Adaptive Security of Yao’s Garbled Circuits

Zahra Jafargholi * Daniel Wichs*

Abstract

A garbling scheme is used to garble a circuit C' and an input z in a way that reveals the output C(z)
but hides everything else. Yao’s construction from the 80’s is known to achieve selective security, where
the adversary chooses the circuit C' and the input = in one shot. It has remained as an open problem
whether the construction also achieves adaptive security, where the adversary can choose the input x
after seeing the garbled version of the circuit C.

A recent work of Hemenway et al. (CRYPTO ’16) modifies Yao’s construction and shows that
the resulting scheme is adaptively secure. This is done by encrypting the garbled circuit from Yao’s
construction with a special type of “somewhere equivocal encryption” and giving the key together with
the garbled input. The efficiency of the scheme and the security loss of the reduction is captured by a
certain pebbling game over the circuit.

In this work we prove that Yao’s construction itself is already adaptively secure, where the security
loss can be captured by the same pebbling game. For example, we show that for circuits of depth d,
the security loss of our reduction is 2°(?, meaning that Yao’s construction is adaptively secure for NC1
circuits without requiring complexity leveraging.

Our technique is inspired by the “nested hybrids” of Fuchsbauer et al. (Asiacrypt '14, CRYPTO ’15)
and relies on a careful sequence of hybrids where each hybrid involves some limited guessing about the
adversary’s adaptive choices. Although it doesn’t match the parameters achieved by Hemenway et al. in
their full generality, the main advantage of our work is to prove the security of Yao’s construction as is,
without any additional encryption layer.

*Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-1413964. This work was done in part while the
authors were visiting the Simons Institute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

1 Introduction

Garbled circuits, introduced by Yao in (oral presentations of) [Yao82, Yao86], can be used to garble a circuit
C and an input z in a way that reveals C(x) but hides everything else. Yao’s construction is based on
one-way functions and achieves a number of desirable properties with countless applications. One of the
features of this construction is that a circuit C' can be garbled off-line in time proportional to |C| which is
presumably large, but an input z can later be garbled very efficiently on-line in time only proportional to
|z| which is presumably much smaller. We consider the on-line complezity (i.e., time to garble the input z)
as the main measure of efficiency.

Selective vs. Adaptive Security. Unfortunately, Yao’s construction is only known to satisfy selective
security where the adversary must choose the circuit C' and the input x to be garbled in one shot. It has
remained an open problem whether Yao’s construction also achieves the stronger notion of adaptive security
where the adversary can choose the input x after seeing the garbled circuit. Adaptive security is especially
important in the off-line/on-line setting where the adversary often sees the garbled circuit first and may be
able to influence the choice of the input x.

Prior Work on Adaptive Security. The work of Bellare, Hoang and Rogaway [BHR12a] raised the
question of whether Yao’s construction or indeed any construction of garbled circuits achieves adaptive
security. They showed a simple adaptively secure construction where the on-line complexity is proportional
to the circuit size, but left it as an open problem to do better.

The work of Applebaum et al. [ATKW13] shows that the on-line complexity in the adaptive setting must
at least exceed the output size of the circuit. This is in contrast to the selective setting, where Yao’s garbling
scheme achieves on-line complexity that depends only on the input size and not the output size. However,
there is a small variant of Yao’s scheme (by giving the mapping of output labels to output bits with the
garbled input) which is natural in the adaptive setting and which raises the on-line complexity to also depend
on the output size. We refer to this variant as Yao’s construction when we consider the adaptive setting and
it has remained as an open problem if this variant is adaptively secure.

Another approach to proving adaptive security of Yao’s construction is to use complexity leveraging where
we guess the adversary’s choice of x a-priori. A direct approach results in a security loss of 2" where n is
the input size to the circuit. In particular, if we insist on polynomial security loss then this approach can
only handle circuits with a logarithmic input size.

We mention that there are also other approaches that depart from Yao’s construction and/or rely on
significantly heavier assumptions than one-way functions. For example [BHR12a] show how to get an optimal
solution (in fact one that bypasses the lower-bound of [AIKW13]) in the random oracle model. The work
of [BHK13] shows that this solution also works in the standard-model based on non-standard hash-function
assumption referred to as UCE. Boneh et al. [BGGT14] implicitly provides an adaptive garbling scheme
with low on-line complexity that scales with the depth of the circuit under LWE, while the work of Ananth
and Sahai [AS15] shows how to get an essentially optimal schemes assuming indistinguishability obfuscation.

Work of Hemenway et al. (CRYPTO ’16). The most relevant prior work is a recent result of Hemen-
way et al. [HJOT15]. This work modifies Yao’s construction by encrypting the garbled circuit with a special
type of “somewhere equivocal encryption” and giving the key together with the garbled input. The encryp-
tion scheme has an “equivocation parameter” which determines its key size and therefore affects the on-line
complexity of the garbling. They show that the resulting scheme is adaptively secure where the equivocation
parameter needed and the security loss of the reduction are captured by a certain pebbling game over the
circuit. In particular, if a circuit with input size n and output size m can be pebbled with ¢ pebbles in ~
steps then the resulting scheme can be instantiated so as to achieve on-line complexity O(n 4+ m + t) and
security loss . Furthermore they show that any circuit of size ¢, width w, and depth d can be pebbled
with ¢ = O(w) pebbles in v = O(q) steps or alternatively with ¢t = O(d) pebbles in v = ¢ - 204 steps. In
particular, this means that (without complexity leveraging):

e For any circuit of width w, the on-line complexity can be made O(w).

e For NCI1 circuits, the on-line complexity can be just O(n + m).

Our Results. In this work we revisit the question of whether Yao’s construction itself (without modifica-
tion) is adaptively secure. We give a new reduction which connects the security of Yao’s construction with
the same pebbling game as studied by Hemenway et al. [HJO'15]. In particular, we show that for circuits
that can be pebbled with ¢ pebbles in 7 steps, Yao’s construction is adaptively secure with a security loss of
v20®) | For example, since circuits of size ¢ and depth d can be pebbled in v = ¢2°(® steps with ¢t = 0(d)
pebbles we get a security loss of ¢2°(9). This means that Yao’s construction is already adaptively secure for
NC1 circuits, without the use of complexity leveraging.!

Next we describe our techniques and compare to those of [HJO'15]. On a very high level, the work of
[HJOT15] proves security via a sequence of hybrids, where in each hybrid some small number of garbled gates
of the Yao garbled circuit are “equivocal” and only needed to be specified by the reduction in the on-line
phase after the input = is known. In this work we replace the role of “equivocation” with the careful use of
“guessing”. Instead of simply guessing the entire input x, our reduction consists of a sequence of hybrids
where in each hybrid we guess some small number of the wire values in the circuit and abort if the guess
is incorrect. We then show how to patch together hybrids that contain different guessed wires (and even
a different number of guessed wires) to get a security proof. This approach is reminiscent of the “nested
hybrids” technique employed by Fuchsbauer et al. [FKPR14, FJP15] and we believe our abstraction of this
technique via pebbling will be useful in other contexts.

1.1 Owur Techniques
1.1.1 Yao’s Scheme and The Challenge of Adaptive Security ([HJO"15])

To describe our technical contribution, we must first describe Yao’s construction and the difficulty one faces
when trying to prove adaptive security. The following discussion is taken essentially verbatim from [HJOT15],
following the ideas of Lindell and Pinkas [LP09] who gave the first detailed proof of security for Yao’s garbled
circuits in the selective security setting.

Yao’s Scheme. For each wire w in the circuit, we pick two keys k¥ kl for a symmetric-key encryption

scheme. For each gate in the circuit computing a function g : {0,1}? — {0,1} and having input wires a,b
and output wire ¢ we create a garbled gate consisting of 4 randomly ordered ciphertexts created as:

co,0 = Encgo (Encro (K€Y)) ¢1,9 = Encya (Encyo (kEH?)),
co1 = Enckg(Enck;(ké’(O’l))) c11 = Enck}l(Encké(kg(l’l)))

(1)
where (Enc, Dec) is a CPA-secure encryption scheme. The garbled circuit C consists of all of the gabled
gates, along with an output mapping {k% — 0,k. — 1} which gives the correspondence between the keys
and the bits they represent for each output wire w . To garble an n-bit value x = zy25 - - - x,,, the garbled
input ¥ consists of the keys ki for the n input wires w;.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt (exactly) one ciphertext
in each garbled gate and get the key kz,(w) corresponding to the bit v(w) going over the wire w during the
computation C(z). Once the keys for the output wires are computed, it’s possible to recover the actual
output bits by looking them up in the output mapping.

Selective Security Simulator. To prove the selective security of Yao’s scheme, we need to define a
simulator that gets the output y = y192 - - - Yy = C(z) and must produce C, . The simulator picks random

keys kO, kL for each wire w just like the real scheme, but it creates the garbled gates as follows:

co,0 = Encgo (Encro (k?)) c1,0 = Encgy (Encyo (k2)), 5
con = Encrg (Encyy (K0) ey = Enciy (Encey (k2)) (2)
where all four ciphertext encrypt the same key k0. It creates the output mapping {k9 — yuw, kL — 1 — vy}
by “programming it” so that the key k¥ corresponds to the correct output bit y,, for each output wire w.

LUnfortunately, we cannot get a meaningful analogue of the width based result of [HJOT 15] since the security loss would be
2" which exceeds the trivial security loss of 2™ obtained by simply guessing the input.

This defines the simulated garbled circuit C. To create the simulated garbled input x the simulator simply
gives out the keys kO for each input wire w. Note that, when evaluating the simulated garbled circuit on
the simulated garbled input, the adversary only sees the keys kO for every wire w.

Selective Security Hybrids. To prove indistinguishability between the real world and the simulation,
there is a series of carefully defined hybrid games that switch the distribution of one garbled gate at a time.
Unfortunately, we cannot directly switch a gate from the real distribution (1) to the simulated one (2) and
therefore must introduce an intermediate distribution (3) as below:
co,0 = Encyg (Encyo (kg(c))) c1,0 = Encyz (Encyo (kg(c)))a 3)
co,1 = Encyo (Encyy (k2)Y) c11 = Enck;(Enck;(k:g(c)))
where v(c) is the correct value of the bit going over the wire ¢ during the computation of C(x).

Let us give names to the three modes for creating garbled gates that we defined above: (1) is called
RealGate mode, (2) is called SimGate mode, and (3) is called InputDepSimGate mode, since the way that it
is defined depends adaptively on the choice of the input x.

We can switch a gate from RealGate to InputDepSimGate mode if the predecessor gates are in InputDepSimGate
mode (or we are in the input level). This follows by CPA security of encryption. In particular, we are not
changing the value contained in ciphertext ¢, () () encrypted under the keys kg(a), kZ(b) that the adversary
obtains during evaluation, but we can change the values contained in all of the other ciphertexts since the
keys k=@ E1=v() do not appear anywhere inside the predecessor garbled gates as long as they are already
in InputDepSimGate mode.

We can also switch a gate from InputDepSimGate to SimGate mode if the successor gates are in InputDepSimGate
or SimGate mode (or we are at the output level). This is actually an information theoretic step; since the
keys kU, k! are used completely symmetrically in the successor gates there is no difference between always
encrypting ké}(c) as in InputDepSimGate mode or encrypting k0 as in SimGate. This allows us to first switch
every gate from RealGate to InputDepSimGate mode and then from InputDepSimGate to SimGate, proving the
selective security of Yao’s construction.

Challenges in Achieving adaptive security. There are two issues in using the above strategy in the
adaptive setting: an immediate but easy to fix problem and a more subtle but difficult to overcome problem.

The first immediate issue is that the selective simulator needs to know the output y = C(x) to create
the garbled circuit C' and in particular to program the output mapping {k% — yu, kL — 1 — y,} for the
output wires w. However, the adaptive simulator does not get the output y until after it creates the garbled
circuit C. Therefore, we cannot (even syntactically) use the selective security simulator in the adaptive
setting. This issue turns out to be easy to fix by modifying the construction to send the output-mapping as
part of the garbled input Z in the on-line phase, rather than as part of the garbled circuit C' in the off-line
phase. This modification raises on-line complexity to also being linear in the output size of the circuit, which
we know to be necessary by the lower bound of [AIKW13]. We refer to this modification as Yao’s garbled
circuit construction in the adaptive setting. With this modification, the adaptive simulator can program the
output mapping after it learns the output y = C'(z) in the on-line phase and therefore we get a syntactically
meaningful simulation strategy in the adaptive setting.

The second problem is where the true difficulty lies. Although we have a syntactically meaningful
simulation strategy, the previous proof of indistinguishability of the real world and the simulation completely
breaks down in the adaptive setting. In particular InputDepSimGate mode as specified in equation (3) is
syntactically undefined in the adaptive setting. Recall that in this mode the garbled gate is created in a
way that depends on the input x, but in the adaptive setting the input z is chosen adaptively after the
garbled circuit is created! Therefore, although we have a syntactically meaningful simulation strategy for
the adaptive setting, we do mot have any syntactically meaningful sequence of intermediate hybrids to prove
indistinguishability between the real world and the simulated world.

1.1.2 Ouwur Solution

As described above, in the selective setting there is a proof of security via a sequence of hybrids that changes
the distribution of gates from RealGate mode to InputDepSimGate mode to SimGate mode. Unfortunately,
InputDepSimGate mode does not make sense (even syntactically) in the adaptive setting since it relies on
knowing the value on the outgoing wire of that gate, which isn’t defined until the input x is given.

To overcome this problem, the work of [HJOT15] encrypted the entire garbled circuit with a somewhere
equivocal encryption scheme which allowed the simulator to put dummy values in place of all of the gates in
InputDepSimGate mode and only later after the input & was known replace the dummy values with correctly
distributed garbled gates by equivocating the encryption.

Our Idea: Guess and Hope for the Best. Our idea to overcome this problem is very different. We
define hybrid games in the adaptive setting where we guess the value v(c) on the outgoing wire ¢ of every gate
in InputDepSimGate mode a-priori and abort if the adversary’s adaptive choice of the input x doesn’t match
our guesses. Note that although the goal is to have the garbled gates in InputDepSimGate mode depend on
the input x, we choose them independently of and only abort later if we chose incorrectly. This defines
syntactically meaningful hybrid games, but unfortunately the set of guessed wires and even the number of
guessed wires is different in each hybrid making it impossible to compare them directly. However, we show
that by carefully adding and removing guesses in different parts of the proof and then only comparing hybrids
with an equivalent set of guesses, we can patch together this sequence of a-priori incomparable hybrids and
give an indistinguishability reduction. Overall, we can take any valid sequence of v hybrid games that would
give an indistinguishability proof in the selective setting and translate it into a proof of security in the
adaptive setting with a security loss of ¥2°®) where ¢ is the maximum number of gates in InputDepSimGate
mode in any hybrid. This idea of “carefully” guessing different components in different hybrids is reminiscent
of the nested hybrids technique of Fuchsbauer et al. [FKPR14, FJP15].

In comparison to [HJOT15], we rely on “guessing” instead of “equivocating”. Whereas [HJOT15] had to
modify Yao’s scheme and pay for gates in InputDepSimGate mode by increasing the “equivocation param-
eter” which resulted in larger key size for the somewhere equivocal encryption, we get to keep the scheme
unmodified but pay for gates in InputDepSimGate mode in the security loss of our reduction.

Sequences of Hybrids and Pebbling. With the above framework, the goal of proving adaptive security
reduces to the goal of giving a sequence of hybrids in the selective setting where the number of gates in
InputDepSimGate mode in any hybrid is as small as possible. This is the same challenge as faced in the work
of [HJO*15] and we can rely on the same idea.

Recall that we need to start with the real world where all gates are in RealGate mode and end with the
simulated world where all gates are in SimGate mode. As discussed in the overview of the selective security
proof of Yao’s garbled circuits, we are allowed to change a gate from RealGate to InputDepSimGate if all of its
predecessors are in InputDepSimGate (or it’s an input gate) and we are allowed to change InputDepSimGate
to SimGate if all of the successors are in InputDepSimGate or SimGate modes (or it’s an output gate). A naive
sequence of hybrids, corresponding to the proof of selective security of Lindell and Pinkas [LP09], would first
change all the gates from RealGate mode to InputDepSimGate mode one level at a time starting from the input
level, and then change them all to SimGate mode by again changing one level at a time starting from the
input level. However, this requires that there is a hybrid step where all of the gates are in InputDepSimGate
mode, while our goal is to minimize the number of such gates. It turns out that one can do much better.

The work of [HJOT15] abstracts the above problem as a pebbling game. We associate RealGate mode
with not having a pebble, InputDepSimGate mode with having a black pebble and SimGate mode with having
a gray pebble. The rules of the game go as follows:

e We can place or remove a black pebble on a gate as long as both predecessors of that gate have black
pebbles on them (or the gate is an input gate).

e We can replace a black pebble with a gray pebble on a gate as long as all successors of that gate have
black or gray pebbles on them (or the gate is an output gate).

The goal of the game is to end up with a gray pebble on every gate while using as few black pebbles as
possible at any point in time. It was shown that any circuit of size ¢, width w and depth d can be pebbled

in two different ways: either with ¢ = O(w) black pebbles in v = O(q) steps or with ¢ = O(d) black pebbles
iny=gq- 20(d) steps.

Our Parameters. Using the second pebbling strategy based on depth, we get a security proof of Yao’s
garbled circuits in the adaptive setting with a security loss of ¢29(®) where ¢ is the circuit size and d is the
circuit depth. In particular, for NC1 circuits we get a security reduction showing the adaptive security of
Yao’s garbled circuits without complexity leveraging.

2 Preliminaries

General Notation. For a positive integer n, we define [n] := {1,...,n}. We use the notation z + X
for the process of sampling a value x according to the distribution X. We use U,, for uniform distribution
over n-bit strings. A function p(-) is negligible in « if pu(z) < 1/p(x) for any polynomial function p and all
sufficiently large . We use poly(z) to denote the set of all polynomial functions p(z). For an interactive
game GAME with an adversary A, we use GAME 4 to denote the outcome of the game played with A.

Definition 1. Two distributions X and Y are (T,¢)-indistinguishable, denote D, [X,Y] = € if for any
probabilistic algorithm A, running in time T,

IPrA(X) = 1] — Pr[A(Y) = 1]| <.

For two games GAME and GAME' we say they are (T(X),e()\))-indistinguishable, Dy, [GAME, GAME'] =
g(A), if for any adversary A running in time T(X),

|Pr[GAME4 = 1] — Pr [GAME) = 1]| < e(N).

Let games GAME(\) and GAME'()\) be games parameterized by the security parameter X. If for any polynomial
function T(X), there exists a negligible function e(\), such that for all A, Dy, [GAME()\), GAME'()\)] <e(N),

we say the two games are computationally indistinguishable and denote this by GAME()) “mr GAME' ().

Circuit Notation. A boolean circuit C consists of gates gatey, ..., gate, and wires wy,ws, ..., w,. A gate
is defined by the tuple gate, = (g, wq, wp, w.), where g : {0,1}? — {0,1} is the function computed by the
gate, wq, wp are the incoming wires, and w, is the outgoing wire. Although each gate has a unique outgoing
wire w,, this wire can be used as an incoming wire to several different gates and therefore this models a
circuit with fan-in 2 and unbounded fan-out. We also allow w, = wy, for gates with fan-in 1. We denote
the number of gates with ¢, input wires with m and output wires with m. The total number of wires is
p =n+ q (since each wire can either be input wire or an outgoing wire of some gate). For convenience, we
denote the n input wires by inq,...,in, and the m output wires by outy,...,out,,. We also use reserve a,b
and c¢ as labels for input wires to a gate and output wire of the same gate (instead of w,, wp, and w,.). For
x € {0,1}™ we write C(x) to denote the output of evaluating the circuit C on input x.

We say C is leveled, if each gate has an associated level and any gate at level [has incoming wires only
from gates at level [— 1 and outgoing wires only to gates at level [+ 1. We let the depth d denote the number
of levels and the width w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gate; = (g, a,b,c). We use Piopo(C') to refer to the
topology of a circuit— which indicates how gates are connected, without specifying the function implement by
each gate. In other words, ®iopo(C) is the list of sanitized gate tuples gate, = (L, a,b,c) where the function
g that the gate implements is removed from the tuple.

3 Garbling Scheme and Adaptive Security ([HJO'15])

The bulk of this section defining what garbled circuits are and presenting Yao’s construction is taken verbatim
from [HJOT15].

3.1 Garbling Scheme

We now give a formal definition of a garbling scheme. There are many variants of such definitions in the
literature, we use the definition given in [HJOT15] and refer the reader to [BHR12b] for a comprehensive
treatment.

Definition 2. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit, Glnput, Eval) such that:

o (C,k) & GCircuit(1*,C): takes as input a security parameter \, a circuit C : {0,1}" — {0,1}™, and
outputs the garbled circuit C, and key k.

o T < Glnput(k,z): takes as input,s x € {0,1}", and key k and outputs Z.

o y= Eval(é,j':): given a garbled circuit C and a garbled input & output y € {0,1}™.
Correctness There is a negligible function e such that for any A € N, any circuit C and input x it holds
that Pr[C(z) = Eval(C,)] = 1 — e(\), where (C, k) + GCircuit(1*,C), Z + Glnput(k, x).
Adaptive Security.

e GC is (T'(N),e(XN))-adaptively secure garbling scheme, if there exists a probabilistic polynomial time
stmulator Sim = (SimC, SimIn) such that, for any probabilistic adversary A, running in time T(\),

\Pr[Expfgfggf;m(ﬂ,O) — 1] - Pr[Expie (1%,1) = 1]] < (M),
In other words, Dy, [ExpaGdCaEtixe(lh,O), ExpaG‘?’pStixe(lA, D =¢e(N).

o GC is adaptively secure if ExpaGdCa,pStiil‘T']e(lA, 0) “xP Expg%gtiir‘;e(l)‘, 1)

where the experiment Expffaé’gv;m(l)‘, b) is defined as follows:

1. The adversary A specifies C and gets C where C is created as follows:

e ifb=0: (C,k) + GCircuit(1*,),

e ifb=1: (C,state) « SimC(1*, Diopo(C)), where Piopo(C) reveals the topology of C.
2. The adversary A specifies x and gets & created as follows:

e ifb=0, & < Glnput(k, z),

e ifb=1, & < SimIn(C(x), state).

3. Finally, the adversary outputs a bit b/, which is the output of the experiment.

On-line Complexity. The time it takes to garble an input «, (i.e., time complexity of Glnput(,-)) is the
on-line complexity of the scheme. Clearly the on-line complexity of the scheme gives a bound on the size of
the garbled input Z. Ideally, the on-line complexity should be much smaller than the circuit size |C|.

Projective Scheme. We say a garbling scheme is projective if each bit of the garbled input Z only depends
on one bit of the actual input z. In other words, each bit of the input, is garbled independently of other
bits of the input. Projective schemes are essential for two-party computation where the garbled input is
transmitted using an oblivious transfer (OT) protocol. Our constructions will be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition may reveal the topology
of the circuit C. However, there is a way to transform any such garbling scheme into one that hides
everything, including the topology of the circuit, without a significant asymptotic efficiency loss. More
precisely, we rely on the fact that there is a function HideTopo(-)that takes a circuit C' as input and outputs
a functionally equivalent circuit C’, such that for any two circuits Cy, Cy of equal size, if C'; = HideTopo(C})
and Cy = HideTopo(C'y), then Piopo(C]) = Propo(Ch). An easy way to construct such function HideTopo is by
setting C’ to be a universal circuit, with a hard-coded description of the actual circuit C'. Therefore, to get
a topology-hiding garbling scheme, we can simply use a topology-revealing scheme but instead of garbling
the circuit C directly, we garble the circuit HideTopo(C).

3.2 Yao’s Garbling Scheme

In this section we describe Yao’s garbling scheme and in the next section we give the simulation strategy.

Construction. Let C be a leveled boolean circuit with fan-in 2 and unbounded fan-out, with inputs size
n, output size m, depth d. Let g denote the number of gates in C'. Recall that wires are uniquely identified
with labels and a circuit C' is specified by a list of gate tuples gate = (g, a,b,c), where g computes the
gate and a,b are the input wire labels and ¢ is the output wire label. The topology of the circuit ®yopo(C)
consists of the sanitized gate tuples gate = (L, a, b, ¢). For simplicity, we implicitly assume that DBiopo(C) s
public and known to the circuit evaluator without explicitly including it as part of the garbled circuit C. To
simplify the description of our construction, we first describe the procedure for garbling a single gate, that
we denote by GarbleGate.

Let T' = (KeyGen, Enc, Dec) be a CPA-secure symmetric-key encryption scheme satisfying the special
correctness property defined in Appendix A. GarbleGate is defined as follows.

— g + GarbleGate(g, {k7, k7 , k7 }scf0,13): This function computes 4 ciphertexts cty,,o, : 00,01 € {0,1}
as defined below and outputs them in a random order as g = [cty, cta, ct3, cty].

cto Enckg(Enckg(kcg(O’O))), cto,1 ¢ Encyo(Ency; (kg(o’l)))

Cti,0 Ean;(EanS(kg(l’O))), cti,1 Enck}l(Enckg (k;g(l,l)))

3.3 Adaptive Simulator

The adaptive security simulator for our garbling scheme is essentially the same as the selective security
simulator for Yao’s scheme (as in [LP09]), with the only difference that the output table is sent in the on-line
phase, and is computed adaptively to map to the correct output.

More specifically, the adaptive simulator (SimC,SimlIn) works as follows. In the off-line phase, SimC
computes the garbled gates using procedure GarbleSimGate, that generates 4 ciphertexts that encrypt the
same output key. More precisely,

— GarbleSimGate({k7, kf } e{0,1}, k..) takes both keys for input wires w,, wy, and a single key for the output
wire w,, that we denote by k.. It then output g. = [cty, cta, cts, cty] where the ciphertexts, arranged
in random order, are computed as follows.

cto,0 < Eang(Eang (lf{:)) ctio < Eanlll(Eang (If{:))
cto,1 < Encro(Encyi (k) ctin « Ency (Encpo(ky))

The simulator invokes GarbleSimGate on input k., = k2.

In the on-line phase, SimIn, on input y = C(z) adaptively computes the output tables so that the
evaluator obtains the correct output. This is easily achieved by associating each bit of the output, y;, to the
only key encrypted in the output gate gout;, which is kgutj. For the input keys, Simln just sends keys]‘321 for

each i € [n]. The detailed definition of (SimC, SimlIn) is provided in Fig. 2.

GCircuit(1*, ©) Eval(C, %)

— (Wires) k¢ < KeyGen(1?*) for i € [p], o € {0,1}. ~ Parse 7 = (K, (Ez)ée[m])'
Input wires) K = (k2 , kL Yicin-
() (i) €ln] — Evaluate Circuit.

~ (Gates) For each gate;, = (g,a,b,c) in C: Parse K = (kin,, - - -, kin,)-

gi < GarbleGate(g, {kg, k7, kYo (o.1}); For each level j =1 d

— (Output tables) For each output ¢ € [m]:

= For each gate; = (L, a,b,c) at level j:
do = [(kS,, — 0), (kl., = D).

outy outy Let g; = [cty,cta,cts, cty] For § € [4] let
~ (Garbled Circuit) C := (g1, ..., Jq)- ki < Decy, (Decy, (cts)) If ki # L then
set k. := k..

Output C, k = (K, (@)Ze[m])‘
— Decrypt output.
Glnput(z, k)

For ¢ € [m]:
— (Select input keys) K* = (', ..., k). Parse dy = [(kSy, = 0), (kly, — D]
~ _ . _ b
Output 7 = (K?, (dz)le[m])~ Set yp = b iff ko, = k’out[.

Output y1,...,Ym.

Figure 1: Yao’s Garbling Scheme.

4 Hybrid Games

Our goal is to show the indistinguishability of the real world and the simulation in the adaptive setting. We
do so by first introducing a template that allows us to define various hybrid games and then showing how
to patch such games together to get a full security proof.

4.1 Template for Defining Hybrid Games

Garbling Mode / Guessed Wires. A gate’s garbling mode indicates the way it is computed and can
be one of the following RealGate, SimGate, InputDepSimGate which corresponds to the distributions outlined
in Figure 3. A circuit configuration is consists of two sets. A set the garbling modes for each gate in the
circuit (i.e. mode;, i € [q]) and as set of guessed wires I C [p]. We use the pair ((mode;);c[q,I) to denote a
circuit configuration. A circuit configuration is valid if the outgoing wire of every gate in InputDepSimGate
mode, is contained in the set of guessed wires I.

The Hybrid Game Hyb((mode;);c(q,). Every valid circuit configuration defines a hybrid game as spec-
ified formally in Figure 4 and described informally below. The hybrid game consists of a guessing step and a
garbling step. The garbling step has two procedures: one for creating the garbled circuit C' and one for cre-
ating the garbled input z. The initial guessing step, is necessary in order to create gates in InputDepSimGate
mode. For any such gate it is essential to know what is the bit on its output wire, (referred to as v(c) in Figure
3) once the circuit is computed. However the input is not known at the time of circuit garbling. Therefore
we guess it! In some hybrid games we also need to guess values on other wires in the circuit. We define a set
(called Guess), that stores all these guessed values for the marked wires. Hyb creates the garbled circuit by
picking random keys k, for each wire w;. For each gate i, mode; € {RealGate, SimGate, InputDepSimGate},
it creates a garbled gate g; according to the corresponding distribution as described in Figure 3, and using
Guess(c) instead of the unknown v(c). Once Hyb has the input, it checks whether all the guesses were made
correctly. If not, the game is over with a fixed and dedicated output (say 0). However if they are correct, it
follows the rules below to create the garbled input and map the output wires to {0,1}.

Simulator
SimC(l)‘, Diopo(C))

— (Wires) kg, + KeyGen(1*) for i € [p], o € {0,1}.

— (Garbled gates) For each gate gate; = (L, a,b,c) in ®opo(C):
gi < GarbleSimGate ({kg, kY oeron k‘?)

Output C, state = ({kg }).
SimlIn(y, state)

~ (Output table) sd; + {(l{:gﬁt[—0), (kéu_tfk — 1)} . // ensures kQ

N
Le ['m] Je

outy

Output & = (k))icpn: (5de) eepm))-

Figure 2: Simulator for Adaptive Security.

RealGate SimGate InputDepSimGate
cto,0 < Encko(Eano(kg(O’O))) cto,0 ¢ Encyo (Encyo (7)) cto,0 < Encyo (Encyo (ke vlehy)
ctoq + Eano(Eanl(kg) cto,1 < Encyo(Encya (K7)) cto,1 < Encyo (Encya (ke <)))
ctig Encké(Enckg(ky(l’O))) cti,o < Encya (Encyo (k7)) cti,o ¢ Ency (Encyo (K U(C)))
cti,1 < Encya (Encya (K2 a1y cti,1 < Encya (Encya (k7)) cti,1 < Ency (Encya (ke ©))

Figure 3: Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate (right). The value v(c)
depends on the input and corresponds to the bit going over the wire ¢ in the computation C(x).

e If all of the gates having in; as an input wire are in SimGate mode, then K[i] := k) else K[i] := k;;'.

e If the unique gate having out, as an output wire is in SimGate mode, then we give the output map the
simulated values dy := [(kZ;, — 0), (keue”* — 1)] else the real ones dp = (0, — 0), (ki — 1)].

outy outy

Real game and Simulated Game. By the definition of adaptively secure garbled circuits (Definition 2),
adaptive

the real game EprGC’Sim(l)‘,O) is equivalent to Hyb’ ((mode; = RealGate);c[q], #) and the simulated game

Expfff‘cpg"’seim(ﬂ, 1) is equivalent to Hyb’ ((mode; = SimGate);c(q), #). Therefore, the main aim is to show that

these hybrids are indistinguishable.

4.2 Rules for Indistinguishable Hybrids

We provide rules that allow us to move from one configuration to another and prove that the corresponding
hybrid games are indistinguishable. We define two rules that allow us to do this.

Definition 3 (Neighboring Hybrids). We say two valid hybrids or configurations ((mode;);c(q], 1), ((mode})ic(q), 1)
are “neighboring”, if the set of guessed wires I is the same in both of them and the garbling modes of all
gates except one are the same; i.e. there exists some j € [q] such that for all i # j we have mode; = mode,.

We call gate; the target gate of the two hybrids or configurations.

Definition 4 (Predecessor/Successor/Sibling Gates). [HJO" 15] Given a circuit C and a gate j € [q] of the
form gate; = (g, wa, wp, w.) with incoming wires wq,wy and outgoing wire we.:

e We define the predecessors of j, denoted by Pred(j), to be the set of gates whose outgoing wires are
either w, or wy. If we,wy are input wires then Pred(j) = 0, else |Pred(j)| = 2.

e We define the successors of j, denoted by Succ(j) to be the set of gates that contain w. as an incoming
wire. If w. is an output wires then Succ(j) = 0.

Game Hyb’, ((mode;);c(q], I)
1. (Guesses) For all w; € I,

— Let Guess(w;) < {0,1}

2. Receive C from A
Garble circuit C':
3. (Wires) k¢ < KeyGen(1*) for i € [p], o € {0,1}.
4. (Gates) For each gate; = (g,a,b,¢) in C.
— If mode; = RealGate:
run g; < GarbleGate(g, {kg, k7, kZ }oc(0,1})-
— If mode; = InputDepSimGate:
run g; < GarbleSimGate((k7, k])oc{0,1}5 kf“ess(c)).
— If mode; = SimGate:
run g; < GarbleSimGate({k7, k{ } (0,13 K9).
5. Send C to A and get back z

Garble Input z:
6. (Check the guesses) For each Vi € I,

— Let v(w;) be the bit on the wire w; during the computation C(z).
— if v(w;) # Guess(w;) Output 0 and abort the game.

7. (Output tables) Let y = C(z). For £ =1,...,m:
Let ¢ be the index of the gate with output wire outy.

— If mode; # SimGate, set dy := [(k[o)utz —0), (K

outy - 1)}7
kgflt[

—0), (k2zV = 1)].

— else, set dy 1= [(Cout,
8. (Select input keys) For £ =1,...,n:

0

— If all gates ¢ having ing as an input wire satisfy mode; = SimGate, then set K[/] := kmé,

— else set K[] := k¢

ing "
9. Send 7 := (K, {ge}gelm]) to A and receive A’s output
10. Output A’s output

Figure 4: The Hybrid Game.

10

e We define the siblings of j, denoted by Siblings(j) to be the set of gates that contain either w, or wy
as an incoming wire.

We define TimeGC(z) to be the time it takes to garble a circuit of size z using Yao’s garbling scheme.

For convenience, we let mode def (mode;);c[q and omit writing the security parameter A in the superscript

of the hybrid games, since it is the same for all the games discussed here. For the same reason we use, ¢ and
T instead of €(\) and T'(\).

4.2.1 Indistinguishability Rule 1: RealGate <> InputDepSimGate

This rule allows us to change the garbling mode of a gate from RealGate to InputDepSimGate. It says that
one can move from a circuit configuration (mode, I) to neighboring circuit configuration (mode’, I') where
the mode of the target gate changes from RealGate in mode to InputDepSimGate in mode’ (and vice versa).

Lemma 1. Let Hyb(mode, I) and Hyb(mode',I) be two neighboring hybrids, with target gate; such that
mode; = RealGate and mode;- = InputDepSimGate. In addition, for alli € Pred(j): mode; = InputDepSimGate.
Then Hyb(mode, I)and Hyb(mode', I) are (T((\),e(\))-indistinguishable as long as T' = (KeyGen, Enc, Dec) is
an encryption scheme (T'(X),e(N))-secure under CPA double encryption as per Definition 6 and T'(\) =
T(A) + TimeGC(|C|).

Proof. Let (mode, I) and (mode’, I) be as in the statement of the lemma, two valid circuit configurations.
Towards a contradiction, assume that there exists a adversary .4 who runs in time 7 and distinguishes
HO := Hyb(mode, I) and H! := Hyb(mode’, I). i.e.,

|Pr[HY =1] —Pr[H) =1]| >e.

We construct an adversary B, running in time 7" that breaks the double CPA-security of the encryption
scheme I" = (KeyGen, Enc, Dec) which is used to garble gates. More specifically, we show that B wins the
chosen double encryption security game (Def. 6) which is implied by CPA security. The formal description
of adversary B is provided in Fig. 5.

Informally, B —on input (mode, I) and target gate j— aims to use her CPA-oracle access in Exp®“®¢(1*, b)
to generate distribution H®. The only difference between H° and H! is in the way gate g; is computed.
On a high level, the reduction B will compute all garbled gates g; for ¢ # j, according to experiment
Hyb(mode, I), and will compute the garbled gate g; using the ciphertexts obtained as a challenge in the
experiment Exp®®P'¢(1*,b).

In more detail, let gate; = (g*,a*,b*,c*) be the target gate. Recall, the predecessors of gate; (with
output wires a* and b*) are in InputDepSimGate mode. Therefore garbling of each gate in Pred(7), includes
encryptions of one wire label only. We call these wires (which are fixed by the bit values guessed in step
1, a, 8 € {0,1}) k% and kf Consequently the wire label decrypted during the evaluation of gate; is also
the same wire label in both games, k:g*(a’ﬂ). The difference is mode; = RealGate in Hyb(mode, I'), meaning,
there is another wire label, which was used to garble gate; and its ciphertext is one of the four ciphertexts
cts, s € {0,1}%. But in Hyb(mode’, I), garbling mode of gate; is InputDepSimGate and the only wire label
kf*(a’ﬁ). To create the same garbled gate distributions using the challenger of the Expd°”ble(1/\7 b), the
g(a,p)

o on

used is
reduction B —who knows all wire keys except for k;:o‘, k;: P will create Ctq,p as an encryption of k
its own, but the remaining three ciphertexts cto/ g will come from the experiment Exp®®P'®(1*,b) as either
encryptions of different values kg*(a/’ﬂ) (real) or of the same value kﬁf“’ﬂ)2,

The one subtlety is that the reduction needs to create encryptions under the keys k:}lfo‘, k;: P to create
garbled gates g; for gates i that are siblings of gate j. It can do that by using the encryption oracles which are

given to it as part of the experiment Exp“®*®(1* b). The formal description of the reduction B is provided

2If a* = b*, (gatej has fan-in 1), then B uses the challenger of the CPA encryption instead of the double-encryption scheme.

@

The reduction considers the CPA challenger’s key as k;: , and using appropriate queries garbles gate;.

11

Adversary B (Reduction)
Input mode, I and j.

1. (Guesses) For all w; € I,
— Let Guess(w;) < Uy

2. Receive C from A
Garble circuit C:

3. (Wires) k¢ « KeyGen(1*) for i € [p], o € {0,1}. ezcept for the two keys k}l:a,k;:ﬁ.
4. (Gates) For each gate; = (g,a,b,c) in C except gate;.
If mode; = RealGate:

run g; < GarbleGate(g, {k7, k7, kZ }ocq0,1})-

a’

— If mode; = InputDepSimGate:
run g; < GarbleSimGate((kg, &k)oc (0,1} kguess(c))

— If mode; = SimGate:
run g; < GarbleSimGate({k7, k7 }oc (0,1} k9).
4-A) Let o := Guess(a*), 8 := Guess(b*)
4-B) Let zg = kf:(l_a’ﬂ),yo = kf:(a’l_m,zo = kg:(l_a’l_ﬂ) and x1 =y = 21 = kz:(a’ﬂ).

4.C) Give k2

a*?

kbﬁ* and (zo, Yo, 20), (z1,Y1,21) to the challenger of Expd°“b'e(%:,b). The challenger of
doubl A : s s : 1— 1— . .
Exp®>'¢(1%,b) chooses two keys which we implicitly define as k., k_."”. It gives B the cipher-
texts cta, cty, ct» and oracle access to Enc,1-a () and Enc,1-p(-).
a* b*

4-D) For the gate j :
— Compute ctq g < Enckg* (Enckf* (kfi“ﬁ)))
— Set cty_qo,g:=ctyg, Cta1-g:=cty, Cti_o,1-3:=Cts.
— Let g; be a random ordering of [cto,0,cto,1,ct1,0,Ct1,1]
5. Send C to A. Obtain z from A.
Garble Input z:
6. (Check the guesses) For each V i € I,
— Let v(w;) be the bit on the wire w; during the computation C(z).
— if v(w;) # Guess(w;) Output 0 and abort.

7. (Output tables) Let y = C(x). For £ =1,...,m:
Let 7 be the index of the gate with output wire outy.

~ If mode; # SimGate, set dy := [(kQ,,, — 0), (klw, = 1)1,

outy
— else, set dy = [(k¥y, — 0), (kg /* — 1)].

8. (Select input keys) For £ =1,...,n:
— If all gates ¢ having in; as an input wire satisfy mode; = SimGate, then set K[/] := ki?][,

— else set K[0] := k!

9. Set z:= (K, {gz}ge[m]). Send 7 to A and output whatever 4 outputs.

Figure 5: Proof of security for rule 1: the reduction B uses an adversary A that distinguishes the hybrids
to play the chosen double encryption security game (Def. 6) denoted by Exp®®"',

12

in Fig. 5. Finally notice that B’s running time is, the time it takes to create the garble circuit plus the time
it takes to run A, so T = T + TimeGC(|C).

|Pr[HY = 1] — Pr[H} = 1]|

< |Pr[ExpE“'®(1*,0) = 1] — Pr[Exp e (1*,1) = 1]| < e.

which proves the Lemma. O

4.2.2 Indistinguishability Rule 2. InputDepSimGate +» SimGate

This rule allows us to change the mode of a gate j from InputDepSimGate to SimGate under the condition
that all successor gates i € Succ(j) satisfy that mode; € {InputDepSimGate, SimGate}.

Lemma 2. Let Hyb(mode, I) and Hyb(mode',I) be two neighboring hybrids, with target gate; such that
mode; = InputDepSimGate in mode and mode; = SimGate in mode’. In addition, for all i € Succ(j) we have
mode; € {SimGate, InputDepSimGate}. Then for any A, Hyb 4(mode, I) and Hyb 4(mode’, I') are identically
distributed.

Proof. Fix any adversary A. Define Hy := Hyb 4(mode,I) and H; := Hyb ,(mode’, I). The difference
between the hybrids is in how the garbled gate g; is created:

kGuess(c"))

c*

e In Hy, we set g; < GarbleSimGate((k-, k.)oe{0,1}
e In My, we set g; < GarbleSimGate((k-, k.)oe{0,1} K2.).

If j is not an output gate, and all successor gates i € Succ(j) are in {SimGate, InputDepSimGate} modes
then the keys k0. and kl. are treated symmetrically everywhere in the game other than in gj. Therefore, by
(c*) ..~

in g;

If j is an output gate then the keys k2. and k.. are only used in g; and in the output map JJ Therefore,

symmetry, there is no difference between using k2. and kCG*uess
by symmetry, there is no difference between using k¥ in g; and setting E] = [(kgutj — 0), (kgutj — 1)] (in
Hy) versus using k. in g; and setting d; := [(koie, = 0), (kiu_tf’ — 1)] (in Hy).

One last difference between the hybrids occurs if some wire in; becomes only connected to gates that are
in SimGate in H;. In this case, when we create the garbled input z, then in Hy we give K[i] := k' but in
H, we give K[i] := k) . Since the keys k{, , ki, are treated symmetrically everywhere in the game (both in

in;?» in;

Hy and Hy) other than in K[i], there is no difference between setting K[i] := k), versus K[i] := ki’
O
4.2.3 Scaling Indistinguishability

We now show that by adding guesses we can make the hybrids more indistinguishable, or equivalently,
removing guesses makes the hybrids more distinguishable. This lemma is crucial for comparing hybrids with
different guesses by scaling the number of guesses up or down to make the comparison possible.

Lemma 3. If D, [Hyb(mode, I),Hyb(mode',I)] =€ and J is a set of wires, disjoint from I then
D, [Hyb(mode, I U J), Hyb(mode’, 7 U J)] =271 . .
Proof. For any probabilistic T' bounded adversary A, we have
Pr [Hyb 4(mode, T U J) = 1] = 271/ Pr [Hyb , (mode,) = 1)].

Because with probability 271!, (the probability of guessing the extra |.J| wires correctly) A playing the
game Hyb(mode, I U J) has the exact same interactions as in game Hyb(mode, I) and therefore the same
exact outputs. The same holds for Pr [Hyb 4 (mode’, I U J) = 1] therefore,

[Pr[Hyb 4 (mode, I U J) = 1] — Pr [Hyb 4 (mode’, T U J) = 1]]
= 271 Pr[Hyb 4(mode, I) = 1] — Pr [Hyb 4 (mode’, I) = 1]| < 271 . ¢

13

5 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration (mode, I'). We also gave 2 rules,
which describe ways that allow us to move from one configuration to another in indistinguishable steps. Now
our goal is to use the given rules so as to define a sequence of indistinguishable hybrid games that takes us from
the real game Hyb((mode; = RealGate);c[q), I = 0)) to the simulation Hyb((mode; = SimGate);c(q, I = 0).

Pebbling Game. We capture the problem of finding a sequences of hybrid games using a certain type of
pebbling game on the graph of circuit C.

— Graph of circuit C' is obtained by assigning a node to each gate, and a directed edge from node ¢ to node j
for each wire going out of gate 7 and into gate j. To make this consistent, we think of each input wire (in)
as outgoing wire of an empty (dummy) gate, going into a gate in level 1 of the circuit. Since we are always
considering a pebbling on the graph of a circuit, we use words gate/node and wire/edge interchangeably.

— Pebbles. Each gate can either have no pebble, a black pebble, or a gray pebble on it (this will correspond
to RealGate, InputDepSimGate and SimGate modes respectively). Initially, the circuit starts out with no
pebbles on any gate. The game consist of the following possible moves:

Pebbling Rule A. We can place or remove a black pebble on a gate as long as both predecessors of
that gate have black pebbles on them (or it is an input gate).

Pebbling Rule B. We can replace a black pebble with a gray pebble on a gate as long as all successors
of that gate have black or gray pebbles on them (or the gate is an output gate).

— A pebbling of a circuit C starts with no pebbles on the graph and is a sequence of v moves that follow rules
A and B and that end up with a gray pebble on every gate. We say that a pebbling uses ¢ black pebbles
if this is the maximal number of black pebbles on the circuit at any point in time during the game.

— A pebble configuration specifies for each gate, whether it contains no pebble, a gray pebble, or a black peb-
ble.

From Pebbling to Sequence of Hybrids. A pebbling in v moves has a sequence of v + 1 pebble con-
figurations starting with no pebbles and ending with a gray pebble on each gate. Each pebble configuration
follows from the preceding one by a move that satisfies pebbling rules A or B. Next we create a sequence of
hybrids by defining one hybrid from each pebbling configuration.

e For every gate i € [q], we set mode; = RealGate if gate ¢ has no pebble, mode; = InputDepSimGate if
gate ¢ has a black pebble, and mode; = SimGate if gate i has a gray pebble.

e We set I to be the set of the output wires of the gates with black pebbles.

Figure 6: Pebbling Rules

14

Therefore a pebbling defines a sequence of hybrids H, = Hyb(mode®, I*) for & = 0,...,v where Hy =
Hyb((mode) = RealGate);c(y, 0) is the real game and H., = Hyb((mode] = SimGate);c(y., 0) is the simulated
game, and each H, is induced by the pebbling configuration after v moves. In our next theorem and the
following corollary, we prove that the sequence of hybrids obtained from a pebbling, as explained above,
shows indistinguishability of the real and simulated games.

Theorem 1. Assume that there is a pebbling of circuit C' in v moves, using t black pebbles. Also assume that
the encryption scheme I' = (KeyGen, Enc, Dec) is (T'+ TimeGC(|C), €)-secure under CPA double encryption.

Then, the sequence of hybrids obtained from such pebbling as described above has the following property.
For any a € {0,1,--- ,v}, Hy = Hyb(mode™, I%)

(e}
D, [Hyb(mode’, %), H,] < Y 2ri~ 1"l £ < a2t~ 11"e
i=1
where 1o = max (|17, |I*]) < t, for a € [4].
Proof. We show the claim holds for modey and any configurations; (mode®, I*), a € {0, 1, - - - v} by induction
on the number of pebbling steps taken so far (i.e., a). For convenience, let s, = |[%| and remember
To = Max (Sq—1,5q4) -
Base case. Let a = 0, D, [Hyb(modeO,IO),Ho] = D, [Ho, Hy] = 0.
Inductive step. Assume the claim holds for «, we show it holds for « + 1.

e If the o + 1st move in the pebbling game is to add a black pebble: sq+1 = 54 + 1 and 7441 = Sa+1
D, [Hyb(mode’, I**1), Hyb(mode®**, 12¥1)]

< D, [Hyb(mode®, I*™), Hyb(mode®, 1)
+ D, [Hyb(mode®, 1**1), Hyb(mode®**, 171)] (4)
< 271D, [Hyb(mode’, I%), Hyb(mode®, I*)] + ¢ (5)
<2ty onteeqpe <y oo qe (6)
i=1 =1

@ a+1
< Z QTiTSatl g 4 Tt "Satl L o < Z OTi—Satl , ¢

=1 =1

Line 4 follows from the previous line by the Triangle Inequality. By Lemma 1 or 2, D, [Hyb(mode®, I¢*1),
Hyb(mode®*!, 1*t1)] < e. By Lemma 3 we have that D, [Hyb(modeo,lo‘+1), Hyb(mode®, Io1)] <
D.[Hyb(mode”, I*), Hyb(mode®, I*)]/2. Combining the two we get Line 5. We use the induction
hypothesis to arrive at Line 6. The last line follows by noticing so411 = o + 1 and 7441 = Sat1 -

e If the o + 1st move in the pebbling game is to remove a black pebble: s441 = sq — 1 and 7441 = Sq4
D, [Hyb(mode’, I**'), Hyb(mode® ™", 1971)]
2D [Hyb(mode’, I*), Hyb(mode® ™", 1] (7)
2D, [Hyb(mode’, I*), Hyb(mode®, I%)]

+ 2D [Hyb(mode®, I%), Hyb(mode® ™, 1) (8)

« «
2 (ZQ”S“ '€+5> < ZQ”*S‘*“ e+ 2 (9)
i=1 i=1

o a+1
Z QriTSatl . g 4 QratlTSatl . g < Z Qri=Satl . g

=1 i=1

IN A

IN

IN

Similar to the last case, Line 7 follows from the previous line By Lemma 3. Line 8 follows from the
Triangle inequality. By Lemma 1 or 2 and the induction hypothesis we arrive at Line 9. The last line
follows by noticing sq4+1 = So — 1 and rq41 = Sq -

15

Rule wires in I, Jo+! mode} — mode“‘Irl Hybrids Lemma
WPred C [%, (mode™, I*F1)
A WPred U {c*} C [o+1 RealGate — InputDepSimGate (mode*, fo-+1) 1
*1 C Jo . d (& Ia
wp;ﬁisd{g 50;1[’ InputDepSimGate — RealGate (rEquc;Zes*a Ii)
WPredU {c*] C I°, . . (mode®, I%)
B WPred C o1 InputDepSimGate — SimGate (modeo‘“,Ia) 9
WPred C 1%, . . (mode®, 1o7T)
WPred U {c"} C [o+1 SimGate — InputDepSimGate (modeaﬂ,]aﬂ)

Figure 7: From Pebbling Rules to Indistinguishable Hybrids. WPred := {output wires of Pred(j)}, WSucc :=
{output wires of Succ(j)}.

The reason we can apply lemmas 1 or 2, is that the pebbling game rules (A and B) guarantee that the
garbling modes of each two hybrids in our sequence have the necessary properties for applying lemmas 1 or
2. In addition we created the set I such that it includes all the necessary wires to keep the configuration
valid. For more details, see Figure 7, where we change gate;’s mode at step a + 1, following rule A or B. [

Corollary 1. Assume that I' = (KeyGen, Enc, Dec) is an encryption scheme which is (T(X),e(\))-secure
under CPA double encryption. If there is a pebbling of circuit C in v moves, using t black pebbles then
ExpaG(?‘;tlxe(l’\ 0) and Expaché’%tlxe(l’\ 1) are (T"(N\), €' (\))-indistinguishable where

eV <27 (M) < - 20 e(N)
o T'(\) =T(\) — TimeGC (|C|).
where r; = max (s;_1, ;) and s; is the number of black pebbles used at the ith pebbling step.
Proof. By definition ExpaGdg';tlme(lA 0) = Hyb*(mode®, 1°) and Exp%‘?%ﬁ':(ﬁ 1) = Hyb*(mode”, I7) where
I° = " = . By Theorem 1 with a = 7, we have D,, |Hyb*(mode”, §), Hyb)‘(modev,@)} <3 27 e(N)
which proves the Corollary. O

Corollary 2. If there is a pebbling of circuit C' in vy mowves, using t black pebbles then GC is adaptively secure
with online complexity

1. (m +n)\, when T is secure under CPA double encryption and 2!y = poly()\).

2. (m + n)poly(A + log~y + t), when T' is sub-exponentially secure under CPA double encryption and
log(v) +1t = poly(}).

Proof. The online complexity of the garbling scheme consist of (m + n) secret keys of the scheme I'.

For case (1) we only need standard security of T' to survive a polynomial security loss of 2ty = poly()).
Therefore, we can set the security parameter of I' to A, which gives a key size of .

For case (2) we need to survive a security loss of 2ty = 2PM(N) If the encryption scheme I' is sub-
exponentially secure it means that when instantiated with security parameter X\’ it has security e(\') < 2-(\)"
for some constant v and all large enough). Therefore we need to set X = (A +1log(7y) +1)/¥ to ensure that
2tye(N') is negligible, which results in a key size of X' = poly(\ + log(7) + t). O

5.1 Pebbling Strategies

We now rely on a result of [HJOT15] to instantiate Corollary 2. In particular, it shows that for any circuit
with ¢ gates and depth d there is a pebbling strategy which makes at most v = ¢-22¢ moves and uses t = 2d
black pebbles. See Appendix B for the description of the strategy. By instantiating Corollary 2 with the
above strategy, we obtain the following corollary.

16

Corollary 3. Assuming the existence of (standard) one-way functions, Yao’s garbling schemes is adaptively
secure with on-line complexity (n +m)\ for all circuits of depth d = O(log \).

Assuming the existence of sub-exponentially secure one-way functions Yao’s garbling schemes is adaptively
secure with on-line complexity (n + m)poly(A,d), for arbitrary circuits of depth d = poly(\).

6 Conclusions

We show that Yao’s garbled circuit construction is already adaptively secure, without the need for any
modification, at least when it comes to NC1 circuits. More generally, we give a reduction where the security
loss is related (exponentially) to the pebble complexity of the circuit, which can often be much smaller than
the input size, and therefore beats the naive reduction that guesses the entire input. It remains as an open
problem to improve the reduction further or to give some negative results showing that it cannot be done.

References

[ATIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions with
constant online rate or how to compress garbled circuits keys. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2018, Part II, volume 8043 of LNCS, pages 166-184. Springer, Heidelberg,
August 2013.

[AS15] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. Cryptology
ePrint Archive, Report 2015/776, 2015. http://eprint.iacr.org/.

[BGGT14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald,
editors, FUROCRYPT 2014, volume 8441 of LNCS, pages 533-556. Springer, Heidelberg, May
2014.

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via UCEs.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 398-415. Springer, Heidelberg, August 2013.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 134-153. Springer, Heidelberg, December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784-796. ACM Press,
October 2012.

[FIJP15] Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipolynomial reduction for
generalized selective decryption on trees. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 601-620. Springer, Heidelberg,
August 2015.

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive
security of constrained PRFs. In Palash Sarkar and Tetsu Iwata, editors, ASTACRYPT 2014,
Part II, volume 8874 of LNCS, pages 82-101. Springer, Heidelberg, December 2014.

[HJO'15] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs.
Adaptively secure garbled circuits from one-way functions. IACR Cryptology ePrint Archive,
2015:1250, 2015.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computa-
tion. Journal of Cryptology, 22(2):161-188, April 2009.

17

http://eprint.iacr.org/

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 28rd FOCS,
pages 160-164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162-167. IEEE Computer Society Press, October 1986.

A Symmetric-Key Encryption with Special Correctness [LP09]

In our construction of the garbling scheme, we use a symmetric-key encryption scheme I' = (KeyGen, Enc, Dec)
which satisfies the standard definition of CPA security and an additional special correctness property below
(this is a simplified and sufficient variant of the property described in from [LP09]). We need this property
to ensure the correctness of our garbled circuit construction.

Definition 5 (Special Correctness). A CPA-secure symmetric-key encryption I' = (KeyGen, Enc, Dec) sat-
isfies special correctness if there is some negligible function € such that for any message m we have:

Pr[Decy, (Ency, (m)) # L @ ki, ks < KeyGen(1*)] < g(N).

Construction. Let F = {f;} be a family of pseudorandom functions where f; : {0,1}* — {0, 1}**$, for
k € {0,1}* and s is a parameter denoting the message length. Define Ency(m) = (r, fr(r) © m0) where

m € {0,1}°, r & {0,1}* and m0* denotes the concatenation of m with a string of Os of length \. Define
Decy(c¢) which parses ¢ = (r, z), computes w = z @ fi(r) and if the last A bits of w are 0’s it outputs the first
s bits of w, else it outputs L.

It’s easy to see that this scheme is CPA secure and that it satisfies the special correctness property.

Double Encryption Encryption Security. For convenience, we define a notion of double encryption
security, following [LP09]. This notion is implied by standard CPA security but is more convenient to use
in our security proof of garbled circuit security.

Definition 6 (Double-encryption security). An encryption scheme I' = (KeyGen, Enc, Dec)

e is (T'(N\),e(X))-secure under chosen double encryption if

DT(A) [Expdouble(:[)\’ O)7 Expdouble(l)\7 1):| _ E()\)

e is secure under chosen double encryption if
Expdouble(l)\’ 0) P Expdouble(lz\7 1).
e is sub-exponentially secure if
3 v > 0,YT(\) € poly(\), Dy [Exp®®(1*,1), Exp®®(1*,0)| <e(N\) = 172

where the experiment Exp% ™ is defined as follows. s Experiment Exp®?™'®(1*,b)

1. The adversary A on input 1 outputs two keys ko, and ki, of length X and two triples of messages
(0, Y0, 20) and (x1,y1,21) where all messages are of the same length.

2. Two keys k,, k;, & KeyGen(1*) are chosen.

3. AFekn (0B)y given the challenge ciphertexts c; < Enc,(Ency (zp)), ¢y < Ency (Encg, (ys)),

¢, Ency (Ency; (21)) as well as oracle access to Ency () and Ency; (+).

4. A outputs b which is the output of the experiment.

18

The following lemma is essentially immediate - see [LP09] for a formal proof.

Lemma 4. If (KeyGen, Enc, Dec) is CPA-secure then it is secure under chosen double encryption with the
same security parameter.

B Pebbling Strategy [HJO"15]

This is a recursive strategy defined as follows.

e Pebble(C):
For each gate i in C' starting with the gates at the top level moving to the bottom level:

1. RecPutBlack(C, 1)
2. Replace the black pebble on gate ¢ with a gray pebble.

e RecPutBlack(C,i): // Let LeftPred(C,4) and RightPred(C,) be the two predecessors of gate i in C.

If gate 7 is an input gate, put a black pebble on ¢ and return.

1.

2. Run RecPutBlack(C, LeftPred(C, %)), RecPutBlack(C, RightPred(C, 1))
3. Put a black pebble on gate i.
4.

Run RecRemoveBlack(C, LeftPred(C, 7)) and
RecRemoveBlack(C, RightPred(C, 7)),

e RecRemoveBlack(C,7): This is the same as RecPutBlack, except that instead of putting a black pebble
on gate 7, in steps 1 and 3, we remove it.

To analyze the correctness of this strategy, we note the following invariants: if the circuit C' is in a
configuration where it does not contain any pebbles at any level below that of gate 4, then (1) the procedure
RecPutBlack(C,) results in a configuration where a single black pebble is added to gate i, but nothing else
changes, (2) the procedure RecRemoveBlack(C,) results in a configuration where a single black pebble is
removed from gate i, but nothing else changes. Using these two invariants the correctness of of the entire
strategy follows.

To calculate the number of black pebbles used and the number of moves that the above strategy takes to
pebble C, we use the following simple recursive equations. Let #PebPut(d) and #PebRem(d) be the number
of black pebbles on gate i and below it used to execute RecPutBlack and RecRemoveBlack on a gate at level
d, respectively. We have,

max(#PebPut(d — 1), #PebRem(d — 1)) + 2

#PebPut(1) =1, H#PebPut(d)
=1, max(#PebPut(d — 1), #PebRem(d — 1)) + 2

<
#PebRem(1) #PebRem(d) <
Therefore the strategy requires at most 2d black pebbles to pebble the circuit.

To calculate the number of moves it takes run Pebble(C), we use the following recursive equations. Let
#Moves(d) be the number of moves it takes to put a black pebble on, or remove a black pebble from, a gate
at level d. Then

#Moves(1) =1, #Moves(d) = 4(#Moves(d — 1)) + 1

Hence, each call of RecPutBlack takes at most 4¢ moves, and the total number of moves to pebble the circuit
is at most ¢4%. In summary, the above gives us a strategy to pebble any circuit with at most v = ¢4% moves
and ¢t = 2d black pebbles.

19

	Introduction
	Our Techniques
	Yao's Scheme and The Challenge of Adaptive Security (DBLP:journals/iacr/HemenwayJOSW15)
	Our Solution

	Preliminaries
	Garbling Scheme and Adaptive Security (DBLP:journals/iacr/HemenwayJOSW15)
	Garbling Scheme
	Yao's Garbling Scheme
	Adaptive Simulator

	Hybrid Games
	Template for Defining Hybrid Games
	Rules for Indistinguishable Hybrids
	Indistinguishability Rule 1: RealGateInputDepSimGate
	Indistinguishability Rule 2. InputDepSimGateSimGate
	Scaling Indistinguishability

	Pebbling and Sequences of Hybrid Games
	Pebbling Strategies

	Conclusions
	Symmetric-Key Encryption with Special Correctness JC:LinPin09
	Pebbling Strategy DBLP:journals/iacr/HemenwayJOSW15

