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Abstract. The indistinguishability security of a public-key cryptosystem can be
reduced to a computational hard assumption in the random oracle model, where
the solution to a computational hard problem is hidden in one of the adversary’s
queries to the random oracle. Usually, there is a finding loss in finding the correct
solution from the query set, especially when the decisional variant of the com-
putational problem is also hard. The problem of finding loss must be addressed
towards tight(er) reductions under this type. In EUROCRYPT 2008, Cash, Kiltz
and Shoup proposed a novel approach using a trapdoor test that can solve the find-
ing loss problem. The simulator can find the correct solution with overwhelming
probability 1, if there exists a trapdoor test for the adopted hard problem. The
proposed approach is efficient and can be used for many Diffie-Hellman compu-
tational assumptions. The only limitation is the requirement of a trapdoor test that
must be found for the adopted computational assumptions.
In this paper, we introduce a universal approach for finding loss, namely Iter-
ated Random Oracle, which can be applied to all computational assumptions.
The finding loss in our proposed approach is very small. For 260 queries to the
random oracle, the success probability of finding the correct solution from the
query set will be as large as 1/64 compared to 1/260 by a random pick. We
show how to apply the iterated random oracle for security transformation from
key encapsulation mechanism with one-way security to normal encryption with
indistinguishability security. The security reduction is very tight due to a small
finding loss. The transformation does not expand the ciphertext size. We also
give the application of the iterated random oracle in the key exchange.

Keywords. Random Oracle; Indistinguishability Security under Computational
Assumptions; Finding Loss

1 Introduction

Security reduction is a kind of reduction techniques in cryptography where we construct
a simulator that uses an adversary’s attack to solve a mathematically hard problem.
According to the type of attack and the type of hard problem, cryptosystems have the
following two popular types of security reduction.
? This work was partially supported by ARC Discovery Grant DP130101383.



– Unforgeability security based on a computational hard problem (UF-CHP). This
type of security reduction has been used to prove the security of digital signature
schemes. We construct a simulator that uses a forged signature from the adversary
to solve a computational hard problem.

– Indistinguishability security based on a decisional hard problem (IND-DHP). This
type of security reduction has been used to prove the security of encryption schemes.
We construct a simulator that uses the guess of random message in the challenge
ciphertext from the adversary to decide whether a solution in a given instance is
correct or incorrect.

Roughly speaking, a computational problem is to find a correct solution to a given in-
stance, while a decisional problem is to decide whether or not a solution in a given
instance is correct. A computational hard problem is always harder than its decisional
variant. However, without any additional assumption, it seems impossible to carry out
a security reduction for a cryptosystem with indistinguishability security based on a
computational hard problem. We call this type of reduction IND-CHP for short. This is
because the guess from the adversary only has two answers: 0 or 1, which cannot pro-
vide sufficient information to find a correct solution. Fortunately, IND-CHP reduction
becomes possible with the help of random oracles. Random oracles were first intro-
duced by Bellare and Rogaway in [5] for designing efficient protocols. In the random
oracle model, at least one hash function namely H is treated as a random oracle where
responses on queries are assumed to be uniformly distributed. Anyone especially the
adversary has no advantage in guessing the hash value of an input before querying the
input to the random oracle. With the help of this “magical” property, many cryptosys-
tems such as asymmetric encryption and key exchange can achieve IND-CHP security
reduction.

The IND-CHP security reduction is programmed as follows. Suppose the simulator
aims to compute C[I, P ] as the solution to a given instance I under a computational
hard problem P . The simulator who controls the random oracle programs the simula-
tion using the instance I . In the simulation, the adversary must make a set of queries
including a challenge query denoted by Q∗ to the random oracle to break the security,
and the solution C[I, P ] can be extracted from this challenge query. Different from UF-
CHP and IND-DHP security reductions, the simulator solves the hard problem using
the adversary’s query set to random oracles instead of the adversary’s forgery or guess.
This distinctive security reduction arises a very important and interesting question:

How to find the correct solution from the adversary’s query set?

We call this problem as a finding problem and the reduction has a finding loss, if the
simulator can only succeed in finding the correct solution from the query set with a
probability less than 1. When the decisional variant of the computational hard prob-
lem P is easy, there is no finding loss by verifying all solutions extracted from each
query. However, when the decisional variant is also hard, it seems finding loss cannot
be avoided. In this work, we focus on the non-trivial case that the decisional variant of
P is also hard.
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1.1 Finding Loss in Previous Approaches

In the IND-CHP security reduction, when the adversary can break a scheme simulated
using an instance I , the challenge query will appear in the adversary query set and con-
tain the solution C[I, P ] to the instance I . The reduction after disclosing the simulation
is equivalent to that the adversary who is given an instance I will make a set of queries
including a challenge query Q∗ = C[I, P ]. Using this disclosed reduction, we can use
the following theories to describe how the finding problem is addressed.

The traditional approach in the literature is described in Theory 1. It has been ap-
plied to many cryptosystems such as [8] for IND-CHP security reductions.

Theory 1 (Traditional Approach) Suppose an adversary, who is given an instance
I generated by the simulator, must make a set of queries Q (|Q| = q) including a
challenge queryQ∗ = C[I, P ] to the random oracle. We can construct a simulator who
controls the random oracle to solve the hard problem P using the query set Q in O(1)
time with success probability 1/q.

It is easy to construct such a simulator. Given an instance I , the simulator forwards
the instance to the adversary. Then, the challenge query is equal to the solution for the
simulator. A random pick from the query set with q number of queries therefore has the
success probability 1/q.

In the security reduction, the adversary can make a polynomial number of queries to
the random oracle. The query number q can be as large as q = 260, and hence the suc-
cess probability of finding the correct solution is 1/260. It means that all cryptosystems
using this traditional approach in reduction will have at least 60-bit security loss. In
the concrete security of group-based cryptosystems, we must expand the corresponding
group size with 60-bit more security to compensate the security loss. This compensa-
tion at least requires 120-bit length more of security parameter in group choice, and it is
therefore accompanied with inefficient group operation and large group representation.

In EUROCRYPT 2008, Cash, Kiltz and Shoup [10] introduced the first novel ap-
proach for finding loss. They proposed a new computational problem called the twin
Diffie-Hellman problem. This new problem is as hard as the Computational Diffie-
Hellman (CDH) problem even given access to a corresponding decision oracle. The
heart of their approach is a trapdoor test, which allows the simulator to simulate an ef-
fective decision oracle without knowing any of the corresponding discrete logarithms.
Their approach can be summarized using a theory described as follows.

Theory 2 (Cash-Kiltz-Shoup) Suppose an adversary, who is given instances (I1, I2)
generated by the simulator, must make a set of queries Q (|Q| = q) including a
challenge query Q∗ = C[I1, P ] || C[I2, P ] to the random oracle. We can construct
a simulator who controls the random oracle to solve the hard problem P using the
query set Q in O(q) time with nearly success probability 1, if there exists a trapdoor
test on solutions to a given instance and a created instance under the hard problem P .

The simulator can be constructed as follows. Given an instance I , the simulator sets
I1 = I , Then, it randomly chooses a trapdoor and creates the second instance I2 from
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I1 and the trapdoor. The trapdoor test holds with the property that a queryQ = Q1 ||Q2

can pass the trapdoor test run by the simulator if and only if Q1 = C[I1, P ] and Q2 =
C[I2, P ] except with a negligible probability. Therefore, only the challenge query can
pass the test and the simulator can successfully find the correct solution C[I, P ] without
any finding loss after all queries are tested.

Based on this theory, Cash, Kiltz and Shoup [10] proposed many twin schemes
based on original schemes using two key pairs, whose IND-CHP security reductions
are tight(er) without any finding loss. The price to pay for an encryption scheme is
two times less efficient in terms of key size and computations compared to the original
one, but the size of ciphertext is not changed. However, this theory has a limitation.
It can only be applied to those cryptosystems whose underling computational assump-
tions have a corresponding trapdoor test. The trapdoor test proposed in [10] is a very
special construction and it can be adopted by some computational Diffie-Hellman hard
problems only.

1.2 Our Contribution

We propose a completely new approach for finding loss, namely iterated random oracle,
which can be applied to all computational hard problems. Instead of using a trapdoor
test to find the correct solution, the simulator in our approach can remove most of use-
less queries such that a random pick from remaining queries will merely have a small
finding loss only. The corresponding theory is described as follows.

Theory 3 (Iterated Random Oracle) Let H be a random oracle. Suppose an adver-
sary, who is given instances (I1, I2, · · · , In) generated by the simulator, must make a

set of queries Q (|Q| = q) including a challenge query Q∗ = Q(n)

∗ to the random

oracle, where Q(n)

∗ is defined as

Q(i)

∗ = H(Q(i−1)
∗ ) || C[Ii, P ] || i : i ∈ [1, n], H(Q(0)

∗ ) = 0ε is an empty string.

We can construct a simulator who controls the random oracle to solve the hard problem
P using the query set Q in O(n) time with success probability at least 1/(nq

1
n ).

The simulator construction and probability analysis are given in Section 3. We give an
example in the next subsection to overview the simulator construction and the probabil-
ity analysis. When this theory holds, the success probability is 1/640 for q = 260 and
n = 10. We can further increase the success probability to 1/64 by repeating hash op-
erations for ten times. In comparison with the traditional approach with success proba-
bility 1/260 only, our approach significantly improves the success probability even with
a small integer n. We compare the different approaches for finding loss in Table 1.

We show how to apply the iterated random oracle in encryption and key exchange
for tight(er) reduction. In the application to encryption, we show how to use a key en-
capsulation mechanism with one-way security to construct an encryption scheme with
indistinguishability security against a chosen-plaintext attack and a chosen-ciphertext
attack. The security transformation from one-way security to indistinguishability secu-
rity will only have a small finding loss. Notice that the security reduction for encap-
sulation mechanism with one-way security does not have the finding loss because the
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adversary must return the encapsulation key, which can be programmed as the solution
to the computational hard problem in the reduction. Therefore, our security transforma-
tion is equivalent to a provably secure encryption under IND-CHP security reduction
with a small finding loss. The transformation is n times (n = 10) less efficient in
terms of key size and computations. However, the transformation does not expand the
ciphertext size when the generation of key encapsulation is independent of public key.
Many encryption schemes such as the ElGamal encryption [21] and BF-IBE [8] can
be modified into key encapsulation mechanisms capturing this property. We also study
the application of the iterated random oracle in an identity-based non-interactive key
exchange protocol and other key exchange protocols.

Table 1. Comparison of different approaches for finding loss. The finding efficiency refers to the
time cost of picking a query from the query set. The query efficiency refers to the time cost of
generating the challenge query. Here, q is the size of query set including the challenge query and
n is the maximum iteration time.

Theory 1 Theory 2 Theory 3 (Ours)

For All Problems X × X

Success Probability 1
q

1 1

n·q
1
n

Finding Efficiency O(1) O(q) O(n)

Query Efficiency 1 2 O(n)

1.3 Overview of the Approach

For simplicity, we use the concrete CDH problem as an example to describe the overview
of the approach in the iterated random oracle. Suppose an adversary, who is given in-
stances Ii = (g, gai , gb) for all i ∈ [1, n] generated by the simulator, must make a
query set Q (|Q| = q) including a challenge query Q∗ = An to the random oracle,
where An is defined as

Ai = H(Ai−1) || gaib || i : i ∈ [1, n], H(A0) = 0ε is an empty string.

We can construct a simulator to solve the CDH problem using the query set Q with
success probability at least 1/(nq

1
n ). Given as input an instance (g, ga, gb) under a

cyclic group G of prime order p, the aim of the simulator is to find gab from the query
set generated by the adversary. This reduction is mainly composed of two tasks: (1) how
to generate the instances Ii = (g, gai , gb), i ∈ [1, n] for the adversary, namely instance
generation and (2) how to pick the query from the adversary’s query set, namely query
selection.

Instance Generation. The simulator randomly chooses d ∈ [1, n], a1, a2, · · · , ad−1,
ad+1, · · · , an ∈ Zp and sets ad = a. Then, it gives Ii = (g, gai , gb) for all i ∈ [1, n]
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to the adversary who is required to make a query set including An. It requires that the
adversary does not know d. Since all instances are chosen randomly, this requirement
holds trivially. In the instances given to the adversary, the simulator can compute gaib =
(gb)ai for all i ∈ [d+1, n] by itself since all related ai are known. This is very important
in the query selection for a small finding loss.

Query Selection. In this phase, a query is defined as either a candidate query or a useless
query. The simulator will randomly pick a query from candidate queries, after all useless
queries are removed. Before introducing what are useless queries and how to remove
them, we first introduce what all iterated queries look like.

The query Q = H(Q′) || Q || i in the iterated random oracle is an iterated query,
composed of an oracle response, a weight (the solution will appear here) and an iteration
time. All iterated queries to the random oracle can be depicted in an arbitrary tree, where
a node denotes a response on a query and an edge denotes a query. The root is an empty
string. The edge Q = H(Q′) || Q || i starts from the node H(Q′) and ends at the node
H(Q), which is depicted at the level i. When the maximum iteration time is n, the

height of this arbitrary tree is n. For example, the two queriesQ(1)

1,2 = 0ε ||Q(1)
1,2 || 1 and

Q(2)

2,1 = H(Q(1)

1,2) ||Q
(2)
1,2 || 2 can be depicted in a path from the root to a leaf shown in

Fig. 1.
According to the property of random oracle, if Q∗ = An appears in the query set,

all queries A1, A2, · · · , An must appear in the query set. Now, we can roughly describe
what are useless queries. First, all queries with iteration time which is not equal to d
are useless queries. Second, a query Q with iteration time equal to d is a useless query
if there is no valid path from the node H(Q) to a leaf node at the level n. Here, a
valid path is the path where all edges for i ∈ [d + 1, n] in this path are valid queries
whose weights are equal to gaib. The simulator can verify whether a path is valid or not,
because gaib = (gb)ai for all i ∈ [d + 1, n] are computable using ai. All queries with
iteration time equal to n are candidate queries.

Probability Analysis. Based on the above instance generation and query selection, we
can prove there must exist an integer i∗ ∈ [1, n] satisfying the minimum probabil-
ity 1/q

1
n . Precisely, for those queries with iteration time i∗, the success probability of

picking a valid query from candidate queries is 1/q
1
n . The integer i∗ is adaptively de-

cided by the adversary in query set generation, while the integer d is randomly chosen
by the simulator. When d = i∗ (i.e. the simulator happens to embed the solution in this
level), all useless queries with iteration time i∗ will be removed and the corresponding
success probability is 1/q

1
n . Therefore, we yield the success probability result by

Pr[suc] =

n∑
i=1

Pr[suc|d = i] Pr[d = i] ≥ Pr[suc|d = i∗] Pr[d = i∗] =
1

nq
1
n

.

We now give four simple examples where n = 2 and q = 8 to analyze the above
result. The corresponding success probability of Pr[suc|d = i∗] for some i∗ should be
at least 1/

√
8. We use a solid line to denote a query at the level i if it has a valid weight

equal to gaib. Otherwise, we denote the query with a dashed line. In this arbitrary tree,
Q(i)

denotes a query at the level i. Notice that all queries from the same node have at
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most one query with a valid weight, but all queries at the same level i could have more
than one valid query whose weights are all valid and equal to gaib.

In these examples, if the adversary only makes two queries at the first level, we
immediately have Pr[suc|d = 1] = 1

2 ≥
1√
8

when d = 1. Therefore, in the following
examples, the adversary is assumed to make three queries at the first level.

Fig. 1. Fig. 2.

Fig. 3. Fig. 4.

– Suppose the query set can be depicted as the tree in Fig. 1. When d = 1, the two
queries Q(1)

1,1,Q
(1)

1,2 will be removed because their nodes do not have a valid path
such that only one query is remained at this level. Therefore, we have Pr[suc|d =
1] = 1 ≥ 1√

8
.

– Suppose the query set can be depicted as the tree in Fig. 2. When d = 1, the query
Q(1)

1,1 will be removed because this node does not have a valid path such that two
queries are remained at this level. Therefore, we have Pr[suc|d = 1] = 1

2 ≥
1√
8

.

– Suppose the query set can be depicted as the tree in Fig. 3. When d = 2, it is easy
to see that Pr[suc|d = 2] = 3

5 ≥
1√
8

.

– Suppose the query set can be depicted as the tree in Fig. 4. The result is exactly the
same as Fig. 3, where Pr[suc|d = 2] = 3

5 ≥
1√
8

.

1.4 Other Related Work

The UF-CHP security reduction with a tight reduction for digital signatures has been
studied in [2, 1, 6, 13, 14, 24–26]. A tight reduction requires no abortion in signature
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simulation and enables to solve a hard problem from the forged signature. With the
help of random oracles, it seems easier to achieve a tight reduction by adding a random
bit after the message to be signed. In this reduction, the simulator uses the bit to control
the hash values of messages to be signed and to be forged, such that the probability of
abortion is very small.

The IND-DHP security reduction with a tight reduction for encryption has been
studied in [16, 4, 27, 26, 7, 23, 9, 15, 22, 28]. To achieve a tight reduction, the simulator
must be able to simulate decryption queries for CCA security and private key queries for
identity-based encryption and its variants. It also requires the simulator to program the
challenge ciphertext into a one-time pad or an indistinguishable ciphertext depending
on the given instance. We note that the approaches for tight reduction are different.
This is because there is no general technique enabling a tight reduction for encryption,
especially without random oracles.

The IND-CHP security reduction is a special reduction requiring the help of ran-
dom oracles, where the simulator solves a hard problem using the adversary’s queries
instead of its direct attack. How to find the correct solution from the adversary’s query
set is necessary to achieve a tight reduction. The problem of finding loss only exists in
this reduction type especially when the decisional variant is also hard. The traditional
approach for finding loss is via a random pick, which results in a huge finding loss.
The first non-trivial approach was introduced by Cash, Kiltz and Shoup [10] in EU-
ROCRYPT 2008. The proposed trapdoor test can be used to solve finding loss during
the corresponding IND-CHP security reductions. They had shown that the proposed ap-
proach can be applied to Diffie-Hellman key exchange [17], Cramer-Shoup encryption
[16], BF-IBE [8] and password-authenticated key exchange [3] to achieve the tightness
of security reduction. This approach, however, requires that the computational hard
problem can be embedded with a trapdoor test on solutions to a given instance and a
created instance. This work has been extended and applied in [11, 12] but they still have
the same restriction. There is no efficient approach for finding loss in the IND-CHP
security reduction without any restriction on the adopted computational hard assump-
tions.

The rest of this paper is organized as follows. We use an example to introduce how
the IND-CHP security reduction works in Section 2. The generalization of computa-
tional hard problems is also given and discussed. In Section 3, we prove the correctness
of Theory 3. Then, we show how to apply the iterated random oracle for encryption in
Section 4 and key exchange towards tight(er) security reduction in Section 5.

2 IND-CHP Security Reduction and Generalized Problems

2.1 An Example of IND-CHP Security Reduction

Let G be a cyclic group of the prime order p and g be a generator. Let H : {0, 1}∗ →
{0, 1}n be a one-way hash function. Considering the following bare ciphertext CT
without a public/secret key pair, where x, y ∈ Zp and coin ∈ {0, 1} are chosen ran-
domly and secretly.

CT = (c1, c2, c3) =
(
gx, gy, H(gxy)⊕mcoin

)
8



Suppose there exists an adversary who can distinguish the message mcoin ∈ {m0,m1}
in CT with a non-negligible advantage ε in a polynomial time, where the two messages
{m0,m1} ∈ {0, 1}n are adaptively chosen by the adversary. We can construct a simu-
lator to solve the CDH problem in the random oracle model, whereH is set as a random
oracle controlled by the simulator.

Before we introduce how to program the security reduction, we first introduce the
nice feature of using random oracle in security reduction. In the random oracle model,
the message is encrypted withH(gxy), which is a random string from {0, 1}n and is in-
dependent of its hash input gxy and (gx, gy). Without making a query on gxy to the ran-
dom oracle, the ciphertext CT is a one-time pad encryption on mcoin because H(gxy)
is random and independent of (gx, gy) in the ciphertext. Then, the success probability
of guessing the encrypted message is 1

2 only. According to the assumption, the adver-
sary can distinguish the encrypted message with probability 1

2 + ε. This assumption
indicates that the adversary ever queried gxy to the random oracle with probability 2ε
[8]. That is, one of queries in the adversary’s query set is equal to gxy . This query is
called challenge query, which is used to break the security of cryptosystem.

The security reduction works as follows. Given (g, ga, gb), the simulator aims to
compute gab. Upon receiving m0,m1 ∈ {0, 1}n from the adversary, the simulator cre-
ates the challenge ciphertext as CT = (c1, c2, c3) = (ga, gb, R), where R is a random
string from {0, 1}n. What the simulator will do is to wait for queries from the adversary.
Notice that if the adversary does not make a query on gab to the simulator, the adversary
cannot either distinguish the message with a non-negligible advantage or distinguish the
simulation ciphertext from the real ciphertext. According to the assumption, the group
element gab will appear in one of queries with probability 2ε. Suppose the adversary
made q queries to the random oracle in total. The simulator randomly picks one of
queries as the solution to the CDH problem. We have the randomly picked element is
equal to gab with probability 2ε

q . That is, the simulator will solve the hard problem with
probability 2ε

q in the corresponding security reduction. This completes the description
of security reduction. This reduction has a finding loss whose corresponding success
probability is in the linear of hash query number q.

We note that the above bare ciphertext cannot be decrypted by anyone when the
CDH problem is hard. However, in the real encryption scheme, the encryptor and the
decryptor know more information than the bare ciphertext. When treating gx as the
public key and y is the chosen random number by the encryptor, we have that the bare
ciphertext is equivalent to the hashed ElGamal encryption scheme, where the encryp-
tor knows y and the decryptor knows the secret key x such that the ciphertext can be
created and decrypted respectively. Roughly speaking, a secure encryption scheme is
constructed in the way that a computational hard problem can be easily solved by the
encryptor and decryptor with an additional secret, while outsiders (adversaries) with-
out knowing a secret must solve the computational hard problem in order to break the
scheme.

2.2 Generalized Computational Hard Problems

We generalize all computational hard problems into the following description.
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I: The input arbitrary string (also known as instance).
P : The computational problem.

C[I, P ]: The solution to the instance I under the computational problem P .

For example, given an instance I = (g, ga, gb) ∈ G, based on different problems P , the
solution can be

C[I, P1] = gab, C[I, P2] = g
b
a .

The generalized computational hard problem is defined as

Pr
[
A(I, P ) = C[I, P ]

]
≤ ε,

where no adversary who is given (I, P ) can find a solution C[I, P ] with a non-negligible
advantage ε. Here, ε is a function of the security parameter in the generation of the
instance I .

For the computational hard problem (I, P ), anyone can verify whether a solution
is correct or not if the decisional variant of this problem is easy. However, if the de-
cisional variant is also hard, it seems no one can verify the correctness of a solution.
However, this observation is not correct because the instance generator, who generates
the instance, can generate the instance in the way that it knows its correct solution. Tak-
ing the CDH problem in a cyclic group as an example where the DDH problem is also
hard. The instance generator can randomly choose a, b ∈ Zp and set the instance to
be (g, ga, gb), where the solution gab is computable by the instance generator. Hence,
for the computational hard problem P , we assume the instance generator enables to
generate an instance I such that C[I, P ] can be efficiently computed. This assumption
is necessary to support the definition of computational hard problems whose decisional
variants are also hard. We emphasize the importance of this property here because the
simulator in the iterated random oracle requires generating some instances indistin-
guishable from the challenge instance, such that the simulator can compute solutions to
all self-generated instances under the challenge hard problem P .

3 Iterated Random Oracle and Its Proof

In the iterated random oracle, each query will be programmed using iterations, and
hence it will be called as an iterated query. An iterated query is composed of an oracle
response, a weight (the solution to a hard problem will appear here) and an iteration
time. They are put together using a concatenation symbol “||”. Given a hash list record-
ing all iterated queries and their responses, we can depict all queries in the hash list
using an arbitrary tree. The height of this arbitrary tree is n, where n is the maximum
time of iteration. The details are described in the following subsections.

3.1 Iterated Query and Tree Representation

Iterated Query. We define an iterated query Q to the random oracle as

Q = Response ||Weight || Iteration Time = R || Q || i,
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where R is a response on a query from the random oracle H (an empty string 0ε is
assumed as the initialized response), Q is a weight (any arbitrary string) chosen by the
adversary and i is the iteration time. The iteration time denotes the minimum time for
making such an iterated query. If i = 1, it means the adversary can immediately make
such a query. Otherwise, for example, given Q1 = 0ε||Q1||1 and Q2 = H(Q1)||Q2||2,
it requires the adversary to queryQ1 first beforeQ2. We will use the following symbols
associated with queries and responses in the following representations.

– Q(i)
is an iterated query with the iteration time i.

– Q
(i)
j,k is the weight in the iterated query Q(i)

j,k.
– Q is the set of all queries made by the adversary.
– Q(i) is the set of all iterated queries whose iteration time are all equal to i.
– H(Q(i)

) is the response from the random oracle on the query Q(i)
.

Tree Representation. Suppose the adversary only makes the above iterated queries to
the random oracle, and an empty hash list L is used to record all queries and responses.
We can depict all queries and corresponding responses using an artitrary tree (such as
Fig. 5), where the root is the empty string 0ε.

– All edges denote iterated queries and their end nodes denote their corresponding
responses.

– The query Q(i)

j,k = H(Q(i−1)
) || Q(i)

j,k || i is the edge with connection between

the node H(Q(i−1)
) and the node H(Q(i)

j,k) at the level i. Here, j in this query

represents that Q(i−1)
is the j-th query at the level i− 1 counted from left to right,

and k in this query represents that H(Q(i)

j,k) is the k-th child of H(Q(i−1)
) counted

from left to right.
– The height of the arbitrary tree is the maximum time of iteration in all iterated

queries.

The hash list and the tree representation have the following connections. First, this
is an arbitrary tree because the adversary can make any number of iterated queries
Q = R || Q || i with the same R and i. Second, all edges starting from the same node
are the depiction of queries with the same R and i but distinct weights Q. Third, all
iterated queries are different such that all nodes are distinct, but the weights in those
queries (edges) from different nodes could be the same. For example, the weight Q(2)

3,1

must be different from Q
(2)
3,2 because the queries Q(2)

3,1,Q
(2)

3,2 already have the same or-

acle response and iteration time. However, Q(2)
3,2 could be equal to Q(2)

1,1 in Fig. 5. This
observation is very important in the analysis of success probability for the iterated ran-
dom oracle. Finally, the total query number is equal to the total number of edges in this
arbitrary tree, if all queries are iterated queries.

In the random oracle model, the adversary can make any arbitrary string as a query
chosen by itself. However, we focus on the defined iterated queries only. We emphasize
that our focus does not compromise any problem because all other queries that cannot
be described in this arbitrary tree must be not the challenge query and will be removed
from the query set before selection.

11



Fig. 5. An example of arbitrary tree generated from iterated queries and responses.

3.2 Proof of Theory 3

It is complicated to prove this theory directly especially the analysis of success proba-
bility. We split the proof for this theory into the following steps.

Simulator Construction. Given as input an instance I and the problem P , the simulator
aims to compute C[I, P ]. The simulator generates (I1, I2, · · · , In) for the adversary as
follows.

– Randomly choose d ∈ [1, n] and set Id = I . We have C[Id, P ] = C[I, P ].
– Choose random instances I1, I2, · · · , Id−1, Id+1, · · · , In under the problem P such

that C[Ii, P ] for all i ∈ [1, n]/{d} are known by the simulator.
– Set and give (I1, I2, · · · , In) to the adversary.

According to the assumption, the adversary will make a query set Q to the random
oracle including a challenge query Q∗ ∈ Q, where Q∗ = Q(n)

∗ . According to the

definition ofQ(i)
and the property of random oracles, the adversary must ever make all

challenge queriesQ(1)

∗ ,Q(2)

∗ , · · · ,Q(n)

∗ to the random oracle. Otherwise, the adversary

cannot generate Q∗ ∈ Q. Notice that C[I, P ] exists in Q(d)

∗ ∈ Q(d). The simulator
will solve the hard problem by removing all useless queries in Q(d), picking a random
query from the remaining set Q(d) and extracting the weight from the picked query as
the solution to the hard problem. The success probability of finding the correct solution
will be the one given in our theory.

Further Tree Representation. We further define queries and weights in order to clarify
how to remove all useless queries from Q(d).

– The query Q(i)

j,k is a challenge query if Q(i)

j,k = Q(i)

∗ .

12



– The weight Q(i)
j,k is a valid weight if Q(i)

j,k = C[Ii, P ].
– The query Q(i)

j,k is a valid query if it has a valid weight.
– A path from a node to a leaf is a valid path if all edges in this path are valid queries.
– The query Q(i)

j,k is a child query of Q(i−1)
if Q(i)

j,k = H(Q(i−1)
)||Q(i)

j,k||i.
– The query Q(i)

j,k is a candidate query if there exists a valid path from the node

H(Q(i)

j,k) to a leaf node at the level n. All queries in Q(n) are defined as candidate
queries.

– The query Q(i)

j,k is a useless query if there is no valid path from the node H(Q(i)

j,k)
to a leaf node at the level n.

We note that all queries that cannot be depicted in this arbitrary tree or can only
be depicted outside this arbitrary tree are useless queries. The maximum number of
edges in this tree is q. About the relationship among valid query, challenge query and
candidate query, we have a challenge query must be both a valid query and a candidate
query. The definition of valid query and candidate query are independent. There must
exist one valid path only from the root to a leaf at the level n because all queries from
the root have only one valid query. There could exist more than one valid query in Q(i)

for any i ≥ 2, but each query has one valid child query at most. In Fig. 5, we use a solid
edge to denote a valid query and a dashed edge to denote an invalid query.

We have two important observations in the following two claims.

Claim 1 If Q(i)
is a candidate query, it must have a valid child query.

According to the definition of candidate query, there exists a valid path from the
node H(Q(i)

) to a leaf node at the level n. The first edge in this valid path is a valid

query comprising of the response H(Q(i)
). This is the valid child query of Q(i)

.

Claim 2 If Q(i)
is a candidate query and its child query denoted by Q(i+1)

is a valid
query, we have that Q(i+1)

is also a candidate query.

We prove by contradiction. According to the first claim and the tree representation,
there exists only one valid child query of Q(i)

denoted by Q(i+1)
. All paths starting

from the node H(Q(i)
) through invalid child queries of Q(i)

must be invalid paths.

If all paths starting from the node H(Q(i)
) through the edge Q(i+1)

are invalid paths

either, there is no valid path from the node H(Q(i)
) to a leaf node. Hence Q(i)

is not
a candidate query. Therefore, the assumption is incorrect and there should exist a valid
path starting from the nodeH(Q(i)

) through the edgeQ(i+1)
, which implies thatQ(i+1)

is also a candidate query.

Lemma 1 If the following rate

R(i) =
The number of valid queries in Q(i)

The number of candidate queries in Q(i)
<

1

q
1
n

holds for all i ∈ [1, n], the adversary must make more than q candidate queries.
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Proof. Let N = q
1
n . All queries in Q(i) must be either valid or invalid. Let V Qi denote

the number of valid queries at the level i of tree. Let IQi denote the number of invalid
queries at the level i of tree. If the rateR(i) holds for all i ∈ [1, n], we have the following
deduction from the first level to the last level based on the above two claims, where only
candidate queries are counted.

– Level 1. All queries are from the root and there is one valid query only, which is
also a candidate query. That is, V Q1 = 1. To make sure the rate is less than 1/N ,
the adversary must make IQ1 ≥ (N − 1) · V Q1 + 1 invalid queries that are also
candidate queries. The total number of candidate queries in this level therefore is
V Q1 + IQ1. Hence, according to the Claim 1, the total number of valid queries in
the next level is V Q1 + IQ1.

– Level 2. According to the result in the level 1, the number of valid queries is V Q2 =
V Q1 + IQ1. According to Claim 2, these valid queries are also candidate queries.
To make sure the rate is less than 1/N , the adversary must make IQ2 ≥ (N −
1) · V Q2 + 1 invalid queries that are also candidate queries. The total number of
candidate queries in this level therefore is V Q2 + IQ2. Hence, according to Claim
1, the total number of valid queries in the next level is V Q2 + IQ2.

– Level 3. According to the result in the level 2, the number of valid queries is V Q3 =
V Q2 + IQ2. According to Claim 2, these valid queries are also candidate queries.
To make sure the rate is less than 1/N , the adversary must make IQ3 ≥ (N −
1) · V Q3 + 1 invalid queries that are also candidate queries. The total number of
candidate queries in this level therefore is V Q3 + IQ3. Hence, according to Claim
1, the total number of valid queries in the next level is V Q3 + IQ3.

– The result in the level i is the same as the previous analysis.

– Level n− 1. According to the result in the level n− 2, the number of valid queries
is V Qn−1 = V Qn−2 + IQn−2. According to Claim 2, these valid queries are also
candidate queries. To make sure the rate is less than 1/N , the adversary must make
IQn−1 ≥ (N − 1) · V Qn−1 + 1 invalid queries that are also candidate queries.
The total number of candidate queries in this level therefore is V Qn−1 + IQn−1.
Hence, according to Claim 1, the total number of valid queries in the next level is
V Qn−1 + IQn−1.

– Level n. According to the result in the level n − 1, the number of valid queries is
V Qn = V Qn−1 + IQn−1. To make sure the rate is less than 1/N , the adversary
must make IQn ≥ (N − 1) · V Qn + 1 invalid queries . The total query number in
this level therefore is V Qn + IQn. All queries are treated as candidate queries.

From the above analysis, we obtain the following results for all i ∈ [1, n].

V Q1 + IQ1 = N + 1

V Qi + IQi ≥ V Qi + (N − 1) · V Qi + 1

= N · V Qi + 1

> N · V Qi
= N · (V Qi−1 + IQi−1).
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Then, we yield
n∑
i=1

(V Qi + IQi) > (V Qn + IQn) > Nn−1(V Q1 + IQ1) > Nn = q.

This completes the proof of Lemma 1. �

Based on the above definitions and explanations, we are ready to give the proof of
Theory 3.

Proof of Theory 3. In the simulation, the number d is randomly chosen by the simulator
and all instances (I1, I2, · · · , In) are indistinguishable. The adversary therefore does
not know d. The query set Q generated by the adversary hence is independent of d.

According to Lemma 1, if the adversary makes q queries at most, there must exist
an integer i∗ ∈ [1, n] satisfying

R(i∗) =
The number of valid queries in Q(i∗)

The number of candidate queries in Q(i∗)
≥ 1

q
1
n

.

When d = i∗, the simulator can remove all useless queries in Q(i∗) because C[Ii, P ]
for all i ∈ [d + 1, n] are computable by the simulator. Then, the success probability of
picking a valid query from all candidate queries is at least 1/q

1
n . The success probability

Pr[suc] given in Theory 3 holds because

Pr[suc] =

n∑
i=1

Pr[suc|d = i] Pr[d = i]

≥ Pr[suc|d = i∗] Pr[d = i∗]

=
1

q
1
n

· 1
n
.

This completes the proof of Theory 3. �

3.3 Variant

The success probability given in Theory 3 is the lower bound probability because the
probability Pr[suc|d = i] > 0 holds for all i 6= i∗. We can repeat hash operations in
the iterated random oracle to obtain a larger lower bound success probability.

Theory 4 (Improved Iterated Random Oracle) Let H be a random oracle. Suppose
an adversary, who is given instances (I1, I2, · · · , In) generated by the simulator, must

make a set of queries Q (|Q| = q) including a challenge query Q∗ = Hk−1(Q(n)

∗ ) to

the random oracle, where Q(n)

∗ is defined as

Q(i)

∗ = Hk(Q(i−1)
∗ ) || C[Ii, P ] || i : i ∈ [1, n], H(Q(0)

∗ ) = 0ε is an empty string.

We can construct a simulator who controls the random oracle to solve the hard problem
P using the query set Q with success probability at least k/(nq

1
n ). Here, Hi(Q) is to

repeat hash operation on Q for i times. Hi(Q) = H
(
Hi−1(Q)

)
and H0(Q) = Q.
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In this theory, the adversary must make k · n queries to obtain the challenge query
Q∗ = Hk−1(Q(n)

∗ ) ∈ Q.

Hk−1(Q(n)
∗ ) Hk−2(Q(n)

∗ ) · · · H(Q(n)
∗ ) Q(n)

∗

Hk−1(Q(n−1)
∗ ) Hk−2(Q(n−1)

∗ ) · · · H(Q(n−1)
∗ ) Q(n−1)

∗
· · · · · · · · · · · · · · ·
Hk−1(Q(2)

∗ ) Hk−2(Q(2)
∗ ) · · · H(Q(2)

∗ ) Q(2)
∗

Hk−1(Q(1)
∗ ) Hk−2(Q(1)

∗ ) · · · H(Q(1)
∗ ) Q(1)

∗

The query on Hi(Q) requires the adversary to make a query on Hi−1(Q) first. In

particular, the query on Q(j)

∗ requires the adversary to make a query on Hk−1(Q(j−1)
∗ )

to obtain Hk(Q(j−1)
∗ ) to compose Q(j)

∗ . The proof of this theory is based on a slightly
different lemma where the rate is k/q

1
n . This is because the total number of queries in

each level is k · (V Qi + IQi) instead of (V Qi + IQi). The other analysis is similar
and we omit them here without redundancy. Therefore we have the success probability
shown in the theory.

3.4 Comparison of Success Probability

We compare the success probability of finding the solution from the query set among
the traditional approach, the Cash-Kiltz-Shoup approach and the iterated random oracle,
where concrete integers n = 10 and k = 10 are chosen. The result is given in Table
2. It shows that the iterated random oracle has a very small finding loss compared to
the traditional approach even the iteration time n is very small. With a proper hash
repeating time k, it further improves the success probability. Notice that the Cash-Kiltz-
Shoup’s approach is the most efficient approach, but it is not a universal approach for
any computational hard problem.

Table 2. Comparison of success probability.

q = 240 q = 250 q = 260

Traditional Approach 1
240

1
250

1
260

Cash-Kiltz-Shoup [10, 11] 1 1 1

Iterated Random Oracle with n = 10, k = 1 1
160

1
320

1
640

Iterated Random Oracle with n = 10, k = 10 1
16

1
32

1
64

3.5 Comparison of Query Efficiency and Finding Efficiency

The price to pay for small finding loss from the iterated random oracle is the efficiency
loss in the generation of challenge query. Recall that the challenge query is associ-
ated with one instance computation in the traditional approach (Theory 1) and two
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instance computations in the Cash-Kiltz-Shoup [10, 11] approach (Theory 2). The chal-
lenge query in the iterated random oracle is associated with n instance computations
and n queries or n · k queries. The efficiency loss is in the linear of n. Fortunately,
n can be as small as 10 in the iteration. Furthermore, when the efficiency is mainly
dominated by the computation of C[Ii, P ], they can be performed in parallel because all
computations are independent.

In the iterated random oracle, the simulator needs to compute C[Ii, P ] for all i ∈
[d + 1, n], where d is randomly chosen from [1, n]3, in order to remove all useless
queries. Then, the simulator randomly picks one query from all candidate queries.
Hence, the time cost of finding a solution is mainly dominated by instance computa-
tions and the time complexity is O(n). In comparison with the other two approaches,
the simulator in the traditional approach (Theory 1) directly picks one solution in a
random way and the time complexity is O(1). The simulator in the Cash-Kiltz-Shoup
[10, 11] approach (Theory 2) has to test each query until it finds the correct solution.
Therefore, their time complexity is (q) more expensive than the iterated random oracle.

3.6 Remarks of Simulation Based on Theories

The introduced three theories for finding loss can be described as follows in a general
summary. Suppose an adversary, who is given an instance IA generated by the sim-
ulator, must make a set of queries Q (|Q| = q) including a challenge query Q∗ =
C[IA, PA] to the random oracle. Here, C[IA, PA] is the solution to the instance IA un-
der the computational hard problem PA which is defined by the simulator. We aim to
construct a simulator to solve a hard problem P using the query set Q.

In the corresponding simulator construction, the simulator is given an instance I
under the hard problem P and aims to solve it with the help of the adversary. The sim-
ulator should construct an instance IA for the adversary using the given instance I and
define the hard problem PA such that C[I, P ] will appear in the query set. The resulting
results (IA, PA) from the traditional approach, Cash-Kiltz-Shoup’s approach and our
approach are different. We remark that the successful construction of such a simulator
is not the end of simulation. It merely introduces the approach of how to find the cor-
rect solution from the adversary’s query set. To complete the reduction, the simulator
must enable to use the created instance IA to simulate the proposed cryptosystem and
make sure the challenge query including C[IA, PA] will appear in the query set. This is
required in the security reduction because the adversary is not to solve a hard problem
for the simulator but is going to break a cryptosystem.

4 Tight Security in Security Transformation for Encryption

The principle application of the iterated random oracle is the security transformation
from a key encapsulation mechanism with one-way security to an encryption with in-
distinguishability security, whose reduction is tight. In this section, we show how to
achieve such a security transformation without expanding ciphertext size.

3 When d = n, the simulator does not need to compute any C[I, P ].
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A key encapsulation mechanism (KEM) is an asymmetric encryption whose en-
cryption algorithm will generate a random key (a.k.a. the encapsulation key), together
with a corresponding ciphertext (a.k.a. the encapsulation). The random key is then used
for symmetric encryption while the encapsulation forms part of the message ciphertext
to deliver the random key in an asymmetric manner. Any receiver who owns a valid
secret key can decapsulate the random key from the encapsulation. In the definition of
one-way security for KEM, the challenger generates a challenge ciphertext CT ∗ for the
adversary and the aim of the adversary is to return the corresponding challenge random
key.

We observe that any KEM with one-way security does not have a security loss in
finding a correct solution, if the random key is the solution to a computational hard
problem in security reduction. This is because the adversary only returns one answer
to the simulator, which is the correction solution to a hard problem. However, in the
IND-CHP security reduction with the help of random oracles, the correct solution is
hidden in a large query set made by the adversary. In this section, we show how to fill
this gap by using the iterated random oracle.

Our security transformation is based on the KEM of functional encryption, namely
functional key encapsulation mechanism (FKEM). The functional encryption can be
seen as a generalized asymmetric encryption including public key encryption, identity-
based encryption and attribute-based encryption. We adopt the FKEM because the iter-
ated random oracle is a general approach fitting for all asymmetric encryptions.

Our security transformation can be applied to any FKEM. However, this generic
transformation could be accompanied with a long ciphertext under iterated random or-
acles. This is because the challenge ciphertext must be associated with n different in-
stances using the iterated random oracle, where the adversary is required to compute n
solutions to different instances. To obtain a short ciphertext after transformation, these
n instances must have shared input parameters. We extract one special type of FKEM
from all FKEM with the following two properties.

– Firstly, global system parameters Param will be defined for FKEM, where many
master key pairs (m̃pk1, m̃sk1), (m̃pk2, m̃sk2), · · · , (m̃pkn, m̃skn) can be generated
with this global parameters. We note that these global system parameters are very
common in an asymmetric encryption. It could include the definitions of pairing
group, chosen generator and hash functions. All of these parameters are shared and
used by different users or authorities.

– Secondly, the ciphertext encapsulation is computed without the input of master
public keys, which will be the shared input parameters for all generated master key
pairs. We note that many asymmetric encryptions fall into this type, such as the
ElGamal public-key encryption scheme [21], the Boneh-Franklin identity-based
encryption scheme [8] and the Waters identity-based encryption scheme [30]. One
instantiation is given at the end of this section.

In the remaining of this section, we first give the definition of FKEM under our
chosen type, and then show how to transform the FKEM with one-way security to a
functional encryption with indistinguishability security against a chosen-plaintext at-
tack (CPA) and a chosen-ciphertext attack (CCA).
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4.1 Functional Key Encapsulation Mechanism

The functional key encapsulation mechanism (FKEM) is defined as follows.

Functional Key Encapsulation Mechanism

- Param
$← SysGen(1λ). This algorithm takes as input the security parameter λ

and outputs the global system parameters Param.

- (mpk,msk)
$← Setup(Param). This algorithm takes as input Param and out-

puts the master key pair (mpk,msk).

- usk
$← KeyGen(Param,mpk,msk, upk). This algorithm takes as input Param,

the master key pair (mpk,msk) and upk (will be explained later) and outputs
the user secret key usk.

- (C,K)
$← Encap(Param,mpk, str, r). This algorithm consists of two sub-

algorithms.

- C
$← Encapc(Param, str, r). This sub-algorithm takes as input Param, a

string str (will be explained later), a randomness r and outputs the encap-
sulation C. The encapsulation generation is independent of mpk.

- K
$← Encapk(Param,mpk, str, r). This sub-algorithm takes as input

(Param,mpk, str, r) and outputs the encapsulation key K.

- K
$← Decap(Param,mpk, upk, usk,C). This algorithm takes as input

(Param,mpk, upk, usk) and the encapsulation C, and outputs the encapsula-
tion key K or ⊥.

Definition 1 (Correctness). For any (C,K)
$← Encap(Param,mpk, str, r) and usk

$←
KeyGen(Param, mpk,msk, upk), we have that,

Decap(Param,mpk, upk, usk,C) =

{
K F (upk, str) = 1,

⊥ otherwise,

where Param
$← SysGen(1λ) and (mpk,msk)

$← Setup(Param). The function F eval-
uates the relationship between the upk and the string str.

The key pair (mpk,msk), (upk, usk), the string str and the function F have different
representations in specified asymmetric encryptions. For example,

– In a public-key encryption, mpk = upk is the public key while msk = usk is the
corresponding secret. str is also a public key and the function F (upk, str) = 1 if
and only if str = mpk = upk.

– In an identity-based encryption, upk is the identity of user and str is the identity of
receiver. The function F (upk, str) = 1 if and only if str = upk.
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– In an identity-based broadcast encryption, upk is the identity of user and str is the
identity set of receivers. The function F (upk, str) = 1 if and only if upk is one of
identities in the identity set str.

– In a ciphertext-policy attribute-based encryption, upk is an attribute set of a user
while str is an access policy. The function F (upk, str) = 1 if and only if the access
policy str accepts the attribute set upk.

– In a key-policy attribute-based encryption, upk is an access policy for a user while
str is an attribute set. F (upk, str) = 1 if and only if the access policy upk accepts
the attribute set str.

– In an inner-product encryption, both upk and str are vectors. F (upk, str) = 1 if and
only if the inner product upk · str = 0.

Definition 2 (One-Way FKEM). A functional key encapsulation mechanism (SysGen,
Setup,KeyGen, Encap,Decap) is one-way secure if for any PPT adversary A,

AdvOW
A,FKEM(λ) = Pr

K′ = K∗ :

Param
$← SysGen(1λ);

(mpk∗,msk∗)
$← Setup(Param);

str∗ ← AOK(·)(Param,mpk∗);

(C∗,K∗)
$← Encap(Param,mpk, str∗, r∗);

K′ ← AOK(·)(Param,mpk, str∗,C∗)

 ≤ negl(λ),

where OK(·) is a key generation oracle that on input of any upk, returns usk
$←

KeyGen(Param,mpk,msk, upk) on the condition that F (upk, str∗) 6= 1.

The definition of function encryption is similar with the FKEM except the encryp-
tion algorithm and the decryption algorithm. The encryption algorithm additionally
takes as input a message and returns a ciphertext for the message directly. While the
decryption algorithm directly returns the message or outputs failure. The correspond-
ing security model under indistinguishability against a chosen-plaintext attack and a
chosen-ciphertext attack is also similar except that the adversary outputs str∗,m0,m1

for challenge and the challenge ciphertext is encrypted with a random message from
{m0,m1} chosen by the simulator. We define IND-CCA for FE in the following defi-
nition. The definition of IND-CPA is the same as IND-CCA except that the adversary
cannot access the decryption oracle in the security model.

Definition 3 (IND-CCA FE). A functional encryption (SysGen,Setup,KeyGen, Encrypt,
Decrypt) is IND-CCA secure if for any PPT adversary A,

AdvIND−CCAA,FKEM (λ) = Pr


coin′

=
coin

:

Param
$← SysGen(1λ);

(mpk∗,msk∗)
$← Setup(Param);

(str∗,m0,m1)← AOK(·),OD(·)(Param,mpk∗);

coin
R← {0, 1}

CT∗
$← Encypt(Param,mpk, str∗, r∗,mcoin);

coin′ ← AOK (·),OD(·)(Param,mpk, str∗,CT∗)

 ≤ negl(λ),

where OK(·) is a key generation oracle that on input of any upk, returns usk
$←

KeyGen(Param,mpk,msk, upk) on the condition that F (upk, str∗) 6= 1 andOD(·) is a

decryption oracle that on input of any str,CT, returns {m,⊥} $← Decrypt(Param,mpk,
upk, usk,CT) on the condition that str 6= str∗ or CT 6= CT∗.
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4.2 Generic Conversion from OW-FKEM to IND-CPA-FE With Tight
Reduction

Let ParamOW be the global system parameters of FKEM with one-way security. Let
(m̃pki, m̃ski) for all i ∈ [1, n] be nmaster key pairs of FKEM and ũski be the secret key
of upk generated from (m̃pki, m̃ski). Here, n can be as small as n = 10 depending on the
choice of security loss. We choose n pairs in order to compute a different encapsulation
key under each key pair, such that all n encapsulation keys can be iterated together
following the iterated random oracle approach to generate the final encapsulation key.
The functional encryption with IND-CPA security is constructed as follows.

SysGen: Choose a secure one-way hash function H : {0, 1}∗ → {0, 1}`, where
the message space is {0, 1}`. The global system parameters of FE are

Parama = (ParamOW, H).

Setup: Set the master public key mpk and the master secret key msk of FE as

mpk = (m̃pk1, m̃pk2, · · · , m̃pkn), msk = (m̃sk1, m̃sk2, · · · , m̃skn).

KeyGen: Taking as input Param,mpk,msk, upk, run the key generation algorithm

KeyGen(Param, m̃pki, m̃ski, upk)
$→ ũski for all i ∈ [1, n] and output the private

key usk for upk as
usk = (ũsk1, ũsk2, ..., ũskn).

Encrypt: Taking as input Param,mpk, str and a message m ∈ {0, 1}`, create the
ciphertext CT for upk as follows

– Choose a random r for the Encap algorithm.
– Compute C1 = Encapc(ParamOW, str, r).
– Compute Ki = Encapk(ParamOW, m̃pki, str, r) for all i ∈ [1, n].
– Compute the iteration as

Ai = H(Ai−1) || Ki || i : i ∈ [1, n], where H(A0) = 0ε.

– Set C2 = H(An)⊕m.

The output ciphertext is CT = (C1,C2).
Decrypt: Taking as input Param,mpk, str, upk, usk and a ciphertext CT =
(C1,C2), decrypt the message as

– Compute Ki = Decap(ParamOW, m̃pki, upk, ũski,C1) for all i ∈ [1, n].
– Compute the iteration as

Bi = H(Bi−1)||Ki||i : i ∈ [1, n], where H(B0) = 0ε.

– Compute m = C2 ⊕H(Bn).
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This completes the description of FE construction. Without counting the size of
the encrypted message, the ciphertext size is the same as FKEM. That is, the generic
conversion from OW-FKEM to IND-CPA-FE does not expand the ciphertext size. This
conversion without expanding ciphertext requires that the encapsulation is independent
of the master public key m̃pk. Otherwise, the ciphertext is composed of n number of
distinct C1 generated under a different m̃pki. In the following theorem, we prove that
the IND-CPA security of FE can be tightly reduced to one-way security of an FKEM.

Theorem 1 Let H be a random oracle. If there exists an adversary A who makes q
queries to H has an advantage ε in the IND-CPA security model against the con-
structed encryption scheme, then we can construct a simulator B that has advantage
AdvOW

B,FKEM(λ) = 2ε

nq
1
n

in breaking the underlying FKEM in the one-way security

model.

Proof. Suppose there exists an adversaryAwho can break the above encryption scheme
with an advantage ε. We construct a simulator B to break the one-way security of the
underlying FKEM. The reduction works as follows.

Setup:B first obtains (ParamOW, m̃pk
∗
) from FKEM. It then picks a random d ∈ [1, n],

and runs the setup algorithm Setup(ParamOW)
$→ (m̃pki, m̃ski) for all i ∈ [1, n]\d to

generate master key pairs. Finally, it sets mpk = (m̃pk1, ..., m̃pkn) where

m̃pki =

{
m̃pki if i 6= d,

m̃pk
∗

otherwise ,

and Param = ParamOW where H is treated as a random oracle controlled by the simu-
lator. Finally, the simulator returns (Param,mpk) to A.

H-Query: B maintains a hash list L to record all queries to the random oracle H .
If a query Q has been made and appears in the list (Q,R), B responds with the same
responseR. Otherwise, the simulator randomly choosesR from {0, 1}` as the response
R = H(Q) and adds (Q,R) into the list.

Phase 1: A requests the secret key of upk in this phase, which is adaptively cho-
sen by the adversary. The simulator B first queries upk to the key generation oracle
OK(·) which returns ũsk and sets ũskd = ũsk. For all other i ∈ [1, n]\d, B runs

KeyGen(Param, mpki,mski, upk)
$→ ũski by itself to compute ũski. Finally, it sets

usk = (ũsk1, ũsk2, ..., ũskn) and returns usk to A as the query response.

Challenge: A outputs two distinct challenge messages m0,m1 from {0, 1}n and a
challenge string str∗ with the restriction that for any upk queried in the Phase 1,
F (upk, str∗) 6= 1. B then forwards str∗ to FKEM and obtains the challenge encap-
sulation ciphertext C∗. Finally, B randomly chooses R ∈ {0, 1}` and sets the challenge
ciphertext as

CT∗ = (C∗,R) .

Phase 2:A issues more secret key queries on any chosen upk such that F (upk, str∗) 6=
1. B responds the same as in the Phase 1.
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Output: Finally, A outputs its guess coin′ ∈ {0, 1}. B then follows the approach in
Theory 3 to find the underlying key K∗ from the recorded hash list L to break the
FKEM.

This completes the description of simulation and solution. All master key pairs are
generated from the setup algorithm of FKEM. They are therefore indistinguishable from
the view of the adversary, such that the adversary has no advantage in guessing d. The
random oracle is simulated using truly random string, and hence the simulator performs
a correct simulation on the random oracle. Let C∗ = Encapc(ParamOW, str

∗, r∗). Since
C∗ is generated from the encapsulation algorithm and R∗ is randomly chosen, the chal-
lenge ciphertext is a one-time pad unless the adversary queries A∗n, which is defined
as

A∗i = H(A∗i−1) || Encapk(ParamOW, m̃pki, str
∗, r∗) || i : i ∈ [1, n], H(A∗0) = 0ε.

We have

K∗ = Encapk(ParamOW, m̃pkd, str
∗, r∗) = Encapk(ParamOW, m̃pk

∗
, str∗, r∗),

in A∗d is the solution to the FKEM. The approach of finding the correct encapsulation
key exactly falls into Theory 3 where the simulator can successfully pick a valid query
with probability 1/(nq

1
n ). According to the definition of advantage, the adversary will

make such a query with probability 2ε to the random oracle. We therefore yield Theo-
rem 1. �

4.3 Generic Conversion from OW-FKEM to IND-CCA-FE

Given an FKEM composed of

C = Encapc(ParamOW, str, r),

Ki = Encapk(ParamOW, m̃pki, str, r) : i ∈ [1, n],

we have shown how to construct an IND-CPA FE via

CT =
(
Encapc(ParamOW, str, r), H(An)⊕m

)
,

where Ai = H(Ai−1) || Ki || i : i ∈ [1, n], and H(A0) = 0ε.
We can further transfer the conversion from FKEM to FE with IND-CCA security

by applying the Fujisaki-Okamoto transformation approach [19, 20]. This approach re-
quires two more one-way secure hash functionsH1, H2 in the global system parameters
and they are also treated as random oracles in the security proof. The first hash function
H1 has the same output space as the randomness r and the second one H2 has the same
output space as H .

Taking as input Param,mpk, str and a message m ∈ {0, 1}`, the encryption algo-
rithm for IND-CCA security works as follows.

– Choose a random string σ ∈ {0, 1}` and compute r = H1(σ,m).
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– Run the IND-CPA encryption algorithm using the randomness r to encrypt σ, which
returns

(C1,C2) =
(
Encapc

(
ParamOW, str,H1(σ,m)

)
, H(An)⊕ σ

)
.

– Set C3 = H2(σ)⊕m.

The output ciphertext is

CT = (C1,C2,C3) =
(
Encapc(ParamOW, str,H1(σ,m)), H(An)⊕ σ, H2(σ)⊕m

)
.

In the corresponding decryption algorithm, the decryptor first runs the IND-CPA
decryption algorithm to obtain σ, and then it computes H2(σ) ⊕ C3 to obtain m. Fi-
nally, it outputs the message m if C1 is the generation using the randomness H1(σ,m).
Otherwise, it simply returns ⊥.

It is not hard to obtain the security proof based on the proposed security reduction
for CPA security and the Fujisaki-Okamoto transformation. First, all key queries will
be generated the same as the proof in Theorem 1; Second, all decryption queries will be
responded using the Fujisaki-Okamoto transformation approach. Finally, the challenge
ciphertext is simulated using (C∗,R1,R2), where C∗ is the challenge encapsulation from
FKEM and R1,R2 are random strings. From the view of the adversary, if the adversary
has an advantage in distinguishing the encrypted message, it must make a query on σ.
The probability of obtaining σ is bounded by a random guess which is negligible for a
large ` and bounded by breaking the IND-CPA construction. While the probability of
breaking the IND-CPA construction is bounded by making a query on An. Therefore,
if σ appears in the query list with probability 2ε, the probability of querying An is
nearly 2ε. The simulator then is able to break the underlying FKEM with probability
2ε/(nq1/n) by applying the approach in Theory 3.

4.4 Identity-Based Key Encapsulation Mechanism

At the end of this section, we give an instantiation using the Park-Lee identity-based
encryption [28], which can be modified to a key encapsulation mechanism satisfying
the requirement for short ciphertext in transformation. We choose this scheme as an
example because there is no security loss during the private key simulation. By using the
iterated random oracle, the corresponding encryption with indistinguishability security
can be tightly reduced to solve the Bilinear Diffie-Hellman problem.

SysGen: This algorithm takes as input the security parameter λ. It selects a
pairing group PG = (G,GT , g, p, e) and one secure one-way hash function
H1 : {0, 1}∗ → G. Then it randomly chooses u ∈ G. The global system pa-
rameters Param are

Param = (PG, u,H1).
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Setup: It randomly chooses α ∈ Zp and computes e(g, g)α. The algorithm returns
a master public/secret key pair (mpk,msk) as

mpk = e(g, g)α, msk = α.

KeyGen: The key generation algorithm takes as input Param, an identity ID ∈
{0, 1}∗ and the master key pair (mpk,msk). It randomly chooses s, tk ∈ Zp and
creates the private key as

dID = (d0, d1, d2, d3) =
(
tk, g

s,
(
H1(ID)utk

)s
, gαus

)
.

It requires that the random number tk for ID is the same in the private key gener-
ation.

Encap: The encryption algorithm takes as input Param, the master public key mpk
and an identity ID. It randomly chooses r, tc ∈ Zp and creates the ciphertext and
the encapsulation key as follows.

C = Encapc(Param, ID, r) =
(
tc, (H1(ID)utc)r, gr

)
,

K = Encapk(Param,mpk, ID, r) = e(g, g)α·r.

Decap: The decryption algorithm takes as input Param, the master public key mpk,
an identity ID, a private key dID and a ciphertext C = (C0,C1,C2). It computes
the random key as

K = e(d3,C2) ·
(
e(C1, d1)

e(C2, d2)

)− 1
tc−tk

.

The correctness of the decapsulation is showed as follows.

K = e(d3,C2) ·
(
e(C1, d1)

e(C2, d2)

)− 1
tc−tk

= e(gαus, gr) ·

 e
(
(H1(ID)utc)r, gs

)
e
(
gr,
(
H1(ID)utk

)s)
−

1
tc−tk

= e(g, g)αr · e(u, g)rs ·
(
e(u, g)rs(tc−tk)

)− 1
tc−tk

= e(g, g)αr.

Theorem 2 Let H1 be a random oracle. If there exists an adversary who can break the
Park-Lee identity-based key encapsulation mechanism with (t, q1, qk, ε) in the one-way
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security model, where the adversary makes q1 queries to H1 and qk numbers of private
keys, then we can construct a simulator to solve the BDH problem with (t+Ts, ε) where
Ts denotes the time cost of simulation.

Proof. Suppose there exists an adversary A who can break the identity-based encryp-
tion scheme. We can construct a simulator B to solve the BDH problem. Given as in-
put the instance (g, ga, gb, gc) in the pairing group PG, the simulator aims to compute
e(g, g)abc. B interacts with the adversary as follows.

Setup: B picks a random z ∈ Zp, sets u = gz−a, α = ab and computes e(g, g)α =
e(ga, gb). Then, it gives Param = (PG, u) and mpk = e(g, g)α except H1 to the
adversary, where H1 is treated as a random oracle controlled by the simulator.

H-Query: B maintains a hash list L1 to record all queries to the random oracle H1. If
a query IDi has been made and (IDi, xi, yi, H1(IDi)) is in the list, B responds with
H1(IDi). Otherwise, B randomly chooses xi, yi ∈ Zp, sets H1(IDi) = gxia+yi and
adds (IDi, xi, yi, H1(IDi)) into the hash list.

Phase 1: A requests private keys of identities in this phase. For the query on ID, B
first runs theH1 query to get the corresponding (ID, x, y,H1(ID)), randomly chooses
s ∈ Zp and computes the private key as

d0 = tk = x

d1 = gb+s

d2 = gb(y+xz)+s(y+xz)

d3 = gzs+zb−sa,

which can be computed by the simulator. Let s′ = b+ s and tk = x. We have

(d1, d2, d3) =
(
gs
′
, (H1(ID)utk)s

′
, gαus

′
)

=
(
gb+s, (gxa+ygx(z−a))b+s, gbag(z−a)(b+s)

)
=
(
gb+s, gb(y+xz)+s(y+xz), gzs+zb−sa

)
.

Therefore, dID = (d0, d1, d2, d3) is a valid private key of ID.

Challenge: The adversaryA outputs an identity ID∗ for challenge, where the adversary
never requested the private key of ID∗. Let the query response of ID in the random
oracle be (ID∗, x∗, y∗, H1(ID

∗)). The simulator B sets the challenge encapsulation as

C∗ =
(
x∗, g(y+x

∗z)c, gc
)
.

Ler r = c and tc = x∗. We have

C∗ =
(
tc, (H1(ID

∗)utc)r, gr
)

=
(
x∗, (gx

∗a+y∗gx
∗(z−a))c, gc

)
=
(
x∗, g(y+x

∗z)c, gc
)
.
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Therefore, C∗ is a valid challenge encapsulation whose corresponding key K∗ is

e(g, g)αr = e(g, g)abc.

Output: Finally,A outputs K∗ and the simulator outputs K∗ as the solution to the BDH
problem.

This completes the simulation and solution. We have that a, z are chosen randomly
and independently such that both Param and mpk are indistinguishable from the real
scheme. x, y are chosen randomly and independently such that the random oracle sim-
ulation is correctly performed. x∗, c are chosen randomly and independently such that
the challenge ciphertext is indistinguishable from the real scheme. According to the
definition of advantage and the assumption, we have the adversary will output K∗ with
probability ε and the simulator will solve the BDH problem with probability ε. This
completes the proof of Theorem 2. �

5 Tight Reduction for Key Exchange

The iterated random oracle can also be applied in the key exchange for tight(er) re-
duction in the IND-CHP security reduction. However, we observe that the application
is a little complicated due to many different definitions of key exchange protocols. In
this section, we discuss how to apply the iterated random oracle for this cryptographic
primitive and what will occur during the applications.

Identity-Based Non-Interactive Key Exchange (IB-NIKE). In the Sakai-Ohgishi-
Kasahara IB-NIKE protocol [29], the private key of ID is dID = H1(ID)α, where
α ∈ Zp is the master secret key and H1 : {0, 1}∗ → G is a collision-resistant hash
function. Here, the IB-NIKE is constructed over a pairing group. The NIKE between
IDA and IDB is defined as

K = H
(
e(dIDA , H1(IDB))

)
= H

(
e(dIDB , H1(IDA))

)
= H

(
e
(
H1(IDA), H1(IDB)

)α)
,

where H : {0, 1}∗ → {0, 1}` is another secure one-way hash function.
The above IB-NIKE protocol is provably secure in the random oracle model (as-

suming H1, H are random oracles) under the BDH assumption. The finding loss exists
because the simulator cannot decide which query in the adversary’s query set is the cor-
rect solution to the BDH problem. We can apply the iterated random oracle by iterating
the section keys as follows.

– Compute the private key dID of ID as

dID =
(
H1(ID, 1)

α, H1(ID, 2)
α, · · · , H1(ID, n)

α
)
.
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– Compute the i-th intermediate key between IDA and IDB as

Ki = e
(
H1(IDA, i), H1(IDB , i)

)α
.

– The final section key between IDA and IDB is H(EKn) where

EKi = H(EKi−1) ||Ki || i : i ∈ [1, n], where H(EK0) = 0ε.

It is not hard to prove its security when the simulator can simulate all private keys

except H(IDA, d)
α and H(IDB , d)

α where e
(
H1(IDA, d), H1(IDB , d)

)α
is pro-

grammed as the solution to the BDH problem. By applying Theory 3, we have the final
security reduction will have a very small finding loss.

In comparison with the original scheme, ours gives a tighter reduction. We admit
that our scheme requires each user to store n private keys. Although n can be as small
as 10, the final key length is still longer compared to the length of original scheme by
expending group size for security loss. Therefore, this construction is somewhat theoret-
ically interesting only for short length. However, when parallel computation is allowed,
all pairing computations and hash group operations in our scheme can be completed in
parallel within a group. Our scheme will reduce the time cost because there is no need
to expand group size for security loss.

Other (Authenticated) Key Exchange. Similarly, we can utilize the above approach
to solve the finding loss in other key exchange protocols by generating n keys for each
user instead of one. Only the d-th sub-key can be programmed to solve a hard problem
while the others can be simulated or computed by the simulator. However, it seems that
we still have to resort to the help of decision oracle [18] because the simulator cannot
simulate some section keys for the adversary. Let upkA and upkB be the challenge public
keys. In the security model for key exchange, the adversary is allowed to launch section
key query between for example upkA and a corrupted user namely upkC. Notice that
the secret key of uskA is unknown (only the d-th sub-key is programmed as unknown).
When the secret key of uskC is also unknown, the simulator cannot simulate the section
keys correctly for the adversary especially on the random oracle without the help of
decision oracle. If the assumption still needs a decision oracle, there is no finding loss
in security reduction because the simulator can use the decision oracle to find the correct
solution.

We emphasize that there is still a benefit of applying the iterated random oracle for
key exchange, whose security assumption is a strong computational assumption with
a decision oracle. Notice that the iterated random oracle will exponentially consume
the hash queries from the adversary if it wants to hide the challenge query. Then, the
simulator can make less number of queries to the decision oracle especially when the
simulator wants to simulate the section key and find the correct solution. That is, by
applying the iterated random oracle, we can adopt a strong computational assumption
where the access time to the decision oracle is bounded with a small number. This
assumption is better than the assumption with q times access to the decision oracle.
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6 Conclusion

Finding loss is a common security loss in those security reductions for indistinguisha-
bility security under computational hard assumptions, when their decisional variants are
also hard. This security loss will result in a significant loose reduction by a random pick
because the number of queries can be as large as 260. The novel Cash-Kiltz-Shoup’s ap-
proach is efficient without any finding loss, but can only be applied to a computational
hard problem with a trapdoor test. We proposed a completely new approach, namely the
iterated random oracle, as a universal approach for finding loss, which can be applied to
any computational hard problem without any restriction on the adopted hard problem.
The finding loss in this approach is very small. The corresponding success probability
is 1

64 compared to 1
260 by a random pick. This approach has been applied to achieve a

security transformation for encryption and key exchange towards tight(er) reductions.
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