case only when n ≤ 5690034. Step 5 verifies whether the congruence
(X + a)n ≡ xn + a mod (Xr − 1, n) is true for different a ∈ [1, b

√
φ(r) log nc]. Here, φ() is

the Euler’s Totient Function. If any candidate a is found violating this criteria, n is reported
as ”Composite”. Step 6 returns ”Prime” if ∀a ∈ [1, b

√
φ(r) log nc] the above criteria holds

true. ’ mod ((Xr − 1, n)’ in the above congruence means that modulo is taken with respect
to the polynomial Xr − 1 and the computation of coefficients is done in the Ring, Zn.

2.2 Asymptotic Running Time

In the calculations done below, division, multiplication and addition operations between
two l bit integers take O˜(l) time and the same operations on k degree polynomials with
coefficients of at most l bits take O˜(kl) time[10]. Also, O˜(f(n)) represents, O(f(n) ·
polynomial(log(f(n)))). Therefore, what essentially this notation hides is a term logε n of
the asymptotic complexity, where ε > 0 and all other terms which are less than logε n.
Even though, this notation introduced by AKS simplifies the representation, it hides a
significant overhead incurred by the lower order terms. Step 1 can be implemented using
at most O˜(log3 n) operations [10][25].In step 2, we need to make log5 n iterations for r
and for succesive values of r, we should check whether nk 6= 1(mod r), for all k ≤ dlog2 ne.
Each r needs O(log2 n) multiplications modulo r and this takes, O˜(log2 n log r). Therefore,
the total complexity of this step will be O˜(log7 n). Step 3 computes GCD of r integers.
Calculation of GCD takes O(log n) time. Therefore, the complexity of step 3 would be
O(log6 n). Step 4 takes O(log n) number of bit comparisons. The for loop of step 5 iterates

for at most O(log
7
2 n) times to check the polynomial congruence. Each congruence requires

O(log n) number of multiplications of degree r polynomials, where each coefficient is of size,
O(log n). Therefore, each congruence requires O˜(r log2 n) time for verification. So, the

whole of step 5 takes O˜(log
21
2 n) operations. Hence, the total asymptotic time required by

the algorithm is O˜(log
21
2 n) = O˜(log10.5 n).

3 Related Work

Soon after the release of AKS, few implementations were made to practically verify its
correctness, as well as to check its effectiveness in conventional cryptologic applications.
These works also tried to analyse the algorithm and improved the performance by a lit-
tle factor. Rotella[6] is the first ever published implementation of AKS Version 1[1]. The
implementation is in C++, using GMP[27]. Apart from verification of its correctness, the
authors also focussed on improving the performance of Step 5, by replacing the modular
divisions with additions. Even though no change was reflected in asymptotic complexity
of the algorithm, this modification however increased the speed of execution slightly. The
authors also collected the statistics of the density of polynomials being checked for those
n entering step 5. However, these statistics are collected over a small range. The modi-
fication suggested for modular division is incorporated in the latter implementations. RG
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Salembier[11] implemented AKS Version 3 using NTL[26] and observed a little improve-
ment in performance by using binary GCD which is provided by NTL. The improvement
in performance can be attributed to NTL, because numerous research papers have been
published on the optimization of C++ code targeting a specific machine architecture and
the NTL being a C++ library, obviously has potential to achieve this performance gain in
speed. Even though authors did not run the implementation on very large numbers, they
provided an estimate on the number of years it would take to get the results as n grows
larger and larger. They also did an implementation in LIDIA [28] and compared the per-
formance of the two Implementations. An MPI Implementation of AKS Algorithm is done
by [12]. They used method of fast polynomial exponentiation with pre-computation and
parallelized AKS in order to improve its running time. Tong Jin[13] also implemented AKS
using NTL, but rather than just targeting at improving the performance, it also collected
few useful statistics on the number of integers entering each step of the algorithm.

It can be noticed that no sufficient statistics representing the asymptotic runtime be-
haviour of the algorithm are collected. Granville [3] described some interesting ideas of
simulating polynomial computations in Zn, which would reduce the complexity of the al-
gorithm. It also presented some suggestions to convert AKS into a probabilistic algorithm.
How much ever the performance gain might be, the inherent problem in the algorithm has
not been solved. The storage of polynomial coefficients remains an unsolved problem. It
should be noted that the coefficients belong to Zn. Zhengjun Cao[17] describes the storage
requirements for the AKS test and remarks that 1, 000, 000, 000 GB of storage is required
for an input size of 1024 bits. Even though the current operating systems use several tech-
niques to deal with data which is larger to fit in main memory, this remark is suggestive to
be considered. Unless an alternative is devised to rule out the expensive verification of the
polynomial congruence in step 5, the algorithm could never be brought into practice. In
this paper we focus on gaining useful statistics which would help modify the algorithm such
that a lesser asymptotic runtime is achieved. We tried to focus mainly on the parameter
r which is significantly responsible for the running time of the algorithm and also to find
some means to replace step 5 with some equivalent logic.

4 Implementation of AKS

Section 4.1 details the methods used in realizing each step of the AKS. Section 4.2 dis-
cusses some of the issues we faced during implementation and on how we fixed them. Section
4.1 can be skipped by the reader as we made direct use of the PARI library functions.

4.1 Implementataion

Step 1 verifies whether n is a perfect power(pure power) i.e., to check if n is of the form
ab for some a, b ∈ [2,∞). Joachim [10] provides a O(log3 n log log log n) = O˜(log3 n) time
algorithm for perfect power detection.The logic essentially involves computing an integer
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approximation x = n
1
p , ∀p : p ≤ log n. This is accomplished by making a binary search for

x in the range, [2, 2
b logn

p
c+1

] such that xp = n. Bernstein [25] presents an approach which
takes essentially linear asymptotic time O(log1+ε n), where ε is a very small quantity which
ensures that the running time tends towards O(log n). We used ispurepower() function of
PARI which implements it. For implementing step 2, AKS suggested a method which takes
O˜(log7 n) operations. However, we used the library function Fp order() of PARI which im-
plements efficient algorithm for order calculaion [14] and incorporating this will not increase
the asymptotic running time. Step 3 of AKS performs GCD operation O(log5 n) times. This
is also one bottleneck for the algorithm, because if GCD is implemented using traditional
techniques like Eucledian GCD or Binary GCD which take quadratic time in terms of the
number of input bits, it would result in O(log7 n) time for step 3. For implementations in-
volving arbitrary precision arithmetic, PARI provides efficient GCD routines which harness
the method of Binary GCD along with fast integer multiplication algorithms[10], to make
GCD computation almost linear. Therefore, we used the ggcd() function of PARI library
to achieve running time near to O(log6 n). Step 4 of the algorithm takes O(log n) and is
straightforward. Checking the validity of the polynomial congruence in this step adds the
major difficulty to the implementation of AKS algorithm. PARI provides library function
mkpoly() to represent polynomials and FpX add(), FpX sub(), FpX mul(), FpX mod()
for basic polynimial arithmetic. We made direct use of such functions. The problem with the
direct use of PARI functions is nevertheless brought into picture in the case of polynomial
powering. As we shall discuss in the section 4.2, functions in PARI do not perform garbage
collection in order to achieve better running time. Even though FpX pow() of PARI uses
repeated squaring technique, it is found to immediately crash on larger inputs. Therefore,
we had to do our own implementation of polynomial powering using repeated squaring
technique[14]. Computation of φ(r) is done by first obtaining the prime factorization of
r and then using the following formula.

φ(r) = r
∏
p|r

(
1− 1

p

)

We used Z factor() of PARI library to obtain prime factorization of r as the order of r is
comparitively very smaller than n. This implementataion does not perform best in running
time, because the garbage collection techniques implemented along with the code incurs an
overhead. However, the implementation is efficient in the sense that it manages memory by
systematic garbage collection and hence ensuring that the program can be repeatedly run
without crashing, for a reasonably long time.

4.2 Issues in implementation:

The main issue with the direct usage of PARI functions is that they do not collect garbage
from the PARI stack so as to gain speedup in running time. If garbage collection is not
done explicitly, the PARI stack overflows and the program abruptly terminates. Reclaiming
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memory from the unused variables in this way is not at all straightforward in PARI and un-
less it is done carefully, live variables get erased and results of operations tend to go wrong.
So as to understand the mechanism of garbage collection, let us briefly discuss PARI stack
management. All computations in PARI are done over the stack allocated at the begining of
the application. This stack acts as a scratchboard and also as a repository for the PARI ob-
jects during runtime. The function, void pari init(size t size, ulong maxprime) initializes
the PARI/GP system by allocating a stack of required size. The amount of memory allo-
cated to the stack depends on the available main memory of the computing system. While
some systems allow allocation of the total available main memory, some systems allow only
half of the main memory to be utilised by stack. Figure 1 shows PARI stack organization.
The stack starts from the address ”bot” and ends with ”top”. However, computations start
from ”top” and proceed towards ”bot”. The stack contains a ”current stack pointer” called
”avma”, which represents the next available memory address for computation. As shown
in the figure, there use to be a lot of addresses corresponding to the dead variables which
will not be useful in the latter part of the program. It is required to reclaim this unused
memory and make it available for the remainder of the program execution. This garbage
collection can be accomplished using GEN gerepile(pari sp ltop, pari sp lbot, GENq).
Figure 1 shows the positions of these pointers before and after garbage collection. In the
above funcion, ltop and lbot are the memory addresses between which garbage is situated.
gerpile() clears all the garbage between these two pointers and sets the object q at the new
lbot and returns q. If, there are some live variables scattered across the garbage, then either
gerpile() fails to clear the garbage which results in stack overflow, or clears the garbage
along with the live variables, resulting in inconsistent results.

Figure 1: PARI Stack Organization

The solution to this problem is to make sure that no live variables are present across
the garbage. This can be done by dividing the code into basic blocks, where each block
contains only one entry point and one exit point. This means, each block of code must be
such that no point in the block (except the first statement) must be the target address of
any preceding or succeeding jump instruction and only one live variable must be present by
the time the program control reaches the end of the block. By this, each basic block would
possess only garbage along with a live variable by the time the control reaches the end of
the block and this garbage can be cleared by carry forwarding the live variable to the next
basic block. Now, we shall look at the following example where the garbage collection fails
as x2 and y2 are live within the block.
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GEN x2 = gsqr(x); GEN y2 = gsqr(y);
/ ∗ Block starts here. ∗ /
pari sp ltop = avma; / ∗ record initial avma ∗ /
· · · garbage · · ·
· ·
· ·
· ·
· · · garbage · · ·
pari sp lbot = avma; / ∗ end of the garbage pile ∗ /
GEN z = gadd(x2, y2);
/ ∗ Block ends here. ∗ /
z = gerepile(ltop, lbot, z);

In order to make the garbage collection successful, we need to keep the declarations of
x2 and y2 after the statement which records ltop. This is done as follows.

pari sp ltop = avma; / ∗ record initial avma ∗ /
GEN x2 = gsqr(x); GEN y2 = gsqr(y);
· · · garbage · · ·
· ·
· ·
· ·
· · · garbage · · ·
pari sp lbot = avma; / ∗ end of the garbage pile ∗ /
GEN z = gadd(x2, y2);
z = gerepile(ltop, lbot, z);

By dividing the code into basic blocks and clearing the garbage at the end of each block,
we were able to make the program run for sufficiently long time without crash.

5 Exploratory Analysis of AKS

This section discusses various experiments we carried out on AKS and the results thus
obtained. Section 5.1 includes some of our interesting observations which highlight the
possibilities of achieving lower asymptotic bound on the running time of AKS. Based on
these experimental results, we present a variant of AKS and conjecture its correctness.
All experiments are carried out on Ubuntu 14.04 operating system with Intel I7 3.4ghz
processor, 16GB DDR3 RAM and 4TB Seagate hard disk. Prior to the installation of
PARI/GP, GMP has been installed on the system for faster computations.
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5.1 Observations:

5.1.1 Lower bound for r:

The value of r determines both the time and space complexity of AKS. The larger the r,
the larger is the space required to store all the 2r number of coefficients of the polynomials in
step 5 as well as the computational time required to carry out the steps 3, 4 and 5. Therefore
it is a question of interest to know whether it is possible to fix the lower and upper bounds
for r. Determining the range of r also helps reducing the search space required in step 2, a
second bottle neck for the algorithm.

AKS [9] proves that if the Spohie Germain Primes conjecture holds true, then the maxi-
mum value of r can never be more than O(log2 n). Consequently, the asymptotic running
time of the overall algorithm comes down to O˜(log6 n). The plot of r and dlog2 ne versus n
over the bit range [16, 27] in Figure 2(a, b, c, d) emphasizes this statement. It can be noted
that all values of r are situated around and below the neighbourhood of dlog2 ne. It should
be observed that this fact is significant only in a theoretical sense. It does not help modify
the algorithm such that the search space for r practically reduces. In reality, it only cor-
rects the maximum bound for the value of r from O(log5 n) to O(log2 n) and conjectures a
theoretical improvement which has no relevance to minimising the real-time computational
effort needed by the algorithm, once brought into use. Let us take the following example
to illustrate this. For the following 1157 bit integer n, the value of r is 1338367, which is
a 21 bit integer. So, the step 2 of the algorithm has to spend time in calculating or(n) for
all r in the range [3, 1338367] until it encounters r = 1338367, which satisfies the criteria,
or(n) > blog2 nc. All values of r can be visualized to be geometrically distributed and if we
generalize, it would take more than 2blog rc attempts to find a suitable r. This expense of
computation is inevitable unless we devise a lower bound for r.

n = 176531658528854653153793531511987654312367119876543123671123421
533456789872849673659124671123421575247919876543210000671123421
500067112342150010222202876193949596711234215101010101745967112
342152342153345678987284967365912467112342157524791987654321000
067112342150006711234215008753231537935315875323153793531587532
3153793531587532315379353158753239

The graphs in the figures show drastic changes in the values of r and underscore the
difficulty of guessing a lower bound. However by restricting our focus only on those com-
posite numbers which enter step 5 of the algorithm, a smooth variance in the values of r
is identified. The plots of r and b

√
φ(r) log nc versus the composite numbers over the bit

range [16, 32] which enter the loop of step 5 are given in Figure 3(a, b, c, d). Irrespective
of the magnitude of n, b

√
φ(r) log nc is always found to run below r and is never noticed

to intersect with the latter. This behaviour is identified even in the case of numbers with
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(a) (b)

(c) (d)

Figure 2: r and log2 n vs n

higher bit lengths. Therefore we conjecture the below inequality for all n which enter step
5.

r > b
√
φ(r) log nc

⇒ r > b
√
r − 1 log nc

⇒ r > b
√
r(log n− ε)c

⇒ r >
√
r(log n− ε)

⇒ r
1
2 > (log n− ε)

⇒ r > (dlog ne − ε′)2
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The positive real numbers ε and ε′ in the below steps ensure that the inequality remains
held. ε′ = 1 has been experimentally found to be sufficient. The plots of (dlog ne − 1)2 and
r versus n over the bit range [16, 32] are shown in Figure 4(a, b, c, d).

(a) (b)

(c) (d)

Figure 3: r, b
√
φ(r) log nc vs n

As bit length of n increases, we can notice the quantity r − (dlog ne − 1)2 increasing.
Also, the difference r− b

√
φ(r) log nc is seen to be always positive and the maximum value

of that difference is slowly increasing with bit length. The plots of r − b
√
φ(r) log nc vs

n over bit range [2, 28] is given in Figure 5(a, b, c, d). If step 2 of the algorithm starts
searching for r from (dlog ne − 1)2, it would save (dlog ne − 1)2 − 3 number of operations
which involve the calculation of or(n). For instance, the 1157 bit integer n given in the
begining of this sub section takes only 2031 order calculating operations if the search starts
from (dlog ne−1)2 = 1336336 and saves 1336332 operations. That means, a 99.8482479% of
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(a) (b)

(c) (d)

Figure 4: Lower bound of r

the computational effort is gained. Therefore it is quite imperative to make (dlog ne−1)2 as
the lower bound for r, but this claim is found to be held only in the case of such composites
and primes which enter step 5. For the numbers which are reported as composites at step
3, the value of r is identified to be less than (dlog ne − 1)2. Even though AKS chooses a
smallest r which satisfies the criteria, or(n) > blog2 nc, we noted the existence of several
candidates for r greater than rmin which serve the purpose. Now, it is a question of concern
whether the algorithm does not report any false positives at step 5, if r > (dlog ne−1)2 and
r 6= rmin. However, we observed that no such false positives are reported and in particular,
the correctness of AKS does not depend on the smallest r at all. It is very pivotal to note
that or(n) > log2 n, r < dlog5 ne, (r, n) = 1 and n 6= ab are the only four esential settings for
the steps 5 and 6 to function correctly [9]. Therefore, we conjecture that it is always possible
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to find a suitable r > (dlog ne − 1)2 and lower bound for r can be set to (dlog ne − 1)2, to
reduce the search space in step 2.

(a) (b)

(c) (d)

Figure 5: r − b
√
φ(r) log nc vs n

5.1.2 Primality of r:

Figure 6(a, b, c, d) describes the probability with which r is prime, for all n over the
bit range [2, 32]. It is vivid from the plots that r is composite for several n. So as to
gain information from this distribution, we restricted our focus only on the primality of r
corresponding to the composites entering step 5. The plot of primality of r against such
composites is shown in the Figure 7(a, b) and it can be observed that r is mostly prime!
In section 5.1.1, we explained that it is always possible to find r by starting the search
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(a) (b)

(c) (d)

Figure 6: Distribution of prime r

from (dlog ne − 1)2. Therefore it is anticipating to hope that instead of testing the criteria
or(n) > blog2 nc for all r in the range [(dlog ne − 1)2, (dlog ne)5, we could choose a prime
r ∈ ((blog nc)2, (dlog ne)5 with or(n) = r − 1. Since, the value of r happens to be much
smaller when compared to n, testing whether r is prime is easy. Bertrand’s postulate states
that for any integer x ≥ 2 there is always at least one prime p such that x < p < 2x [29].
Consequently, there are aproximatelyO(log3 n) number of primes in [(dlog ne−1)2, (dlog ne)5
and there could be a greater chance to find r with or(n) = r − 1 > blog2 nc. Choosing r
in this way reduces the search space in step 2. As the distribution of primes is less when
compared to composites, the computation of or(n) can be bypassed for all the composite-
r ∈ [(dlog ne − 1)2, (dlog ne)5. For example, consider the 1157 bit number n given in the
section 5.1.1. By beginning the search from (dlog ne−1)2, it takes only 140 order calculating
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operations, if we include this primality check. In contrast, it requires 2031 operations if no
test is performed and 1338367 operations if the search starts from r = 3. This saves
99.9896142% of operations. However, there is an overhead of primality check on r, which
is very less when compared to order calculation.

(a) (b)

Figure 7: Distribution of prime r step 4

5.1.3 Upper bound of r:

Figure 8: rmax vs bit length of n
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Even though this observation has not provided any immediate means to improve the
algorithm, we present it as one of the useful properties of r, because it assists in correcting
the asymptotic running time of the test. It is quite vivid from the graphs presented in the
previous subsections that r is found to drastically vary as n increases. Even after we fix
the lower bound of r to (dlog ne− 1)2, this variation is still noticed. However, the variation
is not much drastic in the latter case. It appeals as if r fluctuates in between some fixed
bounds; the bounds which vary supposedly with bit length. In a quest to find these bounds,
we focussed on the maximum value of r, rimax, corresponding to the numbers which possess
same bit length li and compared it with rjmax of the numbers which have successive bit
length, lj .

(a) (b)

(c) (d)

Figure 9: Upper bound of r
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The empirical observations revealed that

∀i, j ∈ [2,∞), li > lj −→ rimax > rjmax.

∀i, j ∈ [2,∞), li > lj −→ rimin > rjmin.

∀i, j ∈ [2,∞), li > lj −→ riavg > rjavg.

∀i, j ∈ [2,∞), li > lj −→ rimax − rimin > rjmax − r
j
min.

The plot of rmax versus bit lengths over the range [2, 34] is shown in Figure 8. Similary,
rmin, ravg and |rmax−rmin| are also found to increase with bit length. This made us suspect
that there must be a relation between rmax and the bit length, log n. We experimentally
determined that rmax for a given n is always covered by the curve, 1.4(dlog ne)2. Plots in
the Figure 9(a, b, c) clearly depict this phenomenon. Also, as the quantity, 1.4(dlog ne)2− r
is greater than 0 ∀n and is found to increase with bit length, it sounds well to underpin this
reason to affirm that

∀n, (dlog ne − 1)2 < r < 1.4(dlog ne)2.

The graph of 1.4(dlog ne)2 − r against n in the Figure 9(d) reveals that maximum and
minimum values along y axis tend to strictly increase with bit length. This upper bound
tallies with the bound conjectured by AKS, which is O(log2 n) and from our experiments
the constant factors involved in it are estimated as, C = 1.4 and n0 = 983. In case if a
prime r is chosen in step 2, C = 2 and n0 = 31. If P (m) denotes the greatest prime divisor

of number m, Goldfeld [19] showed that primes q with P (q − 1) > q
1
2
+c, c ≈ 1

12 , occur with
positive density. Latter, Fouvry [20] has shown that there exist constants c > 0 and n0 such

that, ∀x > n0 : |{q|q is a prime, q ≤ x and P (q − 1) > q
2
3 }| ≥ c(x/ lnx) and consequently

implies that r = O(log3 n). However, our observations reinforce the correctness of Sophie
Germain Prime conjecture and claim that r = O(log2 n).

5.1.4 Numbers entering step 5 are mostly squarefree:

In an investigation to find out some properties of composites entering step 5, we first
tried factoring them using a factoring function, Z factor() which is available in PARI. We
observed that most of them have odd number of prime factors and all prime factors of n
are distinct and non-repeating! Using the function Z issquarefree() available in PARI,
we verified our observation and found most of them as square free. The plots of Figure
10(d) shows no fluctuation in squarefreeness. Also, we tested on what fraction of numbers
reported as composites in step 3 are square free. We noted that there are several square free
numbers which are detected as composites by this step. For example, out of first 300000
natural numbers, only 1450 square free composites entered step 5, while the remaining
154930 square free composites are identified by step 3. The plot in Figure 10(a, b, c) affirm
this fact. Therefore, relatively less fraction of composites enter step 5 and among them,
most are square free.
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(a) (b)

(c) (d)

Figure 10: Distribution of squarefree n

Despite these observations, it is not straightforward to modify the algorithm. However,
we hope this observation could be quiet useful in any attempts to find an alternative for
step 5.

5.1.5 Frequency of composites reported at steps 1, 3 and 5:

The bar chart rendered in the Figure 11(a) clearly indicates that the number of composites
reaching step 5 of the algorithm, say n′, is less, when compared to the sum total of those
reaching the steps 2 and 3. It is evident from the chart that composites returned in step 3
are in majority. The plot of cumulative density of n′ against bit length given in the Figure
11(b) indicates that there is a little increase in n′ with bit length. The observations which
will be discussed in the next subsection suggests that if a number happens to be composite,
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(a) (b)

Figure 11: Frequency of composites

it does not tend to spend more time in the for loop of step 5. This suggests that AKS is a
better compositeness tester than a primality tester.

5.1.6 r ≤ (dlog ne − 1)2 for most of the composites identified at Step 3:

(a) (b)

Figure 12: (dlog ne − 1)2 splits step 3

The r values of the integers which are reported as composites at step 3 are extremely
small in magnitude when compared to those of the integers which pass to subsequent steps.
Most of them are much smaller than the square of the bit lengths of the corresponding
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n values. This motivated us to investigate on whether any such r ever assumes a value
greater than log2 n. We noticed (dlog ne − 1)2 covering the major portion of r values
chosen by the algorithm. The plots in Figure 12(a, b) over the bit range [2, 34] depicts this
phenomenon how the density of r values is getting faded out with increase in the magnitude
of r. Therefore it is quite beneficial to report n as composite if r ≤ (dlog ne − 1)2 before
entering step 3, which computes GCD of atmost log5 n numbers.

This modification reduces a number of composites reaching step 3 and hence eliminates
the third bottle neck of the algorithm for a greater number of composites. However, this
modification is possible only when the search for r starts from 3 in step 2.

5.1.7 On the number congruences verified in step 5:

For a prime number n consisting of around 350 decimal digits, it is noted that the al-
gorithm needs to perform nearly 1548490619 polynimial multiplications. This incurs enor-
mously high time and space complexity. Therefore, we tried to focus light on the number
of iterations it takes in step 5, if n happens to be a composite. The intention behind con-
ducting such an experiment is that, the composites which enter the loop are found to spend
very less time when compared to the primes of nearly equal size. As the program crashes
for larger inputs due to storage issues described in [17], we employed the following setup.

Experimental setup: A 4TB Seagate hard disk is completely made available for oper-
ating system and Oracle 11g (server) is installed in it. A Java program for AKS is written
such that, whenever two coefficients of a polynomial are to be multiplied, it invokes a C
program which takes two integers in the form of strings as input and gives as result, a string
which contains the result of multiplication. http://Stuff.ro/ [23] illustrates the mechanism
of invoking a C function from a Java program by using JNI(Java Native Interface). Then,
by connecting to oracle through JDBC(Java Database Connectivity), the program stores
the strings in a table representing resultant polynomial. Multiplying two polynomials in
the form of tables and performing a modulo operation is not straightforward. However,
we used the method suggested by Rotella[6], which replaces modular divisions with ad-
ditions. Therefore, repeated squaring and multiplication with polynomials is not at all
hard to implement using tables. In order to conveniently increase the default VM size of
Java, we used Netbeans IDE. The program starts with two tables T1(index, coefficient) and
T2(index, coefficient), each containing two entries, 1 and a in the coefficient fields and once
the product-table is obtained, T1 and T2 are updated with product-table. Hence, repeated
squaring continues.

With the above experimental setup at disposal, we made observations on some inputs
of larger bit sizes, 512 and 1024 as well. Since it is not feasible to test all the numbers,
composite numbers entering the step 5 are processed in intervals, by skipping 1000000000
numbers before processing another. As a whole, it took more than 8 months of time to
obtain results on 10000 numbers in the bit range, [256, 1024], with each composite number
taking around 30 to 60 minutes of time. We restricted our focus only on composite numbers,
because the algorithm is bound to reach step 6 for primes and it takes several years to
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identify primes. We have made the following observations on the number of iterations
taken by the for loop, for all composite n entering step 5.

1. The first value of a for which the loop breaks, say a′, is very small in
magnitude. Initially, it has been noticed that a′ = 1 for all first fifty billion composite
numbers. With this observation we ran the algorithm on random inputs of higher bit
sizes and found that a′ is still 1 even for the bit sizes like 256. a′ is found to be 2
and 3 for whatever numbers we noted with bit sizes 512 and 1024. As we have not
conducted the experiment on all the numbers, we do not assert that the maximum
value of a′ is 3 for the specified bit range, but what we would like to underscore is the
fact that a′ is very small when compared to the number of iterations it would take
if the input happens to be a prime number. As an example, for the 100 digit prime
number n1 given below, r = 108587,

√
φ(r) log n1 = 108402 and it took 35989464

iterations. When we contrast this with a similar 100 digit composite number n2 given
below, r = 110359,

√
φ(r) log n2 = 110288 and it took only 1 iteration!

n1 = 1537935315875323153793531587532315379353158
7532315379353158753231537935315875323153793
53158753231537

n2 = 1000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000
000069999999993

This observation serves as a witness for the claim, ’AKS is a good compositeness
tester, but can not be used as a primality tester for larger inputs’. This difference in
the number of iterations is quite amazing and it demands to search for an alternative
which would take equal amount of time for both compositeness and primality testing.
We also suspect that the value of a′ increases monotonically with respect to n. The
reason being, at no instance it so happened that the value of a′ is found to decrease,
as the input size n increases. However, it is a fact that even as n → ∞, a′ never
converge to

√
φ(r) log n, because AKS has been proven to be true. Supposedly, they

both might become asymptotic to each other as n grows without bound. Therefore,
the essence of this observation is that there is an enormously high difference between
the number of iterations and hence the running times, for compositeness and primality
testing using AKS.

2. The quantity, a′ splits the range [1, b
√
φ(r) log nc] into two disjoint sub-

sets S1 : [1, a′) and S2 : [a′, b
√
φ(r) log nc], where (∀x ∈ S1 and ∀y ∈ S2) :

(x < y). Since, a′ happens to be extremely small, the behaviour of the remaining
b
√
φ(r) log nc − a′ values of a remains to be an issue of interest. For all composites

entering step 5, it has been observed that

∀a ∈ [1, a′), (X + a)n ≡ xn + a(Xr − 1, n)
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and
∀a ∈ [a′, b

√
φ(r) log nc], (X + a)n 6≡ xn + a(Xr − 1, n)

This observation is found to hold true even on larger inputs and infers that a =
b
√
φ(r) log nc could itself serve the purpose of the whole loop. The candidates

[a′, b
√
φ(r) log nc] for different n can be located to be sandwiched between the curves

b
√
φ(r) log nc and a′ − 1. The necessity of making b

√
φ(r) log nc iterations can be

bypassed using only one polynomial test with a = b
√
φ(r) log nc, i.e., if

(X + b
√
φ(r) log nc)n 6≡ xn + b

√
φ(r) log nc(Xr − 1, n),

then we report n as composite, else prime. The truthfulness of this check is based on
the fact that a′ = b

√
φ(r) log nc for primes or else AKS is false.

In section 5.1.4 we demonstrated a phenomenon that n is mostly squarefree if it enters
step 5. This seems to have a connection with number if iterations in step 5, because
a′ also splits the range S into two equivalence classes S1 = [1]=̇ and S2 = [a′]=̇ based
on the success and failure of the polynomial check. We shall see how it can be. For a
given n, let us define f(a) and =̇(a, b) as follows:

f(a) =

{
1 if, ∀a ∈ [1, a′), LHS ≡ RHS;
0 if, ∀a ∈ [a′, b

√
φ(r) log nc), LHS 6≡ RHS

and

=̇(a, b) =

{
1 if, f(a) = f(b);
0 if, f(a) 6= f(b) .

The following propositions are found to hold true ∀(a, b) ∈ S1:

1) a=̇b (Reflexivity)
2) if a=̇b then b=̇a (Symmetry)
3) if a=̇b and b=̇c then a=̇c (Transitivity)

The above propositions hold true ∀(a, b) ∈ S2 also. Hence, =̇ is an equivalence
relation. The essence of the observation is that the composites entering the step 5
divides the range [1, b

√
φ(r) log nc] into two equivalence classes, thereby suggests a

possibility to replace the for loop with a single polynomial test. As per the rigorous
tests we made on the inputs over varied ranges, we have not found any false positives
with this modification. As the attempts[3] are being made to replace the polynomial
arithmetic with integer arithmetic and linear recurrences, there is a good hope that
an efficient deterministic primality test which can be used in practice, will soon be
realized.

21



5.1.8 An attempt to replace step 5

As mentioned earlier, there is an enormously high requirement for time and space to
carry out step 5 even if this step is modified based on observation 5.1.7.2 to perform the
verification of congruence for a = b

√
φ(r) log nc alone. The reason for this can be attributed

to the fact that coefficients of polynomials belong to Zn and all these coefficients must be
in main memory while polynomial arithmetic is performed. This very much highlights the
impracticality of AKS. For large n, it is not even possible to break this computation into
parts so as to claim the garbage. Therfore, we tried the following means based on the
estimation of ω(n), number of distinct prime factors of n. As the numbers entering step
5 are mostly square free, if ω(n) = 1, then n is mostly prime. However, ω(n) can not
be calculated with this precision in polynomial time. Therefore, we fix the running time
to a polynimial and leave the error probability of the resulting randomized algorithm for
investigation to make it deterministic.

Hardy, G. H. and Ramanujan [16] provides an estimate of ω(n) as follows:

ω(n) ≈ ln lnn+B1 +
∞∑
k=1

−1 +
k−1∑
j=0

γj
j!

 (k − 1)!

(log n)k

where B1 is ’Mertens constant’ and is given by

B = t+B′1 +
1

6
π2

where B′1 is calculated from the var(ω(n)) as

B′1 = 1.83588427 . . .

and

t =
∞∑
k=1

1

p2k
= 0.452247

The constants γj in the above equation are known as Stieltjes Constants and are obtained
from the expansion of Riemann zeta function ζ(z) about z = 1. This expansion gives

ζ(z) =
1

z − 1
+
∞∑
n=0

(−1)n

n!
γn(z − 1)n.

The constants γn are given by

lim
m→+∞

[
m∑
k=1

(ln k)n

k
− (lnm)n+1

n+ 1

]

As these expressions for ω(n) include the terms which tend to∞, they seem to be infeasible
to compute. However, we tried to approximate it by replacing ∞ with

√
φ(r) log n. So,
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ω(n) and γn are now modified as

ω′(n) ≈ ln lnn+B1 +

b
√
φ(r) lognc∑
k=1

−1 +
k−1∑
j=0

γj
j!

 (k − 1)!

(log n)k

and

γ′j =

b
√
φ(r) lognc∑
k=1

(ln k)j

k
− (ln b

√
φ(r) log nc)j+1

j + 1

 .
We shall now look at the computational effort needed to implement ω′(n). For the sake of
simplicity, let us not consider the time required for multiplications and divisions. We shall
multiply their running time to the asymptotic complexity of computing ω′(n), at the end.
The outer summation requires b

√
φ(r) log nc number of iterations. From the observations

presented in the section 5.1, we have b
√
φ(r) log nc= O(log2 n). Let this cost be, A. (k −

1)!/(log n)k can be computed in at most k iterations. Since, k can be at most b
√
φ(r) log nc,

these k iterations take O(log2 n) time. Let this cost be, B. The inner summation takes at
most k iterations and hence takes O(log2 n) time. Let this be, C. The inner summation
involves computation of j! and γ′j . Peter [21] describes a method for computing n!, which
takes O(n(log n log logn)2) time. This also includes the time taken to multiply two dlog ne
bit numbers. As j runs till k, j = O(log2 n). So, the time required to compute j! =
O(log2 n(log log n log log log n)2). Let this be, D. Coming to the calculation of γ′j , the

summation needs O(log2 n) iterations. The subtrahend term inside this summation requires
a maximum of O(log j) multiplications. The minuhend term of the summation also needs
O(log n) multiplications. Since, j = O(log2 n), cost of computing γ′j is O(log2 n log logn).
Let this be, E.

So the total cost of computation, including the time required for multiplications and
divisions is,

A · (B + C · (D + E)) ·O(log n log logn log log log n)

which is equal to
O(log7 n(log log n log log log n)3).

Since, we are not computing the terms to ∞, but up to
√
φ(r) log n, the value of ω′(n) is

not found to be exactly 1 for primes. But we are investigating on the range of values for
ω′(n), where n is prime. We also suspect that the range is variable with bit length.

If we compare the implementation of ω′(n) with that of polynomial arithmetic involved
in step 5 of AKS, the earlier appears to be quite feasible. The advantage in implementing
ω′(n) is that we need not store the intermediate values in physcical memory. We are free
to break the implementation into blocks such that the PARI stack can be made free of
garbage, on reaching the end of each block of computation. Where as in the case of the
latter, at any cost we ought to store the coefficients of the polynomials on the stack.

23



When implemented in a traditional way, we found that ω′(n) was never 1 for several
primes and as n increases, ω′(n) > 1 for almost all primes, but we observed a noticeable
difference between the estimates of ω′(n) for primes and those of composites for a given bit
length and this difference is found to increase with bit length. Efficient ways to compute
Stieltjes constants can also be found in the recent literature [22], which do not involve
computing terms up to infinity. Therefore there is a greater scope for ω′(n) to be computed
with higher accuracy in a reasonable time or minimum difference between the estimates of
ω′(n) for primes and those of composites for a given bit length can be found experimentally.

5.2 Proposed Variant of AKS Test:

Based on the observations made from the empirical results which we discussed in the pre-
vious section, we modified AKS algorithm to give the following variant which gave no false
positives on varied bit ranges. Since, r = θ(log2 n), steps 2, 3, 5 take O˜(log4 n), O(log3 n)
and O˜(log4 n) times respectively. Therefore, the overall running time is O˜(log4 n). How-
ever, its correctness has to be investigated theoretically.

Algorithm 2: AKS V3

Data: An Integer n ∈ Z
Result: A string ”PRIME” or ”COMPOSITE”
begin1

Step 1: If n is of form ab then output ”COMPOSITE”;2

Step 2: Choose a prime r: r ∈ ((dlog ne − 1)2, 2(dlog ne)2) and or(n) ≥ blog2 nc;3

Step 3: If 1 < GCD(a, n) < n for some a < r then output ”COMPOSITE”;4

Step 4: If n ≤ r output ”PRIME”;5

Step 5: If (X + b
√
φ(r) log nc)n 6≡ xn + b

√
φ(r) log nc mod (Xr − 1, n) then6

output ”COMPOSITE”;7

Step 6: output ”PRIME”;8

end9

6 Conclusion

The reason for the impracticality of AKS is attributed to the enormous requirement of
space and time. We tried to address this problem by collecting the statistics of parameter
r and the number of congruences verified in step 5. Empirical results provided in section
5.1 helped us deriving conclusions on the upper and lower bounds of r. Alternative to the
verification of the polynomial congruence in the step 5 of AKS[9] is also suggested in section
5.2. The observations described in section 5.1 provide confidence in carrying out theoretical
work to prove the facts affirmed by the results we obtained. We take these observations
as foundations for our future work on providing a theoretical upper bound for AKS and
making it convinient for practical use.
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