
FMNV Continuous Non-malleable Encoding
Scheme is More Efficient Than Believed

Amir S. Mortazavi
Department of Electrical Engineering

Sharif University of Technology
Tehran, Iran

Email: sa mortazavi@ee.sharif.edu

Mahmoud Salmasizadeh
Electronics Research Institute

Department of EE as adjunct member
Sharif University of Technology

Tehran, Iran
Email: salmasi@sharif.ir

Amir Daneshgar
Department of Mathematical Sciences

Sharif University of Technology
Tehran, Iran

Email: daneshgar@sharif.ir

Abstract—Non-malleable codes are kind of encoding schemes
which are resilient to tampering attacks. The main idea behind
the non-malleable coding is that the adversary can’t be able
to obtain any valuable information about the message. Non-
malleable codes are used in tamper resilient cryptography and
protecting memory against tampering attacks. Several kinds of
definitions for the non-malleability exist in the literature. The
Continuous non-malleability is aiming to protect messages against
the adversary who issues polynomially many tampering queries.
The first continuous non-malleable encoding scheme has been
proposed by Faust et el. (FMNV) in 2014.

In this paper, we propose a new method for proving continuous
non-malleability of FMNV scheme. This new proof leads to an
improved and more efficient scheme than previous one. The new
proof shows we can have the continuous non-malleability with
the same security by using a leakage resilient storage scheme
with about (k + 1)(log(q)− 2) bits fewer leakage bound (where
k is the output size of the collision resistant hash function and q
is the maximum number of tampering queries).

Index Terms—non-malleable, continuous non-malleability,
tamper-resilient cryptography.

I. INTRODUCTION

Hardware attacks are a dangerous threat for cryptographic
devices. These attacks can be divided into active or passive
attacks. Passive attacks are based on the measuring of side
channel information such as the power consumption of a device
or its electromagnetic emanations. While active attacks try to
tamper with the devices. In the tampering attack the adversary
has ability to modify and manipulate some parameters of the
system. Tamper-resilient cryptography includes a theoretical
study of such attacks.

Non-malleable codes, a kind of encoding schemes, allow
a message m to be encoded into a codeword c, such that
m can resist against tampering attacks. The main goal of
designing non-malleable codes is for resistance against an active
adversary that has power to modify the codeword according
to a Turing machines family. Note that the tampering attacks
only are defined for a specific family of Turing machines and
no guarantees are provided for other Turing machines. Non-
malleable codes can be used in tamper-resilient cryptography
and protecting system memory against tampering attacks.

It is straightforward to show that non-malleable codes do not
exist for the family of all efficient tampering Turing machines.

Thus we have to restrict the class of tampering attacks. The
split-state model is the class of tampering Turing machines
for which efficient constructions of non-malleable codes are
known. A split-state model is one that the codeword has several
parts and each part is tampered with independently of each
other.

Several kinds of definitions for the non-malleability exist
in the literature. The security definition of non-malleability is
based on the indistinguishability. The one-time non-malleability
considers only one tampering attack and the continuous non-
malleability allows polynomially many tamping attacks.

In this paper we study the Faust et al. [7] (FMNV for
short) scheme and show that we can prove the continuous
non-malleability for this scheme with better efficiency than the
original proof. Our proof is based on the fact that it is hard to
break the distinguishability of leakage resilient storage scheme.
Our main contribution is the presentation a new method for
finding the self-destruction round of tampering queries with
2k+1 bits of leakage while in the original proof it was 2k log(q)
bits of leakage (where q is the number of tampering queries
and k is the length of hash function output).

We present in Section II a formal definitions for some
required primitives. In Section III we introduce the FMNV
scheme for a continuous non-malleable scheme. Finally, in
Section IV we show a new proof for the former scheme.

A. Related Works

The non-malleable codes was introduced by Dziembowski
et al. [1] for bit-wise family of Turing machines which can
tamper with every bit of the codeword independent of other bits.
In [2] an efficient non-malleable scheme for bit-wise family
of tampering is introduced. The non-malleable code for block-
wise tampering introduced in [3]. Liu and Lysyanskaya [4]
introduced the first non-malleable codes in the split-state model
for all PPT Turing machines. Moreover, they considered the
leakage of codeword. The non-malleable code for a family of
Turing machines with size 2poly(n) has been studied in [5], [6].
Faust et al. [7] has extended the definition of non-malleability
to include the continuity and proposed a scheme in the CRS
model. Aggarwal et al. [8] introduced a generalization of non-
malleable codes, called non-malleable reductions. Chandran

et al. [9] defined their new notion of lookahead (block-wise)
non-malleable codes and proposed a new scheme in this model.

The first information theoretic non-malleable code introduced
by Dziembowski et al. [10] for only one-bit messages and in
[11] is extended to multi-bit messages. See also [6], [12] for
other works in information theoretic model.

Austrin et al. [13] studied the effect of tampering on
the randomness of cryptographic algorithms. The works of
[4], [7], [14], [15] showed the application of non-malleable
codes for tamper-resilient cryptography. Dachman-Soled et al.
[16] studied the securing RAM computation against memory
tampering and leakage attacks. Coretti et al. [17] showed that
non-malleable codes can be used to construct a CCA secure
public key.

B. Notations

Given a set S, we write a ∈R S to denote sampling
uniformly an element a from set S. We use := to denote
deterministic assignment and← to the probabilistic assignment.
We use PPT instead of probabilistic polynomial-time. We
denote negl for a negligible function, that grows smaller than

1
p(n) for any polynomial p(n) [18]. We denote with |f | to the
output size of the function f . We use FMNV as a shorthand
for Faust et al. [7].

The leakage oracle Ol(.) indicates an PPT adversary that
can query adaptively leakage Turing machines Li such that∑
i(|Li|) ≤ l.

II. PRELIMINARIES

A. Zero knowledge Proofs

Let a non-interactive zero knowledge (NIZK) proof sys-
tem Π = (Init, P, V,Sim1,Sim2) for language L ∈ NP,
L = {x : ∃ ω such that R(x, ω) = 1}, where ω is the witness,
R is a relation, P, V,Sim1 and Sim2 are PPT algorithms such
that:

1) Completeness: For all x ∈ L and all ω such
that R(x, ω) = 1 and Ω ← Init(1n), we have
V (Ω, x, P (Ω, x, ω)) = 1.

2) Soundness: If x /∈ L then for every ω and Ω← Init(1n),
Pr[V (Ω, x, P (Ω, x, ω))] = 1 be negligible.

3) Zero-Knowledge: For all PPT adversaries we have
Real(n) ≈c Sim(n), where:

Real(n) =
{

Ω← Init(1n);X ← AP (Ω,.,.)(Ω) : X
}

,

Sim(n) =

{
(Ω, tk)← Sim1(1n);
Y ← ASim2(Ω,.,.,tk)(Ω) : Y

}
.

There are several models of NIZK proofs that have similar
definitions as above. In this paper, we use robust non-
interactive NIZK proofs [19]. This type of NIZK has an extra
Extractability property which for all PPT adversaries there
exist an efficient algorithm Ext such as:

Pr

[(Ω, tk, ek)← Sim1(1n),
(x, π)← ASim2(Ω,.,.,tk)(Ω),
ω ← Ext(Ω, (x, π), ek);
R(x, ω) = 1 ∨ (x, π) ∈ Q
∨ V (Ω, x, π) = 0

]
= 1− negl(n).

where Q denotes the pairs (xi, πi) that Sim2 has answered A.

Remark II.1. In the definition of NIZK proofs the Init
algorithm generates the Ω which is shared between all parties
and known as common reference string (CRS).

Remark II.2. In this paper, the robust NIZk proofs require
to support labels (λ). The labels are a public string as input
to P , V , Ext and Sim2. This property can be achieved by
concatenation the label to the statement x. Now we show the
NIZK algorithms as Pλ, V λ, Extλ and Simλ

2

B. Leakage Resilient Storage

The leakage resilient storage encoding system Π =(
LRS,LRS−1

)
is defined in [1]. The Π includes a pair of

computable PPT functions where for messages x ∈ {0, 1}m:

(s
0
, s

1
)← LRS(x)

x := LRS−1(s0 , s1)

It is required that Pr[LRS−1(LRS(x)) = x] = 1 for any
message x.

The security definition of l-leakage resilient storage system
is defined by experiment LeakageA,l(n) for the security
parameter n and every PPT adversary A.

The indistinguishability experiment LeakageA,l(n):
(i) The adversary A is given public parameters, and outputs

a pair of messages m0 , m1 in the message space.
(ii) A uniform bit b ∈ {0, 1} is chosen, and then a codeword

(s
0
, s

1
)← LRS(mb) is computed.

(iii) Adversary A can query with the leakage oracles Ol(s
0
)

and Ol(s
1
) independently of each other to maximum l

bits.
(iv) A outputs a bit b′. The output of the experiment is 1 if

b′ = b, and 0 otherwise.
The encoding scheme Π =

(
LRS,LRS−1

)
is an l-leakage

resilient storage system if for all probabilistic polynomial-time
adversaries A there is a negligible function negl such that

Pr[LeakageA,l(n) = 1] ≤ 1

2
+ negl(n).

C. Strong Leakage Resilient Storage

The encoding scheme Π =
(
LRS,LRS−1

)
is strong l-

leakage resilient storage scheme [7], if for θ ∈ {0, 1} and
every PPT adversary:

Pr[LeakageA,l,θ(n) = 1] ≤ 1

2
+ negl(n).

Where indistinguishability experiment LeakageA,l,θ(n) is de-
fined as follows:

(i) Adversary A is given public parameters, and outputs a
pair of messages m0 , m1 in the message space.

(ii) A uniform bit b ∈ {0, 1} is chosen, and then a codeword
(s0 , s1)← Enc(mb) is computed.

(iii) Adversary A can interact with the leakage oracles Ol(s0)
and Ol(s

1
).

(iv) After finishing leakage queries, A is given sθ.
(v) A outputs a bit b′. The output of the experiment is 1 if

b′ = b, and 0 otherwise.
In this definition, one of the two shares is given to

the adversary after termination of leakage queries. A good
construction for (strong) leakage-resilient is presented in [1],
[7] by using the inner product in finite fields. It can be shown
the inner product based LRS schemes are also secure in the
information theoretic model.

D. Non-malleable Codes

We first define an encoding scheme without requiring a key
and then define several variant forms of non-malleability for
this encoding scheme in the split-state model.

The non-malleable coding Π = (Init,Enc,Dec) is defined
in split-state model as:

Ω← Init(1n),

(x
0
, x

1
)← Enc(Ω, x) for x ∈ {0, 1}n

′
,

x̃ := Dec(x0 , x1) for x̃ ∈ {{0, 1}n
′
∪ ⊥}.

Where n′ is a polynomial function of security parameter, ⊥ is
the symbol for indication of the failure and Ω is a public and
untamperable string for Initialization.
In the split-state model, codeword has two parts, such that
each share is tamped with independently.

The strong non-malleability for an encoding scheme is
defined based on experiment SNMLRA,l,T (n) as follows [4]:

Definition II.1. The indistinguishability experiment
SNMLRA,l,T (n):

(i) Init(1n) is run to obtain public parameters Ω.
(ii) Adversary A is given Ω, and outputs a pair of legal

messages m
0
, m

1
.

(iii) A random bit b ∈ {0, 1} is chosen, and (s
0
, s

1
) ←

Enc(mb) is computed.
(iv) The adversary A has ability to query the leakage oracles

Ol(s0) and Ol(s1) to l bits.
(v) Send Turing machines (T0 , T1) for T0 ∈ T and T1 ∈ T

as a tampering query.
a) x′

0
:= T

0
(x

0
), x′

1
:= T

1
(x

1
) and x′ := Dec(x′

0
, x′

1
) are

computed.
b) If (x0 , x1) = (x′

0
, x′

1
) then the adversary is given

same∗; else, is given x′.
(vi) A outputs b′ ∈ {0, 1}. The output of the experiment is 1

if b′ = b, and 0 otherwise.

The encoding scheme Π = (Init,Enc,Dec) is an strong non-
malleable if for all probabilistic polynomial-time adversaries
A there is a negligible function negl such that,

Pr[SNMLRA,l,T (n) = 1] ≤ 1

2
+ negl(n).

Similar to strong non-malleability we can define l-leakage
resilient q-continuous non-malleability [7] (for short (l, q)-
CNMLR) based on experiment CNMLRA,l,T ,q(n) as follows:

Definition II.2. The indistinguishability experiment
CNMLRA,l,T ,q(n):

(i) Init(1n) is run to obtain public parameters Ω.
(ii) Adversary A is given Ω, and outputs a pair of legal

messages m0 , m1 .
(iii) A random bit b ∈ {0, 1} is chosen, and (s0 , s1) ←

Enc(mb) is computed.
(iv) The adversary A has ability to query the leakage oracles

Ol(s
0
) and Ol(s

1
) to l bits.

(v) The adversary A can query the tampering oracle to
maximum number of q queries. The one sample query is
as follows:

a) Adversary A sends Turing machines (T0 , T1) for T0 ∈
T and T1 ∈ T to the tamping oracle.

b) x′
0

:= T0(x0) and x′
1

:= T1(x1) is computed.
c) The value of x′ := Dec(x′

0
, x′

1
) is computed.

d) If (x0 , x1) = (x′
0
, x′

1
) then tampering oracle returns

same∗; else, outputs x′.
e) If x′ = ⊥, the tampering oracle goes to the self-

destruction mode. (The self-destruction meas that the
oracle will answer ⊥ to any other query.)

(vi) A outputs b′ ∈ {0, 1}. The output of the experiment is 1
if b′ = b, and 0 otherwise.

The encoding scheme Π = (Init,Enc,Dec) is an l-leakage
resilient continuous non-malleable if for all probabilistic
polynomial-time adversaries A there is a negligible function
negl such that,

Pr[CNMLRA,l,T ,q(n) = 1] ≤ 1

2
+ negl(n).

Remark II.3. It is required that the continuous non-malleable
scheme have to satisfy the uniqueness property. This means
that for any share of a codeword x

0
it is hard to find two

corresponding shares x1 and x2 such that both (x0 , x1) and
(x0 , x2) make a valid codeword [7].

III. CONTINUOUS NON-MALLEABLE CODING SCHEME

The FMNV scheme [7] and its security are described as
follows.

Construction III.1. (FMNV scheme).
The FMNV encoding scheme Π = (Init,Enc,Dec) is based on
a strong Leakage resilient storage (SLRS), a collision resistant
hash function and a robust non-interactive zero knowledge in
the CRS model. We show hash function family with H =
{h : {0, 1}n → {0, 1}k}, robust NIZK proof for the language
Lt,H = {h : ∃s such that h = Ht(s)} with Π′ =

(
Init′, P, V

)
.

Let Π′′ =
(
LRS,LRS−1

)
be strong l′-leakage resilient storage,

and q be the maximum number of queries that an adversary
can issue to the tampering oracle. This coding scheme is a
tuple Π = (Init,Enc,Dec), that is defined as follows:
• Init(1n): Choose uniform t ∈R {0, 1}k and run Ω← Init.

• Enc(Ω, x):
1) Compute (s0 , s1) ← LRS(x), h0 = Ht(s0), h1 =

Ht(s1), λ
0

= h
0
, λ

1
= h

1
, π

0
= Pλ1 (Ω, h

0
, s

0
) and

π
1

= Pλ0 (Ω, h
1
, s

1
).

2) Let the two split encoding shares be X0 =
(s0 , h1 , π0 , π1) and X1 = (s1 , h0 , π0 , π1).

• Dec(X
0
, X

1
):

1) Parse Xb as (sb, h1−b, π0
, π

1
) for b ∈ {0, 1};

2) Run the local check as the verification of V λ1 (Ω, h
0
, π

0
)

and V λ0 (Ω, h
1
, π

1
).

3) Run the cross check as the verification of h0

?
= Ht(s0),

h
1

?
= Ht(s1) and equality of π

0
, π

1
in the two shares.

4) If each of the verifications fails return ⊥; else, output
LRS−1(s

0
, s

1
).

The security of Construction III.1 is defined in Theorem III.1.

Theorem III.1 ([7]). The scheme of Construction III.1 is
l-leakage resilient strong q-continuous non-malleable where(
LRS,LRS−1

)
be an l′-leakage-resilient strong storage,H is a

family of collision resistant hash functions with output length of
k bits,

(
Init′, P, V

)
is a robust NIZK proof system for language

Lt,H, q = poly(n) sufficiently large and l′ ≥ 2l+(k+1) log(q).

IV. AN EFFICIENT CONTINUOUS NON-MALLEABLE
ENCODING SCHEME

In this section we prove a better result for Theorem III.1 by
using a new method of proof. We formalize this via a proof by
reduction, in which we show how to use any efficient adversary
A to construct another efficient adversary A′ such that if A
violates the security of CNMLRA,l,T ,q(n), then A′ breaks the
definition of indistinguishability for LeakageA′,l′,θ(n). The
main difficulty of the reduction is how the adversary of LRS
can simulate the answers of tampering queries without knowing
the challenge codeword. In [7] the proof contains an involved
PPT algorithm for finding the round of self-destruction. This
algorithm needs to access the leakage oracles and requires
rather large amount of leakage of bits. Our new method instead
of running an algorithm for finding the exact index of self-
destruction makes a guess as to which index (from among the
q tampering queries) will correspond to the self-destruction.
We can guess with exact probability 1/q the correct index
of self-destruction. For completion of the proof we require
knowing the correctness of our guess.

Theorem IV.1. Let Π = (Init,Enc,Dec) be a tuple of
PPT algorithms as the scheme of Construction III.1, Π′′ =
(LRS,LRS−1) be an l′-leakage resilient storage, H a collision
resistant hash function family with output length k and q be
the maximum number of tampering queries as a polynomial
function of security parameter n. Then the scheme Π is
(l, q) strong continuous non-malleable encoding scheme for
l′ ≥ 2l + 2k + 1.

Proof. We show that if an adversary A distinguishes m
0

from m
1

in the experiment strong continuous non-malleability,
CNMLRA,l,T ,q(n), with non-negligible probability, then

there exists another adversary A′ that distinguishes the
same massages in the leakage-resilient storage experiment,
LeakageA′,l′,θ(n). The formal description of the reduction is
as follows.

Let A be a probabilistic polynomial-time adversary that

Pr[CNMLRA,l,T ,q(n)] ≥ 1/2 + ε(n), (1)

for a non-negligible function ε.
Consider the following PPT adversary A′ that attempts to

solve the LeakageA′,l′,θ(n).
1) A′ chooses uniformly t as a index of a family of hash

functions and runs (Ω, tk, ek)← Sim1(1n).
2) A′ chooses the randomness r.
3) A′ runs the algorithm A(Ω, t, r) and gets the two mes-

sages m
0

and m
1
.

4) A′ runs the strong l′-leakage-resilient storage experiment
with messages m

0
and m

1
.

5) Adversary A′ is given access to leakage oracles Ol
′
(s

0
)

and Ol
′
(s

1
) for (s

0
, s

1
)← LRS(mb) for randomly chosen

bit b.
6) A′ with access to its leakage oracles can obtain the h

0
:=

Ht(s0) and h1 := Ht(s1) (note that this is possible since
l′ > k).

7) A′ sets the Xθ = (sθ, h1−θ, π0
, π

1
), where πb ←

Sim1−λb
2 (Ω, hb, tk) for b ∈ {0, 1} are simulated robust

NIZK proofs (as Construction III.1) for h0 := Ht(s0),
λ

1
= h

1
, h

1
:= Ht(s1) and λ

0
= h

0
respectively.

8) A′ runs the algorithm CalcLeakage(Ω, t, h0 , h1 , π0 , π1 , r)
and is given two vectors Θ

0
,Θ

1
(this algorithm is execute

inside of leakage oracles Ol
′
(s

0
), Ol

′
(s

1
) and simulates

the leakage queries of adversary A).
9) A′ chooses j∗ ∈R {0, 1, . . . , q} (The index j∗ is the first

tampering query leading to ⊥ in the decoding).
10) Check the correctness of our guess for j∗:

Run the algorithm
VrfyTamper(Ω, t, h

0
, h

1
, π

0
, π

1
,Θ

0
,Θ

1
, j∗, r) and

the output of the algorithm is a True or False.
a) If the output is False then halt the algorithm and output

the randomly chosen bit b ∈R {0, 1}.
b) If the output is True then continue.

11) Now the sθ is given to A′ for θ ∈ {0, 1} (the access of
adversary to the leakage oracle is terminated).

12) A′ answers the ith leakage queries of A for Turing
machines L0 ,L1 with Θ0 [i] and Θ1 [i]. (Note that if
Θb[i] = ⊥∗ then stop the answering of leakage queries
for other steps.)

13) A′ continues interaction with A, answering its ith tam-
pering query T

0
,T 1 as follows:

a) For i < j∗, compute X ′θ = Tθ(Xθ) =
(s′θ, h

′
1−θ, π

′
0
, π′

1
)

i) If X ′θ = Xθ, return the same∗.
ii) Else compute s′1−θ ← Ext(Ω, (h′1−θ, π

′
1−θ), ek)

and define X ′1−θ = (s′1−θ, h
′
θ, π
′
0
, π′

1
); finally, re-

turn (X ′θ, X
′
1−θ).

b) For i ≥ j∗ return the ⊥.

14) A outputs the bit b′ as the result of strong continuous
non-malleable experiment and then A′ also outputs the
same result as his/her output.

The pseudo code of algorithm CalcLeakage is described in
Algorithm 1 and its sub algorithm SubLeakage is described
in Algorithm 2.

Algorithm 1: CalcLeakage(Ω, t, h
0
, h

1
, π

0
, π

1
, r)

1 Set i0 ← 0, i1 ← 0.
2 for i← 0 to q do
3 θ

0
[i] = ∅

4 θ
1
[i] = ∅

5 end
/* Note that Θ0 and Θ1 are global

vectors. */
/* Note that ⊥∗ is a special symbol

for indication of leakage queries
termination. */

6 Loop
7 Query the algorithm

SubLeakage(Ω, t, , h0 , h1 , π0 , π1 , 0, r) to leakage
oracle Ol

′
(s0) and receives the α and set

Θ
0
[i

0
] = α

8 i
0

= i
0

+ 1
9 if α = ⊥∗ then

10 Halt and return Θ
0

and Θ
1

11 end
12 Query the algorithm

SubLeakage(Ω, t, , h
0
, h

1
, π

0
, π

1
, 1, r) to leakage

oracle Ol
′
(s

1
) and receive the α and set

Θ
1
[i

1
] = α

13 i1 = i1 + 1
14 if α = ⊥∗ then
15 Halt and return Θ0 and Θ1

16 end
17 EndLoop

The pseudo code of algorithm VrfyTamper is described in
Algorithm 3.

In order to complete our proof, consider these points:

1) We replace NIZK with (Sim1,Sim2) because the zero-
knowledge property of NIZK proof system [7].

2) We fix the randomness of adversary A by choosing ran-
domness r, and then this adversary will be a deterministic
algorithm.

3) The behavior of algorithm CalcLeakage is a precise
simulator for the adversary A with the randomness r in
the experiment LeakageA′,l′,θ(n). Hence we can conclude
that vectors Θ

0
, Θ

1
are exact results of leakage queries.

(Note that this part of proof is similar to [7].)
4) A′ with probability exact 1/q guess the index of tampering

queries leading to ⊥.
5) A′ answers the i < j∗ tampering queries by using values

of Xθ and X ′θ.

Algorithm 2: SubLeakage(Ω, t, , h
0
, h

1
, π

0
, π

1
, b, r)

1 Set e← 0
2 Run following algorithm inside of the oracle
Ol

′
(sb).

3 Run the A(Ω, t, r) and receive m
0

and m
1

4 Set the Xb = (sb, h1−b, π0
, π

1
)

5 Answer the ith tampering query T0 , T1 as follows:
6 begin Answring Tampering queries:
7 compute X ′b = Tb(Xb) = (s′b, h

′
1−b, π

′
0
, π′

1
)

8 if X ′b = Xb then
9 return same∗ to A

10 end
11 else if X ′b 6= Xb AND local check on X ′b fails

then
12 return ⊥
13 end
14 else if X ′b 6= Xb AND π′1−b 6= π1−b then
15 return ⊥
16 end
17 else
18 Compute s′1−b ← Ext(Ω, (h′b, π

′
b), ek) and

then return (X ′b, X
′
1−b) to A, where

X ′1−b = (s′1−b, h
′
b, π
′
0
, π′

1
)

19 end
20 end
21 Answer the ith leakage query L

0
, L

1
as follows:

22 begin Answring leakage queries:
23 if Θ0 [i] 6= ∅ and Θ1 [i] 6= ∅ then
24 return Θ0 [i] and Θ0 [i]
25 end
26 else if Θ

b
[i] = ∅ then

27 Compute α = Tb(sb, h1−b, π0
, π

1
) and

return α
28 end
29 else if We reach to the maximum limit of

lekage queires (l) then
30 Halt and return ⊥∗
31 end
32 end

6) The answers of i < j∗ tampering query is same∗, when
Xθ = X ′θ. Note that to the uniqueness property of
encoding scheme. Also, the answers of tampering queries
are not ⊥.

7) The answers of i < j∗ tampering query is x′ /∈
{same∗,⊥}, when Xθ 6= X ′θ and local checks verify.
Note that the answer of tampering query is not ⊥ and we
can use the Ext algorithm to obtain s′

0
and s′

1
.

8) The algorithm VrfyTamper verifies the correctness of our
guess for index j∗. Our guess with probability 1/q is
correct and with probability (q − 1)/q is incorrect and in
this case we output a random output.

9) The algorithm VrfyTamper requires 2k+1 bits of leakage
for verifying the correctness of self-destruction index. Note

Algorithm 3: VrfyTamper(Ω, t, h
0
, h

1
, π

0
, π

1
,Θ

0
,Θ

1
, j∗, r)

1 Sample a hash function Ht ← H.
2 Run A(Ω, t, r) inside of the oracle Ol

′
(s

0
).

3 begin Answring leakage and tampering queries:
4 Answer the leakage quires with Θ

0
and Θ

1
.

5 Answer the tampering queries similar to Algorithm
2.

6 Compute the hash value of a vector of j∗ − 1
tampering queries by using Ht and set it in η

0
.

7 Return η
0
.

8 Note that this step of algorithm requires k bits.
9 end

10 Run A(Ω, t, r) inside of the oracle Ol
′
(s

1
).

11 begin Answring leakage and tampering queries:
12 Answer the leakage quires with Θ0 and Θ1 .
13 Answer the tampering queries similar to Algorithm

2.
14 Compute the hash value of a vector of j∗ − 1

tampering queries by using Ht and set it in η
1
.

15 If η
0
6= η

1
halt the Algorithm 3 and return False.

16 Compute the hash value of j∗th tampering query
by using Ht and set it in ζ1 .

17 Return ζ
1
.

18 Note that this step of algorithm requires at most k
bits.

19 end
20 Run A(Ω, t, r) inside of the oracle Ol

′
(s

0
).

21 begin Answring leakage and tampering queries:
22 Answer the leakage quires with Θ0 and Θ1 .
23 Answer the tampering queries similar to Algorithm

2.
24 Compute the hash value of j∗th tampering query

by using Ht and set it in ζ
0
.

25 If ζ
0
6= ζ

1
halt the Algorithm 3 and return True.

26 If ζ0 = ζ1 halt the Algorithm 3 and return False.
27 Note that this step of algorithm requires 1 bit.
28 end

that the decoding of Construction III.1 is ⊥, when the two
shares of codeword in our reduction decode to different
answers. Algorithm VrfyTamper checks the equality of
j∗−1 tampering queries and inequality of j∗th tampering
query.

10) If A wins then A′ also wins.
Based on above notes, we can conclude that:

Pr[LeakageA′,l′,θ(n)] = 1/2× (q − 1)/q
+ 1/q × Pr[CNMLRA,l,T ,q(n)].

(2)
Using Equations 1 and 2, we thus have

Pr[LeakageA′,l′,θ(n)] ≥ (q − 1)

2q
+1/q(1/2+ε(n)) = 1/2+ε/q.

Because the q is a polynomial function then ε/q is a non-
negligible function and this is in contradiction to the assumption

that the problem LeakageA′,l′,θ(n) is hard. �

V. CONCLUSION

Tamper-resilient cryptography is a method to provably
protect memory and cryptographic functionalities against a
specific class of tampering and leakage attacks. The non-
malleable encoding schemes are a keyless cryptographic
primitive for handling tampering attacks. This paper shows that
different viewpoints to a specific problem can lead to different
results for the same problem. In this paper, we use another
method for proving the security of Construction III.1 which
leads to a more efficient scheme than previous. Our new proof
shows that the FMNV scheme can be constructed with a more
effective leakage resilient storage scheme.

REFERENCES

[1] F. Davı̀, S. Dziembowski, and D. Venturi, “Leakage-resilient storage,” in
Security and Cryptography for Networks, 7th International Conference,
SCN 2010, Proceedings, vol. 6280 of Lecture Notes in Computer Science,
pp. 121–137, Springer, 2010.

[2] M. Cheraghchi and V. Guruswami, “Non-malleable coding against bit-
wise and split-state tampering,” in Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, Proceedings, vol. 8349 of
Lecture Notes in Computer Science, pp. 440–464, Springer, 2014.

[3] S. G. Choi, A. Kiayias, and T. Malkin, “Bitr: Built-in tamper resilience,”
in Advances in Cryptology - ASIACRYPT 2011 - 17th International
Conference on the Theory and Application of Cryptology and Information
Security, Proceedings, vol. 7073 of Lecture Notes in Computer Science,
pp. 740–758, Springer, 2011.

[4] F. Liu and A. Lysyanskaya, “Tamper and leakage resilience in the split-
state model,” in Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Proceedings, vol. 7417 of Lecture Notes in
Computer Science, pp. 517–532, Springer, 2012.

[5] M. Cheraghchi and V. Guruswami, “Capacity of non-malleable codes,”
CoRR, vol. abs/1309.0458, 2013.

[6] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs, “Efficient non-
malleable codes and key-derivation for poly-size tampering circuits,” in
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Proceedings, vol. 8441 of Lecture Notes in Computer Science, pp. 111–
128, Springer, 2014.

[7] S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi, “Continuous
non-malleable codes,” in Theory of Cryptography - 11th Theory of
Cryptography Conference, TCC 2014, Proceedings, vol. 8349 of Lecture
Notes in Computer Science, pp. 465–488, Springer, 2014.

[8] D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski, “Non-malleable
reductions and applications,” in Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, pp. 459–468,
ACM, 2015.

[9] N. Chandran, V. Goyal, P. Mukherjee, O. Pandey, and J. Upadhyay,
“Block-wise non-malleable codes,” IACR Cryptology ePrint Archive,
2015.

[10] S. Dziembowski, T. Kazana, and M. Obremski, “Non-malleable codes
from two-source extractors,” in Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Proceedings, Part II, vol. 8043 of
Lecture Notes in Computer Science, pp. 239–257, Springer, 2013.

[11] D. Aggarwal, Y. Dodis, and S. Lovett, “Non-malleable codes from
additive combinatorics,” in Symposium on Theory of Computing, STOC
2014, pp. 774–783, ACM, 2014.

[12] S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran,
“Explicit non-malleable codes resistant to permutations,” Electronic
Colloquium on Computational Complexity (ECCC), vol. 21, p. 69, 2014.

[13] P. Austrin, K. Chung, M. Mahmoody, R. Pass, and K. Seth, “On the
impossibility of cryptography with tamperable randomness,” in Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Proceedings, Part I, vol. 8616 of Lecture Notes in Computer Science,
pp. 462–479, Springer, 2014.

[14] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner, “Private circuits
II: keeping secrets in tamperable circuits,” in Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Proceedings, vol. 4004
of Lecture Notes in Computer Science, pp. 308–327, Springer, 2006.

[15] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware
against probing attacks,” in Advances in Cryptology - CRYPTO 2003,
23rd Annual International Cryptology Conference, Proceedings, vol. 2729
of Lecture Notes in Computer Science, pp. 463–481, Springer, 2003.

[16] D. Dachman-Soled, F. Liu, E. Shi, and H. Zhou, “Locally decodable
and updatable non-malleable codes and their applications,” in Theory of
Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Proceedings, Part I, vol. 9014 of Lecture Notes in Computer Science,
pp. 427–450, Springer, 2015.

[17] S. Coretti, U. Maurer, B. Tackmann, and D. Venturi, “From single-bit
to multi-bit public-key encryption via non-malleable codes,” in Theory
of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Proceedings, Part I, vol. 9014 of Lecture Notes in Computer Science,
pp. 532–560, Springer, 2015.

[18] J. Katz and Y. Lindell, Introduction to Modern Cryptography, ch. 3.
Chapman & Hall/CRC Press, 2 ed., 2015.

[19] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai,
“Robust non-interactive zero knowledge,” in Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, 2001, vol. 2139 of Lecture Notes in Computer Science, pp. 566–
598, Springer, 2001.

	Introduction
	Related Works
	Notations

	Preliminaries
	Zero knowledge Proofs
	Leakage Resilient Storage
	Strong Leakage Resilient Storage
	Non-malleable Codes

	Continuous non-malleable coding scheme
	An efficient continuous non-malleable encoding scheme
	Conclusion
	References

