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Abstract

In 2009, Gentry proposed the first Fully Homomorphic Encryption (FHE) scheme, an
extremely powerful cryptographic primitive that enables to perform computations, i.e., to
evaluate circuits, on encrypted data without decrypting them first. This has many applications,
particularly in cloud computing.

In all currently known FHE schemes, encryptions are associated with some (non-negative
integer) noise level. At each evaluation of an AND gate, this noise level increases. This increase
is problematic because decryption succeeds only if the noise level stays below some maximum
level L at every gate of the circuit. To ensure that property, it is possible to perform an operation
called bootstrapping to reduce the noise level. Though critical, boostrapping is a time-consuming
operation. This expense motivates a new problem in discrete optimization: minimizing the
number of bootstrappings in a circuit while still controlling the noise level.

In this paper, we (1) formally define the bootstrap problem, (2) design a polynomial-time
L-approximation algorithm using a novel method of rounding of a linear program, and (3) show
a matching hardness result: (L− ε)-inapproximability for any ε > 0.
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1 Introduction
Imagine evaluating a circuit with noise: at each gate, the noise level may increase due to the
computation. Now, imagine that you can occasionally perform a computationally expensive
operation (called bootstrapping) on the output of a gate to reduce the noise level. Given a circuit, at
which gates should you apply the bootstrapping operation to the output of the gate to keep the
maximum noise level within a certain tolerance level and minimize the number of bootstrappings?

For example, if the noise level at an input gate equals 0 and the noise level at a gate with two
direct predecessors u and v equals max(noiselevel(u), noiselevel(v)) + 1, then in the circuit in Fig. 1,
it is possible to maintain a maximum noise level of at most L = 3 by doing 2 bootstrappings; that
is optimal.
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(a) Original circuit:
without bootstrapping, the noise of the
output of the three top gates is above
L = 3 (warning sign).
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(b) Optimal bootstrapping strategy:
the noise of the output of all gates is
below L = 3.
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(c) Naive boostrapping strategy:
the noise of the output of all gates is
below L = 3 but the strategy requires
3 bootstrappings (non-optimal).

Figure 1: Example of circuit and of two bootstrapping strategies

1.1 Motivation

This problem arises in cryptography in the context of fully homomorphic encryption (FHE) [2,
4–6, 8, 10–15, 17, 18, 26, 33]. A fully homomorphic encryption scheme enables one to encrypt bits
and keep them confidential, while allowing anyone who is given an encryption E(a) of a bit a and
an encryption E(b) of a bit b to publicly compute E(not a), E(a xor b), and E(a and b). Such a
scheme permits secure computation of any binary circuit over encrypted bits. This primitive has
tremendous potential for applications, including the canonical example of outsourcing computation
to a remote server without compromising one’s privacy. Concrete application examples include
biometric identification, statistics over encrypted data [3, 27], machine learning [20], and private
genomic analyses [24].

All existing instantiations of FHE follow the same blueprint [13]: ciphertexts (i.e., encryptions
of bits) contain some “noise” that grows during the circuit evaluation. To ensure correctness at
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decryption time, one has to regularly perform bootstrapping operations on the ciphertexts in an
effort to lessen the noise.1 Unfortunately, since such operations are very expensive in practice (see,
e.g., [8, 12,16,22,28,31]), we ask the question:

What is a minimum set of ciphertexts that must be bootstrapped in order to correctly evaluate the
circuit?

This is called the bootstrap problem.

In all efficient implementations of FHE schemes [4,5,9,12,17,21,22,26,31], non-linear gates (and)
introduce much more additional noise than linear gates (not and xor), hence we use a simplified
model where evaluation of linear gates do not increase the noise; see, e.g., [1, 7, 21,25,30].

Formally, each ciphertext has an associated “noise level” ` ∈ Z≥0, and:

• Evaluating a not gate over a ciphertext does not change its noise level.
• Evaluating an xor gate yields a ciphertext whose noise level max(·, ·) is the maximum noise

level of its inputs.
• Evaluating a non-linear gates (and) yields a ciphertext with increased noise level max(·, ·) + 1.

Noise behaviors of other FHE schemes are discussed later.
To ensure that the circuit evaluation is correct, the FHE scheme has a parameter L > 1, which is

independent of the circuit size, and requires that all ciphertexts must have their noise levels less than
or equal to L at all gates of the circuit under evaluation. This requires performing a bootstrapping
operation on the output of some gates of the circuit to reduce the noise level of the ciphertext to 0.

The first instantiations of FHE were for L = 1 [8, 10, 11, 16]. Most of them merely perform a
bootstrapping operation right after (see, e.g., [16]) or right before (see, e.g., [17]) each and gate
evaluation. However, this can be computationally wasteful, since fewer bootstrappings may be
sufficient to evaluate the whole circuit when positioned more carefully [25,30]; see also Fig. 1 (in
this figure, square gates correspond to and gates).

Lepoint and Paillier [25] modeled the problem of constructively computing the exact minimum
number of bootstrappings for any L > 1 based on Boolean satisfiability. They associated a Boolean to
each ciphertext during the circuit evaluation. The Boolean is equal to true when the ciphertext should
be bootstrapped. Using the logic circuit and the noise level constraints, the authors constructed a
Boolean monotone predicate φ which captures the correctness of the circuit evaluation. They then
described a heuristic method to recover the smallest prime implicant of φ, which directly yields the
minimum number of bootstrappings and the ciphertexts to be bootstrapped. However, [25] claims
neither a complexity analysis nor a hardness result.2

Later, Paindavoine and Vialla [30] showed that, for L = 1, the bootstrap problem can be solved
in polynomial time by a reduction to (s, t)-min-cut; and that, for L > 2, the bootstrap problem
is NP-hard by a reduction from the vertex cover problem.3 They also provided experimental
results on real-world circuits—integer addition, integer multiplication, and some cryptographic
primitives—based on mixed integer linear programming.4

1An upper bound on the admissible noise is given as part of the parameters of the FHE scheme.
2Lepoint and Paillier only indicated that for Boolean monotone predicates, finding the size of the smallest prime

implicant is known to be #P-complete [19, Section 6].
3We note that in the terminology of [30], lmax = L + 1 since the minimum noise level in their model is 1.
4Their linear programming relaxation is different from the one in this paper.
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1.2 Problem Formulation

In graph theory terms, the bootstrap problem can be formulated as follows: the input is a positive
integer L and a directed acyclic graph (DAG) G = (V,E) whose vertices all have indegree 0 or 2,
with colors on the vertices (vertices of indegree 0 are white and vertices of indegree 2 are either blue
or red). G may have parallel edges. A feasible solution is a subset S ⊆ V of marked vertices such
that maxu∈V `(u) 6 L, where the function `(·) is computed recursively as follows:5

`(v) =


0 if v is white,
max

(u,v)∈E
`(u) · 1V \S(u) if v is blue,

max
(u,v)∈E

`(u) · 1V \S(u) + 1 if v is red.

The goal of the bootstrap problem is to find a feasible solution S of minimum cardinality.
If S = V , then `(v) ≤ 1 for every vertex v, so this solution is always feasible. If S = ∅, then `(v)

is the maximum number of red vertices on any path ending at v, so this solution is feasible if and
only if there does not exist a path in G containing L+ 1 red vertices.

In terms of the problem we have been discussing, the DAG is a binary or an arithmetic circuit,
the white vertices are the input variables, the blue vertices are the xor (or addition) gates, the red
vertices are the and (or multiplication) gates, S is the set of ciphertexts that are bootstrapped
during the computation, `(·) is the noise level, and L is the maximum allowed noise level.6

A feasible solution S′ ⊆ V is an α-approximate solution (for α > 1) if |S′| 6 α ·OPT, where
OPT denotes the minimum cardinality of a feasible solution.

1.3 Results

We characterize the complexity of the bootstrap problem by providing a polynomial-time L-
approximation algorithm (Theorem 1) and (assuming the Unique Games Conjecture) showing that
L is the best achievable approximation factor (Theorem 2).

Theorem 1 (approximation algorithm). Let L > 1 be an integer parameter. There is a deterministic
polynomial-time approximation algorithm for the bootstrap problem within approximation factor L.

The proof of Theorem 1 is in Section 2.

Theorem 2 (hardness of approximation). Let L > 2 be an integer parameter. For any ε > 0, it is
NP-hard to approximate the bootstrap problem within a factor of L− ε, assuming the Unique Games
Conjecture.

The proof of Theorem 2 is in Section 3.

To design the approximation algorithm used in Theorem 2, we first observe that a set of marked
vertices is a feasible solution if and only if, for every path p = v1 . . . vk that starts and ends at
red vertices and that traverses L+ 1 red vertices (including endpoints), at least one vertex among
v1, . . . , vk−1 is marked. Such path p is called an interesting path.

5The indicator function 1V \S has value 1 on V \ S and 0 on S.
6Without loss of generality, we assume there are no not gates, since they do not influence the noise level.
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Based on this observation, our algorithm starts by solving a linear program relaxation with one
constraint for each interesting path and obtains, for every v ∈ V , a value xv ∈ [0, 1] that indicates
whether the vertex v should be bootstrapped. The challenging part of the algorithm is the rounding.

In a naive attempt to do the rounding, we define δ(u, v) as the u-to-v distance in the metric
induced by {xv}. To ensure that every interesting path from u to v contains a marked vertex, we
choose a value t ∈ [0, δ(u, v)] (randomly or according to some rules such as in the region growing
technique [34]), and then mark a vertex w ∈ V if and only if δ(u,w) 6 t 6 δ(u,w) + xw. This
approach does not yield a good approximation because δ(u, v) might be very small or even zero
(see Fig. 2), as there might exist short non-interesting u-to-v paths. Hence, the major difference
between the bootstrap problem and classical cut problems (e.g., min-cut, multi-cut, multi-terminal
cut) is that in the bootstrap problem, for each pair of vertices (u, v), we only want to “cut” the
interesting u-to-v paths, but the non-interesting u-to-v paths may remain.

s0

u

u1

w1

w2

wk

v

Graph with 4 + k vertices. L = 2.
The only interesting path is: uu1w1w2 . . . wkv.
Circle vertices are blue, square vertices are red, and
the triangle vertex is white.

Suppose that the fractional solution obtained from the
linear program is the following:{

xwi
= 1

k for i = 1, . . . , k;
xu = xu1 = xv = 0.

Then δ(u, v) = 0.

Figure 2: Example of circuit for which naive rounding does not work

Another attempt is to apply iterative rounding [23, 34]. However, this does not seem to help for
the bootstrap problem, mainly because the family of interesting paths is not closed under union,
intersection, and difference.

Instead, our approach to rounding separates paths according to the number of red vertices which
they traverse and defines a function fi with respect to all paths that traverses exactly i red vertices.
This is a main idea of the algorithm. We perform a rounding for each function separately and
obtain L sets of marked vertices. By taking the union of these sets, we obtain a feasible solution of
cardinality at most L ·OPT.

Remark. When L = 1, the output of algorithm in Theorem 1 is optimal.

To prove the lower bound of Theorem 2, we first look at a related problem called the DAG Vertex
Deletion (DVD) problem [29,32]. In the DVD problem, we are given a directed acyclic graph H
and an integer L > 2 and we want to delete the minimum number of vertices so that the resulting
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graph has no path containing L vertices. Svensson [32] showed that if we assume the Unique Games
(UG) Conjecture, approximating DVD within an L− ε factor is NP-hard.

To show the UG-hardness of approximating the bootstrap problem, we provide an approximation-
preserving reduction from the DVD problem to the bootstrap problem.

1.4 Discussion of the Model

Necessity of bootstrappings. To date, the bootstrapping paradigm is the only known way of
obtaining an unbounded FHE scheme, i.e., one that can homomorphically evaluate any efficient
function using constant-size keys and ciphertexts. Therefore, to exploit the full potential of fully
homomorphic encryption, one must resort to bootstrapping.

Noise levels. The bootstrap problem is a simplification of the behavior of FHE schemes, since
the noise grows in practice in a more complex manner. Indeed, all encryption procedures in FHE
schemes consist of adding a short noise (a bit, or more generally, an integer) to the encoding of the
message. Since the noise is added to the encoding, and computing an xor gate homomorphically
essentially corresponds to adding the ciphertexts and thus adding the corresponding noises, on
a logarithmic scale the amount of noise remains approximately as large as the maximum input
noise (up to one bit). On the other hand, computing an and gate requires a multiplication of the
ciphertexts, and makes the noise growth noticeably larger [21]. This is why the cryptographic
community introduced the simplified model of Section 1.1 and started building circuits for which
the noise does not increase too much in this model [1, 7].

In this paper, we say that the noise level of a ciphertext is in [0, L], where L is the parameter of
the FHE scheme. In previous works, the level was either in [1, `max] [25, 30], or in [9, `max] [21],7
where `max = L+ 1. This is equivalent: ` = 0 should not be interpreted to mean that a ciphertext
is noise-free, but that the amount of noise contained in the ciphertext results from a bootstrapping
operation.

Other noise behaviors. Though the noise model in Section 1.1 corresponds to the family of
FHE schemes that are the most efficient in practice, there exist other families of FHE schemes.

One family corresponds to the first implementations that were proposed [8, 11, 16]. Therein,
non-linear gates behave as ·+ · for the noise levels.8 Hence, the noise growth is exponential with
the multiplicative depth of the circuit and these schemes will never be used in practice. In addition,
to get reasonable parameters, the proof-of-concept implementations set L = 1 (compared to, e.g.,
L = 41 in the HElib implementation [22]). In this particular case, the noise model is actually
equivalent to the one we are considering (when L = 1).

Another family is the one of the GSW scheme [6, 18]. Variants of this scheme have been
implemented [9, 12]. These implementations have a faster wall-clock time for bootstrapping than [8,
22], but support neither large message spaces nor vector messages and thus have larger amortized
per-bit timing. The noise behavior is slightly different there: it is asymmetric (i.e., the order of the
inputs matters). Modeling the noise behavior for these schemes, and extending our results within
this new model, are left as interesting open problems.

7The 9 comes from the fact that a “fresh” ciphertext (i.e., an unprocessed encryption of a bit) is said to have noise
level 1, and that after a bootstrapping, the resulting ciphertext has a noise level 9.

8For this model, the lowest noise level must be set to 1 instead of 0, and the maximum allowed noise is L + 1
instead of L.
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Computing model. In the bootstrap problem, we minimize the total number of bootstrappings
(i.e., marked vertices), thus accounting for classical sequential complexity. We could also consider a
parallel computing model in which any number of bootstrappings performed in parallel will cost
the same as a single bootstrapping. This might be relevant in some Cloud-based scenarios where
the user encrypting the data has an unbounded amount of money and only want to minimize the
time to get the result of the circuit evaluation over the encrypted data. However, the financial cost
would basically be proportional to the total number of bootstrappings. Furthermore, we remark
that this parallel version of the bootstrap problem has a trivial solution: topologically sorting the
DAG and greedily marking the vertices with noise level greater than L.

1.5 Other Related Work

The DVD problem (see Section 1.3) was introduced by Paik, Reddy, and Sahni in [29] in the context
of certain VLSI design and communication problems. Svensson showed that the DVD problem is
UG-hard [32]. His work was mainly motivated by the classical Discrete Time–Cost Tradeoff Problem
in the completely different setting of Project Scheduling.

2 Approximation Algorithm
To prove Theorem 1, we give a randomized algorithm (Algorithm 1) in Section 2.1, analyze it in
Section 2.2, and derandomize it in Section 2.3.

2.1 Algorithm

For a path p = v1 . . . vk, the vertex vk is called the final vertex of p and the vertices v1, . . . , vk−1 are
called the non-final vertices of p.

The following fact is used throughout the paper.

Fact 3. A set of marked vertices is a feasible solution if and only if every path that starts and ends
at a red vertex and that contains exactly L+ 1 red vertices (including endpoints) has a non-final
vertex that is marked.

Proof. We first observe that a set S of marked vertices is a feasible solution if and only if, for all red
vertices u ∈ V , the noise level `(u) with respect to S is at most L. This is because a white vertex
has noise level 0 and a blue vertex has noise level not exceeding those of its direct predecessors.
We further observe that, for each red vertex u ∈ V , the level `(u) is the maximum number of red
vertices on any v-to-u path (for some red vertex v) that does not contain any marked vertices
(except u if appropriate). Thus, `(u) 6 L if and only if every path that starts at a red vertex, ends
at u, and contains exactly L+ 1 red vertices (including endpoints) has a non-final vertex that is
marked. Therefore, all red vertices u ∈ V are such that `(u) 6 L if and only if every path that
starts and ends at a red vertex and that contains exactly L+ 1 red vertices (including endpoints)
has a non-final vertex that is marked.

This fact leads to the definition of interesting paths.

Definition 4 (interesting path). A path in G is called interesting if it starts and ends at red
vertices, and traverses exactly L+ 1 red vertices (including endpoints). For a given vertex v ∈ V
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Algorithm 1 Approximation algorithm for the bootstrap problem
1: Solve the following LP relaxation, where for each vertex v we have one variable xv, which

represents whether there is a bootstrapping on v, and one constraint for each interesting path p.

min
∑
v∈V

xv

s. t.
∑

non-final
vertex v of p

xv > 1 ∀ interesting path p

0 ≤ xv ≤ 1 ∀v ∈ V

2: For every red vertex u and blue vertex v, compute

δ(u, v) = min
{
xu + xv2 + · · ·+ xvk−1 : path p = uv2 . . . vk−1v such that v2, . . . , vk−1 are blue

}
,

using a classical shortest path algorithm. By convention δ(u, v) :=∞ if no such path exists.
3: For every vertex v and integer i ∈ {1, . . . , L+ 1}, compute

fi(v) = min
{
xv1 + xv2 + · · ·+ xvk−1 : path p = v1v2 . . . vk−1v is (v, i)-interesting

}
using the side table δ and a dynamic program (see Section 2.1). By convention fi(v) :=∞ if no
such path exists.

4: Rounding: Pick a uniformly random value t ∈ [0, 1]; A vertex v is marked if and only if there
exists i ∈ {1, . . . , L} s.t. t ∈ [fi(v), fi(v) + xv].

and a given level i ∈ {1, . . . , L+ 1}, a path in G is called (v, i)-interesting if it starts at a red vertex,
ends at v, and traverses exactly i red vertices (including endpoints, if appropriate).

We associate to each vertex v ∈ V a non-negative weight xv. In our algorithm, these weights
come from a solution of a linear program (LP). These weights induce a metric. More formally, we
define the following notion of length.

Definition 5 (length). Let p be a path in G. We define the length len(p) of p as the sum of
the weights xv of all the non-final vertices v of p. We define fi(v) as the minimum length of a
(v, i)-interesting path.9

We remark that, for any red vertex v ∈ V , a (v, L+ 1)-interesting path is an interesting path.
To compute {fi(v)}v,i, we use the following dynamic program, which proceeds in phases corre-

sponding to i = 1, . . . , L+ 1.

• For the base case i = 1: f1(v) =


∞ if v is white,
0 if v is red,
min
u red

δ(u, v) if v is blue.

9fi(v) := ∞ if there is no (v, i)-interesting path.
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• For i ∈ {2, . . . , L+ 1}: fi(v) =


∞ if v is white,

min
(u,v)∈E

(fi−1(u) + xu) if v is red,

min
u red

(fi(u) + δ(u, v)) if v is blue.

2.2 Analysis

We now prove that the output of Algorithm 1 is a feasible solution (correctness property) and has
cardinality at most L ·OPT (approximation factor L). We then show that Algorithm 1 runs in
polynomial time.

Analysis of Correctness. Consider an interesting path p = v1 . . . vk.

Lemma 6. Let p = v1 . . . vk be an interesting path. For every j ∈ {1, . . . , k}, let ij ∈ N denote
the number of red vertices on the subpath v1 . . . vj of p. Then, for any t ∈ [0, 1], there exists
j ∈ {1, . . . , k − 1} such that t ∈ [f(vj , ij), f(vj , ij) + xvj ].

Applying Lemma 6, and using the fact that ij ∈ {1, . . . , L} for every j ∈ {1, . . . , k − 1}, we see
that the algorithm marks at least one non-final vertex of p, and so by Fact 3 the output is a feasible
solution, proving correctness.

Proof. (Proof of Lemma 6) By definition of interesting paths, the sequence {ij}j is non-decreasing,
i1 = 1, ik−1 = L, and ik = L + 1. It is sufficient to show that the interval [0, 1] is contained in
the union of the intervals [f(vj , ij), f(vj , ij) + xvj ] over all j ∈ {1, . . . , k − 1}, which is a direct
consequence of the three following properties (see Fig. 3):

1. f(v1, i1) = 0;

2. for every j ∈ {1, . . . , k − 1}, f(vj+1, ij+1) 6 f(vj , ij) + xvj ;

3. f(vk, ik) > 1.

The first property follows directly from the definition of f since v1 is red and i1 = 1.
To show the second property, for any j ∈ {1, . . . , k − 1}, consider a (vj , ij)-interesting path p′

that achieves the length f(vj , ij). We observe that the concatenation of p′ and vj+1 is a (vj+1, ij+1)-
interesting path and it has length f(vj , ij) + xvj . From the definition of f(vj+1, ij+1), we have
f(vj+1, ij+1) 6 f(vj , ij) + xvj .

To show the third property, consider a (vk, ik)-interesting path p′ that achieves the length
f(vk, ik). Then p′ is an interesting path since vk is red and ik = L+1. (p′ may differ from p though.)
Therefore, the constraint on p′ in the LP implies that len(p′) > 1. Hence f(vk, ik) = len(p′) > 1.

This concludes the proof.

Analysis of Quality of Approximation. The expected value of the output is the expected
number of marked vertices,

∑
v∈V Pr(v marked). Let v ∈ V . By the algorithm and a union bound:

Pr(v marked) = Pr(∃i ∈ {1, . . . , L} : t ∈ [fi(v), fi(v) + xv]) 6
∑

i

Pr(t ∈ [fi(v), fi(v) + xv]).
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0 1

f(v1, i1) f(v1, i1) + xv1

f(v2, i2) f(v2, i2) + xv2

f(v3, i3) f(v3, i3) + xv3

· · ·

f(vk−2, ik−2) f(vk−2, ik−2) + xvk−2

f(vk−1, ik−1) f(vk−1, ik−1) + xvk−1

•
f(vk, ik)

•t

Figure 3: Illustration for the proof of Lemma 6

For t uniformly random in [0, 1], the probability that t ∈ [fi(v), fi(v) + xv] is at most xv. Thus
Pr(v marked) 6 Lxv and the expected value of the output is at most L(

∑
v∈V xv). Since the linear

program is a relaxation of the problem,
∑

v xv is less than or equal to the optimum value of the
bootstrap problem, proving that the output is an L-approximation.

Analysis of Running Time. Clearly, computing {fi(v)}v,i takes polynomial time. Next, we show
that the LP in Step 1 of the algorithm can be solved in polynomial time (regardless of an exponential
number of constraints). To that end, it is well known (see, e.g., [34]) that a polynomial-time
separation oracle10 for this LP suffices.

To check whether an oracle input {xv}v is a feasible solution to the LP, we compute {fi(v)}v,i

with respect to {xv}v using the same dynamic program as before, in polynomial time. From the
definition of f , we have that {xv}v is a feasible solution if and only if fL+1(v) > 1 for every red
vertex v ∈ V . Suppose there is some red vertex v ∈ V with fL+1(v) < 1. Then, there must be an
interesting path p with final vertex v such that the constraint on p is violated. It is easy to enrich
the dynamic program in a standard manner, so that we obtain the entire path p. Thus, we complete
the description of the polynomial-time separation oracle.

Therefore, the overall running time of Algorithm 1 is polynomial.

2.3 Derandomization

Algorithm 1 can be easily derandomized: {fi(v)}v,i ∪ {fi(v) + xv}v,i contains at most 2|V | · L
different values, so they separate the [0, 1] interval into at most 2|V | · L+ 1 sub-intervals. We can

10A separation oracle takes as input a supposedly feasible solution to the linear program, and either verifies that it
is indeed a feasible solution to the linear program or, if it is infeasible, produces a violated constraint.
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enumerate one value t for each sub-interval, compute a feasible solution with respect to each value t,
and finally return the best solution among them.

3 Hardness of Approximation
In this section, we prove Theorem 2. First, we recall the definition of the DAG Vertex Deletion
(DVD) problem (see Section 1.3). In Lemma 8, we reduce the DVD problem to the bootstrap
problem. The hardness of the bootstrap problem then follows from the hardness of the DVD
problem [32].

Lemma 7 (Adapted from [32, Theorem 1.1]). Let L > 2 be an integer parameter. For any ε > 0, it
is NP-hard to approximate the DVD problem within a factor of L− ε, assuming the Unique Games
Conjecture.

Lemma 8. There is an approximation-preserving reduction from the DVD problem to the bootstrap
problem.

Theorem 2 follows immediately from Lemmas 7 and 8. In the rest of the section, we prove
Lemma 8. The proof is elementary, but delicate: in the bootstrap problem, vertices have indegree
at most 2; in the DVD problem, vertices may have arbitrary indegree.

Consider a DVD instance with the DAG H = (VH , EH) and the integer parameter L > 2. As a
warm-up, let us first suppose that all vertices in VH have indegree at most 2. We construct a DAG
G = (V,E) for the bootstrap problem:

• We create a new vertex set V ′H (which can be viewed as a clone of VH): for every v ∈ VH , V ′H
contains a new vertex v′. We also create a new vertex s0. The vertex set V of G is defined as
V := VH ∪ V ′H ∪ {s0}. The vertices in VH ∪ V ′H are red, and the vertex s0 is white.

• The edge set E of G consists of all edges of EH and the following edges: for every vertex
v ∈ VH , 2 copies of the edge (v, v′) and (2− indegree(v)) copies of the edge (s0, v).

The following lemma implies that there is an approximation-preserving reduction.

Lemma 9. A feasible solution to the DVD problem for the instance (L,H) can be transformed into
a feasible bootstrap solution for the instance (L,G) with at most the same cardinality, and vice versa.

Proof. Let S be a feasible solution to the DVD problem, i.e., every path of L vertices in H contains
a vertex in S. We show that S is a feasible bootstrap solution for the instance (L,G). Using Fact 3,
we only need to show that every interesting path in G contains a non-final vertex that is in S. Let
p = v1 . . . vk be an interesting path in G. We observe that v1, . . . , vk are all red vertices: v1 is red by
the definition of an interesting path, and vj (for any 2 6 j 6 k) is red since it has positive indegree
(and thus cannot be s0). By the definition of an interesting path, we know that p contains L+ 1 red
vertices, so k = L+ 1. We further observe that every vi (for any 1 6 i 6 k− 1) is in VH since vi has
positive outdegree (and thus cannot be in V ′H). Thus, v1, . . . , vk−1 form a path of L vertices in H.
Since S is a feasible solution to the DVD problem, at least one vertex among v1, . . . , vk−1 is in S.
Thus, p contains a non-final vertex that is in S.

Conversely, let S be a feasible bootstrap solution. We show that S ∩ VH is a feasible solution to
the DVD problem. Let p = v1, . . . , vL be a path of L vertices in H. We only need to show that p
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contains a vertex in S ∩ VH . We construct a path p′ in G that is the concatenation of p and the
vertex v′L. We remark that p′ starts and ends on red vertices and contains exactly L+ 1 red vertices.
Therefore, it is an interesting path. From Fact 3, S contains a vertex u that is a non-final vertex
of p′, i.e., u ∈ {v1, . . . , vL}, hence u is on p. Since {v1, . . . , vL} ⊆ VH , u ∈ S ∩ VH . Thus p contains
a vertex in S ∩ VH .

Let us now deal with the general case where the vertices of H have arbitrary indegrees. First,
we initialize the DAG G using the same transformation as before, except that G now contains
(2− indegree(v)) copies of an edge (s0, v) only if the vertex v has indegree at most 2 (rather than
for any vertex v). After this transformation, every red vertex in G has indegree at least 2. To
transform G into a DAG for the bootstrap problem, we just need to deal with the red vertices
with indegree at least 3. Let v be such a vertex. We observe that v ∈ VH . Let v1, . . . , vd be the
direct successors of v in H. We remove from G the edges (vi, v) (for each i) and add to G new blue
vertices w(v)

1 , . . . , w
(v)
d and the following edges:

1. two copies of the edge (v1, w
(v)
1 ),

2. for i = 2, . . . , d, an edge (w(v)
i−1, w

(v)
i ) and an edge (vi, w

(v)
i ),

3. two copies of the edge (w(v)
d , v).

The transformation is depicted in Fig. 4. Let G = (V,E) be the final graph. We can verify that
(L,G) is an instance of the bootstrap problem.

We show that Lemma 9 holds in this general setting. The transformation from a feasible DVD
solution to a feasible bootstrap solution is a trivial extension from the previous proof. Let us now
focus on the transformation from a feasible bootstrap solution to a feasible DVD solution. The
following proposition is the key to the proof.

Proposition 10. Let S be a feasible bootstrap solution for (L,G) which contains a blue vertex w(v)
i

for some v ∈ VH and some integer i. Then, (S \ {w(v)
i }) ∪ {v} is also a feasible bootstrap solution

for (L,G).

Proof. Let S′ = (S \ {w(v)
i }) ∪ {v}. From Fact 3, we only need to prove that every interesting path

contains a non-final vertex that is in S′. Since S is a feasible bootstrap solution, the only non-trivial
part is to prove that every interesting path ending in v contains a non-final vertex that is in S′. Let
p = v1 . . . vk be such a path, and let j < k be the index of the last non-final red vertex of p (i.e.,
vj is a red vertex and there is no red vertex among vj+1, . . . , vk−1). Let p′ be the path v1 . . . vjv

′
j .

Since there are exactly L red vertices among v1, . . . , vL and v′j is red, p′ is an interesting path. Thus
some non-final vertex u of p′ (i.e., u ∈ {v1, . . . , vj}) is in S. We observe that p′ cannot contain w(v)

i

since w(v)
i ∈ {vj+1, . . . , vk−1}. Thus u ∈ S′ and is a non-final vertex of p.

Let S be a feasible bootstrap solution. We construct another feasible bootstrap solution S′ with
|S′| 6 |S| such that S′ only contains red and white vertices. As soon as S contains a blue vertex, let
it be w(v)

i for some v ∈ VH and some integer i. We then replace the blue vertex w(v)
i in S with the

red vertex v. Let S′ be the final S. Then S′ contains only red and white vertices and has cardinality
at most |S|. From Proposition 10, S′ is a feasible bootstrap solution.

We now show that S′ ∩ VH is a solution to the DVD problem using similar arguments as before.
Let p = v1 . . . vL be a path of L vertices in H. We only need to show that p contains a vertex in
S′ ∩ VH . We construct a (unique) path p′ in G, which starts at v1, goes through v2, . . . , vL, and
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ends at the red vertex v′L. We remark that p′ starts and ends on red vertices and contains exactly
L+ 1 red vertices, namely {v1, . . . , vL, v

′
L}. Therefore, it is an interesting path. From Fact 3, S′

contains a vertex u that is a non-final vertex of p′. Since S′ contains only red and white vertices, we
have u ∈ {v1, . . . , vL}, hence u is on p. Since {v1, . . . , vL} ⊆ VH , u ∈ S′ ∩ VH . Thus p contains a
vertex in S′ ∩ VH .

This concludes the proof of Lemma 8.

v

v1 v2 · · · vd

· · ·

v

w
(v)
1

w
(v)
2

w
(v)
d

v1 v2 · · · vd

· · ·

Figure 4: Reducing of the Indegree of a Vertex v (in the Proof of Lemma 8). Circle vertices are blue,
square vertices are red, v1, . . . , vd are the direct predecessors of v, w(v)

1 , . . . , w
(v)
d are new blue vertices.
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