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Abstract. We reconsider the formalization of known-key attacks against
ideal primitive-based block ciphers. This was previously tackled by An-
dreeva, Bogdanov, and Mennink (FSE 2013), who introduced the notion
of known-key indifferentiability. Our starting point is the observation,
previously made by Cogliati and Seurin (EUROCRYPT 2015), that this
notion, which considers only a single known key available to the attacker,
is too weak in some settings to fully capture what one might expect
from a block cipher informally deemed resistant to known-key attacks.
Hence, we introduce a stronger variant of known-key indifferentiability,
where the adversary is given multiple known keys to “play” with, the
informal goal being that the block cipher construction must behave as an
independent random permutation for each of these known keys. Our main
result is that the 9-round iterated Even-Mansour construction (with the
trivial key-schedule, i.e., the same round key xored between permutations)
achieves our new “multiple” known-keys indifferentiability notion, which
contrasts with the previous result of Andreeva et al. that one single round
is sufficient when only a single known key is considered. We also show
that the 3-round iterated Even-Mansour construction achieves the weaker
notion of multiple known-keys sequential indifferentiability, which implies
in particular that it is correlation intractable with respect to relations
involving any (polynomial) number of known keys.

Keywords: block cipher, ideal cipher, known-key attacks, iterated Even-Man-
sour cipher, key-alternating cipher, indifferentiability, correlation intractability

1 Introduction

BACKGROUND ON KNOWN-KEY ATTACKS. Informally, a known-key attack
against a block cipher E consists in the following: the adversary is given a key &
from the key space of F/, and must find a “non-trivial” property of the permutation
E). associated with k faster than what it would cost given only black-box access to
a truly random permutation. An example of such a non-trivial property would be
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a plaintext/ciphertext pair (z,y) under the key k such that, say, the first half of
and the first half of y seen as bit strings are both zero (for a random permutation
P over n-bit strings, it is easy to see that this requires roughly 2™/2 queries to
P). Known-key attacks against block ciphers were first introduced by Knudsen
and Rijmen [KR07], who exhibited such attacks against a reduced-round version
of AES and against certain kinds of Feistel ciphers. These attacks were extended
in a number of follow-up papers, e.g. [MPP09, GP10, NPSS10, SY11, Gil14].

Even though the informal idea underlying known-key security might intuitively
seem clear (given a key k, the permutation Fj associated with k& must “look
random”), how to put known-key attacks on theoretical sound grounds has
remained elusive. Indeed, any attempt to rigorously formalize what is a known-
attack against a fixed block cipher runs into impossibility results similar to
those undermining a sound definition of what a “good” hash function should
be [CGH98]. In particular, seeing a block cipher as a family of permutations
indexed by the key, the fact that the key-length is similar to the input-length of
the permutations (i.e., the block-length of the block cipher) leads to the following
“diagonal” problem: consider the set of pairs (k, Ex(k)) for k ranging over the key
space (we assume that the block-length and the key-length are equal for ease of
exposition); then it is hard, given oracle access to a random permutation, to find
an input/output pair in this set, whereas given any key k for E it is very easy to
find an input/output pair for Ej in this set.

A way to circumvent these impossibilities is to consider block cipher con-
structions based on some ideal primitive (for example, a Feistel cipher based
on public random round functions or (iterated) Even-Mansour ciphers based on
public permutations). In that case, even though the adversary is given the known
key, it only has oracle access to the underlying primitive, which effectively acts
as an (exponentially long) seed indexing the permutation associated with the
key. A first step towards formalizing known-key attacks for ideal primitive-based
block ciphers was taken by Andreeva, Bogdanov, and Mennink (ABM) [ABM13]
through what they called known-key indifferentiability (KK-indifferentiability
for short), a variant of the standard indifferentiability notion [MRHO04]. A block
cipher construction C¥" from some underlying primitive F is said indifferentiable
from an ideal cipher F if there exists an efficient simulator S with black box access
to E such that the two pairs of oracles (CF', F) and (E, S¥) are indistinguishable.
Hence the simulator must make E “look like” C¥" by returning answers that are
coherent with the distinguisher’s queries to E (without, in general, knowing these
E-queries) and that are statistically close to answers of a real F oracle.

The KK-indifferentiability notion of ABM modifies the security experiment
as follows: a key k is drawn at random and made available to the distinguisher
and the simulator; the distinguisher is then allowed to query its left oracle
(construction/ideal cipher) only for this specific key k. Hence the simulator’s
job is somehow made simpler since it has a “hint” about which queries the
distinguisher can make to its left oracle. Note that in the ideal (simulated) world,
the distinguisher effectively has access to a single random permutation (since
an ideal cipher behaves as an independent random permutation for each key).



Hence this KK-indifferentiability notion intuitively captures the requirement
that for each key k, the block cipher construction C¥' must “look like” a random
permutation. In contrast, the standard indifferentiability notion is related with
chosen-key attacks, since the distinguisher is allowed to freely choose the keys it
examines.

SHORTCOMING OF THE ABM SECURITY NOTION. The starting point of this
paper is an observation, previously made by Cogliati and Seurin (Appendix C of
the full version of [CS15]) that the ABM security notion might be too restrictive
in some situations because it considers one single known-key. This might be
problematic in some cryptosystems where intuitively resistance to known-key
attacks should be sufficient to provide security, but where the ABM security notion
fails because the cryptosystem uses multiple known keys. Think for example of the
permutation-based hashed functions by Rogaway and Steinberger [RS08a, RS08b]:
these constructions are based on a few (typically 3 to 6) public permutations,
which would typically be instantiated by a block cipher used with distinct publicly
known keys. A crucial requirement for the security proof of these constructions to
hold (in the ideal permutation model) is that the permutations are independent.
Since this is not ensured by the ABM security notion, it is not applicable here,
even though one would like to say that a block cipher which is secure against
known-key attacks can safely be used in the Rogaway-Steinberger constructions.
(Jumping ahead, our new KK-indifferentiability notion will be sufficient to safely
instantiate the block cipher in the same constructions.)

To better emphasize this gap between a single known-key notion and a
multiple known-key notion, consider the case of the 1-round Even-Mansour
(EM) [EM97, DKS12] construction based on a permutation P on {0,1}", which
maps a key k € {0,1}" and a plaintext x € {0,1}"™ to the ciphertext defined as

EMP(k,2) =k & P(k & ).

ABM showed that when the permutation P is ideal, this construction is KK-
indifferentiable from an ideal cipher in the single known-key setting. However, if
the adversary is given any pair of distinct keys (k1, k2), it can pick any z; € {0,1}",
define 29 = 21 ® k1 ® ko, and compute y; = EMkPl(xl) and o = EMfQ(xg). Then
one can easily check that x1 @ xo = y1 D yo. Yet for an ideal cipher E, given
two distinet keys k; # ko, finding two pairs (z1,y1) and (x2,y2) such that
Ey, (1) = y1, Er,(22) = yo, and x1 @ 2 = y1 ® y2 can be shown to be hard:
more precisely, an adversary making at most ¢ queries to E can find such pairs
with probability at most O(Z ). In other words, the permutations associated with
distinct keys for the 1-round EM construction do not “behave” independently.

OUR CONTRIBUTION. OQur first contribution is definitional: in order to remedy
the limitation that we just pointed out, we extend and strengthen the known-key
security definition of [ABM13], by allowing the distinguisher to be given multiple
known keys. Our new notion is parameterized by an integer u, the number
of known keys that the adversary is given. For u = 1, one recovers the ABM



definition. If one lets p = ||, where K is the key space of the block cipher, one
recovers the standard indifferentiability notion. In fact, our KK-indifferentiability
notion will emerge as a special case of a more general notion that we name
restricted-input-indifferentiability, which might be of independent interest. We
also formulate our KK-indifferentiability notion in a “worst-case” fashion (it
must hold for any subset of keys of size ), whereas the ABM notion was in the
“average-case” style (the known key being randomly drawn). In addition, we define
a weaker “sequential” variant [MPS12, CS15] of our new p-KK-indifferentiability
notion, called u-KK-seg-indifferentiability, where the adversary must query its
two oracles in a specific order. This notion is useful since it implies the weaker
notion of correlation intractability.

Our second contribution is about constructions: we show that KK-indifferen-
tiability is a meaningful notion by proving that the iterated Even-Mansour (IEM)
construction with nine rounds is u-KK-indifferentiable from an ideal cipher for
any p = poly(n) (where n is a security parameter indexing the construction),
which contrasts with the fact that one round is sufficient when considering one
single known-key, and also with the best number of rounds known to be sufficient
to achieve full indifferentiability from an ideal cipher, namely twelve [LS13]. We
also show that three rounds are necessary and sufficient to achieve the weaker
u-KK-seg-indifferentiability notion, which again contrast with the fact that four
rounds are necessary and sufficient to achieve (full) seq-indifferentiability from
an ideal cipher [CS15]. See Table 1 for a summary of known results on the IEM
construction.

MORE RELATED WORK. A number of papers have studied the indifferentiability
of variants of the IEM construction. In particular, Andreeva et al. [ABD'13]
have studied the case where the key-schedule is modeled as a random oracle, and
Guo and Lin have studied the case of Even-Mansour ciphers with two interleaved
keys [GL15a] and of key-alternating Feistel ciphers [GL15b].

ORGANIZATION. We start with some general definitions in Section 2. Then
we define precisely our strengthened KK-indifferentiability notion (as well as
the more general notion of restricted-input-indifferentiability, of which KK-
indifferentiability is a special case) in Section 3. In Section 4, we give a known-key
attack (using two known keys) against the 2-round IEM construction. Finally,
we prove that the 3-round, resp. 9-round, IEM construction achieves u-KK-seq-
indifferentiability, resp. u-KK-indifferentiability, in Sections 5 and 6.

2 Preliminaries

GENERAL NOTATION. In all the following, we fix an integer n > 1 and denote
N = 2™, Given a non-empty set M, the set of all permutations of M will be
denoted Perm(M). We simply denote Perm(n) the set of all permutations over
{0,1}™. A block cipher with key space K and message space M is a mapping
E: K x M — M such that for any key k € K, x — E(k,x) is a permutation.



Table 1. Summary of provable security results for the iterated Even-Mansour cipher
with independent inner permutations and the trivial key-schedule. The first two notions
are secret-key notions, the other ones are indifferentiability-based.

. Sim. complexity
Sec. notion # rounds|Sec. bound Ref.
(query / time)
Single-key 1 /2" — [EM97, DKS12]
(pseudorandomness) 2 g2 )2n — [CLL™14]
XOR Related-Key 3 q/2" — [CS15, FP15]
1-KK-indiff. 1 0 q/q [ABM13]
w-KK-Seq-indiff., p > 1 3 urg?2m uq /| g this paper
Full Seq-indiff. 4 qt/2n /¢ [CS15]
p-KK-indiff., g > 1 9 uqb/2m wrq / 1q this paper
Full indiff. 12 q'?/2n q* / ¢° [LS13]

We interchangeably use the notations E(k,z) and Ey(z). We denote BC(K, M)
the set of all block ciphers with key space K and message space M, and BC(n,n)
the set of block ciphers with key space and message space {0,1}". For integers
1< s<t, wewill write (¢)s =t(t—1)--- (t —s+ 1) and (¢)o = 1 by convention.

IDEAL PRIMITIVES. An ideal primitive F is a triplet (F.Dom, F.Rng, F.Inst): the
domain F.Dom and the range F.Rng are two non-empty sets, and the instance
space F.Inst is a set of functions F' : F.Dom — F.Rng.

The two main ideal primitives we will be interested in are ideal permutations
and ideal ciphers. Given a non-empty set M, the ideal permutation P over M is
defined as follows. Let P.Dom = {4+, —} x M and P.Rng = M, and define

P.Inst def {P : 3m € Perm(M), P(+,z) = n(z) and P(—,y) = W_l(y)} .

Clearly, there is a one-to-one correspondence between P.Inst and Perm(M).

Similarly, given two non-empty sets K and M, the ideal cipher with key space
K and message space M is defined as follows. Let E.Dom = {+,—} x K x M,
E.Rng = M, and define

E.Inst def {E :dn € BC(IK,M), E(+,k,2) = ng(z) and E(—, k,y) = n,?l(y)}
Again, there is a one-to-one correspondence between E.Inst and BC(KC, M).
THE ITERATED EVEN-MANSOUR CIPHER. Fix integers n,r > 1. Let f =

(fo,---, fr) be a (r + 1)-tuple of permutations of {0,1}". The r-round iter-
ated Even-Mansour construction EM[n,r,f] specifies, from any r-tuple P =



T D P

N
%

P2 PT‘

N
>
<

Fig. 1. The r-round iterated Even-Mansour cipher.

(Py,...,P.) of permutations of {0,1}", a block cipher with n-bit keys and n-bit
messages, simply denoted EMF in all the following (parameters [n,r, f] will al-
ways be clear from the context), which maps a plaintext « € {0,1}" and a key
k € {0,1}" to the ciphertext defined by (see Fig. 1):

EMP (k,2) = fr(k) ® Po(fr1(k) ® Proi (-~ Po(fr(k) ® Pi(fo(k) @ 2))---)).

We say that the key-schedule is trivial when all f;’s are the identity.

While the pseudorandomness of the IEM cipher was mostly studied with
independent round keys [BKL112, LPS12, CS14] (with the notable exception
of [CLL*14]), it is well known that independent round keys cannot, in general,
provide any security in the setting where the adversary has some control over the
master key (related-, known-, or chosen-key attacks) [LS13]. Hence, in this paper,
we focus on the case where the round keys are derived from an n-bit master key
(actually, all our results deal with the case of the trivial key-schedule).

3 Restricted-Input Indifferentiability and Variants

We introduce the notion of restricted-input indifferentiability (RI-indifferentia-
bility), and explain how known-key indifferentiability is a special case of it. Let
E and F be two ideal primitives.! A construction implementing E from F is a
deterministic algorithm C with oracle access to an instance F' of F, which we
denote CF', such that for any F' € F.Inst, C¥' € E.lnst. A simulator for F is a
randomized algorithm with oracle access to an instance E of E, which we denote
S¥, such that for any E € E.lnst, S¥ : F.Dom — F.Rng. A distinguisher D is
a deterministic? algorithm with oracle access to two oracles, the first one with
signature E.Dom — E.Rng, the second one with signature F.Dom — F.Rng, and
which returns a bit b, which we denote D(01,03) = b. We will call O; the left
oracle and Oy the right oracle. Following [MPS12], we define the total oracle
query cost of D as the maximum, over F' € F.Inst, of the total number of queries

! This might be any ideal primitives, in particular E might not be an ideal cipher.
2 Since we will consider computationally unbounded distinguishers, this is without loss
of generality.



received by F' (from D or C) when D interacts with (C", F'). The indifferentiability
advantage of D against (C,S) is defined by

Advgs™ (D) = ‘ Pr [E < E.nst : D(E,S”) = 1]

— Pr[F < Fnst : D(CF, F) = 1] ) 1)

(Note that the first probability is also taken over the randomness of S).
For any subset of X of E.Dom, D is said X-restricted if it only makes queries
to its left oracle (E or CI') from the set X.

Definition 1 (Restricted-Input Indifferentiability). Let E and F be two
ideal primitives and C be a construction implementing E from F. Let q,0,t € N
and ¢ € RT. Let X be a family of subsets of E.Dom. Construction C is said
(X, q,0,t,¢)-RI-indifferentiable from E if for any X € X, there exists a simulator
S such that for any X -restricted distinguisher D of total oracle query cost at
most q, S makes at most o oracle queries, runs in time at most t, and

AdvPeT(D) <e.

Informally, we simply say that C is X-Rl-indifferentiable from E if it is
(X, q,0,t,e)-Rl-indifferentiable for “reasonable” values of o, ¢, and e expressed
as functions of ¢ (in particular, when C is indexed by some security parameter
n €N, if o,t € poly(n) and ¢ € negl(n) for any ¢ € poly(n)).

As is standard in works on indifferentiability, this definition is information-
theoretic, i.e., the distinguisher is allowed to be computationally unbounded (this
is sometimes called statistical indifferentiability), and demands the existence of a
universal simulator which does not depend on the distinguisher (this is sometimes
called strong indifferentiability; when the simulator is allowed to depend on the
distinguisher, this is called weak indifferentiability).

Note also the following points:

— by letting X = {E.Dom} in the definition above, one recovers the standard
definition of indifferentiability [MRHO04];

— when X = {X} is reduced to a single subset of E.Dom, the definition is
equivalent to the standard definition of indifferentiability of the restriction of
CF to X from the restriction of E to X; hence this definition is only “new”
when considering at least two distinct subsets X and X’ such that X ¢ X’ and
X' ¢ X (since a X-restricted distinguisher is also a X’-restricted distinguisher
when X C X'), and can be equivalently rephrased as the indifferentiability
of the family of restrictions of C to sets in X', with a uniform upper bound
on the simulator’s complexity and the distinguisher’s advantage;

— the simulator is allowed to depend on the specific set X € X considered;

— the upper bound on the advantage of the distinguisher must hold for any
X € X (not, say, on average on the random draw of X from X).



The RI version of indifferentiability can be combined with other flavors of
indifferentiability, in particular with public indifferentiability [DRS09, YMOO09]
and sequential indifferentiability [MPS12, CS15]. Let us elaborate for the case
of sequential indifferentiability. A distinguisher is called sequential if after its
first query to its left (E/CY) oracle, it does not make any query to its right
(S /F) oracle any more. In other words, it works in two phases: first it only
queries its right oracle, and then only its left oracle. Then we can define RI-
seq-indifferentiability exactly as in Definition 1, except that we quantify over
X-restricted sequential distinguishers only. (Hence this is a weaker definition
since for each subset X € X, the simulator has to be effective only against a
smaller class of distinguishers, namely sequential ones.)

CoMPOSITION THEOREM. The meaningfulness of the indifferentiability notion
comes from the following composition theorem [MRHO4]: if a cryptosystem is
proven secure when implemented with ideal primitive E, then it remains provably
secure when E is replaced with C based on ideal primitive F, assuming C is
indifferentiable from E. (For this theorem to hold, the security of the cryptosystem
must be defined with respect to a class of adversaries which “supports” the
simulator used to prove that C is indifferentiable from E [RSS11, DGHM13].)
This theorem straightforwardly translates to X-Rl-indifferentiability as follows:
if a cryptosystem is proven secure when implemented with ideal primitive E and
if for any adversary A, there is X € X such that the challenger of the security
game only queries E on inputs x € X when interacting with A, then it remains
provably secure when E is replaced with C based on ideal primitive F, assuming
C is X-Rl-indifferentiable from E. The short proof is as follows: denote I" the
challenger for the security game, which has access to an instance of E, and fix
an adversary A against the cryptosystem implemented with C*" (hence A has
oracle access to the instance F' of the ideal primitive F); see the combination of
I" and A as a single X-restricted distinguisher D; by the X-RI-indifferentiability
assumption, there is a simulator S such that (C¥', F') cannot be distinguished
from (F,S¥); then the combination of A and S constitutes an attacker against
the cryptosystem implemented with E, and the winning probability of A" is small
by the assumption that the cryptosystem is secure when implemented with E;
hence the winning probability of A is small as well.

KNOWN-KEY INDIFFERENTIABILITY. We now explain how to formalize resistance
to known-key attacks using Rl-indifferentiability. Fix non-empty sets L and M,
and let E be the ideal cipher with key space K and message space M. Recall that
E.Dom = {4, —} x K x M. For any integer 1 < p < |K|, let &}, be the family of
subsets of E.Dom consisting of queries whose key is in X', for ' ranging over all
subsets of IC of size u; more formally,

X, ={{(+.k2): ke K'YU{(— ky) :keK}: K CK,|K'|=u}
Note that &jx| = {E.Dom}.

Definition 2 (u-Known-Key Indifferentiability). Let C be a construction
of a block cipher with key space K and message space M from an ideal primitive



F. Let p,q,0,t € N and ¢ € RY. Construction C is said to be (u,q,o,t,¢)-
KK-indifferentiable from an ideal cipher if and only if it is (X,,q,0,t,€)-RI-
indifferentiable from an ideal cipher, with X,, defined as above.

Unfolding the definition, this is equivalent to the following: for any subset
K' C K of size u, there exists a simulator S such that for any distinguisher D
whose queries to its first (construction/ideal cipher) oracle use only keys k € K’
and of total oracle query cost at most q, S makes at most o oracle queries, runs
in time at most t, and

AdvPET(D) <e.

The KK-indifferentiability notion of Andreeva et al. [ABM13] corresponds to
the definition above for p = 1. In fact, this is slightly more subtle. Their variant
is rather an “average” version of this definition over the random draw of the
known key, resulting from the following changes: the security experiment starts
by drawing a random key k which is given as input to both the distinguisher
and the simulator, and the two probabilities involved in the definition (1) of
the advantage of the distinguisher are also taken over the random draw of the
challenge key k <—g IC. It is not hard to see that our “worst-case” variant of the
definition is stronger (i.e., implies) the average-case version (the average-case
simulator simply has a copy of each worst-case simulator Sk for each possible
subset K’ C K of size pu, and on input the challenge subset of keys runs the
corresponding worst-case simulator).

The standard indifferentiability notion [MRHO04] is recovered by letting u = |K|
in the definition above. The composition theorem specializes to the case of u-KK-
indifferentiability as follows: if a cryptosystem is proven secure when implemented
with an ideal cipher E with key space K and if for any adversary A, there is a
subset of keys K’ of size u such that the challenger of the security game only
queries E with keys k € K’ when interacting with A, then it remains provably
secure when E is replaced with C based on ideal primitive F, assuming C is
u-KK-indifferentiable from an ideal cipher.

KNOWN-KEY CORRELATION INTRACTABILITY. As for the general notion of
RI-indifferentiability, KK-indifferentiability can be combined with the notion of
sequential indifferentiability. Hence, if we restrict Definition 2 by quantifying only
over sequential distinguishers, we obtain the notion of KK-seg-indifferentiability
(see also Fig. 2). This notion is interesting because it implies the (arguably more
natural) notion of known-key correlation intractability, as we explain now.

For this, we first recall the concept of evasive relation and correlation in-
tractability [CGH98, MPS12, CS15]. Let E be an ideal primitive. For an integer
m > 1, an m-ary relation R (for E) is simply a subset R C (E.Dom)™ x (E.Rng)™.
Informally, a relation is evasive with respect to E if it is hard, on average, for
an adversary with oracle access to a random instance E of E to find a tuple of
inputs (aq,...,an) such that ((a1,...,am), (E(a1),..., E(ay,))) satisfies this
relation. The definition below is very general and applies to any ideal primitive.

Definition 3 (Evasive Relation). Let E be an ideal primitive. An m-ary rela-
tion R for E is said (q,)-evasive if for any adversary A with oracle access to an
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Fig. 2. Various flavors of the indifferentiability notion. For full indifferentiability, the
queries of the distinguisher are completely unrestricted. For u-known-key indifferentia-
bility, queries to the left oracle (ideal cipher/construction) can only be made for keys
k € K' for some subset K’ of size p of the key space K (the simulator being allowed
to depend on K'). For sequential indifferentiability, the numbers next to query arrows
indicate in which order the distinguisher accesses both oracles. After its first query to
the left oracle, the distinguisher cannot query the right oracle any more. Combining
the two constraints results in the KK-seq-indifferentiability notion.

instance E of E, making at most q oracle queries, one has

Pr [E g E.nst, (a1,..., ) < AP :
(o, am), (B(), ..., E(om))) € R] <e,

where the probability is taken over the random draw of E and the random coins

of A.

Recall that the domain and the range of an ideal cipher E with key space KC
and message space M are E.Dom = {+, —} x £ x M and E.Rng = M so that, if
we particularize the definition above for an ideal cipher, each «; is a triplet in
E.Dom, and E(«a;) € M.

If we now consider a construction C implementing E from some other ideal
primitive F, a natural thing to ask is that any relation which is evasive with
respect to E remains hard to find for C¥', on average over the random draw of F,
for any adversary with oracle access to F. This is formalized by the following
definition.

Definition 4 (Correlation Intractability). Let E and F be two ideal primi-
tives, and let C be a construction implementing E from F. Let R be an m-ary
relation for E. Then C is said to be (q,¢e)-correlation intractable with respect to
R if for any adversary A with oracle access to an instance of F, making at most

10



q oracle queries, one has

Pr[F < F.nst, (a1,...,ap,) + A"
(a1, vam), (CF(an),...,C" (o)) € R] < e,

where the probability is taken over the random draw of F and the random coins

of A.

A theorem by Mandal et al. [MPS12] (see also [CS15, Theorem 4]) establishes
that seq-indifferentiability allows, for any relation R, to “reduce” the correlation
intractability of C with respect to R to the evasiveness of R (with respect to
E). More precisely, if C is seg-indifferentiable from E and if a relation R is
(¢,¢)-evasive with respect to E, then C is (¢’,&’)-correlation intractable with
respect to R, and the “degradation” of security parameters (¢’,e’) compared
with (¢,¢) depends on the seq-indifferentiability parameters. In other words, if
C is seg-indifferentiable from E, then any relation which is hard to find for E
remains hard to find for C¥" (on average over the random draw of F).

This result can be straightforwardly declined for the case of KK-seq-indif-
ferentiability (and more generally Rl-seq-indifferentiability): if C is X-Rl-seq-
indifferentiable from E for some family X of subsets of E.Dom, then a similar
result holds, but only for relations R such that all inputs involved in R belong
to some subset X € X'; similarly, if C is u-KK-seqg-indifferentiable from an ideal
cipher E with key space IC, then the result holds for relations R such that all
inputs involved in R use the same p keys.

Concretely we have the following theorem. The proof is similar to the proof
of [CS15, Theorem 4] and therefore deferred to Appendix A. First we give two
preliminary definitions. Let E be an ideal primitive, and X be a subset of E.Dom;
then an m-ary relation R for E is said X-restricted if

V((a1,...,am), (B, -, Bm)) ER, Vi=1,....,m, o; € X.

Similarly, let E be an ideal cipher with key space I, and p > 1; then an m-ary
relation R for E is said p-restricted if there exists a subset X' of K of size u such
that

V((8iskiy 2i)s vy Oy kmy 2m)), (21, -+, 20)) ER, Vi=1,...,m, k; € K.

Theorem 1. Let E and F be two ideal primitives, and let C be a construction
implementing E from F such that C makes at most ¢ queries to its oracle on any
input. Let X be a family of subsets of E.Dom. Assume that C is (X,q+cm,0,t,¢)-
RI-seq-indifferentiable from E. Then for any m-ary relation R which is X-
restricted for some X € X, if R is (o0 + m,er)-evasive with respect to E, then C
is (g, € + er)-correlation intractable with respect to R.

In particular, let E be an ideal cipher with key space K, and assume that C is
(1, g+ cm, o,t,€)-KK-seq-indifferentiable from E. Then for any p-restricted m-ary
relation R, if R is (0 + m,er)-evasive with respect to E, then C is (q,e +er)-
correlation intractable with respect to R.
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Remark 1. We need to dispel some confusion that might be created by the
following observation (this will also help illustrate all definitions above with a
concrete example): Lampe and Seurin [LS13] have exhibited an attacker against
the 3-round IEM construction which, given oracle access to the inner permutations,
finds four tuples (k;, x;,y:), i = 1,...,4, satisfying the following evasive relation:

ki Dk ®ksDks=0
1 DroParsdry =0
Y1 DY2 D ys D ys = 0.

Since we will later prove that the 3-round IEM construction is pu-KK-seq-
indifferentiable from an ideal cipher for any polynomial u, this might seem
contradictory with Theorem 1. The catch is that two of the four keys involved
in the relation and obtained at the end of the attack are not controlled by the
adversary and in fact range over the entire key space when the inner permutations
range over Perm(n). Hence, the evasive relation actually involves keys from the
entire key space (not just a small subset of it).

4 KK-Attack on the Two-Round IEM Construction

We explained in Section 1 that the 1-round EM construction is not resistant to u-
known-key attacks for g > 2. We show here that this extends to the 2-round IEM
construction (with independent inner permutations and the trivial key-schedule),
more formally, that this construction is not u-KK-seg-indifferentiable from an
ideal cipher for g > 2. Our attack shares some similarities with the related-key
attack against the same construction of [CS15]. Formally, we prove the following
theorem.

Theorem 2. The 2-round IEM construction EM[n, 2, f] with independent inner
permutations and the trivial key schedule® f is not 2-KK-seq-indifferentiable
from an ideal cipher. More precisely, for any pair of distinct keys (ki,ks), there
is an adversary which distinguishes the construction from an ideal cipher with
advantage close to 1 by making only queries to its left (construction/ideal cipher)
oracle involving these two keys. The adversary makes no queries to its right
(inner permutations/simulator) oracle.

Proof. We denote generically (E, F) the oracles to which the adversary has
access and (k1, ko) two distinct keys the attacker is allowed to use. Consider the
following distinguisher (see Fig. 3 for a diagram of the attack):

(1) choose an arbitrary value z; € {0,1}", and query y; := E(+, k1, 21);
(2) compute zo := 1 ® ko @ k1, and query yo := E(+, ko, 22);

(3) compute ys := y; B k1 B ko, and query x3 := E(—, ka,y3);

(4) compute yy := yo ® ko ® k1, and query x4 := E(—, k1,94);

(5) check whether x4 = x5 ® k1 @ ko.

3 In fact, the attack applies whenever the key-schedule is linear.
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When the distinguisher is interacting with an ideal cipher F, two cases can occur.
Either y4 = y1, or ys4 # y1. In the first case, this means that y; ® yo = k1 & ko,
which happens with probability 27" since x; and x5 are the first queries to
the uniformly random and independent permutations Ej, and FEy,. If ys # y1,
then y, is the second query to the uniformly random permutation Ej,, thus
x4 is uniformly random and this equality happens with probability at most
1/(2™ — 1). Moreover one has ys # y1 @ k1 @ ko which happens with probability
1 —27" since z9 is the first query to Ej,. Since F is a uniformly randomly drawn
blockcipher, Ej, and Ej, are independent permutations and this case happens
with probability at most 27". Overall, when F is an ideal cipher, this relation is
satisfied with a probability at most 2771,

Now we show that when the distinguisher is interacting with the two round
Even-Mansour construction, it always returns 1, independently of k, and the
inner permutations, which we denote P; and P,. Noting that, by definition,
To = 1 D ko ® k1, we denote uq the common value

def
up = 1 D k1 = 12 @ ko,

and we denote v; = P;(u1). We also denote

Uy = v1 D ky (2>
Vo = PQ(UQ)
”U,/Q =1 D kg (3)

/ /
Vy = P2 (Ug)
Hence, one has

Y1 =v2 & ky (4)
Y2 = vy @ k. (5)

Since y3 = y1 B k1 @ ko, we can see, using (4), that
Y3 Dk = y1 @ k1 = vo.
Define

’Ull = Uy P kz (6)

uh = Py (vp).

This implies that

Since Yy = ya @ ka @ k1, we see by (5) that

Ys D k1 = yo ® ko = ).
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Fig. 3. A 2-known-key attack on the iterated Even-Mansour cipher with two rounds
and the trivial key-schedule.

Moreover, we have

uh & k1 =uy B ka ® k1 B ko

=v1 Dk Dk by (3)
= us @ ko by (2)
=] by (6).

This finally implies by (7) that
T4 D kq :u’1 = x3 D ko,

which concludes the proof. O

5 KK-Seqg-Indifferentiability for Three Rounds

We have just given a 2-known-keys attack against the 2-round IEM cipher. This
implies that the 2-round IEM construction cannot be pu-KK-seg-indifferentiable
from an ideal cipher as soon as > 2. (Remember on the other hand that the
1-round EM construction is 1-KK-indifferentiable from an ideal cipher [ABM13].)
Hence, at least three rounds are necessary (and, as we will see now, sufficient) to
achieve u-KK-seg-indifferentiability from an ideal cipher for p > 2.

Concretely, the main result of this section regarding the KK-seg-indifferentia-
bility of the 3-round TEM cipher is as follows.

Theorem 3. Let N = 2™. For any integers p and q such that pg < N/4, the
3-round IEM construction EM[n, 3, f] with independent permutations and the
trivial key-schedule £ is (u, q,0,t,e)-KK-seq-indifferentiable from an ideal cipher
with n-bit blocks and n-bit keys, with
57/~L2q2

N

oc=npq, t=0(ug), and e=
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Fig. 4. Detection and adaptations zones used by the simulator for proving KK-seq-
indifferentiability of the 3-round iterated Even-Mansour construction from an ideal
cipher.

As a corollary, we obtain from Theorem 1 that for any m-ary relation R which
is p-restricted and (ug, £)-evasive w.r.t. an ideal cipher (and assuming g is large
compared with ¢ = 3 and m), the 3-round IEM cipher is (¢, + O (4?¢?/2"))-
correlation intractable with respect to R.

It is also known [MPS12] that for stateless ideal primitives (i.e., primitives
whose answers do not depend on the order of the queries it receives), seq-
indifferentiability implies public indifferentiability [YMOO09, DRS09], a variant of
indifferentiability where the simulator gets to know all queries of the distinguisher
to the ideal primitive E. Since an ideal cipher is stateless, Theorem 3 implies
that the 3-round IEM construction is also KK-publicly indifferentiable from an
ideal cipher.

PRrROOF IDEA. The proof of Theorem 3 is very similar to the proof of (full, not KK)
seq-indifferentiability for the 4-round IEM construction of [CS15]. The main dif-
ference in the simulation strategy is the following: in the full seq-indifferentiability
setting, the simulator has no hint about which key(s) the adversary is using
to try to distinguish the real world from the ideal (simulated) world. Hence, it
uses a 2-round “detection” zone in the middle made of permutations P> and P,
which allows, given a query to P> (say, Py(uz) = v3) and a query to Ps (say,
Ps(u3) = v3), to deduce the key associated to this “chain” of queries (namely,
k = vy @ ug). Permutations P; and P4 are then used to “adapt” these detected
chains and make them match the ideal cipher F. In the KK-setting, the simulator
knows the set K’ of keys that the distinguisher is allowed to use in its ideal
cipher queries. Hence, the detection zone can be reduced to one single round (the
middle one, i.e. P for the 3-round IEM): each time the distinguisher makes a
query to P, the simulator completes the p chains corresponding to this query
and each key k € K, again using extremal round P; and Ps to adapt the chains
(see Fig. 4).

We only give an informal description of the simulator here and defer the
formal description in pseudocode and the full proof of Theorem 3 to Appendix B.
The simulator is given the subset K’ of keys that the distinguisher is bound to use.
It offers an interface Query(i, d, w) to the distinguisher for querying the internal
permutations, where ¢ € {1,2,3} names the permutation, § € {+, —} indicates
whether this a direct or inverse query, and w € {0,1}" is the actual value queried.
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For each i = 1,...,3, the simulator internally maintains a table II; reflecting
which values have been already internally set for each simulated permutation.
Each table maps entries (§,w) € {+, —} x {0,1}" to values w’ € {0,1}", initially
undefined for all entries. We denote I1;7, resp. II;, the (time-dependent) sets
of strings w € {0,1}" such that IT;(+,w), resp. IT;(—,w), is defined. When the
simulator receives a query (4, d, w), it checks in table IT; whether the corresponding
answer I1;(d,w) is already defined. When this is the case, it returns the answer
to the distinguisher and waits for the next query. Otherwise, it randomly draws
an answer w’ € {0,1}" and defines I7;(0,w) := w’ as well as the answer to
the opposite query IT;(0,w’) := w. The randomness used by the simulator is
made explicit through a tuple of random permutations P = (P;, P», P3) with
P, = {+,—} x {0,1}" — {0,1}", and for any u,v € {0,1}", P;,(+,u) = v &
P;(—,v) = u. We assume that the tuple (Py, Py, P3) is drawn uniformly at random
at the beginning of the experiment, but we note that S could equivalently lazily
sample these permutations throughout its execution. Then w’ is simply defined
by the simulator as w’ := P;(d,w).*

Before returning w’ to the distinguisher, the simulator takes additional steps
to ensure that the whole IEM construction matches the ideal cipher £ by running
a chain completion mechanism. Namely, if the distinguisher called Query(i, d, w)
with ¢ = 2, the simulator completes the “chains” for each known key k € K’ by
executing a procedure CompleteChain(uz, vs, k, ), where £ indicates where the
chain will be “adapted” and (ug,vs2) is the pair of values that was just added
to II5. For example, assume that the distinguisher called Query(2,+,us) and
that the answer randomly chosen by the simulator was vy. Then for each k € K/,
the simulator computes the corresponding value us = vy ® k, and evaluates
the TEM construction backward, letting vy := ug @ k, uy := II1(—,v1) (setting
this value at random in case it was not in ITy),  := uy ® k, y := E(+,k, x)
(hence making a query to E to “wrap around”), and vz := y @ k, until the
corresponding input/output values (ug, vs) for the third permutation are defined.
It then “adapts” (rather than setting randomly) table I3 by calling procedure
ForceVal(us, vs, 3) which sets ITs(+,us) := vs and II3(—,vs) := ug in order to
ensure consistency of the simulated IEM construction with E. (A crucial point
of the proof will be to show that this does not cause an overwrite, i.e., that these
two values are undefined before the adaptation occurs.) In case the query was to
Query(2, —, -), the behavior of the simulator is symmetric, namely adaptation of
the chain takes place in table I7;.

6 KK-indifferentiability for Nine Rounds

In this section, we show that nine rounds of the IEM construction are sufficient to
achieve u-KK-indifferentiability from an ideal cipher. Note that this is less than

4 Note that for i = 1 and i = 3, this is not equivalent to letting w’ <—s {0,1}™ \ II¢
since the simulator sometimes “adapts” the value of these tables, so that the tables
II; and the permutations P; will differ (with overwhelming probability) on adapted
entries.

16



what is currently known to be sufficient to achieve full indifferentiability from an
ideal cipher, namely twelve rounds, as shown by Lampe and Seurin [L.S13]. We
conjecture that four rounds are actually sufficient.

We use the same technique as in Section 5 for going from four rounds for
seg-indifferentiability to three rounds for KK-seg-indifferentiability: we start from
the 12-round simulator of [LS13], and shorten the detection zones using the fact
that the simulator knows the subset of keys used by the distinguisher.

We only give an informal description of the simulator and sketch how to
modify the indifferentiability proof of [L.S13], so that the result should rather be
considered as a (substantiated) conjecture. (Given that nine is unlikely to be the
minimal number of rounds needed to achieve u-KK-indifferentiability, and that we
already known that twelve rounds are sufficient to achieve full indifferentiability
and hence pu-KK-indifferentiability, the benefit of writing down the full proof is
rather low.) The high-level principle of how the simulator works is similar to
Section 5 except that there are now additional detection zones besides the middle
one preventing the distinguisher from creating “wrap around” chains (remember
that the distinguisher is not bound to be sequential here, so it can make an
ideal cipher query y := E(+, k, z) and evaluate the IEM construction from both
extremities by making permutation queries until the simulator is trapped into a
contradiction). Moreover, since the simulator can now recurse (i.e., completing a
chain can create new chains to be completed), it uses a queue of chains detected
and to be completed as in [LS13].

As before, the simulator reacts on any query to Ps, and completes the chains
for any key k € K’ by adapting at P; if this is a direct query and adapting at P
if this is an inverse query. Moreover, the simulator also reacts on direct queries to
Py or inverse queries to Py. Let us consider the case of a query P;(+,u1). Then
for each key k € K’, the simulator computes x := uj ® k, queries y := E(+, k, x),
lets vg := y @ k, and checks if vg € IIy . If this is the case, then the chain (uq, k)
is enqueued to be completed and adapted at P;. For an inverse query to Py,
adaptation takes place at Pr. As in [LS13], the four “buffer” rounds P, Py, Ps
and Py surrounding adaptation rounds ensure that no collision can occur when
adapting distinct chains.

The analysis of this simulator then follows the same lines as in [LS13]. Tts
complexity can be upper bounded as follows: first, one applies the standard
argument that the number of wrap-around chains that will be detected is upper
bounded (with very high probability) by the number of ideal cipher queries of
the distinguisher, hence by ¢g. This implies that the size of table II; is always
at most 2¢ (since it increases only because of a distinguisher’s query or when
completing a wrap-around chain). It follows that the number of middle chains
completed is at most 2uq, and the size of all tables II; for i # 5 is at most
q+ q+2ug =2(p+ 1)g. Also, the number of calls made by the simulator to the
ideal cipher can be upper bounded by 2ug (number of middle chains that are
completed), plus 4u(p + 1)g (number of wrap-around chains that are checked),
hence it is O(u?q) (the running time is similar).
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Fig.5. Detection and adaptation zones used by the simulator for proving KK-
indifferentiability of the 9-round iterated Even-Mansour construction from an ideal
cipher.
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Finally, proving a rigorous upper bound on the distinguishing advantage is a
cumbersome task that remains to be done. A rough estimation following the lines
of [LS13] would be that bad events that would make the simulator to overwrite
a value when adapting chains (which is what dominates the security bound)
happen with probability at most (max |IT;])¢/2", hence O(u%¢°).
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A  Proof of Theorem 1

Assume that there exists X € X and an m-ary X-restricted relation R which is
(0+m, eR)-evasive with respect to E but such that C¥' is not (¢, e+ex )-correlation
intractable with respect to R. Then there exists an oracle adversary A making
at most ¢ oracle queries such that A outputs with probability ¢’ > e +¢ a
sequence (au, ..., Qyy,) such that

(a1, yam), (CF(ar),...,CF (am))) € R.

Consider the following X-restricted sequential distinguisher D accessing a pair
of oracles (E, F): it runs A, answering A’s oracle queries with its own oracle F,
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until A returns a tuple (aq,...,qm). If (a1,...,@n) ¢ X™, then D returns 0.
Otherwise, if (a1, ..., am;,) € X™, then D makes oracle queries E(ay), ..., E(amn)
and checks® whether

(a1, am), (E(aq), ..., E(an))) € R.

If this is the case it returns 1, otherwise it returns 0. Note that the total oracle
query cost of D is at most g + cm.

When the distinguisher is interacting with (C¥', F'), the probability that it
returns 1 is exactly &’ > e +&. On the other hand, when it interacts with (E, S¥),
then the union of D and § is an oracle machine with oracle access to E making at
most o +m oracle queries, so that, by definition of a (c+m, e )-evasive relation, D
outputs 1 with probability at most ex. Hence, the advantage of the distinguisher
is ¢’ — er > &, which contradicts the (X, g + em, o, t, €)-RI-seq-indifferentiability
of C.

B Proof of Theorem 3

In order to prove Theorem 3, we first define a simulator S in pseudocode in
Fig. 6 (the simulator depends on the subset of keys K’, but we do not denote it
explicitly further in the proof), then prove that it runs in polynomial time and
makes a polynomial number of queries (Lemma 1), and finally prove that the
two systems X; = (E,S¥) and X3 = (EMF, P) are indistinguishable, using an
intermediate system X5 that we will describe later (Lemmas 3 and 4).

In all the following, we define the size of each table II; internally maintained
by the simulator as |II;| = max{|II;"|,|II; |} (Note that as long as no value is
overwritten in the tables, |II;f| = |II;|.)

COMPLEXITY OF THE SIMULATOR. We start by proving that the simulator runs
in polynomial time and makes a polynomial number of queries to the ideal cipher.
More precisely, we have the following lemma.

Lemma 1. Consider an execution of the simulator S¥ where the simulator
recetves at most q queries in total. Then:

(i) the size of Il is at most q, and the size of II; and II3 is at most uq + q;
(it) the simulator executes CompleteChain at most uq times, makes at most uq
queries to E, and runs in time O(uq).

Proof. The size of II; can only increase by one when the distinguisher makes
a direct call to Query(2,d,w), so that the size of II5 is at most g. Procedure
CompleteChain is called once for each pair in (us, k) € IT;7 x K, hence at most juq
times in total. Since the simulator makes exactly one query to E per execution of

® Note that we are working in the information-theoretic framework, so that the running
time of D is irrelevant. In the computational framework, one should take into account
the time necessary to recognize relation R.
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Simulator Sk (P):
Variables:
tables II1, Il2, 113, initially empty

public procedure Query(i,d, w):
if (6, w) ¢ II; then

w' = P;(6,w)
II;(6, w) := w'
(6, w') == w \\ may overwrite an entry

\\ complete all new chains
if (4,6) = (2,4) then
U 1= W; Vg =W
forall k € K’ do
CompleteChain(uz, v, k, 3)
if (i,0) =(2,—) then
Uy = w'; vy 1= w
forall k € K’ do
CompleteChain(ug, v, k, 1)
return I7;(6, w)

private procedure CompleteChain(uz, v2, k, £):

case { = 1: 30 case { = 3:
vy i=u2 Dk 31 uz :=v2 Dk
\\ evaluate the chain fw. up to u; 32 \\ evaluate the chain bw. up to v
uz ;=12 Dk 33 V1 i=us Dk
vz := Query(3, +, us) 34 uy := Query(1, —, v1)
y:=v3dk 35 r:i=u Dk
x = E(—,k,y) 36 y:=E(+,k,x)
u i =rxdk 37 v :=yPk
\\ adapt the chain 38 \\ adapt the chain
ForceVal(u1,v1,1) 39 ForceVal(us, vs, 3)

private procedure ForceVal(u;, vi, 1):
ILi(+, ui) == v; \\ may overwrite an entry
Ii(—,vi) == uy \\ may overwrite an entry

Fig. 6. The 3-round KK-seq-indifferentiability simulator in pseudocode.
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CompleteChain, the total number of queries made by the simulator to E is at most
ug. The size of I, resp. II3, can only increase by one when the distinguisher
calls Query(1,d,w), resp. Query(3,d,w), or when CompleteChain is called, hence
the size of I1; and I3 is at most puq + ¢. Clearly, the simulator running time is
dominated by the executions of CompleteChain, hence the simulator runs in time

O(uq). O

INTERMEDIATE SYSTEM. In all the following, we consider some distinguisher D,
and assume that it is deterministic (this is wlog since we consider computationally
unbounded distinguishers). We will denote S(E,P) rather than S(P)¥ the
simulator with oracle access to the ideal cipher F and using random permutations
P as source of randomness. In order to prove the indistinguishability of the two
systems (E,S(E,P)) and (EMF, P), we will use an intermediate system.® Let )
be the “ideal” world where the distinguisher interacts with (E,S(E,P)). Note
that all the randomness of system Y is captured by the pair (E,P). Let also
Y5 be the “real” world where the distinguisher interacts with (EMF, P). All the
randomness of system X3 is captured by P. In the intermediate system X5, the
distinguisher interacts with (EMSE®) S(E P)) (see Fig. 7). In words, the right
oracle is the simulator S(E, P) with oracle access to an ideal cipher E as in X,
but now the left oracle is the 3-round IEM construction with oracle access to
S(E,P) (rather than random permutations). As for X, all the randomness of
system X5 is captured by (E,P).

21 22 23
P E P
A X
i) S EM S EM P
2 1 2 1 2 1
D D D
] J ]
0/1 0/1 0/1

Fig. 7. Systems used in the KK-seg-indifferentiability proof.

5 Note that this intermediate system is the same as the one used in [CS15].
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TRANSITION FROM X; TO Y5 AND GOOD EXECUTIONS. We first consider the
transition from the first to the second system.

Definition 5. A pair (E,P) is said good if the simulator never overwrites an
entry of its tables II; during an ezecution of D¥2(EP)  Otherwise the pair is said
bad.

An overwrite may happen either during a random assignment (line (8) of
the formal description of the simulator in Fig. 6), or when adapting a chain
(lines (41) and (42)). Note that whether a pair (E,P) is good or not depends on
the distinguisher D. We first upper bound the probability that a random pair
(E,P) is bad.

Lemma 2. Consider a distinguisher D of total oracle query cost at most q, with
ug < N/4. Then a uniformly random pair (E,P), where E <¢ BC(n,n) and

P < (Perm(n))3, is bad (with respect to D) with probability at most %,

Proof. First, note that the total number of queries received by the simulator
in X5 (either from D or from the construction EM) is exactly the total oracle
query cost q of the distinguisher. Since entries in I15 are never adapted, they can
never be overwritten either. Hence, we only need to consider the probability of
an overwrite in I or II3. Let BadRand be the event that an overwrite occurs
during a random assignment (i.e., at line (8)) and BadAdapt be the event that
an overwrite occurs when adapting a chain (i.e., at line (41) or (42)).

We first consider the probability of BadRand. Consider a random assignment
in I1;, for i = 1 or 3, namely IT;(, w) := w’, IT;(6,w’) := w, with w’ randomly
defined as w’ := P;(§, w). By Lemma 1 (4), there are at most (1 + 1)g random
assignments in IT; and I3, so that w’ is uniformly random in a set of size at
least N — (i + 1)g. Moreover, this random assignment cannot overwrite a value
that was previously added during a random assignment, but only a value that
was added by ForceVal (i.e., when adapting a chain), and by Lemma 1 (i7) there
are at most pq such values. Hence, the probability that w’ is equal to one of the
at most pg values previously added in table II; by a call to ForceVal is at most
Wqﬂ)q. Summing over the at most (¢ + 1)g random assignments in IT; and
115, we get

2.2
1y <8uq_ (8)

Pr[BadR <2 1
r[BadRand] < 2(p + )qu—(M+1)q_ N

We now consider the probability of BadAdapt, conditioned on BadRand not
happening. Let BadAdapt; be the event that a value is overwritten by the i-th
call to ForceVal. We will upper bound the probability

Pr [BadAdapti|—|BadRand A —BadAdapt;,j =1,...,1— 1] .

Consider the i-th execution of CompleteChain(us,ve, k, £), and assume that event
BadRand does not occur and BadAdapt; does not occur for 1 < j <4 — 1. This
means that no value was overwritten before this i-th call to CompleteChain. For

25



concreteness, suppose that this chain completion was triggered by a call to
Query(2, +, ) from the distinguisher, so that £ = 3 (the reasoning is symmetric
for a call to Query(2,—,-) for which ¢ = 1). The simulator will eventually call
ForceVal(us, vs, 3), and we must show that with high probability, the values
II5(+,u3) and II3(—, v3) are undefined previously to this call. We first consider
the case of us. This value is defined by the simulator by setting ug := vy & k.
Since the distinguisher called Query(2, +, -) and since there are at most ¢ random
assignments in I, then vo comes at random from a set of size at least N — q.
Hence, the probability that us is equal to one of the at most (x+1)g values already
in II5 is at most %. We now argue that IT3(—,v3) is also undefined with high
probability. For this, we show that the query E(+, k,2) made by the simulator to
wrap around when evaluating the IEM construction forward is fresh, i.e., it never
made this query before nor received x as answer to a previous query E(—, k,y).
Assume that this does not hold. Then this means that such a query previously
occurred when completing another chain. But since we assumed that no value
was overwritten in the tables before this call to CompleteChain(ug,vs, k,3), it
can easily be seen that this implies that (u}, v}, k") = (uz,ve, k), which cannot
be since the simulator completes any chain at most once by construction. This
implies that the value y returned by F comes at random from a set of size at
least N — pg (since by Lemma 1 the simulator makes at most pq queries to E),
so that v := y @ k is equal to one of the at most (u+ 1)g values already in table
(pt+1)g

117 with probability at most Nha Hence, summing over the at most uq calls

to CompleteChain, we obtain

g
Pr [BadAdapt|—BadRand] < ZPr [BadAdapt,|
i=1
—BadRand A —BadAdapt;,j =1,...,i — 1]
+1)q + 1)q 8u2q?
SM(M)(M)Sﬂ_ ©)
N—-q N-—pq N

Combining (8) and (9) yields the result. O

Lemma 3. For any distinguisher D of total oracle query cost at most q, one has

2.2
‘PI‘ |:D21(E’P) _ 1i| — Pr |:D22(E’P) _ ]{H < M
— N b)

where both probabilities are taken over E <—g BC(n,n) and P <g (Perm(n))3.

Proof. Recall that the distinguisher is sequential, i.e., it first queries only its
right oracle (which for both ¥y and X5 is S(E, P)) and then only its left oracle
(which is E in Xy and EMS(EP) ip Y5). We show that for any good pair (E, P),
the transcript of the interaction of D with X1 (E,P) and X5(F, P) is ezactly the
same. This is clear for the transcript of the first phase of the interaction, i.e.,
for the queries of D to S, since in both cases they are answered by S using the
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same pair (E,P).” For the second phase of the interaction (i.e., queries of D to
its left oracle), it directly follows from the adaptation mechanism and the fact
that the simulator never overwrites values in its tables II; that for any forward
query of the distinguisher, EMS(E’P)(—i—7 k,x) = E(+, k, ), and similarly for any
backward query, EI\/IS(E’P)(—7 k,y) = E(—,k,y). Hence, the transcripts of the
interaction of D with X (FE,P) and Xo(E,P) are the same for any good pair
(E,P). Consequently,

‘Pr [DEl(E’P) - 1] —Pr [DEz(EP) - 1” < Pr[(E,P) is bad],
from which the result follows by Lemma 2. O

TRANSITION FROM Y5 TO X3 AND RANDOMNESS MAPPING. We now consider
the transition from the second to the third system, using a randomness mapping
argument similar to the one of [HKT11, LS13]. For this, we define a map A
mapping pairs (F, P) either to the special symbol L when (E,P) is bad, or to a
tuple of partial permutations P’ = (P], Py, P{) when (E,P) is good. A partial
permutation is a function P} : {+, -} x {0,1}" — {0,1}" U {*} such that for all
u,v € {0,1}", Pi(4+,u) = v # x & Pi(—,v) =u # *.

The map A is defined for good pairs (E,P) as follows: run D>2(F:P) and
consider the tables II; of the simulator at the end of the execution; then fill all
undefined entries of the IT;’s with the special symbol *. The result is exactly
A(E,P). Since for a good pair (F,P), the simulator never overwrites an entry in
its tables, it follows that A(E, P) is a tuple of partial permutations as just defined
above. We say that a tuple of partial permutations P’ = (Py, P;, Pj) is good if it
has a good preimage by A. We say that a tuple of permutations P = (Py, P, Ps)
extends a tuple of partial permutations P’ = (P, P, P}), denoted P + P’ if for
each 1 <14 <3, P, and P/ agree on all entries such that P/(d,w) # *.

Lemma 4. For any distinguisher D of total oracle query cost at most q, one has
41M2q2
N )

[Pr [D(E) — 1] — pr [p®) — 1] | <

where the first probability is taken over E <+—g BC(n,n) and P <g (Perm(n))?,
and the second over P <g (Perm(n))3.

Proof. Let

def
E =

Pr [D¥(EF) — 1] - pr [D%(P) 1|

and assume w.l.o.g. that Pr [D&(E*P) = 1] > Pr [D%(P) = 1}.
By definition of the randomness mapping, for any good tuple of partial
permutations P’, the outputs of D¥2(E:P) and D¥(®) are equal for any pair

" Note that the fact that the distinguisher is sequential is used precisely here: for a
non-sequential distinguisher, the behavior of the simulator would be different in Xy
and Y2 since in Xs the simulator would receive queries from the IEM construction
that it does not receive in X;.
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(E,P) such that A(E,P) = P’ and any tuple of permutations P such that P - P’.
Let ©; be the set of tuple of partial permutations P’ such that D>2(£:P) outputs
1 for any pair (E,P) such that A(E,P) =P’. Then

e <Pr[(E,P)isbad|+ Y Pr[A(E,P)=P]- > Pr[P-P]. (10)
P'co; P'co;

Fix a good tuple of partial permutations P’ = (Py, P5, P;), and let
1Pl = Hu € {0,1}" : P/(+,u) # «}| = {v € {0,1}" : P/(=,v) # +}|.

Then, clearly,

Pr [P +5 (Perm(n))® : P+ P'] = 1'[3(1N)p|

Fix now any good preimage (E, P) of P/, where P = (Py, P5, Ps), and let g, and

¢; (1 <i<3) be the number of queries made by the simulator respectively to
E and P; in the execution of D¥2(E-P)_ One can check that for any pair (E,P),
A(E,P) = P’ iff the transcript of the interaction of S with (E,P) in D*2(F:P)
is the same as the transcript of the interaction of S with (E,P) in DT2(EP) Ty
follows that

1
(Mg T (N)g,

(The exact value of this probability depend on the number of queries per key
made to F, but clearly it is maximal when all ¢. queries are made for the same
key.) Moreover, since the number of executions of ForceVal made by the simulator
(i.e., the number of chain adaptations) is equal to the number of queries made by
the simulator to F, one has

Pr[E <5 BC(n,n),P <5 (Perm(n))® : A(E,P) =P'] <

3 3

S IP/l=qe+ Y ai <2uq+3q, (11)

i=1 =1

where the inequality follows by Lemma 1 (i) on the final size of the tables II;
maintained by the simulator. Hence, we have

PrPEP] (M) [V

PrA(EP)=P] ]2 (N)p
3
qu+zi=1 @ qe—1 . 3 qi—1
> —=— X =% N
TN P U ( )H H ( )
—— B
=1 by (11)

3
qz + Zi=1 qi2
N

>1-
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2
o1 (2pa+3q)
= N

2
> 25(pa)”
N

by (11)

Combining this lower bound with (10), we obtain

) . ) _onfy__ PrPEP]
e <Pr[(E,P) bd]+P;@1P[A(E,P) P]<1 PT[A(E’P):PO

< Pr[(E,P) is bad] + % > Pr{A(E,P) =P
P'co,

2
< Pr[(E,P) is bad] + %

The result follows from Lemma 2. O

CONCLUDING. The proof of Theorem 3 directly follows by combining Lemmas 1,
3, and 4.

As a corollary, we obtain from Theorem 1 that for any m-ary, u-restricted,
(uq, €)-evasive relation R, the 3-round IEM cipher is (q7 e+ 0 (u2q2/2”))—c01‘re—
lation intractable with respect to R.
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