Structure vs. Hardness through the Obfuscation Lens*

Nir Bitansky' Akshay Degwekart Vinod Vaikuntanathan®

Abstract

Much of modern cryptography, starting from public-key encryption and going beyond, is
based on the hardness of structured (mostly algebraic) problems like factoring, discrete log, or
finding short lattice vectors. While structure is perhaps what enables advanced applications, it
also puts the hardness of these problems in question. In particular, this structure often puts
them in low (and so called structured) complexity classes such as NP N coNP or statistical
zero-knowledge (SZK).

Is this structure really necessary? For some cryptographic primitives, such as one-way per-
mutations and homomorphic encryption, we know that the answer is yes — they imply hard
problems in NP N coNP and SZK, respectively. In contrast, one-way functions do not imply
such hard problems, at least not by black-box reductions. Yet, for many basic primitives such as
public-key encryption, oblivious transfer, and functional encryption, we do not have any answer.

We show that the above primitives, awhond many others, do not imply hard problems in
NP N coNP or SZK via black-box reductions. In fact, we first show that even the very powerful
notion of Indistinguishability Obfuscation (I0) does not imply such hard problems, and then
deduce the same for a large class of primitives that can be constructed from IO.

Keywords: Indistinguishability Obfuscation, Statistical Zero-knowledge, NP N coNP, Struc-
tured Hardness, Collision-Resistant Hashing.

*An extended abstract of this paper appeared in IACR Advances in Cryptology Conference (CRYPTO) 2017
[BDV17]. Research supported in part by NSF Grants CNS-1350619 and CNS-1414119, Alfred P. Sloan Research
Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, a Steven and Renee Finn Career Development Chair
from MIT. This work was also sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
the U.S. Army Research Office under contracts W911NF-15-C-0226.

TTel Aviv University. E-mail: nirbitan@tau.ac.il. Member of the Check Point Institute of Information
Security. Supported by the Alon Young Faculty Fellowship, by Len Blavatnik and the Blavatnik Family foundation,
and an ISF grant 18/484. Part of this research was done while at MIT.

iTwo Sigma Investments, LP. E-mail: akshayd@twosigma.com. The views expressed herein are solely the views
of the author(s) and are not necessarily the views of Two Sigma Investments, LP or any of its affiliates. They are
not intended to provide, and should not be relied upon for, investment advice.

SMIT. E-mail: vinodv@csail.mit.edu.

Contents

1 Introduction 1
1.1 Our Results e 2
1.2 Overview of Techniques e 6

2 Preliminaries 11
2.1 Conventions« . L e 11
2.2 Indistinguishability Obfuscation for Oracle-Aided Circuits 11

3 One-Way Permutations, Indistinguishability Obfuscation, and Hardness in Sta-
tistical Zero Knowledge 13
3.1 SZK and Statistical Difference L Lo 13
3.2 Fully Black-Box Constructions of Hard SD Problems from 10 and OWPs 14
3.3 A Noisy Statistical-Distance Oracle 16
3.4 Warmup: One-Way Permutations in the Presence of StaDif 18
3.5 Indistinguishability Obfuscation (and OWPs) in the Presence of StaDif 21

3.5.1 One-Way Permutations 22
3.5.2 Indistinguishability Obfuscation 23

4 One-Way Functions, Indistinguishability Obfuscation,
and Hardness in NP N coNP 29
4.1 NPNcoNP . . e 29
4.2 Fully Black-Box Constructions of Hardness in NP N coNP from 10 and IOWFs . . . 30
4.3 The Decision Oracle e 32
4.4 Warmup: Injective One-Way Functions in the Presence of Decideg 34
4.5 Indistinguishability Obsfuscation (and IOWFs) in the Presence of Decide 37

4.5.1 One-Wayness oo 39

4.5.2 Indistinguishability Obfuscation 39

1 Introduction

In the last four decades, cryptography has produced a host of fantastic objects, starting from
one-way functions and permutations to public-key encryption [DH76, RSA78, GMS82] and zero-
knowledge proofs [GMRS85] in the 1980s, all the way to fully homomorphic encryption [RADT7S,
Gen09, BV11] and indistinguishability obfuscation [BGIT01, GGH"13a] in the modern day.

The existence of all these objects requires at the very minimum that NP ¢ BPP, but that
is hardly ever enough. While one-way functions (OWFs), the most basic cryptographic object,
does not seem to require much structure, as we advance up the ranks, we seem to require that
certain structured problems are hard. For example, conjectured hard problems commonly used in
cryptography (especially the public-key kind), such as factoring, discrete logarithms, and shortest
(or closest) vectors in lattices all have considerable algebraic structure. On one hand, it is this
structure that enables strong applications such as public-key and homomorphic encryption. On
the other hand, this structure is also what puts their hardness in question, and is exactly what
algorithms may try to exploit in order to solve these problems. There is of course the fear that
this structure will (eventually, if not today) deem these problems easy. Or, as Barak says more
eloquently [Barl3]:

[...] based on the currently well studied schemes, structure is strongly associated with (and per-
haps even implied by) public key cryptography. This is troubling news, since it makes public key
crypto somewhat of an “endangered species” that could be wiped out by a surprising algorith-
mic advance. Therefore the question of whether structure is inherently necessary for public key
crypto is not only of mathematical interest but also of practical importance as well.

Thus, a fundamental question in cryptography is what type of structure is necessary for different
primitives? Indeed, the answer to this question may be crucial to our understanding of what are the
minimal assumptions required to construct these primitives. While there may be different ways of
approaching this question, one main approach, which is also taken in this work, has been through the
eyes of complexity theory. That is, we wish to understand which cryptographic primitives require
hardness in low (and so called structured) complexity classes such as NP N coNP, TENP (the class
of total NP search problems), or SZK (the class of problems with statistical zero-knowledge proofs).
Aiming to answer this question, one line of research demonstrates that, for some cryptographic
primitives, hardness in structured complexity classes is indeed necessary. The existence of one-way
permutations (OWPs) requires a hard problem in NP NcoNP [Bra79]; the same holds for restricted
cases of public-key encryption schemes satisfying specific structural properties (e.g ciphertext certifi-
cation) [Bra79, GG98]; homomorphic encryption schemes and non-interactive computational private
information retrieval schemes imply hard problems in SZK [BL13, LV16]; and indistinguishability
obfuscation schemes imply a hard problem in PPAD C TFNP (assuming NP ¢ ioBPP) [BPR15].
Yet, for many primitives such hardness is not known to be inherent. While this is perhaps
expected for OWFs, it is also the case for seemingly structured primitives such as collision-resistant
hash functions, oblivious transfer, and general public-key encryption schemes. Do these primitives
require hardness in structured complexity classes? Can we prove that they do or that they don’t?

Black-Box Separations. Formalizing this question in a meaningful way requires care. Indeed,
it may be easy to formalize a statement of the form “the existence of crypto primitive P implies
hardness in a complexity class C”: one has to show that the ability to solve every problem in C

implies breaking any instantiation of primitive P. However, it is not clear how to prove statements
of the form “the existence of crypto primitive P does not imply hardness in a complexity class C”.
For example, it is commonly believed that NP N coNP does contain hard problems. So in a trivial
logical sense the existence of such problems is implied by any primitive P. Instead, we follow the
methodology of black-box separations, whose study in cryptography was pioneered in a remarkable
work by Impagliazzo and Rudich [IR89]. Faced with a similar problem of how to show that a
primitive P (OWFSs) cannot be used to construct another primitive P’ (public-key encryption),
they prove this cannot be shown through black-boz reductions — cryptography’s de facto technique
for showing such implications.

A bit more elaborately, a fully black-box reduction [RTV04] of a primitive (or, in our case, a
problem) P’ to a primitive P consists of a black-box construction and a black-box security reduction.
The construction of P’ from P does not exploit the actual implementation of primitive P, but rather
just its input-output interface. The security reduction can use any adversary that breaks (or, in
our case, solves) P’ to break P, and is oblivious to the implementation of the adversary (as well as
of that of P).

Following [IR89], there has been a rich study of black-box separations in cryptography (see,
e.g., [Rud91, Sim98, KST99, GKM*00, GT00, GMRO1, BT03, RTV04, HR04, GGKT05, Pas06,
GMMO7, BM09, HH09, KSS11, BKSY11, DLMM11, GKLM12, DHT12, BBF13, Fisl12, Pasl3,
BB15, HHRS15] and many others). Most of this study has been devoted to establishing separa-
tions between different cryptographic primitives. (In particular, the most relevant to us are the
recent works of Asharov and Segev [AS15, AS16] that study black-box separations for indistin-
guishability obfuscation, which we elaborate on below.) Some of this study puts limitations on
basing cryptographic primitives on NP-hardness [GG98, AGGMO06, BLL13, BB15, LV16].

Going back to our main question of which primitives require structured hardness, we know the
following.

e As described above, OWPs imply a hard problem in NP N coNP [Bra79], homomorphic en-
cryption and PIR imply hard problems in SZK [BL13, LV16] and IO (with OWFs) implies a
hard problem in PPAD [BPR15] via black-box reductions.

e On the flip side, we know that there are no black-box reductions from hard problems in
NP N coNP to OWFs [BI87, Rud88], and from hard-on-average problems in SZK to OWPs
(corollary from [Ost91, OV08, HHRS15, BHKY19]).!

For more advanced primitives, most notably (general) public-key encryption, we do not have results
in either direction. In fact, many existing constructions are based on problems in NP N coNP or
SZK. We are thus left with (quite basic) primitives at an unclear state; as far as we know, they
may very well imply hard problems in structured complexity classes, even by black-box reductions.

1.1 Our Results

We revisit the relationship between two structured complexity classes, statistical zero-knowledge
(SZK) and NP N coNP, and cryptographic primitives. In broad strokes, we show that there are no

!Specifically, there exists a fully black-box reduction of constant-round statistically-hiding commitments to
average-case hardness in SZK [Ost91, OV08, BHKY19], whereas a fully black-box reduction of the latter primi-
tive to OWPs is ruled out in [HHRS15]. Together, these rule out a fully black-box reduction of average-case SZK
hardness to OWPs.

fully black-box reductions of hard problems in these classes to any one of a variety of cryptographic
primitives, including (general) public-key encryption, oblivious transfer, deniable encryption, and
functional encryption. More generally, we separate SZK and NP N coNP from indistinguishability
obfuscation (I0). Then, leveraging on the fact that IO can be used to construct a wide variety of
cryptographic primitives in a black-box way, we derive corresponding separations for these primi-
tives.? One complexity-theoretic corollary of this result is a separation between SZK and NP N coNP
from the class PPAD [MP91] that captures the complexity of computing Nash Equilibria.

We now go into more detail on each of the results.

Statistical Zero-Knowledge and Cryptography. The notion of statistical zero-knowledge
proofs was introduced in the seminal work of Goldwasser, Micali and Rackoff [GMRS&5]. The
class of promise problems with statistical zero-knowledge proofs (SZK) can be characterized by
several complete problems, such as statistical difference [SVO03] and entropy difference [GV99].
SZK hardness is known to follow from various number-theoretic problems that are commonly used
in cryptography, such as Discrete Logarithms [GK93], Quadratic Residuosity [GMRS5], Lattice
Problems [GG98, MV03] as well as problems like Graph Isomorphism [GMWO91]. As mentioned,
we also know that a handful of cryptographic primitives such as homomorphic encryption [BL13],
private information retrieval [LV16] and rerandomizable encryption imply hardness in SZK. (On
the other hand, SZK C AMNcoAM [For89, AH91], and thus, SZK cannot contain NP-hard problems,
unless the polynomial hierarchy collapses [BHZ87].)

We ask more generally which cryptographic primitives can be shown to imply such hardness,
with the intuition that such primitives are structured in a certain way. In particular, whereas one
may not expect a seemingly unstructured object like OWFs to imply such hardness, what can we
say for instance about OWPs, public-key encryption, or even IO (which has proven to be powerful
enough to yield almost any known cryptographic goal)?

We prove that none of these primitives imply such hardness through black-box reductions.

Theorem 1.1 (Informal). There is no fully black-box reduction of any (even worst-case) hard
problem in SZK to 10 and OWPs.

Corollary 1.2 (from [SW14, Wat15], Informal). There is no such reduction to (general) public-key
encryption, oblivious transfer, deniable encryption, functional encryption, or any other object that
has a black-box reduction to 10 and OWPs.

We would like to elaborate a bit more on what a black-box construction of a hard problem in SZK
means. We shall focus on the characterization of SZK by the statistical difference promise problem
[SV03]. In this problem, an instance is a pair of circuit samplers Cp, Cy : {0,1}" — {0,1}" which
induce distributions Cy and C'; where the distribution C} is obtained by evaluating the circuit C
on a uniformly random input. The promise is that the statistical distance s = A(Cy, C1) of the
corresponding distributions is either large (say, s > 2/3) or small (say, s < 1/3). The problem,
named SD'/32/3 (or just SD), is to decide which is the case.

Let us look at a specific example of the construction of such a problem from rerandomizable
encryption. In a (say, symmetric-key) rerandomizable encryption scheme, on top of the usual

*More accurately, these primitives follow from I0 and OWFs (OWTFs), and accordingly our separation addresses
IO and OWFs in conjunction. The concept of a black-box reduction from 10 and OWF requires clarification and
discussion. Here we will follow the framework of Asharov and Segev [AS15]. We elaborate below.

encryption and decryption algorithms (Enc, Dec) there is a ciphertext rerandomization algorithm
ReRand that can statistically refresh ciphertexts. Namely, for any ciphertext CT encrypting a bit
b, ReRand(CT) produces a ciphertext that is statistically close to a fresh encryption Encg(b). This
immediately gives rise to a hard statistical difference problem [BL13]: given a pair of ciphertexts
(CTo,CTy), decide whether the corresponding rerandomized distributions given by the circuits
(Co(+),C1(+)) := (ReRand(CTy;-), ReRand(CTy;-)) are statistically far or close. Indeed, this corre-
sponds to whether they encrypt the same bit or not, which is hard to decide by the security of the
encryption scheme.

A feature of this reduction of hard statistical difference instances to rerandomizable encryption
is that, similarly to most reductions in cryptography, it is fully black-box [RTV04] in the sense
that the circuits Cy, C7 only make black-box use of the encryption scheme’s algorithms, and can in
fact be represented as oracle-aided circuits (C’g eRand('), C'lR eRand(')). Furthermore, “hardness” can be
shown by a black-box security proof that can use any decider for the problem in a black-box way to
break the underlying encryption scheme. More generally, one can consider the statistical difference
problem relative to different oracles implementing different cryptographic primitives and ask when
can hardness be shown based on a black-box reduction. Theorem 1.1 rules out such reductions
relative to 10 and OWPs (and everything that follows from these in a fully black-box way). For
more details, see Section 1.2 and Section 3.

NP N coNP and Cryptography. Hard (on average) problems in NP N coNP are known to follow
based on several number-theoretic problems in cryptography, such as Discrete Log, Factoring and
Lattice Problems [Has88, LLJS90, AR04]. As in the previous section for SZK, we are interested in
understanding which cryptographic primitives would imply such hardness, again with the intuition
that this implies structure. For instance, it is known [Bra79] that any OWP f: {0,1}" — {0,1}"
implies a hard problem in NP N coNP, e.g. given an index i € [n] and an image f(x) find the
ith preimage bit z;. In contrast, Blum and Impagliazzo [BI87] and Rudich [Rud88] proved that
seemingly unstructured objects like OWFs do not imply hardness in NP N coNP by fully black-box
reductions. In this context, a fully black-box reduction essentially means that the non-deterministic
verifiers only make black-box use of the OWF (or OWP in the previous example) and the reduction
establishing the hardness is also black-box (in both the decider and the OWF).?

But what about more structured primitives such as public-key encryption, oblivious transfer,
or even 107 We rule out fully black-box reductions from OWFs (or even injective OWFs) and 10
to hard problems in NP N coNP. Hence, also for the other primitives, which can be constructed
from IO (with OWFSs) in a fully black-box way.

Theorem 1.3 (Informal). There is no fully black-box reduction of any (even worst-case) hard
problem in NP N coNP to 10 and injective OWFs.

Corollary 1.4 (from [SW14, Wat15], Informal). There is no such reduction to (general) public-key
encryption, oblivious transfer, deniable encryption, functional encryption, or any other object that
has a black-box reduction to 10 and OWFs.

3Roughly speaking, [BI87] rule out perfectly correct constructions, where the NP NcoNP structure is guaranteed for
any implementation of the OWF oracle. In [Rud88], this is generalized also to almost perfectly correct constructions
that only work for an overwhelming fraction of OWF oracles. We also rule out constructions that are perfectly
correct.

Our approach also gives a new (rather different) proof to the original separation between OWFs
and NP N coNP [BI87, Rud88]. For more details, see Section 1.2 and Section 4.

We remark that unlike our result for SZK (which ruled out hard promise problems), the above
result only rules out hard languages in NP N coNP. Indeed, Even, Selman, and Yacobi [ESY&84]
demonstrated promise problems in NP N coNP that are NP-hard. Hence even the assumption
P # NP (let alone OWFs) gives us hard promise problems in NP N coNP. (See [Gol06] for further
reading.)

Relation to the Work of Asharov and Segev. The flood of 10 applications starting from
[GGHT13b, SW14], has lead many to conjecture that IO may be “complete for cryptography”
(assuming also OWFs, or just NP & ioBBP [KMNT14]). Nevertheless, some cryptographic goals
could not be constructed based on I0.

Asharov and Segev [AS15, AS16] were the first to initiate a formal study to understand the
limits of 10. Our separations for IO are based on their framework [AS15]. We aim to draw the
complexity-theoretic boundaries of 10. Indeed, black-box separations from IO require some care,
given that the typical use of IO makes non-black-box use of the circuits it obfuscates and thus
any associated cryptographic primitive such as OWFs. The Asharov-Segev framework considers
obfuscators that take as input circuits with OWF (or OWP) gates. They observe, most known
1O-based constructions fall into this category. Thus, a separation in this model allows deriving
the corresponding separations between SZK or NP N coNP and a wide variety of cryptographic
primitives. See Section 1.2 for more details.

In terms of results, they show that collision-resistant hashing and (domain invariant) OWPs do
not have black-box reductions to IO (and OWFs). Our separation of IO and NP N coNP is more
general and implies their previous result for OWPs (and gives a rather different proof for this fact).
Their result for collision-resistant hashing is not captured by our results (indeed collision-resistance
is not known to imply hardness in either SZK or NP N coNP). We also stress that our separation
of SZK from IO and OWPs does not follow from their results; indeed, SZK-hardness is not known
to imply collision-resistance.

Indistinguishability Obfuscation: Perspective. Since the breakthrough of [GGH'13b], the
notion of 10 has been extensively studied. While we already understand that IO has far reaching
implications, our understanding of how it can be constructed and under what assumptions is still at
an early stage. Indeed, basing IO on solid foundations is one of cryptography’s greatest challenges
today. In this context, we stress that the results presented in this work hold regardless of the state
of existing candidates. In fact, even if it turned out that there is no secure realization of 10, the
separation of SZK and NP NcoNP from primitives such as public-key encryption, which follow from
IO, still holds. The expressiveness of IO (established in [GGH"13b, SW14] and onwards) allows us
to prove many separations in one shot. (Indeed, three years ago we would have probably addressed
each primitive separately.)

As for the search for candidates itself, while at this point candidates are based on lattice-related
problems that do break in SZK, our work suggests the theoretical possibility that 10 candidates
may not require such structure. A similar conclusion is true of course for the much more basic and
long-studied question of public-key encryption. Almost all known public-key encryption candidates
rely on very algebraic assumptions (that do break in SZK or NP N coNP). Constructing public key
encryption from less structured assumptions remains a fascinating open question. While there has

been initial steps trying to diverge from such structure [Ale03, ABW10], there is yet a long way to
go.

On TFNP vs. NP N coNP. One of the corollaries of our result is a separation between SZK
and NP N coNP from the complexity class PPAD. PPAD, a subclass of total NP search problems
called TENP [MP91], was defined by Papadimitriou [Pap94] and has been shown to capture the
complexity of computing Nash equilibria [DGP06, CDT09]. It was recently shown [BPR15] that
IO and injective OWFs can be used (in a black-box way) to construct hard problems in PPAD.
Put together with our separation, we get that there is no black-box construction of an SZK (resp.
NP N coNP) hard problem from PPAD-hardness.*

Given that TFNP, which contains PPAD, is commonly thought of as a search version of NP N
coNP, it is interesting to note that the result shows that hardness in NP N coNP (of decisional
problems) does not follow from hardness in TFNP (aka, hardness of search problems) in a black-
box way. Namely, there is no black-box “search-to-decision reduction” between these classes.

Subsequent Work. Following the publication of the conference version of this work, Komargod-
ski and Yogev [KY18] showed that Simon’s oracle [Sim98] can be used to decide SZK. Combining
their work with that of Asharov and Segev [AS15] gives another, quite different, proof separating
average-case hardness in SZK from 10 and OWPs.

Bitansky and Degwekar [BD19], based on the coupling-based approach presented in this work,
showed that collision-resistant hash functions do not imply hardness in SZK, and also gave a new
proof of the separation of IO and collision-resistant hash functions previously shown by Asharov
and Segev [AS15].

Organization. We give an overview of the methodology and techniques used in Section 1.2.
Section 2 provides required preliminaries. The black-box separation between SZK and IO (plus
OWPs) is given in Section 3. The separation between NP N coNP and IO (plus injective OWF's) is
given in Section 4.

1.2 Overview of Techniques

We now give an overview of our approach and main ideas. We start by discussing how to capture
fully black-box constructions in the context of indistinguishability obfuscation following [AS15]. We
then recall the common methodology for ruling out black-box constructions [IR89, RTV04, BBF13],
and explain the main ideas behind our impossibility results for SZK and NP N coNP.

Indistinguishability Obfuscation and Black-Box Constructions. Traditionally, when think-
ing about a black-boz construction of one cryptographic primitive P’ (e.g., a pseudo-random genera-
tor) from a primitive P (e.g., a one-way function), we mean that all algorithms in the construction
of P' invoke P as a black-box, oblivious of its actual implementation. This is hardly the case
in constructions based on indistinguishability obfuscation where circuits that explicitly invoke the
primitive P may be obfuscated.

4 We note that in concurrent and independent work, Rosen, Shahaf, and Segev [RSS16] show that one-way
functions do not have black-box reductions to PPAD-hardness, which combined with [Ost91], also yields a separation
between SZK and PPAD.

Nonetheless, as observed by Asharov and Segev [AS15], in almost all existing constructions, the
code implementing P is used in a very restricted manner. Typically, obfuscated circuits can be im-
plemented as oracle aided circuits C* that are completely black-box in P, where P is some low-level
primitive, such as a one-way function. Indeed, in most cases the circuits obfuscated are symmetric-
key primitives, such as puncturable pseudo-random functions [SW14], which can be constructed in
a black-box way from one-way functions (in some constructions more structured low-level primitives
may be used, like injective one-way functions, or one-way permutations). Furthermore, in these
constructions, the obfuscator ¢Q itself is also treated as a black-box.

Accordingly, almost all existing constructions based on indistinguishability obfuscation can be
cast into a model in which indistinguishability obfuscation exists for oracle-aided circuits C%,
where P is say a one-way function, and both P and the obfuscator ¢{O can only be accessed as
black-boxes. On top of that, they can be proven secure in this model by a black-box reduction
that makes black-box use of (P,i0) and any attacker against the constructed primitive P’. Such
constructions where both the construction itself and the reduction are black-box are called fully
black-boz constructions [RTV04]. Following Asharov and Segev [AS15, AS16], we shall prove our
results in this model, ruling out black-box constructions of hard problems in SZK and NP N coNP
based on indistinguishability obfuscation for oracle-aided circuits. This approach traces back to
the work of Brakerski et al. [BKSY11] in the context of zero-knowledge proofs (rather than IO),
and further extended by Garg, Mahmoody, and Mohammed [GMM17]. Further details follow.

Ruling out Black-Box Reductions. We prove our results in the model described above follow-
ing the methodology of oracle separations (see e.g. [IR89, Sim98, RTV04, HR04]). Concretely, to
prove that there is no fully black-box construction of a primitive P’ from primitive P, we demon-
strate oracles (¥, A) such that:

e relative to U, there exists a construction C’;I;f realizing P that is secure in the presence of A,
e but any construction Cg, realizing P’ can be broken using .A.

Indeed, if such oracles (¥, A) exist, then no efficient reduction will be able to use (as a black-box)
the attacker A against P’ to break P (as the construction of P is secure in the presence of A).
In our case, we would like to apply this paradigm to rule out black-box constructions of hard
instances in either SZK or NP NcoNP from indistinguishability obfuscation for oracle-aided circuits
and a low-level primitive (e.g. a one-way function). We next outline the main ideas behind the
construction and analysis of the oracles (¥, .4) in each of the two cases.

Ruling out Black-Box Constructions of Hard SZK Problems. As explained in the previous
section, we focus on the characterization of SZK by its complete problem: the statistical difference
problem SD [SV03]. We demonstrate oracles (¥, A) such that relative to ¥ there exist constructions
of one-way permutations (OWPs) and IO for circuits with OWP gates, and these constructions are
secure in the presence of A. At the same time, A will decide (in the worst-case) SDY. Since SD is
complete for SZK in a relativizing manner, deciding SDY suffices to break SZKY. That is, A will
decide all instances (Cy, CY) of circuit samplers that only use the I0 and OWPs realized by ¥ in
a black-box manner. We next explain how each of the two are constructed.

The construction of ¥ follows a general recipe suggested in [AS15, AS16]. The oracle consists of
three parts (f, O, Evalf’o) where:

1. f is a random permutation, realizing the one-way permutation primitive.

2. O is a random injective function, realizing the obfuscation algorithm. It takes as input an
oracle-aided circuit C) along with randomness r and outputs an obfuscation C' = oC,r).

3. Eval®/ realizes evaluation of obfuscated circuits. On input (C,z), it inverts O to find (C,7),
and outputs C/ (z). If C' is not in the image of O, it returns L.

The above construction readily satisfies the syntactic (or “functionality”) requirements of one-way
permutations and indistinguishability obfuscation. Furthermore, using standard techniques, it is
not hard to show that relative to W, the function f is one-way and O satisfies 1O indistinguishability
requirement. The challenge is to now come up with an oracle A that, on one hand, will decide
SDY, but on the other, will not compromise the security of the latter primitives.

Recall that deciding SD¥ means that given two oracle-aided circuit samplers (Cp, C1) such
that the statistical distance of the corresponding distributions (Cy,CY) is s = A(CY,CY) €
[0, %} U [%, 1], the oracle A must decide in which of the two intervals s lies, whereas if the promise
is not satisfied and s € (%, %), there is no requirement whatsoever. With this in mind, a first naive
attempt would be the following. A will have unbounded access to ¥, give a query (Cp, C1), it would
compute s = A(Cy,C1), and simply say whether s < % or § > % While such an oracle would
definitely decide SDY, it is not too hard to show that it is simply too powerful, and would not
only break I0 and OWPs, but would, in fact, allow solving any problem in NPY (or even in PP‘I’).
Other naive attempts such as refusing to answer outside the promise intervals, encounter a similar
problem.

At high-level, the problem with such oracles is that solutions to hard problems can be easily
correlated with “tiny” differences in the statistical distance of the two input circuits, whereas the
above oracle may reflect tiny changes when the statistical distance is close to some threshold (1/2 in
the above example) on which the oracle changes its behaviour. This motivates our actual definition
of A as a noisy oracle that produces its answer, not according to some fixed threshold, but according
to a random threshold, chosen afresh for each and every query. Concretely, the oracle, which we
call StaDif?, for any query (Co, C1), chooses a uniformly random threshold ¢ + (%, %), and answers
accordingly:

Y if s >t (far distributions)

StaDif¥ (Cy, Cy) =
N if s <t (similar distributions)

The main challenge in proving that the security of the IO and OWPs realized by A is not com-
promised by this oracle is that StaDif¥ has the power to query ¥ on exponentially many points in
order to compute s. For instance, it may query ¥ on the preimage of a OWP challenge f(z) or of
a given obfuscation O(C,r). The key observation behind the proof is that the oracle’s final answer
still does not reflect how ¥ behaves locally on random points.

Intuitively, choosing the threshold ¢ at random, for each query (Cp, C1), guarantees that with
high probability ¢ is “far” from the corresponding statistical distance s = A(Cy,CYy). Thus,
changing the oracle ¥ on, say, a single input z, such as the preimage of an OWP challenge f(z),
should not significantly change s and will not affect the oracle’s answer; that is, unless the circuits
query ¥ on z with high probability to begin with. We give a reduction showing that we can always
assume that (Cp,C7) are “smooth”, in the sense that they do not make any specific query to ¥
with too high probability.

Following this intuition, we are able to show that through such local changes that go undetected
by StaDifV, we can move to an ideal world where inverting the OWP or breaking IO can be easily
shown to be impossible. We refer the reader to Section 3 for further details.

Ruling out Black-Box Constructions of Hard NP NcoNP Problems. As mentioned earlier,
a fully black-box construction of hard problems in NP N coNP is actually known assuming one-
way permutations (OWPs), and cannot be ruled out as in the case of SZK. Instead, we rule out
constructions from (non-surjective) injective one-way functions (IOWFs) and 10 for circuits with
IOWF gates. This generalizes several previous results by Blum and Impagliazzo [BI87] and Rudich
[Rud88], showing that OWFs do not give hardness in NP N coNP, by Matsuda and Matsuura
[MM11], showing that IOWF's do not give OWPs (which are a special case of hardness NP N coNP),
and by Asharov and Segev [AS16], showing that OWF's and IO for circuits with OWF gates do not
give OWPs. In fact, our approach yields a new (and rather different) proof for each one of these
results.

We follow a similar methodology to the one we used for the case of SZK. That is, we would
like to come up with oracles (¥, .A) such that ¥ realizes IOWFs and IO for circuits with IOWFs
gates, which are both secure in the presence of A, whereas black-box constructions of problems in
NP N coNP from these primitives can be easily solved by .A. By black-box constructions here we

mean a pair of efficient oracle-aided non-deterministic verifiers V('), O that for every oracle ¥

implementing IOWFs and 10, yield co-languages f\y, LY in NPY N coNPY.

The requirement that Vg, V; give a language in NP NcoNP for every oracle implementing IOWF's
and IO follows previous modeling [BI87],°> and aligns with how we usually think about correctness
of black-box constructions of cryptographic primitives. For instance, the construction of public-key
encryption from trapdoor permutations is promised to be correct, for all oracles implementing the
trapdoor permutation. Similarly, the construction of hard NP N coNP languages from one-way
permutations, give an NP N coNP language for any oracle implementing a permutation.’

We stress that a construction where correctness is only guaranteed for particular (even if natural)
oracles may definitely exist. This is for example the case if we only consider implementations of
1O similar to those presented above in the context of SZK. Indeed, in that construction the
implementation of IO has an additional property — it allows identifying invalid obfuscations (the
Eval oracle would simply return L on such obfuscations). This “verifiability” property coupled with
the injectivity of obfuscators actually imply a hard problem in NP N coNP in a black-box way.”
Our separation thus leverages the fact that IO need not necessarily be verifiable, and rules out
constructions that are required to be correct for any implementation of 10O, even a non-verifiable
one.

Accordingly, the oracles ¥ = (f, O, Eval/ ’O) that we consider are a tweaked version of the oracles
considered in the SZK case. Now f is a random injective function that is expanding, rather than a
permutation, the oracle O is defined as before, and the oracle Eval®© is defined as before for valid
obfuscations C € Image(O) but is allowed to act arbitrarily for invalid obfuscations. As for A, this

*Rudich [Rud88] also considered a slight relaxation of constructions that are correct for an overwhelming fraction
of oracles rather than all.

5We note that this issue does not come up for black-box constructions of SZK promise problems, because the
construction is allowed to yield instances that do not obey the promise; there correctness is always guaranteed, and
the only question is whether the instances that do satisfy the promise are hard to decide.

"E.g. the language of all valid obfuscations and indices 4, such that the ith bit of the obfuscated circuit is 1

time it is trivially implemented by an oracle Decide? that, given input z, simply returns the unique
bit b such that Vj(x) = 1, namely it just decides the corresponding language LY.

In the results mentioned above [Rud88, MM11, AS16], it is actually shown that deciding NPY N
coNPY¥ does not require an explicit Decide oracle. Rather, it is possible to simulate any decision
making a small number of queries to ¥.* We do not show such a simulation process. Instead,
we take a different approach inspired by our proof for the SZK setting described above. Roughly
speaking, we show that somewhat similarly to our statistical difference oracle StaDif", the oracle
Decide? is also rather robust to random local changes. The main observation here is that for any
fixed yes-instance z € LY, tweaking ¥ at a random input into a new oracle V', it is likely that x
will still be a yes-instance in LY, as long as U’ is in our allowed family of oracles and LY is indeed
in NP N coNPY’ (and the same is true for no-instances).

In slightly more detail, fixing a witness w such that V,¥ (z,w) = 1, we can show that since V;
makes a small number of oracle calls, with high probability tweaking the oracle ¥ at a random
place will not affect these oracle calls and thus V,¥'(z,w) = V{¥(z,w) = 1. Then, assuming LY is
guaranteed to be in NP NcoNP, we can deduce that x must still a yes-instance (other witnesses for
this fact may be added or disappear, but this does not change the oracle’s answer). In the body, we
argue that indeed LY € NPY" N coN P\I'l, where we strongly rely on the fact that arbitrary behavior
of Eval is permitted on invalid obfuscations.

Once again, we show that through local changes that go undetected by Decide¥, we can move
to an ideal world where inverting the IOWF or breaking 10 can be easily shown to be impossible.
We refer the reader to Section 4 for further details.

Implied Separations. As a result of the two separations discussed above, we can rule out black-
box constructions of hard problems in SZK or NP N coNP from various cryptographic primitives
or complexity classes. This applies to almost all primitives that have so far been constructed
from OWPs (or IOWFs) and IO for circuits with OWP (or IOWF) gates. This includes public-
key encryption, oblivious transfer, deniable encryption [SW14],% functional encryption [Wat15],
delegation, [BGL 15, CHJV15, KLW15], hard (on-average) PPAD instances [BPR15], and more.

We note that there are a few applications of IO that do not fall under this characterization. For
instance, the construction of IO for Turing machines from IO-based succinct randomized encodings
[BGL*15, CHJV15, KLW15] involves obfuscating a circuit that itself outputs (smaller) obfuscated
circuits. To capture this, we would need to extend the above model to 10 for circuits that can also
make IO oracle calls (on smaller circuits). Another example is the construction of non-interactive
witness indistinguishable proofs from IO [BP15]. There an obfuscated circuit may get as input
another obfuscated circuit and would have to internally run it; furthermore, in this application, the
code of the obfuscator is used in a (non-black-box) ZAP. Extending the above model to account
for this type of IO applications is an interesting question that we leave for future exploration.

8More accurately, this is the case for Rudich’s result for NP N coNP, whereas for the other results that rule out
constructions of one-way permutations, one can simulate an analog of Decide that inverts the permutation.

9Formally, the construction of deniable encryption described in [SW14] does not conform with the framework we
consider; however, it can be easily adapted so that it does. Specifically, the construction involves obfuscating a circuit
CF that internally makes calls to a public-key encryption circuit £. When instantiating the public-key encryption
circuit E based on 10 and OWFs (as in [SW14]), this leads to “double-obfuscation” — the encryption circuit E
itself is already an obfuscated version of another circuit E’. The framework that we consider does not support such
double obfuscation. To adapt the construction, we can simply consider the obfuscation of CF /; namely the external
layer of obfuscation is enough; this is because any functionally preserving changes to the internal E’ are functionally
preserving changes to the circuit CF' that will be protected by the external obfuscation.

10

2 Preliminaries

In this section, we introduce the basic definitions and notation used throughout the paper.

2.1 Conventions

For a distribution D, we denote the process of sampling from D by x <+ D. A function negl :
N — RT is negligible if for every constant ¢, there exists a constant n. such that for all n > n,
negl(n) < n=¢ We refer to uniform probabilistic polynomial-time algorithms as PPT algorithms.

Randomized Algorithms. As usual, for a random algorithm A, we denote by A(x) the corre-
sponding output distribution. When we want to be explicit about the algorithm using randomness
r, we shall denote the corresponding output by A(x;r).

Oracles. We consider oracle-aided algorithms (or circuits) that make repeated calls to an oracle I'.
Throughout, we will consider deterministic oracles I' that are a-priori sampled from a distribution
I' on oracles. More generally, we consider infinite oracle ensembles I' = {I',,}, .y, one distribution
I, for each security parameter n € N (each defined over a finite support). For example, we may
consider an ensemble f = {f,} where each f, : {0,1}" — {0,1}" is a random function. For such
an ensemble I' and an oracle aided algorithm (or circuit) A with finite running time, we will often
abuse notation and denote by A'(z) and execution of A on input x where each of (finite number
of) oracle calls that A makes is associated with a security parameter n and is answered by the
corresponding oracle T',,. When we write A}, . .. ,Al,; for k algorithms, we mean that they all access
the same realization of I'.

2.2 Indistinguishability Obfuscation for Oracle-Aided Circuits

The notion of indistinguishability obfuscation (I0) was introduced by Barak et al. [BGIT01] and
the first candidate construction was demonstrated in the work of Garg et al. [GGH"13a]. Since
then, IO has given rise to a plethora of applications in cryptography and beyond. Nevertheless,
Asharov and Segev [AS15, AS16] demonstrated that IO is insufficient to achieve some cryptographic
tasks, most notably (domain-invariant) one-way permutations, collision-resistant hashing, and as a
corollary, private information retrieval and (even additively) homomorphic encryption. To formally
show such a statement, they introduced the framework of indistinguishability obfuscation for oracle-
aided circuits. We follow their framework.

We begin by recalling the notion of two oracle-aided circuits being equivalent, and move on to
defining 1O relative to oracles.

Definition 2.1. Let Cy and C be two oracle-aided circuits and let f be a function. Cy and C}
are said to be functionally equivalent relative to f, denoted as C’g = C{ , if for every input x,

cf(z) = Cf(x).

Definition 2.2. Let C = {C, },,cy be a class of oracle aided circuits, where each C' € C,, is of size
n.'0 A PPT algorithm O is an indistinguishability obfuscator for C relative to an oracle distribution

0As in [AS15], we assume throughout that the size of the obfuscated circuits equals the security parameter. This
is only for simplicity of notation, and is without loss of generality as the circuits can be padded up if they are too
small, and the security parameter can be polynomially increased if the circuits are too large.

11

ensemble I' = {I';,}, - if the following conditions are met:

1. Functionality. For all n € N and for all C' € C, it holds that

Pr [CF =C" | C« z‘OF(ln,C)] =1.
rio

2. Indistinguishability. For any non-uniform PPT distinguisher D = (D1, D) there exists a
negligible function negl such that for all n € N

AdviP, ¢ p(n) =

: 1
Pr [BxpQi0cp(n) = 1] - 2] < negl(n)

where the random variable Expil%aa p(n) is defined via the following experiment:
(a) b+ {0,1}.
(b) (Co, Ch,state) « DY(1™) where Cy, C; € C, and C§ = C}.
(c) C « iO (1™, Cy).
(d) ¥ = DY (state, C).
(e) If b =1V output 1 else output 0.

We further say that O satisfies d-indistinguishability if the above negligible advantage is at
most 9.

We will also consider the following definition of “Positive Advantage” in the security game
above. Our actual proofs would bound the positive advantage. This suffices due to a result by
Brakerski and Goldreich [BG11] that gives a (black-box) transformation between the two notions.

Definition 2.3. For any oracle I' and non-uniform admissible PPT distinguisher D = (Dy, D2),
define the positive advantage of D, denoted PAdV'I%O’C, p(n), as follows:

i i 1
PAdV®0 ¢.p(n) = Pr |:EXpFO,z’O,C,D(n) =1-3
where the random variable Expil%o,a p(n) is defined as above in Definition 2.2.
By definition, Adv%?o,cy p(n) = |PAdeﬂ(’9O7a p(n)|. Note that for a distinguisher D to have

PAdV%(,QO,C,D (n) > €

for some € > 0 is a stronger condition than Adv%(?oya p(n) > € because this requires the distin-
guisher to correctly predict which circuit was obfuscated better than chance, instead of just being
sufficiently far away from a random outcome. Brakerski and Goldreich showed that there is an
efficient procedure that can transform any distinguisher with non-negligible advantage to another
distinguisher with non-negligible positive advantage. Below we state their result in the context of
our application.

12

Lemma 2.4 (Brakerski-Goldreich [BG11]). Given any distinguisher D = (D1, D3) such that
E [AdvCioc.n(m)]| > () |

for some function e, there exists a distinguisher D' = (DY, Db) that makes O(1) black-box invoca-
tions of D such that

IfE |:PAdViFO’iO7C’D/ (n):| > 26(71)2 .

The proof follows directly from [BG11], and can be found explicitly in [BD19].

3 One-Way Permutations, Indistinguishability Obfuscation, and
Hardness in Statistical Zero Knowledge

In this section, we ask which cryptographic primitives imply hardness in the class statistical zero-
knowledge (SZK). Roughly speaking, we show that one-way permutations (OWPs) and indistin-
guishability obfuscation (10), for circuits with OWP-gates, do not give rise to a black-box con-
struction of hard problems in SZK. This, in turn implies that many cryptographic primitives (e.g.,
public-key encryption, functional encryption, and delegation), and hardness in certain low-level
complexity classes (e.g. PPAD), also do not yield black-box constructions of hard problems in SZK.

We first motivate and define a framework of SZK relative to oracles, define fully black-box con-
structions of hard SZK problems, and then move on to the actual separation.

3.1 SZK and Statistical Difference

The notion of statistical zero-knowledge proofs was introduced in the seminal work of Goldwasser,
Micali and Rackoff [GMR85]. The class of promise problems with statistical zero-knowledge proofs
(SZK) can be characterized by several complete problems, such as statistical difference [SV03]
and entropy difference [GV99] (see also [Vad99] and references within). We shall focus on the
characterization of SZK by the statistical difference problem. Here an instance is a pair of circuit
samplers Cp, Cq : {0,1}" — {0, 1} with the promise that the statistical distance s = A(Cy, C1) of
the corresponding distributions is either large (say, s > 2/3) or small (say, s < 1/3). The problem
is to decide which is the case.

Hard Statistical Difference Problems from Cryptography: Motivation. SZK hardness,
and in particular hard statistical difference problems, are known to follow from various number-
theoretic and lattice problems that are commonly used in cryptography, such as Decision Diffie-
Hellman, Quadratic Residuosity, and Learning with Errors. We ask more generally which crypto-
graphic primitives can be shown to imply such hardness, with the intuition that such primitives are
structured in a certain way. In particular, whereas one would not expect a completely unstructured
object like one-way functions to imply such hardness, what can we say for instance about public-key
encryption, or even indistinguishability obfuscation (which has proven to be structured enough to
yield almost any known cryptographic goal).

We prove that none of these primitives imply such hardness through the natural class of black-
box constructions and security reductions. To understand what a black-box construction of a
hard statistical difference problem means, let us look at a specific example of the construction

13

of such a problem from rerandomizable encryption. In a (say, symmetric-key) rerandomizable
encryption scheme, on top of the usual encryption and decryption algorithms (Enc, Dec) there is a
ciphertext rerandomization algorithm ReRand that can statistically refresh ciphertexts. Namely, for
any ciphertext CT encrypting a bit b, ReRand(CT) produces a ciphertext that is statistically close
to a fresh encryption Enc(b). Note that this immediately gives rise to a hard statistical difference
problem: given a pair of ciphertexts (CT,CT’), decide whether the corresponding rerandomized
distributions given by the circuits (Co(-), C1(-)) := (ReRand(CT;-), ReRand(CT’;+)) are statistically
far or close. Indeed, this corresponds to whether they encrypt the same bit or not, which is hard
to decide by the security of the encryption scheme.

A feature of this construction of hard statistical difference instances is that, similarly to most
constructions in cryptography, it is fully black-boxr [RTV04] in the sense that the circuits Cp, Cy
only make black-box use of the encryption scheme’s algorithms, and can in fact be represented as
oracle-aided circuits (Cg{ eRand(), ClR eRand(’)). Furthermore, “hardness” can be shown by a black-box
reduction that can use any decider for the problem in a black-box way to break the underlying
encryption scheme. More generally, one can consider the statistical difference problem relative to
different oracles implementing different cryptographic primitives and ask when can hardness be
shown based on a black-box reduction. We will rule out such reductions relative to I0 and OWPs
(and everything that follows from these in a fully black-box way).

3.2 Fully Black-Box Constructions of Hard SD Problems from IO and OWPs

We start by defining statistical difference problem relative to oracles. In the following definition,
for an oracle-aided (sampler) circuit C() with a k-bit input and an oracle ¥, we denote by C'¥
the output distribution C'¥(r) where r < {0,1}*. For two distributions X and Y we denote their
statistical distance by A(X,Y).

Definition 3.1 (Statistical difference relative to oracles). For an oracle W, the statistical difference
promise problem relative to ¥, denoted as SDY = (SD;I}, SD%), is given by

2
SDy = {(00,01) ’ Acy,cy) > 3} ,

1
SDY = {(00,01) ‘ A(Cy,CY) < 3}

We now formally define the class of constructions and reductions ruled out. That is, fully black-
box constructions of hard statistical distance problems from OWPs and 10 for OWP-aided circuits.
The definition is similar in spirit to those in [AS15, AS16], adapted to our context of SZK-hardness.

Definition 3.2. A fully black-box construction of a hard statistical distance problem from OWPs
and IO for the class C of circuits with OWP-gates consists of a family II = {II, }, .y, where each
II,, is a set of oracle-aided circuit pairs (Cé'),Cf)) € {0, 1}"X2, and a probabilistic oracle-aided
reduction R that satisfy:

e Black-box security proof: There exist functions ¢g(-),er(+) such that the following holds.
Let f = {fn} be any family of permutations and let ¢©O be any function family such that

14

Cf = ¢f for any CO) and r, where C0) := iO(C), 7). Then for any probabilistic oracle-
aided D that decides 11 in the worst-case, namely, for all n € N,

(C(),Cl) € Hn,B < {Y, N}

=1
such that (Cp, C1) € SDFO

Pr D/ (Cy,01) =B for all

the reduction breaks either f or 1O, namely, for infinitely many n € N either

D,f,iO _ >
oL L [RPFOUG @) = 0] > erim)

or

AdViro,io,c,D(”) > er(n) ,

where in both R makes at most gr(n) queries to any of its oracles (D, f,i0), and any query

(C’(‘), Cf)) it makes to D consists of circuits that also make at most gr(n) queries to their
oracles (f,70). The random variable Advl(?”,i(’)),i(’),c,RD (n) represents the reductions winning
probability in the 10 security game (Definition 2.2) relative to (f,:O).

We make several remarks about the definition:

e Correctness. Typically, we also require certain correctness from the black-box construction.
For instance, in the next section, we shall require that the construction always satisfies the
NP N coNP structure. In the above definition, the construction is allowed to yield instances
(C1© ¢f°) that do not satisfy the SZK promise; namely (CJ°C, ¢{°) ¢ SDI'® USDL©.
It is natural to think of more stringent definitions that require that the corresponding problem
17/ is non-trivial, in the sense that I1/© N SD{;iO # () and 1140 N SD{\}iO # (0 (which
is the case for known constructions of SZK hardness from cryptographic primitives). Our
impossibility is more general and would, in particular, rule out such definitions as well.

e Worst-Case vs. Average-Case Hardness. In the above, we address worst-case hardness,
in the sense that the reduction R has to break the underlying primitives only given a decider
D that is always correct. One could further ask whether IO and OWPs even imply average-
case hardness in SZK (as do many of the algebraic hardness assumptions in cryptography).
Ruling out worst-case hardness (as we will do shortly) in particular rules out such average-case
hardness as well.

e IO for Oracle-Aided Circuits. Following [AS15, AS16], we consider indistinguishabil-
ity obfuscation for oracle-aided circuits C that can make calls to the one-way permutation
oracle. This model captures constructions where 10 is applied to circuits that use pseudo-
random generators, puncturable pseudo-random functions, or injective one-way functions
as all of those have fully black-box constructions from one-way permutations (see further
discussion in [AS15]). This includes almost all known constructions from IO, including
public-key encryption, deniable encryption [SW14], functional encryption [Wat15], delegation
[BGLT15, CHJV15, KLW15], and hard (on-average) PPAD instances [BPR15]. Accordingly,
separating SZK from IO and OWPs in this model, results in a similar separation between
SZK and any one of these primitives.

15

We note that there a few applications though that do not fall under this model. The first is in
applications where the obfuscated circuit might itself output (smaller) obfuscated circuit, for
instance in the construction of IO for Turing machines from 10-based succinct randomized
encodings [BGL"15, CHJV15, KLW15]. To capture such applications, one would have to
extend the model to also account for circuits with IO gates (and not only OWP gates). A
second example is the construction of non-interactive witness indistinguishable proofs from
IO [BP15]. There an obfuscated circuit may get as input another obfuscated circuit and
would have to internally run it; furthermore, in this application, the code of the obfuscator is
used in a (non-black-box) ZAP. Extending our results (and those of [AS15, AS16]) to these
models is an interesting question, left for future work.

e Security Loss. In the above definition the functions gr and eg capture the security loss of
the reduction. Most commonly in cryptography, the query complexity is polynomial gg(n) =
n°M and the probability of breaking the underlying primitive is inverse polynomial er(n) =
n~9M . Our lower-bounds will in-fact apply for ezponential qR,s;zl. This allows capturing
also constructions that rely on subexponentially secure primitives (e.g., [BGLT15, CHJV15,
KLW15, BPR15, BPW16)).

Ruling Out Fully Black-Box Constructions: A Road Map. Our main result in this section
is that a fully black-box construction of a hard statistical difference problem from 10 and OWPs
does not exist. Furthermore, this holds even if the latter primitives are exponentially secure.

Theorem 3.3. Any fully black-box construction of a statistical difference problem I from OWPs

and 10 for circuits with OWP gates has an exponential security loss: max(qn(n),eﬁl(n)) >
Q(Qn/IO)‘

The proof of the theorem follows a common methodology (applied for instance in [HR04,
HHRS15, AS15]). We exhibit two (distributions on) oracles (¥, StaDif"), where ¥ realizes OWPs
and IO for circuits with OWP gates, and StaDif? that decides SDY, the statistical difference prob-
lem relative to W, in the worst case. Since SD is complete for SZK in a relativizing manner, solving
SDY suffices to break SZKY. We then show that the primitives realized by ¥ are (exponentially)
secure even in the presence of StaDif¥. This statement is proved when the oracle ¥ is sampled at
random from the constructed distribution. Since StaDif¥ solves SDY, in the worst-case, for every
oracle W, for every given reduction, there is a fixed oracle I' = (¥, StaDif?) relative to which: 1)
SD is easy to decide, 2) the reduction fails to break 10 (or OWPs). This implies Theorem 3.3,
ruling out fully black-box constructions with a subexponential security loss.

The rest of this section is organized according to the above plan. First, in Section 3.3, we describe
the oracle StaDif¥ (which is independent of the specific way that ¥ realizes IO and OWPs). Then,
in Sections 3.4 and 3.5, we describe the oracle ¥ realizing OWPs and 10 and prove its (exponential)
security in the presence of StaDif".

3.3 A Noisy Statistical-Distance Oracle

We now define the oracle StaDif¥ that will solve the statistical difference problem SDY in all the
separations proved in this section. Our goal is to design StaDif"¥ in a way that will not break the
security of the cryptographic primitives realized by ¥ (OWPs in the warmups, and then OWPs
and IO for circuits with OWP-gates). For this purpose, in our definition of the oracle StaDif¥,

16

we will try to exploit the fact that statistical distance is insensitive to local changes in the input
distributions. Then, we will show that breaking the relevant cryptographic primitives, captured by
¥, is impossible without detecting such local changes.

The concrete way of capturing the spoken insensitivity will be to define a “noisy oracle” that
would be correct on distribution pairs whose distance is within the promise range [0, %] U [%, 1],
but would behave randomly within (%, %)

Definition 3.4 (Oracle StaDif"). The oracle consists of t = {t,},,c)y Where t, : {0, 137" — (3,2)
is a uniformly random function. Given n-bit descriptions of oracle-aided circuits Cy, C; € {0,1}",
let t = t,(Co, C1), and let s = A(CY,CY), return

N Ifs<t

StaDif ¥ (Cy, Ca;t) =
aDif(Ch, Cit) {Y If s > t

It is immediate to see that StaDif¥ decides SDY in the worst-case.

Claim 3.5. For any oracle W,
SDY ¢ P\I/,StaDif‘I’ .

The main challenge is in showing that ¥ can implement OWPs and IO (for OWP-aided circuits)
that will be secure in the presence of StaDif V. We next develop the terminology and establish several
useful properties of StaDif that will allow us to carry out the above plan.

Capturing Insensitivity to Local Changes. We introduce two general notions of farness and
smoothness that aim to capture the sense in which the statistical difference oracle StaDif¥ defined
above is insensitive to local changes.

Roughly speaking farness says that the random threshold ¢ used for a query (Dyp, D1) to Sta Dif¥ is
“far” from the actual statistical distance. We will show that with high probability over the choice
of random threshold t, farness holds for all queries (Do, D;) made to StaDif¥ by any (relatively)
efficient adversary. This intuitively means that changing the distributions (D, DY), on sets of
small density, will not change the oracle’s answer.

Definition 3.6 (Farness). The oracles (U, StaDifV) satisfy 0-farness with respect to oracle-aided
circuits (Do, D7) € {0,1}" if the statistical difference s = A(Dg, DY) and the threshold t =
t, (Do, D1) sampled by StaDif are o-far:

|s—t]|>9 .

For an adversary D, we denote by Far(D, ¥, §) the event that I' = (¥, StaDifV) satisfies d-farness
for all queries (Do, D1) made by D to StaDif?.

Claim 3.7. Fiz any ¥ and any oracle-aided adversary D such that DYSLDIEY 1 okes at most q
queries to StaDifY. Then
Ptr [Far(D,¥,6)] > 1 —6dq ,

where the probability is over the choice t of random thresholds by StaDif.

17

Proof. This follows from the fact that, for any query (Dg, D1) to StaDif¥ with s = A(Dg, DY), 6-
farness does not hold only if the threshold ¢t = t(Dg, D7), chosen at random for this query, happens
to be in the interval (s — §, s + &), which occurs with probability at most |(s — §,s +6)| /|(3,3)] =
60, since t = t(Dy, D7) is sampled uniformly at random independently of (Dg, D1). The lemma
then follows by a union bound over at most ¢ queries.]

We now turn to define the notion of smoothness. Roughly speaking, we say that an oracle-aided
circuit D is smooth with respect to some oracle ¥ and a set of inputs T if the circuit, on a random
input, queries the oracle ¥ at any location x € T' with low probability. In particular, for a pair of
smooth circuits (Dg, D7), changes in how the oracle ¥ behaves on T should not change significantly
the statistical distance s = A(Dg, DY).

Definition 3.8 ((¥, T, §)-Smoothness). An oracle-aided circuit DO) : {0,1}" — {0,1}™ is said to
be (¥, T, d)-smooth if

Pr [D\I’(w) queries ¥ at any z € T| <4 .
w+{0,1}"

For an adversary D, we denote by Smo(D, ¥, T,) the event that all queries (Dg, D1) made by D
to StaDif? are (W, T, §)-smooth.

Claim 3.9. Let U, U be oracles that are identical everywhere outside T. Let (Do, D1) be (¥, T, §)-
smooth. Let s = A(DY, DY) and ' = A(DY', DY') then |s — s'| < 26.

Proof. For either b € {0,1},

A(Dy, Dy') <

Pr D (w) # DY (w)] <

f;r [Dgll(w) queries ¥ at z € T] <6 .
The claim then follows by the fact that

s = /| = Ay, el - Ay, of)| < acy, ci) + Ay, oy < 2

3.4 Warmup: One-Way Permutations in the Presence of StaDif

In this section, we show that a random permutation f is hard to invert even given access to the
noisy statistical difference oracle StaDiff. We start by defining the oracle. In what follows, P,,
denotes the set of permutations of {0, 1}".

Definition 3.10 (The Oracle f). f = {fn}, ey on input = € {0,1}" answers with f,(z) where f,
is a random permutation f, < P,,.

Our main theorem states that f cannot be inverted, except with exponentially small probability,
even given an exponential number of oracle queries to f and StaDif/. We say that an adversary
D is g-query if Df StaDif! 1 akes at most q queries to f and ¢ queries to StaDiff, and any query
made to StaDif/ consists of oracle-aided circuits (Do, D7) that make at most ¢ queries to f, on any
specific input.

18

Theorem 3.11. Let g < O(2"/%). Then for any q-query adversary D

iff -n
fStla)Igifm Dﬂstf (f(l‘)) - x] = 0(2 /5> ’

where the probability is over the random choices of f,StaDif and x + {0,1}".

For the black-box reduction to succeed, it has to invert the one-way function f for every f
where StaDif/ breaks SZK (that is, for every f). We show that even for a random permutation f,
the reduction cannot invert with high probability. This is stronger than what is needed to establish
the required impossibility result.

At a very high level, the proof of the theorem follows the plan outlined above, showing that in
order to invert a random permutation the adversary must be able to detect certain local changes
to the permutation, which the noisy statistical difference oracle is insensitive to.

Proof. We, in fact, prove a stronger statement: the above holds when fixing the oracles f_, =
{fe}tr #n- Fix a g-query adversary D. To bound D’s inversion probability, we consider four hybrid
experiments {Hi}i€[4] given in Table 1. Throughout, for a permutation f € P,, and z,y € {0,1}",
we denote by fz, the function that maps x to y and is identical to f on all other inputs (in
particular, fy, is no longer a permutation when = # f~1(y)).

Hybrid H; (Real) | H, \ H, | Hs (Ideal)
Permutation fn < Py
Preimage xz <« {0,1}"
2nd n
Preimage 2 {01
Planted n
Image y < {0,1}
Challenge f(x) Y
Oracle f,StaDif! | f.), StaDif=>i@ | f,, StaDiff=~v | f StaDif/
Winning .
Condition Find @

Table 1: The hybrid experiments.

Hybrid H; is identical to the real world where D wins if it successfully inverts the permutation
at a random output. We show that the probability that the simulator wins in any of the experiments
is roughly the same, and that in hybrid Hy the probability that D wins is tiny.

Claim 3.12. |Pr[D wins in Hy] — Pr[D wins in Ha]| < O(27"/5).

Proof. The difference between the two hybrids is in the oracle that D is given: simply f in the
first, and its slightly tweaked version f,,, () in the second. We can bound the difference between
the winning probabilities in H; and Hs as follows:

|Pr[D wins in Hy| — Pr[D wins in Ha]| <

Pr Df,StaDiff (f(l')) 7£ sz,_”:(z),staDifszf@) (f(x)) ’
D7)
f,Staa:DZif

19

where the probability is over the coins of D and StaDif and the choice of z,z < {0,1}", f,, + P,,.

In what follows, we denote by Hit = Hit(D, f, z, z) the event that DﬁStaDiff(f(:U)) queries f on z.
Also, let Far = Far(D(f(z)), f,20) be the event that 20-farness holds for all StaDif-queries made
by Df’StaDiff(f(a:)) (Definition 3.6), and Smo = Smo(D(f(z)), f,z,) is the event that for every
StaDif-query (Dy, D1) made by D/ StaDif/ (f(x))is (f,T = {2z}, 6)-smooth (see Definition 3.8).

We now claim

Claim 3.13. For any § < 1,

i i fz»—) x e
Pr IS0 () £ Dlasja)StaDIF==) f(x))} < Pr [HitVFarVSmo] .
f.Stabif f.Stabif

Proof. We argue that whenever the complement Hit A Far A Smo occurs then
Df,StaDiff (f(.’E)) — DfZHf(x),StaDiffz»—»f(x) (f(l')) .

Indeed, for any StaDif-query (Cp, C1) made by D/ StaDif! (f(x)), we know from Smo(D(f(z)), f, 2,0)
that changing f at z does not affect the statistical distance by much. Concretely, by Claim 3.9,

A(D], D{) — A(D}'@ DI < 25 .
Hence, if 20-farness also holds for any such query (for some threshold t sampled by StaDif), then
StaDif/ (Cy, C1; t) = StaDif/==/) (Cy, C1; t) .
If in addition Hit does not occur, then for any f-query w made by vaStaDiff(f(a:)),
f(w) = fosp@(w) .
It follows that the views of D/StaDif’ (f(z)) and Do () SERDIF 1) (f(z)) are identical. O

It is left to bound the probability of each of the events Hit, Far, Smo. First, noting that the
view of D7 StaDif/ (f(z)) is independent of the random z, we can bound

Pr[Hit] < 27" - # { f-queries made by D} <27".¢q .
Furthermore, by the farness Claim 3.7,
Pr |Far| < 12¢¢ .

Finally, we have that
Claim 3.14. For any fixed f,x,

Pr [Smo(D(7(@). f,z,a)} <27 .242/5 .

Proof. Every circuit D that makes at most ¢ queries has at most ¢/9 locations queried with prob-
ability more than §. Taking into account the 2¢ queries (Dg, D1) made by D, there are overall at
most 2¢2/6 such queries. Since z is chosen uniformly at random and independently of these queries,
it hits any specific one of them with probability 27™. O

20

Overall, we can bound the difference between H; and Ha by

2722 /5 + 27 g+ 12¢6 < O(270) |
when setting 6 = 272%/5_ and recalling that ¢ < O(2"/%). O
Claim 3.15. Pr[D wins in Ha] = Pr[D wins in Hg].

Proof. The difference between Hy and Hg is in the input of D, f(z) in the first and a random y
in the second, and in the oracle D is given, f,.,f(,) in the first and f;, in the second. We argue,
however, that the distribution {(f(x), fosj(2), @) | f < Pny@,2 < {0,1}"} in Hy is identical to
that of {(y, fosy.) | f < Pn,z,z < {0,1}"} are in Ha. Indeed, in Hy, (f(z),) are distributed
uniformly and independently just as (y,z) in Ha. Then, conditioned on any (y,x), the oracle in
both distribution can be sampled as a random permutation f conditioned on y = f(x) and diverting
a random z from f(z) to y. O

Claim 3.16. |Pr[D wins in Hz] — Pr[D wins in Hy| < O(277/5).

The difference between the two hybrids is in the oracle that D is given: simply f in the second
and its slightly tweaked version f;., in the first. The proof of their indistinguishability is essentially
identical to that of Claim 3.12, except that here we start with Hy4, and consider the notion of
smoothness with respect to x, and observe that it is independent of the execution.

To conclude the proof of Theorem 3.11, we observe that

Claim 3.17. Pr[D wins in Hy) < 277,

Proof. The view of D in this hybrid is completely independent of the random choice of z. O

3.5 Indistinguishability Obfuscation (and OWPs) in the Presence of StaDif

In this section, we consider an oracle U that realizes both indistinguishability obfuscation (I0) and
one-way permutations (OWPs) and show that neither break in the presence of the noisy statistical
difference oracle StaDif Y. We start by defining the oracle ¥. In a nutshell, the oracle realizes OWPs
through a random permutation oracle. 10 for circuits with OWP-gates is captured in a similar way
to [AS15] by a random injective mapping coupled with a corresponding evaluation algorithm.

In what follows, P,, denotes the set of permutations of {0,1}", F/* denotes the set of functions
mapping {0,1}" to {0,1}", and I'™ denotes the set of injective functions mapping {0, 1}" to {0,1}"™.

Definition 3.18 (The Oracle ¥). The oracle ¥ = (f, O, Eval’*®) consists of three parts:

o [={fu}pen on input z € {0,1}" answers with f,(x), where f, is a random permutation
fn < P

o O = {0}, cn on input (C,r) € {0, 132 answers with C := 0,,(C, r) where O, is a random
injective function O, < I3? into {0,1}°".

21

~

e Eval© given C € {0,1}°" ,z € {0,1}* computes (C,r) = O;1(C), interprets C as an oracle-
aided circuit, and returns C7(z). If the input size of C is inconsistent with |z|, the oracle
returns 1. We further extend the definition of Eval to the case that O is not injective: If C
does not have a unique preimage, the oracle returns L.

In the next two subsections, we show that the oracle ¥ securely realizes OWPs and 10 in the
presence of the noisy statistical difference oracle StaDif Y. Throughout, we address adversaries with
oracles ¥ = (f, 0, Eval?/) and StaDif¥. We will say that such an adversary is ¢-query if they

1. make only ¢ queries to f,

2. make only ¢ queries to either O or Eval, and any query C to Eval is of size at most 5¢, and
in particular, any oracle aided circuit C' that is mapped to C' by O is of size at most ¢, and
makes at most ¢ queries to f,

3. make only ¢ queries to StaDif¥, and for any query (Co, C1) made to StaDif?, (Co,Cq) are
U-aided and each of them is ¢g-query (according to the two conditions above).

3.5.1 One-Way Permutations

We show that f cannot be inverted, except with exponentially small probability even given an
exponential number of oracle queries to ¥ = (f, O, Eval®/f) and StaDif¥. This is proved by a
reduction to Theorem 3.11. We show that an even stronger adversary, one that gets access to O
completely cannot invert f. When the adversary gets complete access to O it can answer O, Eval
queries by itself and reduce StaDif»OF¥a queries to StaDif/ queries.

Theorem 3.19. Let q(n) < O(2%/10). Then for any q-query adversary D

aDif¥ .
‘I’:(fPOrEval) [D\P’St P (f()) = x] <0(2 /5) :
StaDif

where the probability is over the random choice of W, StaDif and z < {0,1}".

Proof. We will, in fact, prove a stronger statement: the above holds when fixing the oracles f_,, :=
{fk}k?én, O = {On},,cn- We prove the theorem by a reduction to the case that ¥ only consists of
the permutation f (and does not include O, Eval). Concretely, fix any g-query adversary D that
inverts the random permutation f,, given access to ¥ = (f, O, Eval) and Sta Dif¥, we show how to
reduce it to a ¢>-query adversary Bf(f,(x)) that inverts f, for a random z < {0,1}" with the
same probability as D. The proof then follows from Theorem 3.11.

The new adversary B/ ’StaDiff(fn(x)) emulates DY.StaDif” (fn(z)) answering W-queries as follows:
e f queries: answered according to B’s oracle f. This translates to at most ¢ queries to f.
e O queries: answered according to the fixed oracle @. This does not add any calls to f.

e Eval/'© queries: given query (C,z) to Eval, invert the fixed oracle O to find (C,r) = O~1(C).
If no such preimage exists, return L. If a preimage does exist, using the f-oracle, compute
Cf(x) and return the result. This translates to at most ¢? queries to f: ¢ queries by C, for
each of the ¢ queries C to Eval.

22

e StaDif¥ queries: given query (Cp, C1), where Cj makes W-queries translate to Dy, Dy that
only make f-queries, where each query to ¥ = (f,O,Eval) is translated to a query to f
according to the previous three items. The resulting oracle-aided (Dy, D1) may thus make up
to g + ¢° queries f: ¢ corresponding to the first item, and ¢* corresponding to the third.!!

Overall Bf is O(¢?)-query and perfectly emulates the view of D¥. The theorem now follows
from Theorem 3.11.
[

3.5.2 Indistinguishability Obfuscation

We now turn to show that U also realizes an indistinguishability obfuscator that does not break
in the presence of StaDif¥. We start by describing the construction, which is similar to the one in
[AS15].

Construction 3.20 (The Obfuscator iOY). Let ¥ = (f, O, Eval/©). _Given an oracle-aided circuit
C € {0,1}", iO¥ (1", C) samples a random r + {0,1}", computes C' = O(C,r), and returns an
oracle aided circuit Eg that given input x, computes Evalf’O(C,:L').

It is easy to see that iOf/OEva gatisfies the functionality requirement of Definition 2.2 for
the class C of f-aided circuits; indeed, this follows by the fact that O is injective, and by the
definition of 1O and the oracles O, Eval. We now show that it also satisfies indistinguishability,
with an exponentially small distinguishing gap, even given an exponential number of oracle queries
to W = (f, @, Eval?7) and the statistical difference oracle StaDif”.

Theorem 3.21. Let q(n) < O(2"/5). Then for any q-query distinguisher D

E PAdV®p e p(n)| < OQ275) |

where the random variable PAdVR-O’C,D(n) denotes the adversary’s positive distinguishing advan-
tage in the 10 security game (Definition 2.3) relative to U = (f, O, Eval/"©) and StaDif".

Corollary 3.22. Let q(n) < O(2"/5). Then for any q-query distinguisher D
E [Adv%0.cp(n)] < 0271)

The black-box reduction has to succeed for every oracle (f,O) where the SZK-breaker oracle
works (that is, all oracles). Here we show that for a random oracle, the adversary’s positive
distinguishing advantage is small. This suffices to prove the result.

At a very high-level, the proof of the theorem follows a similar rationale to the proof of Theorem
3.11 showing that one-way permutations do not break in the presence of the noisy statistical
difference oracle. Roughly speaking, we show that in order to break the above construction of
10, the adversary must be able to detect local changes in the oracles realizing it, whereas the
noisy statistical difference oracle is insensitive of these changes. At a technical level, the case of

1We note that while there is a bound on the number of queries that they make, we do not put any restrictions on
their size, which allows to hardwire the fixed O and f_,, as required in the previous three items. Indeed, Theorem
3.11 does not put any restriction on the size of these circuits.

23

10 requires somewhat more care than the case of one-way permutations. For once, it has a more
elaborate interface consisting not only of a hard to invert mapping O, but also of the evaluation
oracle Eval/"®. In particular, a single change to @ may introduce many changes to Eval/'®, which
could potentially be detected by the statistical difference oracle. Another aspect that complicates
the proof is that the IO game is more interactive in its nature. In particular, we need to deal with
the fact that the actual circuits of the IO challenge are chosen adaptively, after the adversary had
already interacted with all the oracles. We now turn to the actual proof.

Proof. We prove a stronger statement: the above holds when fixing the oracles f and O_, =
{(’)k}k#n. Fix a g-query adversary D = (D1, D3). To bound D’s advantage in breaking iO, we
consider four hybrid experiments {Hi}z’e[4] given in Table 2.

We introduce some notation that will be useful to describe the hybrids:

e We use regular expressions to describe sets. In particular, the * expression. We denote by
(x,7) ={(C,r): C € {0,1}" and, |C| = |r|} and O(*,7) = {O(C,r) : C € {0,1}" and, |C| = |r|}.
In particular, define the set T = (x,7).

e For a function O = {(’)k :{0,1}% - {O,I}Bk}k o2 set T C {0,1}™%, we denote by
€

Or.1 the function that maps (C,r) € T to L and is otherwise identical to O. Hence,
Eval(O(C,r),z) = L for all (C,r) € T. We often refer to such a set T" as the punctured set.

e For a function O = {Ok . {0,1}%* — o0, 1}5k}]~C . apair (C,r) € {0,1}"? and C € {0,1}°",
€

we denote by O(C) the function that maps (C,r) to C and is otherwise identical to O.

e For a function O = {Ok - {0,1}** — o, 1}5k}k v Ve denote by I'(f, O, t) the oracle
€

T'(f,0,t) := f, 0, Eval’©, StaDif/O:Eval"?
where StaDif uses the threshold function t.

e For a function O = {(’)k : {0, 1}2]C — {0, 1}5k}k o8 string Cec {0, 1}5", and a circuit C, we
€
denote by I'(f, 0, C, C, t) the oracle

o~ 1,0
I(f,0,0,C,t) := f,0, Evalg%,StaDiff’O’EvaI@C ,
where StaDif uses the threshold function t and Evalg% is an oracle that

— Given (D,z) where D # C, acts like Eval#©(D,z). Namely, it computes (D,r) =
O~Y(D), and returns D(z), or L in case there is no unique preimage or the size of z
does not match the input size of D.

— Given (C, z) returns C(z), or L in case C' = L, or the size of does not match the input
size of C.

e Throughout all hybrids t = {t;},cy Where t; : {0, 132 (1,2) is a random function.

24

Hybrid H; (Real) | Hj | Hj | H4 (Ideal)

“Pumetion 0, < 13,

Randomners b (0.1).r (0.1

Oli'i:lﬁ:?on C +{0,1}°" \ Image(O)

Prechallenge (e.1)

Punctured Set T’

Preg;ilinge I'(f,0,t) L(f, 011, t) T(f,0,t)
Obfuscation O(Chr) ¢

 Grmle D08 | DO, pa0t) | T(£,0.C.Cost)
gz:;ril:?ogn The adversary outputs b.

Table 2: The hybrid experiments.

We briefly describe the hybrids in words below:

e H;: Hybrid H; is the real world where D wins if it produces functionally equivalent circuits
Cy, C1, and it successfully guesses the bit b.

e Hs: Changes the oracle seen by the adversary in the pre-challenge phase, that is before the
adversary issues the challenge. In this hybrid, the pre-challenge obfuscation oracle is changed
to one where obfuscations that use the chosen randomness r for all circuits: I'(,), to return
1. That way, the adversary D does not learn any information about the obfuscation that use
this chosen randomness.

e Hj3: These two hybrids are identical except we rename the challenge from I'(Cy, 1) to C a
randomly chosen label. These two hybrids are identical other than this renaming.

e H,: In this hybrid, we switch to an ideal world where the obfuscation to the challenge given
to the adversary is is completely independent of the challenge and the randomness. In this
world, the adversary has an advantage of 0 in the obfuscation security game.

We show that the probability that the simulator wins in any of the experiments is roughly the
same, and that in hybrid Hy4 the probability that D wins is 1/2 for each oracle O.

Claim 3.23. |Pr[D wins in Hy] — Pr[D wins in Ha]| < O(27/%).

Proof. The difference between the two hybrids is in the oracle that Dy is given before the challenge
phase: T'(f,O,t) in the first, and its tweaked version I'(f, Op., 1, t) in the second.

25

We can bound the difference between the success probability in Hy and Hy as follows:

[Pr[D wins in Hy] ~ Pr[D wins in Hp)| <E | Pr [Df(f OB (qny 2 pLEOT=LE qnyl |
b

)

where D is the part of D = (Dy, Ds) that participates in the pre-challenge phase, and the proba-
bility is over the coins of D; and t (used by StaDif) and the choice of r + {0,1}", and O « I3",
and b < {0,1}. We will, in fact, show that the above is bounded for any fixed b € {0,1}. Indeed,
for the rest of the claim, fix b € {0,1}.

In what follows, let Far = Far(D;, O, 2J) be the event that 2d-farness holds for all StaDif-queries

made by Dlr(f’o’t)(ln) (Definition 3.6). Let rHit denote the event that D; queries I' on T' U
(O(T),*) = (*,7)U(O(x,7), %); that is, queries O at (C,r) for some C or queries Eval on (O(C,r), 2)
for some C and z. Let Smo(D;,I',r,J) denote the event that all queries D; makes are (U, 7 U
(O(T), *),d)-smooth (see Definition 3.8).

We now claim,

Claim 3.24. For any fized f, O,

Pr [Df(f’o’t)(ln) v Df(f’OT%“(W)} < Pr [rHit Vv Far v Smo] .
D1, Di,r,t

Proof. We argue that whenever the complement rHit A Far A Smo occurs then
I'(f,0,t I'(f,Ops,t
The two oracles U = (f,©,Eval’©) and ¥ = (f, Op 1, Evall©7=1) behave identically on all
queries outside T'U (O(T'),). Hence, when the event rHit does not occur, the two oracles answer
all queries identically.
Next, we need to show that all StaDif queries are answered identically by StaDif¥ and StaDif¥".

For any StaDif-query (Dg, D;) made by D'/:O4) (1), we know by Smo(¥,§,) that changing ¥
on the set T does not affect the statistical distance by much. Concretely,

A(DE)IJMD;I/) _A(DgﬂaD‘llﬂ) §25)

Furthermore, if 20-farness also holds for any such query (for some threshold t sampled by StaDif),
then
StaDif¥ (Dg, D1;t) = StaDif¥ (Do, D1;t) .

Hence, it follows that the views of Dlr(f’o’t)(ln) and Df(f’OTHl’t)(ln) are identical. O

It is left to bound the probability of each of the events rHit, Far, Smo. First, by noting that
the view of Dlr(f’o’t)(ln)) is independent of the random 7 and that O is injective, we can bound

Pr[rHit] < 27" . # {U-queries made by D1} <27".q .
Furthermore by the Farness Claim 3.7 we get that,

Pr |Far| < 12¢¢ .

26

We now bound the probability that Smo does not occur: For any fixed f, O,

Prr [Smo(Dl,F,r, 5)} <27".2¢%/6 .

The proof again follows from the fact that any circuit D that makes at most ¢ queries to (f, O, Eval/ ’O)
and that O is injective, hence there are at most ¢/d values of r that do not satisfy smoothness;
that is, the circuit D queries (x,r) or the corresponding outputs (O(C,r), *) with probability more
than 0. Using the fact that r is independent of the execution in Hy, the probability that it is one
of these values is at most 27" - ¢/d. A union bound over ¢ queries of the form (Dg, D1) gives the
required bound.

Overall, we can bound the difference between Hy and Ha by

27" q+12¢6 + 27" - 2¢%/6 < O(27/P) |
when setting § = 272"/% and recalling that ¢ < O(2"/%). O
Claim 3.25. Pr[D wins in Ha| = Pr[D wins in Hg].

Proof. The difference between Ha and Hg is that in Hg, in the challenge and post challenge
phases, the value O(Cy,r) is re-sampled uniformly at random from the co-image, namely, it is
replaced everywhere by C « {0,1}°" \ Image(0,). We claim that this induces exactly the same
distribution on D’s view as in Ha. Indeed, in Hs, at the end of the prechallenge phase, fixing the
view of D, the distribution of O(Cy,r) is uniformly random in S := {0,1}°" \ Image (O, rys L)-
In Hy O(Cy,) is sampled uniformly at random directly from S, whereas in Hg, we first sample
a random value O(Cj,7) from S, and then resample C from S\ {O(Cj,7)}, which again gives a
uniformly random value in S. O

Claim 3.26. |Pr[D wins in Hz] — Pr[D wins in Ha]| < O(27/%).

Proof. There are two differences between the hybrids. The first is in the oracle that D; is given
before the challenge phase: I'(f,O,t) in Hy, and its tweaked version I'(f, OT\._}J_,t) in Hz. The
second is in the oracle that D; is given after the challenge phase: L'(f,0,C,Cy,t) in Hy, and
I'(f, (’)(var)._)a, t) =I'(f, (’)(Cw)ﬁa, C, Cp,t) in Hz. We can thus bound the difference between the

winning probabilities in Hg and Hy as follows:

|Pr[D wins in Hs| — Pr[D wins in Hyl| <

O |Dy,bt

E [Pr {state = Df(f’o’t)(ln) # Df(f’OTHL’t)(ln)H +
A ~ L(£,0.0 m.se:CiCnit ~
E [Pr {Dg(f’o’c’co’t) (state, C) # DQ((Comm &)(state,)

O |Dy,bt

state = Df(f’o’t) (1”)] }

As proved in Claim 3.23, the first summand is bounded by 0(2*"/ ®). This proof is unchanged here.
We argue that a similar bound holds for the second summand as well.

Claim 3.27.

3 ~ L(£,0(6, 1yescCiChit) ~
I(Egl |:DP£t [Dg(f’o’c’co’t) (state,C) # D, = w7 ’ (state, C)
1,9,

state = Df(f’o’t)(ln)” <027 .

27

Proof. The proof is similar to that of Claim 3.23 and is included here for completeness. Note that
the post-challenge oracles (f, O, Eval) are different in the following two ways: a query to O at (Cy, 1)
would output C in Hj3 and O(Cy,r) in Hy. Also, a query to Eval at (O(Cy, 1), *) would output L
in Hs. Note that a query of the form (6, x) would be answered identically in both Hg and Hy
because of the functional equivalence of Cg and C’{ and hence whether the Eval oracle answers
using Cp in Hy or Cp in Hg, the answers would be identical.

In what follows, let Far = Far(D3,0,25) be the event that 20-farness holds for all StaDif-
queries made by Dg f ’O’t)(ln, state) (Definition 3.6). Let rHit denote the event that Dy queries T’
on T, i.e., queries O at (C,r) for some C or queries Eval on (O(C,r),z) for some C and z. Let
Smo(Dy,I',7,d) denote the event that all queries Dy makes are (¥, 7 U (O(T), *),d)-smooth (see
Definition 3.8) where T' = (x, 7).

We now claim,

Claim 3.28. For any fized f, O,

F(f’O(Cb,r)—)é ,C,Ch 7t)
2

Pr Dg(f’ac’co’t)(state, C)#D (state, C) | state = Dlr(f’o’t)(ln)

Da,b,t
< Pr |rHit V Far vV Smo| .
T Da,rt [

Proof. We argue that whenever the complement rHit A Far A Smo occurs then

~ N L(£,0.0 1eCChit) ~
Dg(f’o’c’co’t)(state, C)#D, = (“w7C ’ (state, C') .

As noted above, the two oracles ¥ = (f, O, Evalgoc) and ¥’ = (f, O(Cw)._)@, Evalf’owbv’“)**é) behave

identically on all queries outside T'U (O(T),). 7Hence, when the event rHit does not occur, the
two oracles answer all queries identically.

Next, we need to show that all StaDif queries are answered identically by Sta Dif¥ and StaDif¥".
For any StaDif-query (Dy, D1) made by Dg(f’o’c’co’t)(ln,state), we know by Smo(¥,d,r) that
changing W on the set T' does not affect the statistical distance by much. Concretely,

A(ngDiI]) _A(D(?IPD‘II}/) SZ(S ’

Furthermore, if 20-farness also holds for any such query (for some threshold t sampled by StaDif),
then
StaDif¥ (Dg, D1;t) = StaDif¥ (Do, D1;t) .
. . I(n F(ﬁo(cb,r)eévt) n .
Hence, it follows that the views of D, 1", state) and D, (1™, state) are iden-
tical. 0

f,o,é,co,t)(

It is left to bound the probability of each of the events rHit, Far, Smo. First, by noting that

the view of Dg(f’o’c’co’t)(ln, state)) is independent of the random r and that O is injective, we can

bound
Pr[rHit] = 27" - # {U-queries made by Dy} <27".q .

Furthermore by the Farness Claim 3.7 we get that,

Pr |Far| < 12¢¢ .

28

As before, we can bound the probability that Smo does not occur: For any fixed f, O,

Pr [Smo(Dg,F,r, 5)} <27".2¢%/6 .

The proof is identical to that of Claim 3.14. Hence, we can bound the difference between H; and
Hy> by

27 g+ 12¢6 + 27" - 2¢%/6 < O(27/P) |

when setting § = 272"/5 and recalling that ¢ < O(2"/%).
This completes the proof as both the terms are bounded by O(27"/%).
Claim 3.29. For any oracle f,O, Pr[D wins in Hy] = %
Proof. The view of D in this hybrid is completely independent of the random choice of b and r. [

This concludes the proof of Theorem 3.21.

4 One-Way Functions, Indistinguishability Obfuscation,
and Hardness in NP N coNP

In this section, we show that injective one-way functions (IOWF's) and indistinguishability obfus-
cation (I0), for circuits with IOWF-gates, do not give rise to a black-box construction of hard
problems in NP N coNP. This can be seen as a generalization of previous separations by Rudich
[Rud88], showing that OWFs do not give hardness in NP N coNP, by Matsuda and Matsuura
[MM11], showing that IOWFs do not give one-way permutations (which are a special case of hard-
ness NPNcoNP), and by Asharov and Segev [AS16], showing that OWFs and IO do not give one-way
permutations. As in the previous section, the result implies that many cryptographic primitives
and hardness in PPAD, also do not yield black-box constructions of hard problems in NP N coNP.

We first define the framework of NP N coNP relative to oracles, define fully black-box constructions
of hard NP N coNP problems, and then move on to the actual separation.

4.1 NP N coNP

Throughout, we shall canonically represent languages L € NP N coNP by their corresponding non-
deterministic poly-time verifiers V7, Vj, where

L={ze{0,1}" | Jw: Vi(z,w) =1} ,
L={rec{0,1}|3w: Vo(z,w) =1} = {0,1}*\ L .

29

Hardness in NP N coNP from Cryptography - Motivation. Hard (on average) problems in
NPNcoNP are known to follow based on certain number-theoretic problems in cryptography, such as
Discrete Log and Factoring. As in the previous section for SZK, we are interested in understanding
which cryptographic primitives would imply such hardness, again with the intuition that these
should be appropriately structured. For instance, it is known [Bra79] that any one-way permutation
f:{0,1}" — {0,1}" implies a hard problem in NP N coNP, e.g. given an index i € [n] and an
image f(x) find the i-th pre-image bit ;. In contrast, in his seminal work, Rudich [Rud88] proved
that completely unstructured objects like one-way functions cannot construct even worst-case hard
instances by fully black-box constructions. Here a fully black-box construction essentially means
that the non-deterministic verifiers only make black-box use of the OWF (or OWP in the previous
example) and the reduction establishing the hardness is also black-box (in both the adversary and
the OWF).

But what about more structured primitives such as public-key encryption, oblivious transfer, or
even indistinguishability obfuscation. Indeed, IO (plus OWFs) has-been shown to imply hardness
in PPAD and more generally in the class TFNP of total search problems, which is often viewed as
the search analog of NP N coNP [MP91]. We will show, however, that fully black-box constructions
do not give rise to a hard problem in NP N coNP from OWFs (or even injective OWF's) and 10 for
circuits with OWF gates.

4.2 Fully Black-Box Constructions of Hardness in NPNcoNP from 10 and IOWFs

We start by defining NP N coNP relative to oracles [Rud88]. This, in particular, captures black-
box constructions of such languages from cryptographic primitives, such as one-way functions in
[Rud88] or indistinguishability obfuscation, which we will consider in this work.

Definition 4.1 (NP N coNP relative to oracles). Let & be a family of oracles and let Vl(‘), ()
be a pair of oracle-aided non-deterministic polynomial-time verifiers. We say that V7,V define
a collection of languages L® = {LF | I'e 6} in NP N coNP relative to © if for any I' € &, the
machines V', VOF define a language L' € NPT N coNP!. That is

L' ={ze{0,1}* | Jw: Vi (z,0) =1},
L' = {2 € {0,1}" | 3w : V{ (z,w) = 1} = {0, 1}*\ L .

We now formally define the class of constructions and reductions ruled out. That is, fully black-
boz constructions of hard problems in NP N coNP from injective one-way functions (IOWFs) and
10 for IOWF-aided circuits. The definition is similar in spirit to the definitions in [AS15, AS16]
and in Section 3, adapted to the context of NP N coNP hardness.

Definition 4.2. A fully black-box construction of a hard NP N coNP problem L from IOWFs and
1O for the class C of circuits with IOWF-gates is given by two oracle aided poly-time machines
(Vb, V1) and a probabilistic oracle-aided reduction R that satisfy:

1. Structure: Let & be the family of all oracles (f,70) such that f is injective and O is a
function such that Cf'E C/ for any CcO e, r,and CV) :=iO(C,r). Then (Vp,V;) define a
language LHC e NP/C N coNP/© relative to any oracle (f,i0) € & (as per Definition 4.1).

30

2. Black-box security proof: There exist functions ¢r(-),er(-) such that the following holds.
Let (f,iO) be any distribution supported on the family & defined above. Then for any
probabilistic oracle-aided A that decides L¥*C in the worst-case, namely, for all n € N

r e {0,1}" b€ {0,1}

such that Vy(z) =1 | 1

Pr [.Af’io(a;) =b forall
f30,A

the reduction breaks either f or 1O, namely, for infinitely many n € N either

A, f,iO _ >
P RO @) = 2] 2 erln)
f10,A

or
Advi((J)”,iO),iO,C,RA(n) >er(n)

where in both R makes at most ¢ (n) queries to any of its oracles (A, f,i0), and for any query
z made to A, the non-deterministic verifiers V5" (), V/"®(z) make at most g (n) queries
to their oracles (for any non-deterministic choice of a witness w). The random variable
Advl(?,i@),iO,C,R 4(n) represents the reductions winning probability in the IO security game
(Definition 2.2) relative to (f,70).

Remark about Correct Structure. We note that here we explicitly do put a correctness
requirement, which we refer to as structure; namely, that the construction yields a language in
NP N coNP for any implementation of OWPs and I0O. This is different from the setting from
Definition 3.2 where we considered promise problems and allowed the construction not to satisfy
the promise occasionally.

Concretely, we require that Vj, V1 give a language in NP N coNP for every oracle implementing
IOWFs and IO. This follows the modeling of [BI87],'2 and aligns with how we usually think about
correctness of black-box constructions of cryptographic primitives. For instance, the construction of
public-key encryption from trapdoor permutations is promised to be correct, for all oracles imple-
menting the trapdoor permutation. Similarly, the construction of hard NP N coNP languages from
one-way permutations, gives an NP N coNP language for any oracle implementing a permutation.

We also note that as in Section 3, our definition addresses worst-case hardness, which makes
our impossibility result stronger. See further discussion after Definition 3.2 in Section 3.

Ruling out Fully Black-Box Constructions: A Road Map. Our main result in this section
is that fully black-box constructions of a hard NP N coNP problem from IO and IOWFs do not
exist. Furthermore, this holds even if the latter primitives are exponentially secure.

Theorem 4.3. Any fully black-box construction of an NP N coNP problem L from IOWFs and 10
for circuits with IOWF gates has an exponential security loss: max(qr(n),ex' (n)) > Q(2"/%).

The proof of the theorem follows a similar methodology to that in Section 3. We exhibit two
(distributions on) oracles (¥, Decide?), where ¥ realizes IOWFs and IO for circuits with IOWF

2Rudich [Rud88] also considered a slight relaxation of constructions that are correct for an overwhelming fraction
of oracles rather than all.

31

gates, and Decide? that decides LY € NP¥Y N coNPY in the worst case. We then show that the
primitives realized by ¥ are (exponentially) secure even in the presence of Sta DifY. This statement
is proved when the oracle ¥ is sampled at random from the constructed distribution. Since Decide®
decides NP¥ N coNPY, in the worst-case, for every oracle W, for every given reduction, there is a
fixed oracle I' = (U, Decide?) relative to which: 1) NP N coNP is easy to decide, 2) the reduction
fails to break 10 (or IOWFs). This implies Theorem 4.3, ruling out fully black-box constructions
with a subexponential security loss.

The rest of this section is organized according to the above plan. First, in Section 4.3, we
describe the oracle Decide”. As a warm-up, in Section 4.4 we show that injective one-way functions
cannot construct hard languages in NP N coNP in a black-box manner. Then in Section 4.5, we
describe the oracle W such that even in the presence of Decide”, (exponentially) secure OWFs and
indistinguishability obfuscation exist. This rules out fully black-box constructions of even worst-
case-hard problems in NP N coNP.

4.3 The Decision Oracle

In this section, we construct an oracle Decideg that is defined with respect to a family & of oracles
(e.g., all oracles implementing IOWF and I0), and which given access to ¥ € & decides any
language in NP¥ N coNPY.

Definition 4.4 (Oracle Decideg). For a family of oracles &, we define the Decideg oracle as follows:
e Decideg is given oracle access to some W.

e Decide takes as input a pair of oracle-aided circuits (V, V1) along with an input z where the
circuits Vp, V1 (allegedly) define a language in NP N coNP relative to &.

° Decideg(Vg, V1, z) does the following:

1. Checks that V¥, V;¥" € NP¥ N coNPY' for all ¥’ € &. If not, output L.

2. For the input z, it outputs the unique b such that there exists a witness w satisfying
V¥ (z,w) = 1. (Since V3, V¥ define an NP N coNP language such b indeed exists and is
unique.)

A few remarks about the Decideg oracle.

1. We will use the Decideg oracle in a similar way to the StaDif oracle in Section 3. We will
be interested in the family of oracles & that implements a required primitive P (eventually
IOWFs and 10). We will show a distribution ¥ supported on & that securely implements
P in the presence of Decideg, whereas at the same time, Decideg will enable to decide any
language in NPY NcoNP¥ given by verifiers that define n NP NcoNP language relative to any
oracle in .

2. Queries to the oracle are represented as circuit verifiers Vp, V3. We will consider adversaries
that only produce Vj, Vi that make some bounded number of oracle queries to W.

3. The behavior of the oracle Decideg is undefined for oracles ¥ outside &. In our analysis, all
oracles considered will be taken from the family &.

32

To rule out fully black-box constructions of hard languages in NP N coNP we have to show two
things. First, that Decideg is sufficient to decide any NP¥ NcoNP¥ language given by verifiers that
define an NP N coNP language relative to any oracle in &. Second, it is not helpful in breaking
IOWFs and indistinguishability obfuscation.

The first part follows directly from the definition of this oracle.

Claim 4.5. Let S be any family and let (Vy, V1) be any pair of polynomial-time verifiers that define
a collection LS = {L\P}\IIGG in NP N coNP, then for any oracle ¥ € &,

L\II e P\I/,Decideg)

The second part is the more challenging one. Our proof strategy is somewhat inspired by
the proof of Theorem 3.19 for the case of SZK. Roughly speaking, we will aim to show that the
oracle Decided is in some sense insensitive to random local changes, whereas breaking the latter
cryptographic primitives does require the ability to detect such changes.

Towards fulfilling this proof strategy, we now prove a general claim that roughly says that the
answers of Decideg to any specific query are always determined by the behavior of ¥ on a relatively
small “critical” set. Intuitively, this means that random changes that “evade” this critical set will
go undetected by the oracle.

In what follows, we call a verifier circuit V : {0,1}" x {0,1}"" — {0,1} g-query if for any
z € {0,1}", and any potential witness w € {0,1}", the circuit V¥ (z,w) makes at most ¢ queries
to W. Similarly, we call a query (Vp, Vi, z) to the oracle Decides g-bounded if both the verifiers V}
and Vi are ¢g-query verifiers.

Claim 4.6. Let G be any family of oracles. Consider an oracle ¥ from &. Consider any q-bounded
query (Vo, V1, 2) to Decideg. Then there ezists a set of queries C = C(¥, Vp, V1, 2), which we call
a critical set, such that

1. The critical set C is small: |C| < q.

2. Consider another oracle W' € &. If the two oracles agree on the set C, then the corresponding
Decideg oracles also agree. That is for every W' € & such that ¥|c = V'|c,

Decide (Vp, V4, 2) = Decide (Vp, V4, 2)

Proof. At high-level, the proof exploits the NP NcoNP structure; namely, for (Vp, V) corresponding
to a language L € NPY N coNPY, and any input z, if z € L, then all the accepting witnesses w
certify that V¥ (2, w) = 1 and no witness exists that certifies Vj¥(z,w) = 1 (and vice versa, for
z ¢ L). So, as long as one witness is consistent across the oracles ¥, ¥’ the answer of Decideg
remains invariant. The critical set C(¥, Vj, V1, z) would simply correspond to the queries made by
the verifiers for some specific witness.

Formally, consider any query (Vp,Vi,z). If (Vo, V1) do not define a language in NP N coNP
relative to some oracle in &, then by definition Decideg always returns |, and the claim trivially
follows (C can be set to be the empty set). Hence, from hereon, we assume that (Vp, V1) do define
a collection of languages LS = {Ly} e in NP N coNP.

Let b := Decide%(Vo, Vi1,z). Consider the lexicographically first witness w which certifies this
fact; namely, the first witness for which V;¥(z,w) = 1. We define C = C(¥, Vp, V4, 2) to be the

33

queries V,¥ (z,w) makes to ¥ to verify that V,¥(z,w) = 1. The bound on the size of C follows from
the fact that V; is a ¢-query verifier.

Now, we consider any ¥ € & that agrees with ¥ on C. Then by definition Vb‘I’/ (z,w) =1 .
Since ¥’ € &, the language LY defined by VO‘I’/, Vl‘l’/ is in NPY N coNPY'. This fixes the answer
Decideg(Vo, Vi, 2) to b as required. O

4.4 Warmup: Injective One-Way Functions in the Presence of Decideg

As a warmup, we consider the case where an oracle family that only implements injective one-way
functions (IOWFs), and show there is no fully black-box construction of a hard NP NcoNP problem
from such oracles. This generalizes a result of [MM11] which shows that injective one-way functions
cannot be used to construct one-way permutations in a black-box manner.'3

Let & be the family of injective one-bit expanding functions. As an implementation for the
IOWF we will consider an oracle f that is sampled uniformly at random from &.

Definition 4.7 (Oracle f). Let I denote the distribution on all injective functions from {0,1}"
to {0,1}™. The IOWF oracle is defined as f = {fn},cn Where f, « I for all n € N.

As already discussed above, the oracle Decide{5 allows deciding any language in NP/ N coNP/
given by verifiers V{, V1 that define an NP NcoNP language relative to any oracle in &. We will show
that f is one-way, even in the presence of the oracle Decideg. We will show that this is the case,
even given an exponential number of queries to f and Decideé, and even if the queries (Vp, V1, 2)
consist of verifiers that make an exponential number of queries.

In what follows, we call an adversary ¢-query if on any input y, the adversary makes at most
q queries to either f or Decideé. Furthermore, each query (Vp, Vi, z) to DecidefG is g-bounded (as
previously defined — the verifiers are circuits that make at most ¢ queries to f).

Theorem 4.8. Let g = 0(2”/ 3). Then any q-query adverasry cannot invert f, except with expo-
nential small probability:

P f,Decidef. 3 — 2| <O(a"/3)
LA (@) = o] < 07

Proof. We need to show that even given access to the Decide oracle, an adversary cannot invert f.
We show this via a coupling argument. We want to look at the adversary’s view in two worlds —
the real world where the adversary gets a challenge f(x) for a random x and the ideal world where
the adversary gets a random element in the co-image y < {0,1}"*" \ Image(f) as the challenge
that is completely independent of x. We will show that with very high probability, the adversary’s
view in both the worlds is identical. To this end, we consider three hybrids.

A description of the hybrids is given in Table 3.

We will now show that the adversary cannot distinguish between the hybrids and hence cannot
invert.

Claim 4.9. Pry ,, [A wins in Hq] = Prf ., [A wins in Ha].

13[MM11] show a slightly different statement — they consider injective functions that are adaptively one-way. That
is, even given the ability to invert the function at all values except the challenge, it is still hard to invert. Our proof
works unchanged for this stronger definition. We omit it for simplicity of exposition.

34

Hybrid H; (Real) | H, | H3 (Ideal)
Injective _ kt1 }

OWF f= {fk <L keN
Preimage x <« {0,1}"

Planted n+l

e y e {01\ Tmage(f)
Challenge f(x) Yy Yy

Oracle f,Decidel, | fuy, Decidelr™" | f, Decidel
Winning .
Condition Find z

Table 3: The hybrid experiments.

Proof. We observe that the view of the adversary is distributed identically in the two hybrids. We
are picking a random f and a random y outside the range and planting it at a random z € {0,1}".
The new oracle f;, is also uniformly distributed in I+l Also, in both cases, conditioned on
the function, y is distributed uniformly at random in Image(f) N {0,1}*™!. Overall, the views are
identically distributed:

(faf(x)) = (fa:n—>yyy) .

We next show that the hybrids Ha and Hg are indistinguishable.
Claim 4.10. |Pr;,, [A wins in Ha] — Pry ., [A wins in Hg]| < 277/3,

At high-level, to show this, we note that f,.,, and f differ in exactly one location — x. Further-
more, we know that in the ideal world (Hg), x is completely independent of the adversary’s view.
It immediately follows that the probability that queries made to f coincide with x is exponentially
small, and thus the answers to these queries wouldn’t change in Ha. We would then like to show
that the answers given by Decidef6 are also invariant with overwhelming probability. Here we shall
crucially use the NP N coNP structure of queries given by Claim 4.6, from which we can deduce
that it suffices to show that x does not coincide some small critical set. We now turn to the formal
proof.

Proof. We show that, with overwhelming probability, the adversary has the same view (and thus
the same output) in both Hy and Hs:

fry

Pr Afxﬁy,DecideG (y) 7& Af,DecidefG (y) < 2—n/3 .
z+{0,1}".f
y<{0,1}"" !\ Image(f)
To show this we prove the following claim:
Claim 4.11. Fiz any f € & and y € {0,1}""1\ Image(f). Then

1. For any query (Vy, V1, z) that AT Decide (y) makes to Decideé,

EJrl}n Decide’ (V, Vi, 2) # Decide(Vp, V1, 2)| < 27%/% .
<0,

35

2. For any query z that S Decide (y) makes to f,

Pr(f(2) # foy(2)] <27 .

Proof. To prove the first part of the claim, we crucially rely on Claim 4.6 (with respect to our
family & of injective functions). Recall that the adversary A is a g-query adversary and thus
the query (Vp, V1, 2) is ¢-bounded. Accordingly, by Claim 4.6, there exists a critical queries C =
C(f, Vo, V1, 2), such that for any other f’ € & that agrees with f on C,

Decide/ Vi, Vi, z) = Decide!' (Vp, V4, 2) .

Thus all that we need to show is that overwhelming probability = is such that f,., is injective
(namely, in &), and agrees with f on C. Indeed, f;, is always injective since y ¢ Image(f).
Second, frsy|lc = f|c unless 2 € C. Since x is sampled independently of A’s view in Hs, and in
particular independently of C,

Pr [ze€C]<|C|-27"<q-27"<2V3 .97 = 972/3
z+{0,1}"
For the second part of the claim, note that f(2) # fusy(2), unless z = . As before, since x is
sampled independently of A’s view in Hg, and in particular independently of z , this probability is

at most 27",
O

: . . . ide/
Given Claim 4.11, we can take a union bound over all queries that A/>Pecdes (y/) makes to the

deduce that the answers to all remains invariant when considering the oracles f.,,, Decideg™"

except with probability
q- InaX(272n/37 2711) < 2n/3 . 27271/3 — 27n/3)
This completes the proof of the Claim 4.10. O

To complete the proof of Theorem 4.8, it is left to note that in the ideal world, the adversary
cannot invert.

Claim 4.12. The adversary cannot win in the Ideal world. Concretely, for every fized f,

Pr[A wins in Hg] = 27" .
x7y

Proof. In the third hybrid Hg, the challenge y is independent of the answer x, which is chosen
uniformly at random. So, with probability 27", the adversary’s response will be x.]

Putting all of the above claims together, the adversary inverts in the real world (Hj) with

probability at most
2—2n/3 +2—n S 0(2—n/3) .

36

4.5 Indistinguishability Obsfuscation (and IOWFSs) in the Presence of Decide

In this section, we generalize Theorem 4.8 to show that injective one-way functions (IOWFs)
and indistinguishability obfuscation (I0) cannot be used to construct worst-case hard NP N coNP
instances in a fully black-box way. We start by discussing an aspect of 10 that turns out to be
crucial for this separation — wverifiability.

Verifiability of I0. Looking back at our separation for the SZK case in Section 3, we observe that
it, in fact, holds also for a stronger definition of IO that is verifiable and unambiguous; namely, it
is possible to efficiently determine whether a given string is a valid obfuscation of some circuit, and
this circuit is uniquely determined. Indeed, looking at the oracle ¥ = (f, O, Eval®/), implementing
OWFs and IO there, it induces valid obfuscation which are strings C' = O(C,r) in the image of the
injective O, and invalid ones, which are strings outside the image of O. Furthermore, it is possible
to efficiently identify which is the case, since the oracle Eval would return L on invalid obfuscations.

Going back to the case of NP N coNP, we observe that verifiable and unambiguous 10 actually
does imply hardness in NP N coNP (in a fully black-box way). Indeed, consider the language
including all (5’ ,i,b) such that C is a valid obfuscation and b the the ith bit of the unique circuit
C it determines. Indeed, due to verifiablility and unambiguity, this language is in NP N coNP, and
clearly any decider for this language completely breaks 10. This means that we cannot hope to
rule out fully black-box constructions of NP N coNP hardness from a family of oracles &, if this
family only includes verifiable and unambiguous IO constructions. Indeed, our Definition 4.2 of
black-box constructions of hard NP N coNP problems considers constructions that should work for
the family & of all IO constructions, and we will crucially (and necessarily) rely on this. (In fact,
our separation would also work for the restricted family of IO constructions that are not verifiable,
but still unambiguous.)

Capturing Non-Verifiable IO. We augment our previous definition of the oracle ¥ = (f, O, Eval®/)
in a way that allows the Eval oracle to answer arbitrarily on invalid obfuscations, which would cap-
ture non-verifable IO constructions. To this end, we consider an augmented Eval, parameterized

by a “backup map” ¢ : {gpn :{0,1}°" — {0, 1}"} from obfuscations C to circuits C. Given a
n
query (C,x), if the obfuscation C'is valid, Eval, answers it faithfully as the previously defined Eval;

~

otherwise, Eval, obtains some circuit C' = ¢(C) from ¢ and uses it to answer the query. Indeed,
this new oracle still implements indistinguishability obfuscation and does so in a non-verifiable way.
This is formally defined below.

Definition 4.13 (Oracle ¥,). The oracle ¥, = (f, O, Evali’o) consists of three parts:

o f={fa}pey oninput z € {0,1}" answers with f,(z), where f, is a random injective one-bit
expanding function f,, « I"*1.

¢ O ={0n},cy on input (C,r) € {0, 1} answers with C := 0,,(C, r) where O, is a random
injective function O,, < I3 into {0,1}°".

. Evalé’o(a,x) checks if