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Abstract

A vast amount of data belonging to companies and individuals is
currently stored in the cloud in encrypted form by trustworthy service
providers such as Microsoft, Amazon, and Google. Unfortunately, the
only way for the cloud to use the data in computations is to first decrypt
it, then compute on it, and finally re-encrypt it, resulting in a problematic
trade-off between value/utility and security. At a high level, our goal in
this paper is to present a general and practical cryptographic solution to
this dilemma. More precisely, we describe a scenario that we call Secure
Data Exchange (SDE), where several data owners are storing private en-
crypted data in a semi-honest non-colluding cloud, and an evaluator (a
third party) wishes to engage in a secure function evaluation on the data
belonging to some subset of the data owners. We require that none of
the parties involved learns anything beyond what they already know and
what is revealed by the function, even when the parties (except the cloud)
are active malicious. We also recognize the ubiquity of scenarios where
the lack of an efficient SDE protocol prevents for example business trans-
actions, research collaborations, or mutually beneficial computations on
aggregated private data from taking place, and discuss several such sce-
narios in detail. Our main result is an efficient and practical protocol for
enabling SDE using Secure Multi-Party Computation (MPC) in a novel
adaptation of the server-aided setting. We also present the details of an
implementation along with performance numbers.

1 Introduction

1.1 Motivation

Cloud storage is becoming the de facto way for businesses to manage their
growing stockpiles of data, with an incredible amount of data already being
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stored in the cloud: Microsoft’s Azure service alone has over 50 trillion objects.1

Basic security standards require data to be encrypted both in transit to or
from the cloud, and when it remains at rest in the cloud. Yet data at rest
has only limited value. Being able to compute on the encrypted data without
having to decrypt it first would massively increase its utility, and in some cases
enable entirely new markets for cloud technologies. Unfortunately computing on
encrypted data is notoriously difficult, often requiring highly sophisticated and
costly cryptographic techniques such as homomorphic encryption. Currently
the standard approach is to perform the computations on unencrypted data,
resulting in an apparent trade-off between utility and privacy. Furthermore,
users of cloud storage list security of their data as their biggest concern2, and
that concern is significantly amplified when the data is used for computations.
Hence, at a high level, we will address the following question in this paper:

What is the best way to perform useful computations on the huge
amounts of data already stored in the cloud, while preserving privacy
to the greatest possible extent?

A practical and adoptable solution should satisfy at least the following require-
ments:

• The system should leverage the existing cloud storage infras-
tructure. Cloud service providers are already equipped to store the data
of their customers, so data should either remain stored in its existing form,
or at least in some other “reasonable” form that causes little or no extra
overhead in the cloud storage costs. An example of an “unreasonable” re-
quirement would be an encoding/encryption that is 128 times larger than
the plaintext data.

Whether encrypted or unencrypted, data in the cloud must be persistent
in the sense that it can be stored for an arbitrarily long period of time,
and updatable so that the data owners can easily append to it, or ask the
cloud to delete parts of it.

• The system should align to the existing incentives for cloud ser-
vices. Users store their data in the cloud to avoid managing their own
storage solutions on site and to benefit from collective economies of scale.

In a system for computations in the cloud, often there is one party with the
majority of interest in the outcome of the computation. That party, along
with the cloud provider, are the only ones willing to expend significant
effort to carry out computations with a cryptographic security guarantee.
Other parties, whose data might be involved in the computation, should
have only minimal involvement in the computation (e.g., only to authorize
a computation). As a corollary, data should not require expensive main-
tenance in order to maintain security—the same data should be reusable
for many computations with different parties.

1http://www.businessinsider.com/microsoft-azure-usage-doubled-2015-4
2http://searchcloudstorage.techtarget.com/feature/More-companies-turn-to-cloud-storage-

service-providers
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• The system should use trust models that reflect the current re-
ality of cloud services. Users of cloud storage place some trust in the
cloud service providers, but that trust is limited. Sensitive data can be
encrypted before being stored in the cloud, reflecting a threat model in
which the cloud provider is considered semi-honest.3 Tools such as proofs
of retrievability [14], which protect against more severe active malicious
behavior by the cloud provider, are rare in practice. While protection
against fully malicious cloud providers would be ideal, the reality is that
users with this perception of cloud providers are unlikely to be using the
cloud for storage anyway.

The system should leverage this limited trust in the cloud provider to
reduce the cost of computations as much as possible. Of course, some
security requirements are non-negotiable: the data owners should have
absolute control over how their data is being used.

Some readers may immediately recognize Secure Multi-Party Computation
(MPC) (see e.g. [33, 21]) as the “textbook” solution to the scenario described
above. Indeed, our solution is based on MPC techniques, yet we believe that
most of existing MPC research does not address many of the central aspects of
our setting. For example, MPC does not naturally provide reusable encryption
of the data of any of the parties involved, and as such is non-trivial to integrate
with secure cloud storage. In addition, in plain MPC all of the parties involved
typically have to participate in an online phase with a linear amount of work
and communication, which is in practice often unacceptable.

In this paper we will describe a practical protocol that allows an arbitrary
number of data owners to store data in encrypted form to a cloud service in
a persistent and updatable manner, and allows a third party (an evaluator) to
compute a function on the data. The result of the function can be shared with
any subset of the parties involved, and none of the parties will learn anything
about the data beyond what they already know and what will be revealed by
the function output. The cloud learns nothing. The data stored in the cloud
can be used repeatedly for an arbitrary number of such interactions. In Section
4 we prove that our solution remains secure in the presence of malicious data
owners and/or evaluator, as long as the cloud remains semi-honest and does not
collude with the evaluator. We call this scenario Secure Data Exchange (SDE).

1.2 Secure Data Exchange

To further motivate our construction, consider the following realistic business
scenarios that face severe and perhaps insurmountable difficulties due to data
privacy issues:

3Semi-honest adversaries follow the protocol but attempt to learn more than their intended
share of information from their view of the protocol execution. Malicious adversaries can
deviate arbitrarily from the protocol. The cloud is non-colluding if the messages it sends to
the other parties reveal no information about the cloud’s input other than what can be learned
from the output of the function.
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• A pharmaceutical company would like to purchase anonymized patient
medical records from several hospitals for research purposes. Since the
price of such medical data is typically very high, the pharmaceutical com-
pany would like to have a certain confidence in the quality and usefulness
of the data before agreeing to buy it. The sellers are not willing to share
the data with the buyer before a deal has been agreed upon. Even if the
data would not be maximally interesting, the buyer might agree to buy it
at a lower cost, but such a negotiation is again difficult without the seller
sharing precise information about the data. One solution used in practice
is for the seller to agree to compute certain statistics on the data, but this
typically provides too low of a resolution for the buyer to make a truly
informed decision.

• A medical center would like to compare the expected outcome of its treat-
ment plan for pneumonia with the expected outcomes of the treatment
plans used at competing medical centers. The problem is that no-one
wants to publicly disclose such information for the fear of being called out
for providing less effective care.

• A company is developing machine learning models that try to assist pri-
mary care providers in choosing the best treatment plans for their patients
in a variety of situations. The company would like to buy anonymized pa-
tient medical records from hospitals to further develop and study their
models, but only if their data does not already fit the model well enough.
This could in theory be tested by running simple statistical tests compar-
ing the model parameters with the data, but in practice not because the
hospital is not willing to disclose its data before a deal has been made.

• A company producing chocolate bars would like to learn detailed informa-
tion about the chocolate bar market (e.g. market elasticity) by combining
its own data with the data of other companies in the same or related mar-
ket. Its goal would be to reduce costs through improved efficiency and
better pricing, but unfortunately the other companies are not willing to
share their private financial data.

• In the near future when genomic sequencing is projected to become even
more commonplace than it is today, it is conceivable that individual peo-
ple would like to have an opportunity to sell access to a part of their ge-
nomic data to trustworthy companies (e.g. pharmaceutical companies) or
research groups, who are willing to pay an appropriate price. Such individ-
uals would like to upload their data in encrypted form to a special market-
place, which potential buyers could then run aggregated and anonymized
query at will. This is somewhat similar to what Project Beacon4 pro-
vides, with the significant distinction that Project Beacon operates on a
distributed network of hospitals and as such is not easily accessible to
individuals.

4https://beacon-network.org
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For the examples above, current solutions that are actually used in practice
require substantial and costly litigation to preserve the interests of each party,
while still typically failing to preserve full privacy. In some scenarios anonymiza-
tion procedures end up causing the resolution of the data to decrease so much
that a significant part of its value is lost in the process. Instead, we observe
that each of these scenarios can be framed in terms of SDE, which in turn is
enabled by our general solution.

In some instances (see the examples above) the SDE framework can be
viewed as a particular type of a reverse auction with extra security and pri-
vacy measures, or a secure marketplace where several sellers (data owners in
Section 1.1) have valuable data they wish to sell, and have uploaded it in the
cloud in encrypted form to put it on the market, and a buyer (evaluator in Sec-
tion 1.1) wants to buy data from one or more of the sellers but only if it satisfies
certain conditions. In typical situations the price the buyer would offer depends
on some particular qualities of the data, and sellers might want to only agree
if the price offered is above some threshold, so a negotiation on the value of
private data must take place. In some cases the buyer would prefer to keep the
price it is willing to offer secret, and the sellers would not want to reveal their
conditions for accepting or rejecting offers. In situations with more than one
seller, the buyer might want to only engage in a deal with a particular seller,
or sellers, whose data they determine to be of most use to the buyer, whose
price is the lowest, whose data has been on the market for the shortest/longest
time, or any combination of properties of this type. In a slightly more general
situation, the buyer who might not be interested in buying the data itself, but
only some limited number of bits of information about it, e.g. the value of a
particular function evaluated on it. In this case the price might depend both on
the function and on the bit width of the output.

As was briefly mentioned in Section 1.1, our solution for enabling SDE is
based on Secure Multi-Party Computation (MPC), which in its most basic form
allows two or more parties to evaluate a function on their private inputs in such
a way that one or more of the parties obtains the output of the function, but
none of the parties learns anything about each other’s inputs, except what can
perhaps be inferred from the output of the function. While classic MPC can
easily meet some of the requirements of SDE (recall Section 1.1), it falls far
from meeting all of them.

To overcome the limitations of classic MPC, and motivated by the scenarios
described above, we are naturally led to consider a different setting where a semi-
honest and non-colluding cloud assists in the MPC and does not contribute any
input of its own, nor receive any output. Such a server-aided setting has been
extensively studied and shown to be efficient (see [16, 15, 10]). Our starting
point is similar to that of e.g. [16], but we develop the server-aided approach in
a new direction that we find to be strongly motivated by practical applications.
In particular, the security model that we focus on maintains data privacy even if
everyone except the cloud is arbitrarily malicious, but is still flexible enough to
allow for the powerful features described in Section 1.1. We implement several
applications and evaluate their performance to demonstrate the practicality of
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our solution in Section 5.
We are not aware of any earlier work that would view SDE (or a similar

protocol) as a fundamental tool for solving a wide variety of data privacy issues
in business transactions. In fact, we believe that an efficient implementation of
the SDE framework, such as the one that we present, can significantly enhance
existing and open up entirely new business opportunities in areas that have
earlier been unrewarding or impossible due to privacy concerns.

1.3 Overview of our Protocol

We start our overview with a simplified SDE protocol that achieves security
against semi-honest adversaries (with a non-collusion assumption). The parties
involved are denoted as follows: C (cloud), P1, . . . ,Pn (data owners), and Q (a
third party/function evaluator). The input data of a party Pi is denoted by xi
and any input data of Q by xQ.

In many of the examples of Section 1.2 the data xi is meaningful to use for
several executions of the protocol with different Q, however, it is also possible
for the Pi to have per computation inputs analogous to xQ, but we omit this
simple addition in our discussion here.

The semi-honest protocol works as follows. First, each Pi uniformly samples
a secret seed ri ← {0, 1}κ and computes zi := xi ⊕ g(ri), where g is a pseudo-
random generator (PRG) that all parties have agreed to use. Then each Pi
uploads its secret-share zi to C for long-term storage.

When a party Q wishes to engage in SDE with some subset of the parties Pi,
it will ask those particular Pi for their respective seeds ri. After all involved
parties have agreed on a function f(x1, . . . ,xn,xQ) to be computed, C and Q
engage in a secure 2PC protocol where the private input of C is the set of the zi
and the private input of Q is the set of the g(ri) together with its own private
data xQ. The secret-shares zi and g(ri) are combined only inside the 2PC
protocol.

We point out several important aspects of this approach:

• While we use the language of secret sharing to describe zi = xi⊕ g(ri), in
practice g(ri) will be AES in counter mode keyed by ri. Hence zi, which is
what Pi uploads to the cloud, is in fact a standard AES-CTR encryption
of xi under an ephemeral key.

• By choosing g to be AES-CTR, it becomes easy to perform computations
on any subset of the data xi. The cloud C provides the appropriate subset
of zi while the evaluator Q can compute the subset of g(r) with random
access. We note that this approach leaks to all parties (including the
server) which subset of the data is used. However, it is well-known that
hiding this access pattern would require all parties to “touch” every bit of
their shares.

• Our goal is to reduce the burden on each Pi as much as possible, beyond
simply uploading their data to the cloud. By letting one of the shares
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g(ri) be pseudorandom, the communication from Pi and Q is reduced to
a constant (independent of |xi|).

• By exploiting the linearity of the secret-share reconstruction, it is possible
to fold it into the OT extension so that the labels encoding g(ri) need not
be sent.

We now describe our enhancements to this basic protocol, making it secure
against malicious Q and Pi, and a semi-honest cloud C. The change results in a
security/performance trade-off which preserves the practicality of the protocol.

Preventing Q from cheating in the 2PC: When Q is potentially malicious,
it may try to cheat in the 2PC protocol execution with C. The natural way
to address this is to use the garbled circuits paradigm of Yao [33, 21]. This
protocol paradigm is naturally secure against a malicious receiver (when using
malicious-secure oblivious transfer).

Forcing Q to use the correct inputs: Our main technical contribution is in
our new approach for binding the evaluator to the data owner’s intended input.
We develop a technique that exploits the properties of Yao’s garbled circuit
protocol and its reliance on oblivious transfer extension.

In Yao’s protocol between C and Q, C produces a garbled circuit, which can
be thought of as an encryption of a normal Boolean circuit, where all wires hold
encrypted (garbled) binary values. The garbled output of the garbled circuit
can be decrypted using keys known only to the garbler, i.e. the cloud C. To
evaluate the garbled circuit, Q must obtain garbled inputs corresponding to its
own input to the computation. This is typically done using oblivious transfer
(OT) (see Section 2.1 and Section 2.2 for details).
Q is supposed to use g(ri) as its input to the 2PC, and we need a way for

the data owners Pi to bind Q to these inputs in the oblivious transfers. We
achieve this by a novel adaptation of the malicious-secure OT extension (OT-e)
protocol of [17] (see also [12, 28, 1, 2]). At a very high level, Pi can execute
the OT-e protocol with C in an offline phase, with Pi acting as the oblivious
receiver (OT receiver). There is a point in the protocol at which Pi would send
a large message that binds it to g(ri) as its OT selection string. Rather than
send this message, we have Pi commit to it.

At this point, the receiver’s internal state in the OT-e protocol can be derived
from a short seed (and its input g(ri)). For an SDE computation, Pi sends
this short seed to Q, who can then reconstruct the state and continue the
OT-e protocol. The commitment made by Pi ensures that Q must complete
the OT-e protocol using g(ri) as its OT selection string. The steps outlined
above implement a functionality that we call Three-party Oblivious Receiver
OT extension (OROT-e), and describe formally in Figure 4.

This approach to ensuring correct inputs has the following advantages over
previous techniques in the literature:

• Overhead: Pi must compute the long message for the OT-e protocol
(it has length O(κ|xi|)), but Pi does not need to send it. Furthermore,

7



computing the commitment can be done in a streaming fashion, without
having the entire large message resident in memory at one time. Only a
short commitment (κ bits, in the random oracle model) needs to be sent
to C, and a short seed (κ bits) sent to Q.

• Many-use: Pi’s involvement in the OROT-e input-binding technique
happens only once, i.e. at the time it uploads the data to the cloud.
This means that performing a single OT-e instance suffices for using the
same dataset in many SDE computations.

• Authenticates subsets of the data: Many realistic computations on
big data may not actually “touch” every part of the data. By exploit-
ing the internal structure of the OROT-e protocol, we can use the same
commitment to perform SDE computations on only a subset of the data.5

Because of the structure of the OT-extension protocol, the long OT-e
message to which Pi commits is composed of blocks that are in a 1-to-1
correspondence with the bits of g(ri). Hence, if the commitment takes the
form of a Merkle tree, then Q can efficiently and selectively decommit to
only a specified region of this OT-e message.

Overall, Pi’s involvement in the SDE protocol is minimal. While uploading
data to the cloud, Pi performs some additional cryptographic processing. How-
ever, the data uploaded to the cloud is simply an AES-CTR encryption of its
data. When Q wishes to perform a computation on Pi’s data, Pi informs C of
its approval of Q, and sends a very short O(κ)-bit message to Q.

Security: We describe the security of our final protocol in detail in Section 4.
For now we merely mention that the protocol is secure under the assumptions
that:

• The cloud C is semi-honest;

• Any number of P1, . . . ,Pn,Q can be potentially malicious;

• The cloud C and evaluator Q do not collude.

To formally model a setting in which adversaries do not collude, we use the
definitions and results of [15].

1.4 Related Work

The idea of server-aided MPC is not new, and there are many works that con-
sider a server-aided setting with similar goals in mind [16, 8, 7, 24, 9, 27, 13].
A common theme is to leverage a server (or several servers) to minimize the
computational burden on the clients (in our setting, the data owners). While
not all these works exactly match our model (e.g., some consider many servers,

5All parties must know which subset of the data is being accessed. That is, this approach
does not hide the access pattern of the computation. However, hiding the access pattern
requires the entire dataset to be used as input to the computation.
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some consider only one client/data owner), for the most part they can all be
mapped onto the SDE model in a reasonable way. Many of the works use Yao’s
protocol as a natural 2-party starting point, as we do.

We now discuss these prior works in more detail, in the context of our initial
design goals (Section 1.1).

(1) Security model: The Salus protocol of Kamara et al. [16] uses a server-
aided MPC model shared by many others [8, 7, 24, 9]. The main difference
between this model and ours is that we consider a semi-honest cloud, while
these works protect against a malicious cloud. This difference results in a severe
asymptotic and concrete efficiency penalty, and makes a direct performance
comparison less valuable. Our focus on this weakened security model stems not
only from considerable performance gains, but also from reflecting real-world
trust models for cloud services.

The security of the Salus protocol is proved under two settings: one in which
the server is covert [3] and non-colluding, and another one in which the server
is malicious and non-colluding, and all but the circuit evaluator are malicious.
To achieve security against the server, Salus uses cut-and-choose [26, 22, 23, 18,
32, 20] which results in a ∼ 40× overhead in communication and computation.

Although Salus uses a strong security model, it still requires a strong non-
collusion assumption. Even in the presence of a semi-honest adversary, if any
party colludes with the server, all of the parties’ inputs are trivially leaked. Our
protocol relaxes this non-collusion assumption to only apply between the cloud
and the evaluator. Note that all security guarantees are lost if the circuit garbler
colludes with the evaluator—a property shared by all works in this model. The
authors of [16] argue that some kind of non-collusion assumption seems inherent
if one wishes to reduce the computational burden of the client/data owner.

The Whitewash protocol [7] considers the malicious setting with only two
parties where one outsources their work to a cloud. Whitewash achieves superior
security than Salus in that the party who outsources their work can not learn
the other parties input when colluding with the cloud.

(2) Reusability of data: A first-order design goal of SDE is to allow data to
be used for any number of computations. Most prior works do not explicitly
consider the question of reusability, but we believe that many of them could be
easily modified to support reusable data with low overhead. One exception is the
outsourcing framework of Jakobsen et al. [13]. They use a special kind of MAC
to ensure that both the cloud and the evaluator use the correct data. To avoid
adding an expensive MAC verification to the MPC protocol, they carefully verify
the MAC separately, exploiting its algebraic properties. The result has very low
overhead, but as a side-effect it results in all parties eventually learning the
MAC key. If the same data is used for a subsequent computation by a different
evaluator, who has colluded with the first evaluator, then a new MAC must be
computed. This would result in significant overhead for the data owner, each
time the data is used in a computation.

(3) Storage Overhead: The work of Mood et al. [24] explicitly considers
long-term storage of MPC data. However, the data is represented between
computations in garbled form (i.e., as wire labels) which incurs a multiplicative
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storage overhead of κ (e.g., 128) bits. For very large data, of the type that may
be outsourced to the cloud, such an overhead would be prohibitive. Similarly,
the closely related notion of Controlled Functional Encryption of Naveed et
al. [27] also requires data to be stored in the form of wire labels. To permit
data to be used in a computation, the data owner must communicate at least
O(κ|x|) bits. By contrast, in our protocol, the server holds a standard AES-
CTR encryption of the data, plus a small κ-bit commitment; the data owner
authorizes a computation by sending only a O(κ)-bit value to the evaluator.

(4) Computing on subsets of the data: Our SDE approach allows a data
owner to upload a large dataset, and authorize computations on any subset
of that data without having any involvement that depends on the particular
subset (i.e., the data owner does not need to “specially re-process” that subset
of data). This functionality stems from the way the protocol binds the cloud and
the evaluator to the correct input—the mechanism naturally binds any subset
of the data.

No previous related work explicitly considers the question of computing on
small parts of large datasets. Some of the prior work can clearly be seen to
support this feature. For example, the protocols that bind inputs using a wire-
label representation [24, 27] naturally support computing on a subset (at the
cost of increasing storage overhead by a factor of κ). For other protocols, it is
not clear how to adapt their techniques to suit this use-case. For example, the
protocol of [13] authenticates the entire dataset with a kind of MAC, making it
naturally resistant to any attempts to use a subset of the data.

2 Preliminaries

We denote the set of integers {1, 2, ..., n} by [n]. The symbol ‖ will denote string
concatenation. The computational security parameter will be denoted by κ.

2.1 Garbled Circuits

Conceived in the seminal work of Yao [33], garbled circuits allow two parties
with respective private inputs x and y to jointly compute a possibly probabilis-
tic functionality f(x,y) = (f1(x,y), f2(x,y)), such that the first party learns
f1(x,y) and the second party learns f2(x,y). Garbled circuits have become
fundamental building blocks in many cryptographic protocols in recent years,
and while they are most widely used in two-party secure function evaluation,
other multi-party protocols make extensive use of them (see e.g. [29, 11]).

Formalizing appropriate security definitions and proving the security of Yao’s
protocol under these definitions was a difficult task, and was finally completed in
2009 by Lindell and Pinkas [21]. Intuitively, the security requirement is that no
information is learned by either party beyond their prescribed output (privacy)
and that the output distribution follows that specified by f (correctness).

The garbled circuits construction can be thought of as a compiler which
takes a functionality f as input and outputs a secure protocol for computing f .
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First, the functionality is expressed as a Boolean circuit C consisting of gates
(typically and and xor gates). Each gate g takes two logical bits a, b ∈ {0, 1}
as inputs and returns a logical bit c := g(a, b) as output. The secure protocol
then evaluates each gate of the circuit C in such a way that it hides the logical
values in all internal wires, and contains a mechanism to decode the garbled
output wires.

The first party, known as the garbler, generates the garbled wires and the
garbled gates. The other party, known as the evaluator, needs to obtain the
garbled wire labels from the garbler for their respective input. To ensure the
privacy of the evaluator’s input, this must be done without revealing to the
garbler which labels the evaluator picks. In addition, the evaluator must be
prevented from evaluating the garbled circuit on several inputs, so for each
garbled input wire the evaluator is allowed to learn precisely one of the two
labels. This is achieved using Oblivious Transfer (OT), which we will discuss in
Section 2.2. Once the evaluator has learned the input wire labels for a garbled
gate, it can learn exactly one of the two possible garbled output wire labels.
A garbled circuit is obtained by garbling a Boolean circuit consisting of an
arbitrary number of gates, and can be evaluated once an input encoding—i.e.
one label per input wire—is known.

To maintain the security of the garbled circuits construction, it is essential
that the evaluator can learn for each output wire at most one of the two wire
labels, while the other one must remain entirely unknown. It can then be seen
that the use of a malicious secure OT (see Section 2.2) yields a protocol that
is secure against a malicious evaluator, who may arbitrarily deviate from the
protocol. However, the garbler can maliciously construct a garbled gate or
an entire circuit that computes the wrong logic. The evaluator may not be
able to detect such malicious behavior, and it can be shown that all security
properties of the construction are lost. A standard technique for overcoming
this is known as cut-and-choose, in which the garbler generates several garbled
circuits and sends them to the evaluator. The evaluator randomly checks some
of them for correctness, and if all turn out to be honestly generated the evaluator
evaluates the remaining ones. When the evaluator checks and evaluates O(κ)
of the circuits, the garbler only succeeds in this attack with exponentially small
probability in the security parameter κ.

Due to the significant overhead incurred in sending several garbled circuits,
in this work we will avoid the use of cut-and-choose, and instead assume that
the garbler is semi-honest and garbles the correct circuit. In particular, the
cloud C will take the role of garbler, and receive no output.

There are several ways of improving the practicality and efficiency of garbled
circuits. Most importantly, xor gates can be evaluated for free using the Free-
XOR technique of [19], and garbled and gates can be reduced down to two 128
bit AES blocks using the half-gates construction of [34]. Finally, note that it is
not necessary to know the full garbled output labels for decoding, as long as they
are known to differ at a particular (typically the first or last) bit position. This
makes it very easy for the garbler to communicate the decoding information
to the evaluator, namely all the garbler needs to do is to give the evaluator a
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Parameters: A sender S and a receiver R.

Main Phase: On input (select, sid, b) from R and (send, sid, (x0,x1))
from S, send R (recv, sid,xb).

Figure 1: Fot ideal functionality.

Parameters: A sender S and receiver R. A security parameter κ, and a
number ` (the number of κ-bit OTs to be obtained).

Setup Phase: On common (setup, sid, κ), R uniformly samples kib ←
{0, 1}κ for each i ∈ [κ], b ∈ {0, 1}, and S uniformly samples ∆← {0, 1}κ.

For each i ∈ [κ], R sends (send, (sid, i), (ki0,k
i
1)), and S sends

(select, (sid, i),∆i) to Fot, who responds with (recv, (sid, i),ki∆i
).

Select Phase: Expand the kib into `-bit strings tib := g(kib). On input
(select, sid, r) from R, where r is an `-bit selection string, R computes a
matrix u ∈ {0, 1}`×κ whose i-th column is ui := ti0⊕ti1⊕r, and sends it to S.
For each i ∈ [κ], S computes `-bit column vectors qi := (∆i · ui) ⊕ ti∆i

=

ti0 ⊕ (∆i · r).

Receive Phase: On input (send, sid, (i,xi0,x
i
1)) from S, let ti (resp. qi)

denote the i-th row of the ` × κ matrix formed by the column vectors tj0
(resp. qj) for each j ∈ [κ]. S sends

(i,yi0,y
i
1) :=

(
i,xi0 ⊕H(i,qi),x

i
1 ⊕H(i,qi ⊕∆)

)
to R, who computes xiri = yiri ⊕ H(i, ti), and outputs (recv, sid, (i,xiri))
for each i ∈ [`].

Figure 2: Semi-honest OT extension protocol ΠOT-e

string of permutation bits that tells the evaluator how the last bit of a particular
garbled output label corresponds to the logical output value [22].

2.2 OT Extension

Oblivious Transfer (OT) is a fundamental cryptographic primitive with numer-
ous applications to modern protocols. As was explained in Section 2.1, we will
use OT for communicating wire labels in Yao’s protocol from the garbler to the
evaluator, without revealing the evaluator’s input to the garbler. The idea of
OT is that a sender S has two input strings x0 and x1 of length `, and a receiver
R has a selection bit b ∈ {0, 1}, and wants to obtain xb from S in an oblivious
way, meaning that S does not learn b, and R is guaranteed to obtain only xb
and learns no information about x1−b. Figure 1 describes an ideal functionality
for the oblivious transfer primitive.

While one round of OT is fairly efficient to do [30], it requires public-key
primitives and as such is not practical for exchanging very large amounts of
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information. For example, in Yao’s protocol if the bit-length of the evaluator’s
input is ` and each wire label has length κ (typically the labels are AES blocks
and κ = 128), the evaluator must engage in ` OTs with the garbler. This is
problematic when ` is large, so a technique called OT extension (OT-e) was
invented (see [12, 28, 1, 2, 17]) to efficiently extend κ so-called base OT s into
` OTs. More precisely, instead of having to perform ` OTs of length κ, it
will be enough to perform κ OTs of length κ, which are then extended using
an agreed upon PRG g. In this section we will explain how OT extension
works following [17]. Subsequently we will describe a novel adaptation of OT
extension to force the evaluator in Yao’s protocol to either remain honest, or
with overwhelming probability to fail the garbled circuit evaluation. In this
description we will use OT as a black box and focus on explaining the extension
procedure.

Let {(xi0,xi1)} for i = 1, . . . , ` be pairs of κ-bit messages that S wants to
obliviously transfer to R. In other words, R has an `-bit selection string r :=
(r1, . . . , r`), and it wants to obtain the messages xiri in an oblivious way. A semi-
honest version of the OT extension protocol ΠOT-e that we will use is described
in Figure 2. This is a slight variant of what is referred to as correlated OT
extension in [17]. It is not secure against an active malicious R, but is easily
strengthened to be by adding a minimal amount of overhead, as is also described
in [17]. For the sake of simplicity we will omit describing the malicious secure
OT-e protocol.

It will be important to understand the amount of communication between R
and S in each step. In the Setup phase a small amount of OT communication
between R and S takes place. Note that typically we would take κ := 128.
In the Select and Receive phases a significant amount of communication takes
place: matrices of size `× κ are sent between R and S, where ` can potentially
be very large.

3 Our Solution

3.1 Semi-Honest Protocol

We will now explain our basic protocol that is secure in a semi-honest setting,
where in addition C and Q are non-colluding. The parties involved are the
data owners P1, . . . ,Pn, where each Pi holds persistent input data xi that is
stored in the cloud C, and Q who acts as the garbled circuit evaluator and holds
input data xQ. The parties anticipate that some subset {Pi | i ∈ I} of them
will perform a cloud-assisted private computation with Q over their datasets at
some later point in time.

In an ”offline” phase, each party Pi samples ri ← {0, 1}κ uniformly at ran-
dom, and uploads a secret-share zi := xi⊕g(ri) of its dataset xi to the cloud C.
Here g(ri) is an agreed-upon public PRG, such as AES in counter mode, keyed
by ri.

Let I := {I1, . . . , Im} ⊆ [n]. At a later time, Q along with {Pi | i ∈ I}
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decide to evaluate a functionality

f({xi}i∈I ,xQ) := (f1({xi}i∈I ,xQ), . . . ,

fm({xi}i∈I ,xQ), fQ({xi}i∈I ,xQ)) ,

where each data owner PIj learns fj({xi}i∈I ,xQ), andQ learns fQ({xi}i∈I ,xQ).
Any additional per computation input data x′i for party Pi is expressed as being
appended to the end of zi, and will be discussed further in Section 3.3.3. The
cloud C verifies that all involved parties wish to compute f . The data owners
{Pi | i ∈ I} send their secret seeds ri to Q, who computes the masks g(ri). A
two-party secure computation is then performed between C and Q to compute
the related functionality

f̃ ({zi}i∈I , {g(ri)}i∈I ,xQ) := f ({zi ⊕ g(ri)}i∈I ,xQ) .

To evaluate f̃ securely using MPC, the cloud C acts as the garbler and gen-
erates the garbled circuit that computes the functionality f̃ , and sends it to Q
(recall Section 2.1). In the oblivious transfer phase, Q will select the input wire
labels corresponding to g(ri). In the traditional Yao’s protocol C would input
the corresponding wire labels by their truth values resulting in Q obtaining the
labels that encode g(ri). C would then send the labels encoding zi so that Q
could evaluate the f̃ circuit. Instead, we employ an optimization where C inputs
the wire labels for g(ri) into the ΠOT-e (see Figure 2) protocol after permuting
them by zi. This results in Q obtaining the effective input wire labels with
values xi = zi⊕g(ri) with no additional overhead. In particular, C only garbles
the circuit corresponding to f , and Q obliviously learns the wire labels encod-
ing xi. After evaluating the garbled circuit, Q sends to party PIj the encoding
information yj (i.e. the permute bits) for the garbled output corresponding to
the function fj , and keeps the encoding information yQ corresponding to the
garbled output of fQ to itself. The cloud C sends PIj the corresponding decod-
ing information dj that PIj uses to obtain its result fj({xi}i∈I ,xQ) = dj ⊕ yj ,
and it sends Q the decoding information dQ that Q similarly uses to obtain its
result fQ({xi}i∈I ,xQ) = dQ ⊕ yQ.

This basic protocol securely and privately computes the functionality f({xi}i∈I ,xQ)
under the assumption that the parties are semi-honest, and that C and Q are
non-colluding. By the security properties of garbled circuits, Q’s view of the
output encoding information yj (resp. yQ) is uniformly distributed without the
decoding information dj (resp. dQ). Therefore, the evaluator Q learns nothing
more than their prescribed output, and the values ri that the data stored in the
cloud is encrypted under.

3.2 Enhanced Protocol

We will now describe several attacks against the semi-honest protocol and their
respective solutions. Looking forward, we will arrive at a malicious secure pro-
tocol subject to a non-collusion assumption between the cloud and circuit eval-
uator.
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3.2.1 Input Consistency

In Section 3.1 the party denoted by Q evaluates the garbled circuit computing
the function f ′, which reconstructs the 2-out-of-2 secret shares of the logical
inputs and subsequently evaluates f . This leads to a situation where Q can
easily flip any set of input bits. In order to obtain malicious security, it is
necessary for Q to prove that they provided the correct value for the input
secret shares g(ri). Looking forward, we will describe a protocol ΠOROT-e in
Figure 4, which enforces Q to use the correct inputs, preventing attacks of this
type.

Suppose that instead of secret sharing Pi’s input xi between C and Q, Pi
simply performs oblivious transfer with C in the setup phase and forwards the
wire labels to Q at the start of each computation. While this achieves the
desired security, it leads to a situation where Pi must send a significant amount
of data for each computation on its data. Instead, we will show how to adapt
OT-e (recall Section 2.2) in a non-black box manner to also achieve persistent
cloud storage for Pi, as in Section 3.1, with minimal online interaction.

For simplicity, suppose there is only one data owner P with a secret seed r,
that it has sent to Q. In the next step, Q needs to obtain the wire labels from
C corresponding to the bits of the selection string c := g(r). Let ` denote the
bit-length of c. We now explain the protocol ΠOT-e (see Figure 2) in the context
of our setup. At a high level, OT-e works in three phases. First, κ so called
base OTs on κ-bit strings are performed. We note that these OTs are in the
reversed direction relative to the final OT messages. That is, the cloud C acts
as a receiver, and Q acts as the sender with uniform messages ki0,k

i
1 ∈ {0, 1}κ

in the i-th base OT. The cloud C samples ∆ ∈ {0, 1}κ uniformly, and selects
ki∆i

.
In the second phase, suppose that OT-e should result in ` OTs of length κ of

pairs {(mi
0,m

i
1)}, where the receiver Q wants to learn the messages indexed by

the selection string c ∈ {0, 1}`, i.e. mi
ci for every i ∈ [`]. Both parties expand

the kib values to be ` bits by computing tib := g(kib). The cloud C now holds
the larger messages ti∆i

∈ {0, 1}`. Q knows both ti0 and ti1, but does not know

which one is held by C. The OT-e receiver Q then computes ui := ti0 ⊕ ti1 ⊕ c
for every i ∈ [κ], and sends them to C. This is the final message sent by Q in
the protocol, and commits it to the choice of the selection string c.

In the last phase, the cloud C computes a matrix q ∈ {0, 1}`×κ, where the
i-th column is qi := (∆i · ui) ⊕ ti∆i

= ti0 ⊕ (∆i · c). Let t ∈ {0, 1}`×κ be the

matrix whose i-th column vector is ti0. Let ti denote the i-th row of t. Then,
by definition, the i-th row qi of q is qi = ti ⊕ (ci ·∆), where ti is the i-th row
of t. To see this, consider the case when ci = 1. Then in the j-th bit location
of the i-th row of q there is an additional (ci · ∆j) = ∆j additive term, and
similarly when ci = 0 there is no additional term. The cloud C then one-time
pad encrypts the i-th message pair {(mi

0,m
i
1)} as yi0 := mi

0 ⊕ H(i,qi) and
yi1 := mi

1 ⊕H(i,qi ⊕∆), and sends them to the receiver. The receiver Q can
then compute mi

ci
= yici

⊕H(ti).
We now show how to efficiently distribute this basic OT-e protocol described
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Parameters: A sender S, chooser P, and a receiver R who can be specified
by P.

Select Phase: Upon receiving (select, sid, c) from P for the first time,
internally store (sid, c). If select has already been called, internally store
(sid, c′‖c), where (sid, c′) was the previously stored tuple.

Receive Phase: Upon receiving (receive, sid,R) from P, whenever S
sends (send, sid, (i,xi0,x

i
1)), send (recv, sid, (i,xici

)) to R.

Figure 3: Three-party Oblivious Receiver OT extension ideal functionality
FOROT-e

in Figure 2.2 to the setting where P chooses which messages are learned in
the OT, while allowing Q to be the oblivious receiver. The resulting protocol
is described in Figure 4, and realizes the functionality FOROT-e as shown in
Figure 3. Critical in this observation is that the selection string c is fixed by P
in the first two phases described above, i.e. by choosing the base OT messages
ki0, ki1, and the matrix u (with column vectors ui). Once the cloud C receives
these protocol messages, the final OT messages that can be learned by the
receiver are fixed.

Thus, in the offline phase, P will upload its data to the cloud as z := x ⊕ c.
P will perform the first two phases of OT-e using the correct c, and send the
matrix u to C. C will then learn the matrix q, whose i-th row is qi = ti⊕(ci ·∆).
In the online phase, P will send the seed r, and the seed used to derive the base
OT messages kib to Q, who can then regenerate u, c = g(r), and complete the
OT-e with C. To prevent Q from cheating, C only needs to check that the matrix
u sent by Q is the same as that sent earlier in the offline phase by P.

The downside of this approach is that C will have to store the κ×`-matrix u,
a factor of κ larger then the original data. In addition, this places a heavy
communication cost for the data owners Pi, which we would like to avoid. The
simplest solution is for P to locally compute the matrix u in the offline phase,
and send C only a small commitment to it. In the online phase, Q will regenerate
the matrix, and send it to C, at which point C can open the commitment and
verify that the matrix Q sent is the correct one. This adds only a small κ-bit
communication overhead for P.

In the case of multiple data owners P1, . . . ,Pn, the protocol described above
is simply performed for each of them individually.

3.2.2 Output Fairness

After Q has evaluated the garbled circuit, and obtained the garbled outputs yi
of all involved parties Pi (and its own garbled output yQ), it needs to distribute
yi to Pi, who then obtain the corresponding decoding information di from C to
recover the actual output bits. However, if performed as specified in the semi-
honest protocol, a malicious Q is able to manipulate Pi’s output by sending
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Parameters: A sender S, chooser P, and a receiver R who can be specified
by P. A security parameter κ, and a number ` (the number of κ-bit OTs
to be obtained). A public PRG g, and a hash function H.

Setup Phase: On common (setup, sid, κ): P uniformly samples r ←
{0, 1}κ, and derives kib := g(r‖b‖i) ∈ {0, 1}κ for each i ∈ [κ], b ∈ {0, 1}.
S uniformly samples ∆← {0, 1}κ.

For each i ∈ [κ], P sends (send, (sid, i), (ki0,k
i
1)), and S sends

(select, (sid, i),∆i) to Fot, who responds to S with (recv, (sid, i),ki∆i
).

Select Phase: Let tib := g(kib). On input (select, sid, c) from P, if select
has been called before, redefine c := c′‖c, where c′ was the previous value.
Let ` be the bit length of c.
P computes a matrix u ∈ {0, 1}`×κ whose i-th column is ui := ti0⊕ti1⊕g(r),
and sends h := H(u), z := c⊕ g(r) to S.

Receive Phase: On input (receive, sid,R) from P, P sends r to R who
recomputes t and u, and sends u to S, who aborts if h 6= H(u). For each
i ∈ [κ], S computes `-bit column vectors qi := (∆i ·ui)⊕ ti∆i

= ti0⊕ (∆i ·r).
The malicious secure check of [17] is now performed between R and S.
On input (send, sid, (i,xi0,x

i
1)) from S, let ti (resp. qi) denote the i-th row

of the ` × κ matrix formed from the column vectors tj0 (resp. qj) for each
j ∈ [κ]. S sends

(i,yi0,y
i
1) :=

(
i,xizi

⊕H(i,qi),x
i
zi
⊕H(i,qi ⊕∆)

)
to R, who computes xici

= yig(r)i ⊕H(i, ti) and outputs (recv, sid, (i,xici
)),

for each i ∈ [`].

Figure 4: Three-party Oblivious Receiver OT extension protocol ΠOROT-e

incorrect values in place of yi.
Intuitively, this will be overcome by a two step process. First, C delays

sending the decoding information, and Q distributes the output wire labels to
their respective parties. C will then allow each party to learn their full set of
output wire labels, but not their semantic values. Each party can then validate
that Q sent them valid output wire labels. At this point, all parties inform C
that the decoding information should be released. If any party does not validate
their output, the protocol is aborted.

One way for Pi to validate their output wire label is for C to send them to Pi.
However, a significant communication cost could be incurred by this, which we
would like to reduce. One step in this direction is for C to construct the output
wire labels corresponding to Pi’s output of the garbled circuit from a PRG with
a seed rout

i . Now C can send rout
i to Pi, who can expand the PRG and obtain the

output wire labels, significantly reducing the communication cost. Importantly,
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learning the seed rout
i and the labels from Q must not reveal the semantic value

of the output.
The Pi’s dominating communication cost is now Q sending the output wire

labels to Pi. This can be reduced by instead using the point-and-permute tech-
nique first presented in [4]. Essentially, the garbling scheme will ensure that the
last bits of each pair of output labels are different, so that Q only needs to send
these last bits to Pi (select bits), who only needs to receive from C the permu-
tation that matches them with the correct semantic output bits. This mapping
of select bits to semantic values can now function as the decoding information.

The problem with using this approach alone is that it makes it very easy for
Q to flip any of the bits of Pi’s output by reporting incorrect select bits. To
prevent this, Q will compute the xor of all of the wire labels corresponding to
Pi’s output, and send it to Pi. Now C will send to Pi the seed for the PRG
to compute the entire output wire labels as we explained above.6 Pi can then
compute the xor of the appropriate labels received from C for each of its output
wires, and verify that it matches the xor received from Q. This way Pi can be
sure that the output bits it gets from Q are indeed the correct ones. Once each
Pi confirms that they received valid garbled outputs from Q, the semi-honest
C will distribute the decoding information, and otherwise abort the protocol
execution, guaranteeing fairness.

The communication cost in the output distribution and decoding process for
Pi is therefore κ bits of communication with C, and κ+|yi| bits of communication
with Q.

The ideal functionality for SDE is formally described in Figure 5. Our pro-
tocol is formally described in Figure 6.

Parameters: Parties P1, . . . ,Pn, C.
Data Upload: On input x′i from Pi, if no tuple of the form (Pi,xi) is
stored internally, store (Pi,x′i) and otherwise store (Pi,xi‖x′i) internally.

Computation: On input (f, I,Q) from C, where

• f is a function with |I| inputs and |I|+ 1 outputs

• I = {i1, . . . , ik} ⊆ {1, . . . , n} denotes a set of input parties

• Q denotes a designated evaluator party (who may be one of the Pi’s
or any other party),

compute (yi1 , . . . ,yik ,yQ) := f(xi1 , . . . ,xik). Give message ready to the
adversary. When the adversary responds with deliver, then give yi to Pi
and yQ to Q. This kind of command can happen any number of times.

Figure 5: Ideal functionality for SDE.

6To ensure point and permute, the bottom bit of the PRG output can be manually over-
written.
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Parameters: Parties P1, . . . ,Pn, C. Computational security parameter κ.

Setup: For i ∈ [n], Pi and C perform the Setup phase of the ΠOROT-e

protocol from Figure 4, where Pi is the chooser and C is the sender.

Data Upload: Upon Pi receiving (upload,xi), Pi and C perform the
Select phase of ΠOROT-e, where xi is Pi’s input selection string.

Computation: On input (f, I,Q) from C:

1. Using a garbling scheme secure against a malicious evaluator, C garbles
the function f to obtain (F, e, rout, d) = Garble(f, {1}κ). F denotes
the garbled circuit, e the encoding information, rout = {rout

1 , ..., rout
k }

the seeds to generate the output labels for parties Pi1 , ...,Pik , and d
the decoding information (output select bits)—see Section 3.2.2.

2. For each ij ∈ I, Q acts as receiver to perform the Receive phase of the
ΠOROT-e protocol with Pij and C. C provides the garbled input wire
labels ej , which correspond to Pij ’s input as the send messages in
this phase. Q obliviously receives e

xj

j ⊂ ej , the labels encoding Pij ’s
input xj

3. C sends F to Q, who computes (Y1, ..., Yk, YQ) =
Eval(F, (ex1

1 , ..., exk

k )). Q sends the select bits and the κ-bit
long xor of the labels in Yj to Pij , and C sends rout

j to Pij , who
reconstructs its full set of output labels Y ∗j . Pij aborts if the xor of
the labels Yj received from Q does not match the xor of the labels
in Y ∗j , and otherwise sends (ok) to C.

4. Upon receiving (ok) from all parties, C sends the decoding information
dj to party Pij , who uses the select bits y′j of Yj , and computes its
output as yj = y′j ⊕ dj .

Figure 6: Enhanced Secure Data Exchange protocol ΠSDE

3.3 Improvements

3.3.1 Random Access

Typically, in applications of garbled circuits, circuits are garbled and evaluated
at a significantly faster rate than they are sent to the network interface, making
the network communication into a bottleneck. If the data owner and evaluator
want to hide their access patterns to the private data, they actually need to
touch all of it at all times, which quickly becomes infeasible.

In many cases, however, it is not necessary to hide such access patterns, or
only a part of the access pattern needs to be hidden. We now explain how we
can enable efficient random access to private data inside the MPC, significantly
reducing the size of data that needs to be touched, and thus significantly reduc-
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ing the size of the garbled circuit that needs to be communicated in the online
phase of our protocol.

Let P be any one of the data owners. Recall that in Section 3.2.1 P sends a
commitment to its matrix u to C. This commitment is opened by Q in the online
phase of the protocol, guaranteeing that Q uses the correct selection string in
the OT-e protocol ΠOT-e (recall Figure 2). Instead of committing to the entire
matrix u, P can instead build a Merkle tree of commitments, where the leaves
are commitments to the individual rows of u. The j-th row of u corresponds to
randomness associated with the effective OT for the j-th wire label, so when C
forms the garbled circuit it asks P to provide a Merkle chain of commitments
for all of the rows of the u matrix that the circuit needs to touch. Q sends
the corresponding rows of the matrix u to C, who opens the commitments,
guaranteeing that Q uses the correct selection string. This allows for efficient
random access to the data inside the MPC phase, reducing the communication
overhead to quasi-linear in the amount of data touched. More generally, one
can imagine not committing to individual lines of the matrix u in the leaves
of the Merkle tree, but to larger leaf blocks corresponding to, say, the bits of a
certain database entry, or a file.

This line of thinking leads us to also consider using a tree-like structure of
keys for P, rather than a single key such as the r whose expansion g(r) was
earlier used to encrypt the entire data x. For example, suppose we divide the
data x into blocks of a certain size, e.g. into individual entries in a database,
groups of entries, or files. For each such leaf block P assigns a seed that is used
by a PRG to encrypt it. P then builds a tree by encrypting two or more of
the leaf block keys under a new node key. Two or more of the node keys are
then again encrypted using a new higher level node key, and so on, until a tree
of encryptions of keys is formed. This tree of keys for each P can be stored
by C along with the data of P. When Q and C want to touch certain parts of
the data of P in a secure computation, C shares with Q an appropriate set of
encrypted nodes of the tree, who obtains the corresponding keys from P, and
can recover the seeds it needs for the PRG. This way only a limited amount of
key material has to be shared with Q. Of course, the larger the leaf blocks and
the nodes are the more efficient this is both in terms of communication between
C and Q, and between P and Q. Using larger leaf blocks would typically cause
P to share more extra key material, but by organizing the tree of keys in a
specific way, P can efficiently control this leakage and possibly optimize for the
types of computations that Q is most likely to request.

Of course, the techniques described above will leak information about the
memory access pattern.

3.3.2 Updating the Keys

Let P be one of the data owners. Since P ends up sharing its secret key r with
each buyer, there should be an easy way for it to revoke the key r and change
the data stored by C to use a new key r′. A simple way to do this would be
for P to send g(r)⊕ g(r′) to C, who simply computes z′ := z⊕ (g(r)⊕ g(r′)) to
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update the encryption. Unfortunately, this means that P has to send a linear
amount of data to C, which might in many cases be impractical, especially if P
wants to update the key regularly.

Using the tree of keys described in Section 3.3.1, we can efficiently instead
revoke and update selected parts of the key material. All that P needs to do is
to send C updates to the appropriate nodes of the tree of keys.

3.3.3 Append, Delete, Update

P can at any point append data to x (which is stored in encrypted form z
by C) by computing further pseudo-random bits from the PRG using either a
seed r that was used before, or possibly a new seed, depending for example on
whether the optimizations of Section 3.3.1 are used. If a seed that was used also
earlier is used for the newly appended data, it is crucial that none of the earlier
pseudo-random bits generated from that seed are reused, as this leaks a linear
relation between the updated data.

If trees of commitments and keys are used (see Section 3.3.1), then P will
need to expand these trees in an appropriate way, depending on the nature of
the data. For example, if the data is expected to be used a lot together with
some other earlier data, then P might want to consider appending it to the same
branch of the trees. Obviously P might need to update the relevant meta-data
stored by C.
P can at any point request C to delete certain parts of the data. Since

we assume that C follows the protocol, we assume that this operation will be
appropriately carried out, and the relevant meta-data updated correctly. To
update any piece of data, P must first ask C to delete it, and subsequently
append the replacement data as was explained above. As soon as all of the
meta-data is updated, the value has been replaced. A per computation input of
a party Pi can be expressed as appending data to the end of xi, which is then
deleted before the next computation.

4 Security

We now discuss the security of our protocol. To keep the technical details suffi-
ciently clean, we focus on a special case of our protocol, which does not involve
parties updating their data or computing on subsets of the data. Nevertheless,
this special case captures the main mechanisms and security considerations.

In Figure 5 we define the ideal functionality that our protocol securely real-
izes. Importantly, the functionality explicitly captures a setting with in which
cloud-stored data of the parties is used for several computations. Furthermore,
the role of the evaluator Q is not fixed, and can change from computation to
computation. Finally, the functionality is fair in the sense that either all parties
receive their output, or else no party receives any output.

Kamara et al. [15] define a notion of non-cooperating adversaries. Suppose
two parties A and B are both corrupt, and in particular A may be malicious.
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Informally, party A is non-cooperating with respect to party B if party A does not
use its malicious capability to send B any useful information. More formally, B
should be able to simulate the communication between A and B in the protocol.

In Appendix A we sketch the following:

Theorem 1 Our protocol securely realizes the ideal functionality in Figure 5
provided that:

• Party C may be corrupted only in a semi-honest way, while any other
parties may be corrupted in a malicious way.

• If an adversary controls a set A of colluding parties, and there is ever a
computation whose evaluator is among A, then the adversary A must be
non-cooperative with respect to C.

In short, the protocol is secure as long as the cloud is semi-honest, and
no evaluator cooperates with the cloud. This holds even if the parties Pi are
otherwise malicious (simultaneous with the cloud being semi-honest).

5 Performance

Recall from Section 1.1, that a practical implementation of the SDE framework
should satisfy certain performance requirements to be realistically adaptable:

• The system should leverage the existing cloud storage infras-
tructure. Indeed, our cloud storage requirements are exactly the same
as when storing unencrypted data, except for a constant size commitment
per data owner. Additionally, the cloud storage is persistent in the sense
that the data can be stored securely for an unlimited time. It is also easy
to append to, delete from, or replace parts of the stored data.

• The system should align to the existing incentives for cloud ser-
vices. In our solution, the data owners communication overhead is min-
imal. In the Select phase of the ΠOROT-e they need to do computational
work proportional to their data size, but this is a one-time cost due to the
re-usability of the commitment. Nearly all of the computational work is
therefore shared between C and Q. The data stored in the cloud can be
used repeatedly in multiple executions of the protocol.

• The system should use trust models that reflect the current re-
ality of cloud services. In particular, our protocol achieves nearly the
same performance as a semi-honest 2PC garbled circuits evaluation of a
similar functionality by restricting to a realistic (semi-honest cloud) trust
model. In many practical applications the number of data owners and
potential evaluators can be very large, which motivates the need for the
protocol to be malicious secure when any number of these parties are
corrupted.
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We demonstrate several applications which build on the Secure Data Ex-
change framework. Our implementation is of the semi-honest protocol described
in Section 3.1. We note that the malicious protocol requires a minimal amount of
overhead, and is not expected to significantly affect the running times reported
here.

5.1 Test Platform

All performance numbers reported were obtained on a single server with simu-
lated network latency. The server contains two 36-core Intel(R) Xeon(R) CPU
E5-2699 v3 @ 2.30 GHz, and 256 GB of RAM. We executed our prototype in
two network settings: a LAN configuration with all parties in the same network
with 0.2 ms round-trip latency and 400 Mbps throughput, and a WAN configu-
ration with a simulated 95 ms round-trip latency and 40 Mbps throughput. The
network latency was simulated with the Linux tc command. All experiments
were performed with a computational security parameter of κ = 128. The times
reported are an average over 10 trials with variance between 2.1% − 8.0% in
the LAN setting, and 6.0% − 16% in the WAN setting with a trend of smaller
variance as n (see below) becomes larger.

We instantiate the garbled circuits using the state-of-the-art half-gates con-
struction of [34]. The implementation employs the hardware accelerated AES-ni
instruction set and uses fixed-key AES as the gate-level cipher, as suggested by
[5]. Since circuit garbling and evaluation is the major computation bottleneck,
we have taken great care to streamline and optimize the execution pipeline.
However, all circuits generated in the following examples were created using a
custom compiler which does not optimize the circuit size. Works such as Tiny-
Garble [31] have shown that circuit sizes can be reduced by upwards of 80%
when optimizers are applied. We expect that such techniques when applied to
this protocol framework would result in a corresponding speedup. The semi-
honest OT-e protocol is an instantiation of [17], and does not implement the
malicious secure input commitment phase. The base OTs are performed using
the protocol of [6].

5.2 Anova Test

Analysis of Variance (Anova) [25] is a family of statistical tests that compares
the similarity of populations. In particular, the test determines whether the
means of the populations differ by a statistically significant amount. We consider
the scenario where four hospitals perform a computation over their joint patient
data. Each hospital holds n patent records, where each patient has received one
of four possible treatments. The hospitals wish to engage in a computation
where the means of the treatment outcomes are compared. Due to patient
privacy concerns, the hospitals are unable to aggregate the data in the clear.
Instead, the hospitals can upload their data and a small amount of summary
statistics to the cloud using our SDE protocol. In particular, each hospital will
locally pre-compute and upload the mean, standard deviation, and variance of
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the four sets of treatment outcomes which they hold. They then engage in an
SDE, where the Anova statistic is computed.

Figure 7 contains the running times in seconds and the overall communica-
tion cost of the anova test between four hospitals, a total of 4n patent records.
By leveraging a preprocessing phase, the size of the circuit scales logarithmi-
cally in the size of the input dataset. As previously mentioned, each data owner
computes the mean, standard deviation, and variance for their data. These
summary values are then input into the secure data exchange protocol and all
participants are return the result identifying whether there is a statistically
significant difference in the treatment outcomes.

Another motivating scenario for the Anova test was mentioned in Section 1.1,
where hospitals wish to compare the quality of treatment outcomes with respect
to each other. In this case, each hospital would input their outcomes as a single
set of treatments. The secure computation would then identify whether any
hospital has significantly better or worse outcomes without calling out any single
hospital for providing less effective care.

n # ands # xors
Time

Comm.
LAN WAN

212 351 485 0.12 0.9 9
216 462 632 0.13 1.42 10
220 584 799 0.13 1.50 13
224 721 985 0.25 1.93 20

Figure 7: Running time (sec.) and communication (MB) overhead of the Anova
statistical test for four datasets of size n. The # ands (resp. # xors) report
the number of thousands of and (resp. xor) gates in the circuit.

5.3 Chi Squared Test

Another motivating scenario mentioned in Section 1.1 was evaluation of the
quality of data being placed on the market in the context of a pharmaceutical
company wishing to purchase patient data for which their model does not accu-
rately predict the treatment outcomes. The model held by the data buyer may
have significant value and must therefore be kept private. Likewise, data sellers
do not wish to disclose their data until after it has been purchased. The Chi
Squared test is a commonly used statistical test that computes the probability
that a sample population follows a given model. For example, in this case the
buyer would be interested in data that does not fit their current model according
to the Chi Squared test.

Figure 8 reports the running times of this use-case, where the Chi Squared
statistic is computed for two independent datasets of size n. The data buyer
provides a linear model with 24-bit coefficients, and receives a 32-bit Chi Squared
value describing how well their model predicts the given datasets. Unlike the
previous application, no preprocessing is performed on the data.
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n # ands # xors
Time

Comm.
LAN WAN

28 4.73 6.43 0.78 5.6 0.15
210 21.5 28.2 4.02 22 0.64
212 91.2 124 17.9 97 2.8
214 398 543 71.2 420 12

Figure 8: Running time (sec.) and communication (MB) overhead of the Chi
Squared statistical test for two datasets of size n. The # ands (resp. # xors)
report the number of millions of and (resp. xor) gates in the circuit.

5.4 Machine Learning

Machine Learning techniques are now commonly being applied to numerous
applications ranging from health care to business insights. However, due to
privacy concerns the amount of data available for learning algorithms is often a
limiting factor in the ability to generate accurate models. For instance, network
monitoring systems analyze network traffic to detect abnormal activities, such
as denial of service attacks, against a server. To increase the effectiveness of
their models, many technology companies may wish aggregate their data, but
are prevented by the reluctance to reveal such detailed information. Another
prevalent yet significantly different example of machine learning are Genome-
Wide Association Studies (GWAS), where the genes of a species are mapped to
associated traits. However, when applied to human subjects, individuals may
prefer not to participate in such studies due to privacy concerns.

Such limitations can be overcome by performing the computation within
the SDE framework. Figure 9 reports the running times of a machine learning
algorithm known as Ridge Regression. In this application, three participants
each hold a dataset consisting of n 25-tuples of 8-bit values. The algorithm
performs one complete iteration over all 3n records, and performs a stochastic
gradient descent step for each record in a random order. The output of the
computation is a linear model with 32-bit coefficients, which predicts the 25-th
feature as a function of the remaining 24 features.

n # ands # xors
Time

Comm.
LAN WAN

28 24.0 37.4 4.12 25.1 0.78
212 425 648 64.2 424.2 12.6
216 6,533 10,010 1,045 6,213 207.0
220 104,181 157,623 23,654 100,706 3,179.1

Figure 9: Running time (sec.) and communication (MB) overhead of the
machine learning task for three datasets of size n. The # ands (resp. # xors
) report the number of millions of and (resp. xor) gates in the circuit.
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A Sketch of Proof of Theorem 1

There are a few cases to consider. First, suppose no corrupted party ever acts
as evaluator (Q). Then the theorem gives no restriction on non-cooperation.
By symmetry, suppose the corrupted parties are P1, . . . ,Pk and C (assuming
C to be corrupt only helps the adversary, however we require it to follow the
protocol). We describe the simulation:

The first time Pi’s input is used in a computation, Pi must send to Q the
value ri as well as its OT-e protocol tape. Q will abort if these values are
not consistent with the OT-e protocol transcript, or the commitment to the
final message. Hence the simulator can extract xi = g(ri) ⊕ zi as Pi’s input.7

Provided neither Q nor C abort, the OT-e protocol is effectively run semi-
honestly. Hence Q will indeed learn the OT outputs corresponding to choice
bits g(ri), while the opposite OT outputs are pseudorandom. Furthermore, this
holds for every computation involving Pi’s data.

All that is left is to simulate the messages from honest Q to the Pi’s. These
messages depend on the garbled circuit output wire labels corresponding to Pi’s
output of f . Since C is running Yao’s protocol honestly, we have in particular
that Q evaluates a garbled circuit in the support of the garbling procedure. In
that case, the output wire labels leak no more information than the prescribed
output of f , so the messages from Q can be simulated given just the ideal output
of P1, . . . ,Pk.

Now we discuss the other case, in which a corrupted party acts as evaluator.
From a useful lemma shown in [15, Lemma 6.1], it suffices to prove that: (1)
the protocol is secure when all parties are semi-honest and use independent
simulators; (2) the protocol is secure when A (as in the theorem statement) is
malicious and all other parties are honest.

Part (1) is relatively straight-forward and omitted in the interest of space.
For part (2), we consider an honest cloud. Then the cloud honestly acts as in
Yao’s protocol. The more challenging case is when Q is corrupt.

Consider the OT-e protocols involved in a computation. When Pi is corrupt,
we can conceptually combine Q and Pi into a single corrupt OT-e receiver,
playing against an honest C. Hence the simulator can extract an effective OT
input for Pi, as described above, and this OT input will be the same for all
computations. When Pi is honest, the binding property of the commitment
ensures that all OT-e protocol messages are as intended by Pi. By the argument

7We can assume without loss of generality that the cloud artificially calls the random oracle
on zi at the time it is uploaded, to allow the simulator to learn zi; note that this will always
happen since we assume a semi-honest cloud.
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above, Q will receive only the OT outputs corresponding to the g(ri) desired
by Pi. The corresponding share zi for an honest Pi is known only to the honest
parties.

Then by the security of Yao’s protocol against a malicious receiver, we have
that the remainder of the interaction with honest C can be simulated knowing
only the prescribed output of f .
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