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Abstract. We revisit the t-round Even-Mansour (EM) scheme with random oracle key derivation previ-
ously considered by Andreeva et al. (CRYPTO 2013), namely,

xork ◦Pt ◦ xork ◦ . . . ◦ xork ◦P2 ◦ xork ◦P1 ◦ xork,

where P1, . . . ,Pt stand for t independent n-bit random permutations, xork is the operation of xoring with
the n-bit round-key k = H(K) for a κ-to-n-bit bit random oracle H on a κ-bit main key K. For this
scheme, Andreeva et al. provided an indifferentiability (from an ideal (κ, n)-cipher) proof for 5 rounds
while they exhibited an attack for 2 rounds. Left open is the (in)differentiability of 3 and 4 rounds.
We present a proof for the indifferentiability of 3 rounds and thus close the aforementioned gap. This
also separates EM ciphers with non-invertible key derivations from those with invertible ones in the
“full” indifferentiability setting. Prior work only established such a separation in the weaker sequential-
indifferentiability setting (ours, DCC, 2015). Our results also imply 3-round EM indifferentiable under
multiple random known-keys, partially settling a problem left by Cogliati and Seurin (FSE 2016).
The key point for our indifferentiability simulator is to pre-emptively prepare some chains of ideal-cipher-
queries to simulate the structures due to the related-key boomerang property in the 3-round case. The
length of such chains has to be as large as the number of queries issued by the distinguisher. Thus the
situation somehow resembles the context of hash-of-hash H2 considered by Dodis et al. (CRYPTO 2012).
Besides, a technical novelty of our proof is the absence of the so-called distinguisher that completes all
chains.

Keywords: blockcipher, ideal cipher, indifferentiability, key-alternating cipher, iterated Even-Mansour cipher,
H-coefficients technique.
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1 Introduction

A fundamental cryptographic problem is to construct secure blockciphers from permutations. A natural so-
lution is the iterated Even-Mansour (EM) scheme (a.k.a. key-alternating cipher), which is abstracted from
the widely used blockcipher design paradigm substitution-permutation networks. Notable instances include
Rijndael—the current AES standard—and Serpent [ABK98]—the most competitive contender of Rijndael.
Theoretical understanding of this scheme is thereby crucial. Modeling the underlying permutations as pub-
lic random permutations (RPs) and with different number of rounds, it is possible to prove different levels



of security for (variants of) this scheme, such as pseudorandomness (secure in the traditional secret key set-
ting) [EM97,BKL+12,Ste12,LPS12,CS14,CLL+14], related-key pseudorandomness (secure against related-key
attacks [Bih94]) [FP15,CS15b], security in a practice-relevant multi-user setting [ML15,HT16], security against
known-key attacks [ABM13,CS16], correlation intractability [CS15b,GL15c], and indifferentiability from ideal
ciphers [ABD+13a,LS13,GL15a]. Although ideal models are uninstantiatable [CGH04,MRH04,Bla06], such ar-
guments are widely accepted as showing the absence of generic attacks as well as the soundness of the design
approaches.

Briefly speaking, for EMP built from RPs P, if there exists an efficient simulator SE that could mimic
the (non-existent) underlying permutations by accessing an ideal cipher E (a randomly selected blockcipher),
such that (E, SE) looks the same as (EMP,P), then EMP is indifferentiable from E [MRH04]. Intuitively, this
means EMP “behaves” as E in a well-defined sense, and thus sheds lights on how to build highly secure ciphers
from permutations. To establish indifferentiability, one needs to design capable simulators that could resist all
distinguishers;3 to disprove, one needs to exhibit a distinguisher that collapses all simulators.

For different variants of EM, indifferentiability is achieved at different number of rounds. The first such
results were given by Andreeva, Bogdanov, Dodis, Mennink, and Steinberger (ABDMS), on a kind of EM with
strong non-invertible key derivation [ABD+13a], which we call EM with Random oracle key derivation (EMR).
Formally, the t-round scheme EMRt uses t independent n-bit RPs P1, . . . ,Pt and a κ-to-n-bit random oracle
H, and sets k = H(K),

EMRt.Enc(K,x) = k ⊕Pt(k ⊕Pt−1(. . .P1(k ⊕ x) . . .))

for a main key K ∈ {0, 1}κ and a message x ∈ {0, 1}n. Cf. Fig. 1 (left).

P1

K

. . .x Pt−1 Pt y

H

K P0

Fig. 1. (Left) the t-round EMR scheme; (Right) un-keyed Davies-Meyer key derivation KD(K) = P (K)⊕K.

For such schemes ABDMS gave both positive and negative results depending on the number of rounds. For
two rounds they exhibited a distinguishing attack (this negative result was indeed applicable to 2-round EM
with any key schedule), while for five rounds they offered an indifferentiability proof. This leaves an obvious gap
between the positive and the negative results, cf. Table 1. ABDMS also exhibited an attack against 3 rounds
EMR3, to show that their proof approach cannot be applied to 3 rounds. However, there’s no evidence that this
attack can collapse all simulators. Therefore, the status of EMR3 remains unclear. Here we remark please do
not take EMR3 as differentiable. For this, we emphasize that in page 13 of [ABD+13a], it writes: Firstly, no
tripwire simulator with 3 rounds is secure,... Not all simulators are “tripwire simulators”.

Our Contribution. We give a positive answer on the indifferentiability of EMR3. In the most common case,

our simulator makes O(q4) queries to the ideal cipher and achieves O( q
12

N ) security (N denotes 2n, and will
be used throughout the remaining). Although worse than ABDMS’s simulator for EMR5 (which needs O(q2)

queries and delivers O( q
10

N ) security), this does close the mentioned annoying gap, cf. Table 1. Indeed, due to
the existence of pseudo-attacks4 on EMR3, the security lose seems somewhat inevitable—although we have not
been able to prove or disprove its tightness.

As ABDMS has exhibited a distinguisher on 3-round EM with (even idealized) invertible key schedule, our
positive result also definitively separates such EM from EM with non-invertible key schedule in the full indiffer-
entiability setting. Previously, such separation was only established in the weaker sequential-indifferentiability
setting [GL15c] (cf. [MPS12] for sequential-indifferentiability). We remark that this work is much more technical
than [GL15c], as optimal proofs in sequential-indifferentiability setting are much easier than their analogues in
the full indifferentiability setting.

3 To ensure secure compositions, ∀D∃S-style indifferentiability results already suffice, cf. its original definition [MRH04].
However, existing positive results are usually stronger ∃S∀D-style ones, e.g. [CDMP05].

4 Refer to the attack(s) able to collapse a very large class of (but not all) simulators.
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To reach this proof, we deeply investigate the structural properties of 3-round single-key EM. Such properties
might be of independent interest. Also, this somewhat matches a conjecture of Holenstein et al.: finding optimal
indifferentiability proof for Feistel requires a deep understanding of the structures. While they focused on Feistel,
we think their conjecture also covers EMR.

Table 1. State of the art of indifferentiability of EMR.

♯ rounds Indifferentiable? (by [ABD+13a]) This work

≤2 no -
3 unclear yes
4 unclear (yes trivially)
≥5 yes -

ABDMS also considered purely permutation-based EM variants, and suggested the most efficient solution
is to use an un-keyed Davies-Meyer key derivation KD(K) = P(K) ⊕K to replace H, cf. Fig. 1 (right). The
RP used in this key derivation should be independent from the round-permutations. We denote this variant by
EMDPt. Our positive result on EMR3 can be easily extended to EMDP3, just as ABDMS extended theirs on
EMR5 to EMDP5. This shows an indifferentiable (n, n)-cipher can be built via four RP calls, which is currently
the best known result.

We also observe strong relations between the indifferentiability of EMR and the multiple known-key indif-
ferentiability of the single-key EM (SEM). Concretely, our main result implies that for ζ > 1, under ζ random
known-keys, the following idealized cipher SEM3 is indifferentiable from an ideal (n, n)-cipher (cf. Fig. 2):

SEM3.Enc(k, x) = k ⊕P3(k ⊕P2(k ⊕P1(k ⊕ x)))

This partially settles a problem left by Cogliati and Seurin [CS16]. As they showed SEM2 can be attacked under
two arbitrary known-keys, this positive result is also tight with respect to rounds.5

P1

k

x yP2 P3

Fig. 2. The 3-round single-key Even-Mansour. There’s no key derivation.

A technical contribution is to give the first proof for idealized blockciphers without the so-called distinguisher
that completes all chains (would be refereed by D). In [ABD+13a], finding such a clean-cut proof was mentioned
as a significant technical innovation; indeed, compared to the previous analysis, our proof is not much more
complicated. See the proof overview in Section 2 for more details.

Other Related Work. On EM, besides the aforementioned security proofs, two other nice series should also be
mentioned: the generic key-recovery attacks [Dae93,DKS15,NWW13,DDKS16,DDKS14], and the idea of basing
tweakable blockciphers [LRW11] on EM [CLS15,Men16,CS15a,GJMN16].

Organization. Section 2 gives an overview of our proof. In Section 3 we establish some convention and
definitions. The formal theorem is also presented in Section 3, page 8. Then, Sections 4-6 describe our simulator
as well as the underlying intuitions, while Section 7-12 prove the main result on EMR∗3. These are followed by
Section 13, which transits the main result on EMR∗3 to EMR3. Finally, Sections 14 and 15 transit the main result
to indifferentiability of EMDP3 and multiple known-key indifferentiability of SEM3 respectively.

2 Overview of the Proof

The following five paragraphs sequentially list the three key steps of our indifferentiability proof for EMR3, how
did we eliminate D, and how to relate the main result to indifferentiability under multiple random known-keys.

5 However, they conjectured 4-round SEM4 indifferentiable under any set of ζ known-keys, which is not settled by us.
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Peeling off Whitening Keys. Consider a simplified variant EMR∗3, which is obtained by “peeling off” the
two whitening keys in EMR3:

Pt ◦ xork ◦ . . . ◦ xork ◦P2 ◦ xork ◦P1.

Our first observation is that most useful simulators for EMR∗3 could be translated into similarly useful simulators
for EMR3. Thus we first focus on EMR∗3 and prove concrete results for it. In our opinion, this scheme-level switch
simplifies the proof language as well as the illustrations a lot.

We note that a similar claim was made in [ABD+13b], an earlier version of [ABD+13a]: if E is indifferentiable
from E and a, b are known constants that only depend on K (i.e. independent of the n-bit input blocks), then
the cipher xorb ◦ E ◦ xora is also indifferentiable from E. For many FX-like ciphers within imagination, the
argument is clear; however, for the relation between EMR3 and EMR∗3 the argument seems non-trivial, because
the whitening keys and the “internal” round-keys have to be derived via the same primitive. For this, our
simulator S for EMR∗3 possesses a nice property: each time it issues a query (K, z) to E, it has simulated the

round-key k for K. Thus from S we can build a simulator S̃ for EMR3, and proves S̃ delivers exactly the same
security as S, cf. Section 13. Briefly, S̃ runs S: whenever S queries (K, z) to E, S̃ relays (K, k ⊕ z) to E and
returns the masked answer k ⊕ z′ to S. This “round-key-simulated” property may not hold for any arbitrary
effective simulators—in fact, we exhibit an artificial simulator for EMR∗3 for which our transition method and
proof seem not applicable, cf. Appendix A. (This, however, does not harm our positive results.)

Blocking ABDMS’s Pseudo-Attack. Our second observation is based on the already mentioned ABDMS’s
pseudo-attack on EMR∗3/EMR3. We show it can be generalized to a more powerful one. Briefly speaking, ABDMS
observed in EMR∗3 that if P1(x1,1) ⊕ k1 = P1(x

′
1,1) ⊕ k2, then it holds P1(x1,2) ⊕ k2 = P1(x

′
1,2) ⊕ k1 for

x1,2 = E−1(K2,E(K1, x1,1)) and x′1,2 = E−1(K1,E(K2, x
′
1,1)) (E and E−1 are the interfaces of EMR∗3. For hints

on the reason, please jump ahead for Fig. 3). Whereas we further observe that P1(x1,l+1)⊕k2 = P1(x
′
1,l+1)⊕k1

for x1,l+1 = (E−1K2
◦ EK1)

l(x1,1) and x′1,l+1 = (E−1K1
◦ EK2)

l(x′1,1) holds for l ≥ 2. To verify this relation, the

adversary mainly needs to query E/EMR∗3 to obtain two sequences of values x1,1
K1

o y1,1
K2

o x1,2
K1

o y1,2
K2

o . . . and

x′1,1
K2

o y′1,1
K1

o x′1,2
K2

o y′1,2
K1

o . . ., thus it can “avoid the attention of many natural simulators” (cf. subsection 5.1).
We thus conclude that the natural simulation-via-chain-completion approach initiated by Coron et al. [CHK+16]

cannot succeed (when solely used) in this context. However, a simulator can re-gain the awareness of “what

the distinguisher is trying to do”, if itself prepares a structure as described, e.g. it queries E to get x1,1

EK1−−−→

y1,1
E−1

K2−−−→ x1,2

EK1−−−→ . . . and x′1,1
EK2−−−→ y′1,1

E−1
K1−−−→ x′1,2

EK2−−−→ . . ., and internally enforces the relation P1(x1,i) =
P1(x

′
1,i) ⊕ k1 ⊕ k2 for each i and simulated P1. Intuitively, if the distinguisher makes no more than q queries,

then as long as the prepared chains are a bit longer than q, the adversary cannot build a longer chain itself and
cannot fool the simulator by utilizing the “unready structures”. The situation is a bit similar to the hash-of-hash
H2 = H ◦H studied by Dodis et al. [DRST12].

Compared to [DRST12], our work has two deviations. First, EMR∗3 is a domain-extension scheme (while H2 is
not), and this significantly increase the complexity of this mechanism and the subsequent analysis. Second, when
the distinguisher “moves” in the chains prepared by the simulator, Dodis et al. required the simulator to extend
the chains to keep the “cursor” of the distinguisher within control. While we observe that it’s not necessary, if
the prepared chains are sufficiently long. To give a formal argument, we prove (via a very cumbersome analysis)
that the maximum length of the chains formed by values that are “known” to the distinguisher cannot exceed
the length of the chains prepared by the simulator. This technical improvement may not be very helpful for
the proof for H2, but we think it does befit us a lot, because the mechanism for our simulator to extend the
structure involved in our proof (as well as the relevant argument) would be very complicated (jumping ahead,
see Fig. 4).

To some extent, our simulator distinguishes “internal” queries from distinguisher’s queries, and settles a
question mentioned by Dai and Steinberger [DS16].

Transferring Meta-data. Generally, indifferentiability simulators have to keep already simulated function
values, and internally define some function values to enforce consistency with the targeted schemes. Such actions
are known as “adapting”. When adapting, if the simulator tries to redefine an already defined function value—
e.g. if it has defined P1(x1)← y1, while later has to define P1(x1)← y′1 to adapt a chain—it fails. To prove that
the simulator always succeed in adapting with all but negligible probability is one of the main sub-goals.

Around this sub-goal, we indeed encounter a problem. In detail, in a recursive chain completion process, our
simulator needs to recursively adapt a lot of chains by defining many input-output (IO) pairs (x1, y1) of P1:
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P1(x1) ← y1 and P−11 (y1) ← x1. For these adaptations, the argument for P1(x1): when it is to define such a
pair (x1, y1) to complete a chain C, it would find x1 a fresh random value given by a recent (decryption) query
to E. Clearly, with high probability (w.h.p.) x1 would not appear in P1 and P1(x1) is undefined. On the other
hand, although the other entry P−11 (y1) may be undefined before this process, during the period between the
commence of this process and the adaptation P−11 (y1)← x1, it may be occupied by another chain, which would
render the adaptation failed. To argue that this kind of event is unlikely is very cumbersome and error-prone.

To describe our solution, let’s first recall how ABDMS succeeded in their 5-round case [ABD+13a]. Briefly,
during a recursive chain completion process, values of the form x2 ⊕ k and y2 ⊕ k (for some defined IO pair
(x2, y2) of P2 and derived round-key k) are consumed by adaptations one-by-one, thus the failure of adaptations
is reduced to the occurrence of cycles in the topological structures with x2 ⊕ k and y2 ⊕ k as nodes and (x2, y2)
as edges. However, ABDMS’s simulator never adapts the assignments of the simulated permutation P2. This
means each time a pair of assignments P2(x2) ← y2 and P−12 (y2) ← x2 occur, either x2 or y2 is a recently
sampled random value. Therefore, the occurrence of cycles is basically equivalent to collisions of random values,
which is clearly negligible.6 For a formal proof, ABDMS introduced the explicit bookkeeping approach: each
time a new function value is defined, their simulator keeps the direction of the corresponding query (forward,
backward, or adapted) and the current value of a query-counter as the associated “meta-data”. Such meta-data
allow the prover to partially recover the past execution, and cinch the impossibility proof for cycles.

One may hope we could reserve our P2 as such a “random” round and then borrow ABDMS’s reduction.
Unfortunately, this is not possible, because in some cases the simulator has to adapt in P2, cf. Appendix B.7

Our solution is a meta-data transferring approach: each time the simulator is to adapt an assignment of P2, we
find the E-query (i.e. ideal-cipher-query) corresponding to the chain that is being completed, and associate the
meta-data of this E-query to this “adapted assignment”. The features of these E-queries enforce some features on
the “adjacent” assignments in P1 and P3, and these further enforce some features on the “adapted assignments”
in P2, which are reflected by these transferred meta-data. With the help of these features, we are finally able
to prove that the mentioned topological structures formed by all 2-queries along with derived round-keys are
directed trees, and thus adaptations will succeed. We also reduce a lot of undesirable structures to certain types
of cycles in the above topological structures, thus the acyclicity also cinches the impossibility proof for these
structures. We think this offers a new solution to prove in extremely restricted cases—even cases with no “buffer
rounds”.

Go, D. We first recall why indifferentiability proofs for idealized blockciphers typically rely on D. For clearness,
take the proof for EMR∗3 as an example, and denote by G2(E, S) and G3(EMR∗3, (H,P)) the two systems in
question (as done in subsection 12.2). Such analysis usually proves the indistinguishability of G2 and G3 via a
randomness mapping argument (RMA) [CHK+16]. A classical RMA would require one to define a map to link
most G2 and G3 executions for a fixed distinguisher D. G2 and G3 executions linked by this map have the same
behavior in the view of D, and have similar probabilities of occurring [ABD+13a].

However, note that the amount of randomness used by G2 executions may not be the same as that used
by G3 executions. For this, assuming D asks only one encryption query (K,x1). To answer this query, in the
execution DG2(E,S), G2 (more precisely, E) only needs to sample 1 n-bit random value. On the other hand, in
G3(EMR∗3, (H,P)), G3 (more precisely, (H,P)) needs to sample 4 n-bit random values k, y1, y2, y3. Thus the
amount of randomness needed by the two systems are different, and such two executions do not have similar
probabilities of occurring—although they may have the same behaviors in the view of D.

Here lies the crucialness of D: if D ensures each encyption/decryption query has their complete computation
chain exist in the (G2 or G3) execution, then G2 generally needs to sample 4 n-bit random values to fill in the
corresponding chain, until only one round is missing; and G2 (more precisely, S) then adapts at this round. For
example, maybe S first samples k, y1, y2, then E samples the forth random value y3, and then S adapts at P3

6 An alternative direct explanation is as follows. Since each assignment of P2 involves at least one random “endpoint”,
w.h.p. they along with the derived round-keys give rise to many tree structures. Then during a recursive chain
completion process, values in such trees are consumed (by adaptation) from the root to each leaf. Since the path
between the root and each leaf is unique, no earlier chain completion could occupy the adaptation-values supposed to
be used by another chain.

7 Another successful line relies on “buffer rounds” or “pending queries”, which are round-function-values adjacent to
the adaptation-rounds, and will be defined to fresh random values right before adaptations [HKT11,LS13,DSKT16].
The most recent one is due to Dai and Steinberger [DS16], which also used a tree-based argument to prove the
“undefinedness” of pending queries. However, in EMR∗

3, it seems we do not have enough space for such buffer rounds.
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(i.e. defining P3(y2 ⊕ k)← y3). By this, the number of random values used by two “typical” executions are the
same, so that the two executions can occur with close probability.

From the above discussion, it can be seen to get rid of D, the crucial point is to deal with the probability
issues around the “isolated” E-queries that do not have their corresponding chains exist in the execution. We
will call such “isolated” E-queries type II. For such type II E-queries, we only consider the probability for G3

executions give the same answers as the G2 executions. In other words, we ignore the “redundant” randomness
used by G3 to answer type II E-queries. We finally prove that in G3 executions, each type II E-query can
be associated with a unique “fresh” input-output pair (x2, y2) of P2. By this, the probabilities of G2 and G3

executions providing a certain tuple of answers to type II E-queries are both close to 1
Nq2

, with q2 being the
number of type II E-queries. The other queries—including the H- and P-queries, and the type I E-queries that
have their corresponding chains exist—are handled with the classical RMA (this part of the argument is called the
randomness mapping part). In this sense, we indeed combine RMA with the H-coefficients technique [Pat09].
We call this method partial randomness mapping argument. In fact, to prove the indistinguishability of two
random systems G2 and G3, the two techniques share the same core idea: they both require (either explicitly or
implicitly) relating most of the G2 and G3 executions, such that: (i) the related G2 and G3 executions have the
same behaviors in the view of the distinguisher; (ii) the related G2 and G3 executions have close probabilities
of occurring. It’s this common idea that enables us to combine them.

To Indifferentiability under Multiple Random Known-keys. The relation lies in the following intu-
ition: consider a distinguisher D against EMR3, which first asks the random oracle to derive ζ round-keys
k1, . . . , kζ for K1, . . . ,Kζ and then queries the permutations EK1 , . . . ,EKζ

and P to figure out something.
This interaction is indeed like a known-key distinguisher DKK running on SEM3 under ζ random known-keys
k1, . . . , kζ . Thus based on the indifferentiability simulator for EMR3, we could build a simulator SKK for SEM3

in this ζ random known-keys setting.

3 Definitions and the Main Result

Notation for Main & Round Keys. Throughout this paper, all the main keys are denoted by the capital
letter K, while all the round keys are denoted by the lower-case letter k (with superscripts or subscripts,
whenever necessary). Our simulator would ensure a bijection between the main-keys and the round-keys. Thus
to simplify a lot of phrases like “kji = R.H(Kj

i )”, we strictly keep the consistency between the superscripts
and subscripts of the main-keys and their corresponding round-keys, so that the superscripts and subscripts
are sufficient to indicate “which are whose” (and thus we omit the otherwise frequently appearing phrases
“kji = R.H(Kj

i )”). For example, after introducing a main-key Kj
i , we will use the notation kji to refer to its

round-key, and vice versa.

Ideal Primitives and their Interfaces. A random oracle H is an ideal primitive which returns a random
fixed-length string if x was never queried, or the same answer as before if x was previously queried. The random
oracles considered in this work map κ-bit inputs to n-bit outputs. An n-bit RP P is a permutation that is
uniformly selected from all (N)! possible choices. Note that EMR3 has access to both a random oracle and
three random permutations. To simplify the notation, we use the notation R to denote a tuple of such random
primitives (H,P1,P2,P3). We let such a tuple provide an interfaceR.H(K) := {0, 1}κ → {0, 1}n for the random
oracle and six other interfaces R.Pi(z) and R.Pi−1(z) := {0, 1}n → {0, 1}n for the three random permutations
(i ∈ {1, 2, 3} is the index and z ∈ {0, 1}n is the queried n-bit value).

Ideal ciphers have been mentioned before. In the rest part, the notation E refers to an ideal (κ, n)-blockcipher,
and the interfaces are E.E(K, z) := {0, 1}κ×{0, 1}n → {0, 1}n and E.E−1(K, z) := {0, 1}κ×{0, 1}n → {0, 1}n.

Indifferentiability. Indifferentiability framework [MRH04] addresses idealized constructions in settings where
no underlying element (including building blocks and parameters) is secret. For concreteness, consider EMRR

3 :

a distinguisher DEMRR
3 ,R with oracle access to the cipher EMRR

3 and the underlying primitives R is trying to
distinguish EMRR

3 from E. Then, a definition equivalent to [MRH04] is as follows.

Definition 1 (Indifferentiability). The idealized blockcipher EMRR
3 with oracle access to ideal primitives R

is said to be statistically (q, σ, t, ε)-indifferentiable from an ideal cipher E if for any distinguisher D which issues
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at most q queries, there exists a simulator SE s.t. S makes at most σ queries to E, runs in time at most t, and

AdvindifEMR3,E,S(D) =
∣∣∣Pr[DEMRR

3 ,R = 1]− Pr[DE,SE

= 1]
∣∣∣ ≤ ε

Such a result means that EMRR
3 can safely replace E whenever a polynomial blow-up of the adversary’s time

and memory requirements is acceptable, cf. [RSS11,DGHM13] for the discussion on this issue.

The Main Result. Formally stated as the following theorem:

Theorem 1. Assuming that R is a tuple consisting of a κ-to-n-bit random oracle and three independent random
permutations. Then for the (κ, n)-blockcipher EMR3 built from R, there exists a simulator S̃ such that

Advindif
EMR3,E,S̃

(D) ≤
2514q6h(qe + qp)

2 · q4p
N

+
1805q2e(qe + qp)

2 · q4p
N

+
2q4h + 10q2e + qe · qh

N

for any distinguisher D that makes at most qe, qh, and qp queries to the encryption/decryption oracle, the

random oracle, and the random permutations respectively. Moreover, S̃ makes at most 26qh · (qe+qp) ·q2p queries
to the ideal (κ, n)-blockcipher E and runs in time O((qe + qp)

2 · q4p + qh(qe + qp)
2 · q4p).

The readability of Theorem 1 is a bit bad. When qe = qh = qp = O(q) (the most common case), the first term

in Advindif
EMR3,E,S̃

(D) dominates the bound, leading it to Advindif
EMR3,E,S̃

(D) = O
(

q12

N

)
, while the two complexity

bounds are O(q4) and O(q7) respectively. Thus EMR3 is statistically (q,O(q4), O(q7), O( q
12

N ))-indifferentiable
from an ideal (κ, n)-cipher.

Two extreme cases are also covered by our complicated bound. First, when qh = qp = 0, the bound collapses
to O(q2e/N), which matches a simple attack utilizing collisions of round-keys.8 On the other hand, when qh =
qe = 0, the bound is 0, which matches the intuition that one cannot differentiate EMR3 from E by only querying
the underlying permutations.9

As mentioned, Theorem 1 is derived from the following theorem on EMR∗3, which is indeed the focus of the
main body of this paper.

Theorem 2. Assuming that R is a tuple consisting of a κ-to-n-bit random oracle and three independent random
permutations. Then for the (κ, n)-blockcipher EMR∗3 built from R, there exists a simulator S such that

AdvindifEMR∗
3 ,E,S(D) ≤

2514q6h(qe + qp)
2 · q4p

N
+

1805q2e(qe + qp)
2 · q4p

N
+

2q4h + 10q2e + qe · qh
N

for any distinguisher D that makes at most qe, qh, and qp queries to the encryption/decryption oracle, the
random oracle, and the random permutations respectively. Moreover, S makes at most 26qh · (qe+qp) ·q2p queries
to the ideal (κ, n)-blockcipher E and runs in time O((qe + qp)

2 · q4p + qh(qe + qp)
2 · q4p).

Like [DRST12], our simulator S must know ahead the maximum number of queries the distinguisher is to
make, but does not otherwise depend on its concrete distinguishing strategy. Thus similarly to [HKT11], the
result proved in this paper implies EMR∗3 indifferentiable under the original definition of Maurer et al. [MRH04]
(Definition 1), but not under the stronger one of Coron et al. [CDMP05].

Briefly, our simulator S can be seen as ABDMS’s “näıve tripwire simulator” [ABD+13a] enhanced with our
“rhizome simulation mechanism”. So to present S, we first recall ABDMS’s näıve simulator in Section 4, then
motivate the rhizome strategy in Section 5, and finally complete the description in Section 6.

8 The distinguisher D first asks qe queries of the form E(K1, p) . . . ,E(Kqe , p) to EMR3. With probability O(q2e/N), there
are two main-keys Ki and Kj that correspond to the same round-key, i.e. R.H(Ki) = R.H(Kj), and this will lead to
E(Ki, p) = E(Kj , p). Thus if D finds E(Ki, p) = E(Kj , p) then it further asks and checks if E(Ki, p

′) = E(Kj , p
′) for

another plaintext p′. For EMR3 if the round-key-collision occurs (with probability O(q2e/N)) then E(Ki, p
′) = E(Kj , p

′)
necessarily holds, while for the ideal cipher E the probability of E(Ki, p

′) = E(Kj , p
′) is O(1/N).

9 One may think this is false—did the well-known known-key attacks necessarily query the encryption and decryption
oracles? But here we emphasize our discussion in case qh = qe = 0 only applies to EM with idealized key schedule!
While the key schedule algorithms of practical key-alternating ciphers (e.g. AES) usually cannot be deemed idealized !!
(These ciphers are better modeled as SEM.)
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4 Näıve Tripwire Simulator for EMR∗
3

4.1 Basic Issues

The näıve simulator S∗ offers the same seven interfaces as R, i.e. H, Pi, and Pi−1 for i = 1, 2, 3. To describe
the interaction between D, S∗, and E, we use the notation Or(z)→ z′ to indicate that D queries S∗.Or on z
and S∗ answers with z′. We similarly use E(K,x1) → y3 to mean that either D or S∗ queries E.E on (K,x1)
and E returns y3, and E−1(K, y3)→ x1 vice versa.

S∗ internally keeps already answered queries: after D querying Pi(xi) → yi, it keeps a record (i, xi, yi,→)
in a set Queries, where i indicates the index, xi, yi indicate the query and answer, and → indicates the query
is a forward one; after D querying Pi−1(yi)→ xi, it similarly keeps (i, xi, yi,←) in Queries. Whenever the last
coordinate is not of interest to the discussion at hand, it will be omitted. Such tuples are called i-queries, and
we use the term P-query to indifferently refer to i-query for any i. S∗ may call Pi/Pi−1 itself and internally
create such records.

Besides, after D querying H(K) → k, S∗ keeps a record (K, k) (called an H-query) in a set HQueries.
Whenever S∗ newly simulates a query-answer pair and adds a record (i, xi, yi) to Queries ((K, k) to HQueries,
resp.) as the result of either answering D’s query or S∗’s inner actions, we say it creates a new i-query, resp.
H-query. The queries that have been recorded are called old.

Upon an old query from D, S∗ simply replies with the recorded answer; whereas upon a new one, S∗

randomly sample an answer, so that it looks like some random primitives. To handily describe how these
random answers are drawn, we follow [CS15b] and make the randomness used by S∗ explicit through a tuple
of random primitives R = (H,P1,P2,P3). This means if S∗ needs to assign a random answer yi to a new
query Pi(xi), S

∗ queries R and sets yi ← R.Pi(xi) and creates (i, xi, yi,→); if S∗ needs to derive a round-key
k for H(K), S∗ sets k ← R.H(K) and creates (K, k).10 We denote by S∗E,R the simulator accessing E and R.
However, for convenience, we keep saying “randomly sample” to refer to such actions of S∗.

Finally, we call a triple (K,x1, y3) an E-query, if eitherD or S∗ has asked E(K,x1)→ y3 or E
−1(K, y3)→ x1.

We further call the following 5-tuple of queries

(K, k), (K,x1, y3), (1, x1, y1), (2, x2, y2), (3, x3, y3)

with y1 ⊕ x2 = y2 ⊕ x3 = k a completed K-chain. Such a chain indicates a cycle of values x1 − y1 − x2 − y2 −
x3 − y3 − (x1).

It’s easy to see when interacting with (EMR∗3,R), the answers given by EMR∗3 and R always form such
completed chains. To generate similar interactions, S∗ “detects” such chains formed by D’s queries, and pre-
emptively completes them by internally creating some consistent queries (so that the simulated answers form
similar completed chains with E’s answers). The term tripwire is indeed an elegant mechanism for detecting
chains. We’ll expand on this issue.

4.2 Chain Detection: Tripwires

For clearness, we demonstrate how the simulator detects chains via an example. If D has asked H(K)→ k and
P1(x1) → y1 and P2(x2) → y2 for x2 = k ⊕ y1, then as the 3-query is the only missing one of the chain, D
knows P3(x3) = E(K,x1) (x3 = k ⊕ y2) if it’s in the real world. In this case, it seems better if the simulator
is also aware of the last relation. Indeed, the näıve tripwire simulator of ABDMS would detect a (partial)
chain x1 − y1 − x2 upon D querying P2(x2) [ABD+13a], and then complete the chain to enforce the relation
P3(x3) = E(K,x1)—for example, the simulator may first sample a random y2 and create (2, x2, y2,→) and then
create a 3-query (3, x3, y3,⊥) with x3 = y2 ⊕ k. ABDMS called this detection condition a 12-tripwire; to save
some letters, we abbreviate it as 12-TP.

We call the records associated with ⊥ AD-queries. Whenever creating an AD-query will render the simulated
permutation inconsistent, e.g. if there already exists a 3-query (3, x3, y

′
3) before S∗ is to create (3, x3, y3,⊥),

then S∗ aborts and does not create this “bad” query. In this way, the records in Queries are always consistent
with three partial permutations (and one partial function). However, by abortion the distinguisher clearly knows
it’s the simulated system, so we have to prove the probability of abortions is negligible.

Similarly, we could design three additional TPs, i.e. 23-, 21-, and 32-TPs. We could also let it “penetrate” E,
say, design 13- and 31-TPs. These constitute all the TPs of the näıve simulator for EMR3. They are summarized
as follows (in each of the following cases, the simulator detects chains).

10 As argued by Andreeva et al. [ABD+13a,CS15b], using such explicit randomness is equivalent to lazily sampling enough
randomness at the beginning of the experiment.
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– 12-TP : (as mentioned) upon P2(x2), if there exist k ∈ Z and (1, x1, y1) with y1 ⊕ k = x2;
– 32-TP : similar to 12-TP by symmetry;
– 21-TP : upon P1−1(y1), if there exist k ∈ Z and (2, x2, y2) with y1 = x2 ⊕ k;
– 23-TP : similar to 21-TP by symmetry. Throughout the remaining we say MidTP to indifferently refer to
21- and 23-TP, since they are “formed” at the middle of the construction;

– 13-TP : upon P1(x1), if there exist (K, k) ∈ HQueries and (3, x3, y3) ∈ Queries such that E.E(K,x1) = y3;
– 31-TP : similar to 13-TP by symmetry.

To verify if new 13- or 31-TPs are set off, S calls a procedure S.Check(K,x1, y3), which checks if E.E(K,x1) =
y3 by making a query to E. This design is lifted from [HKT11].

Note that when D queries H(K)→ k, if there exist (i, xi, yi) and (i+1, xi+1, yi+1) such that k = yi ⊕ xi+1,
then new partial chains are also formed. However, if k is a random round-key newly given by R.H, then
k = yi⊕ xi+1 is unlikely. Therefore, in the context of EMR3, the possibility of new partial chains formed due to
D querying H can be ignored, and the above six TPs constitute all the chain-detection conditions of the näıve
tripwire simulator.

However, for EMR∗3 which has two less whitening keys, we have to consider an additional case: imagine D
has asked E(K,x1) → y3 and P3−1(y3) → x3, and then asks P1(x1). After the simulator gives the answer y1,
it seems like that a 2-query is the only missing query of the chain x3− y3−−x1− y1, and the simulator should
detect a chain—somewhat like the requirement of a 13-TP. However, note that D did not query H(K), thus
the simulator does not know for which K it should check if E.E(K,x1) = y3.

Our solution to this case is straightforward: as long as D does not query H(K), the partial-chain x3 − y3 −
−x1−y1 is harmless; on the other hand, since P1(x1)→ y1 is queried, once D queries H(K)→ k, the simulator
“knows” the key K, and is able to detect the partial-chain y2 − x3 − y3 − −x1 − y1 − x2 (x2 = k ⊕ y1 and
y2 = k⊕x3) by checking whether E.E(K,x1) = y3 (and further create an AD-2-query (2, x2, y2,⊥) to complete
it). Thus the näıve simulator for EMR∗3 contains the following additional detection condition besides the six
mentioned ones:

– H-TP : upon H(K), if there exist (1, x1, y1), (3, x3, y3) ∈ Queries such that E.E(K,x1) = y3.

But as shown by ABDMS, the näıve simulator can be attacked. Recalling this attack is the duty of the next
section.

5 Extending ABDMS’s Pseudo-Attack, and Motivating the Rhizome Simulation
Strategy

5.1 Attack on the Näıve Simulator

With the chain-detection conditions in mind (described in the previous section), the distinguisher D of ABDMS
chooses x2 ∈ {0, 1}n, K1,K2 ∈ {0, 1}κ, K1 ̸= K2, and queries H(K1) → k1, H(K2) → k2. Then D queries
P1−1(x2⊕k1)→ x1

1, P1
−1(x2⊕k2)→ x2

1, E(K1, x
1
1)→ y13 , E(K2, x

2
1)→ y23 , E

−1(K2, y
1
3)→ x4

1, E
−1(K1, y

2
3)→

x3
1, P1(x

3
1) → y31 , P1(x

4
1) → y41 . D finally checks whether y31 ⊕ k1 = y41 ⊕ k2. The underlying idea is to utilize

a related-key boomerang structure, cf. Fig. 3 (left) (for related-key boomerang attack please see [BDK05]).
Interacting with EMR∗3, y

3
1⊕k1 = y41⊕k2 always holds. But according to the described detecting conditions, the

simulator is “bypassed” by D, and does nothing more than randomly sampling answers, thus y41 = y31 ⊕ k1 ⊕ k2
is unlikely and it fails.

5.2 An Extended Attack

In fact, the above attack can be extended to a more powerful one. Briefly speaking, the two chains of E-queries
x1
1 − y13 − x4

1 and x2
1 − y23 − x3

1 involved in ABDMS’s attack are both of length 2; if we extend them, similar
equations still hold.

(1) Chooses x2 ∈ {0, 1}n, K1,K2 ∈ {0, 1}κ, K1 ̸= K2, and queries H(K1)→ k1, H(K2)→ k2, P1
−1(x2⊕k1)→

x1,1, and P1−1(x2 ⊕ k2)→ x′1,1;

(2) For t = 2l, makes 2 · t queries to E and E−1: x1,1

EK1−−−→ y3,1
E−1

K2−−−→ x1,2

EK1−−−→ y3,2
E−1

K2−−−→ x1,3

EK1−−−→ . . .
E−1

K2−−−→

x1,l+1, x
′
1,1

EK2−−−→ y′3,1
E−1

K1−−−→ x′1,2
EK2−−−→ y′3,2

E−1
K1−−−→ x′1,3

EK2−−−→ . . .
E−1

K1−−−→ x′1,l+1;
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Fig. 3. (Left) The related-key boomerang structure used by ABDMS. (Right) Extending the boomerang structure: the
case of l = 3. In each figure, the left-most rectangle denotes the “encryption area”: points x1 and y3 joined by a red, resp.
green, solid line satisfy the relation E(K1, x1) = y3, resp. E(K2, x1) = y3. The other three rectangles denote the three
permutations, with black lines indicating input-output pairs. Points yi and xi+1 joined by a red, resp. green, dotted line
satisfy the relation xi+1 = yi ⊕ k1, resp. xi+1 = yi ⊕ k2. Finally, the solid lines are the queries that really appear in the
attacks—moreover, the arrows of these solid lines indicate the query-directions of the distinguisher.

(3) P1(x1,l+1)→ y1,l+1, P1(x
′
1,l+1)→ y′1,l+1. Sees if y1,l+1 ⊕ k2 = y′1,l+1 ⊕ k1.

Interacting with EMR∗3, y1,l+1 ⊕ k2 = y′1,l+1 ⊕ k1 always holds. This can be seen by naturally extending the
(smaller) structure utilized by ABDMS, e.g. see Fig. 3 (right) for the case of l = 3. In fact, it’s not hard to see
the parameter t does not necessarily need to be even, as P3−1(y3,i)⊕ k2 = P3−1(y′3,i)⊕ k1 also holds for each
involved pair (y3,i, y

′
3,i).

By this extended attack, it seems like that a capable simulator has to compute the two chains of E-queries
before D computing them, and prepare for adaptations around the two E-query-chains. Although such chains
can be infinitely long, D only issues a limited number of queries. Therefore, to prevent D querying with some
“unready” values, it is already enough for the simulator to prepare chains with polynomial length. The case
is thus similar to the context of the hash-of-hash H2(M) = H(H(M)) analyzed by Dodis et al. [DRST12].
Motivated by their analysis, we design the rhizome mechanism for the simulator. See the next subsection for
details.

5.3 Rhizome Simulation Mechanism

We introduce some notions first. We call two E-queries adjacent, if they share the same x1 or y3 value. We call the
query structure consisting of a sequence of adjacent E-queries (K1, x1,1, y3,1), (K2, x1,2, y3,1), (K3, x1,2, y3,2), . . .
an E-chain, informally written as x1,1

K1

o y3,1
K2

o x1,2
K3

o y3,2 − . . ., with the number of involved E-queries being
its length. In such a chain, if two different keys K1 and K2 appear alternatively, then it’s a (K1,K2)-alternated
E-chain, e.g. (K1, x1,1, y3,1), (K2, x1,2, y3,1), (K1, x1,2, y3,2), . . .

From the extended attack, we conclude that a capable simulator S should prepare a structure similar to
that in Fig. 3 (right) to fool the distinguisher in future. Note that in the attacks above, although no TP is
set off, S has derived two round-keys k1 and k2, and has received two 1-queries (1, x1,1, y1,1) and (1, x′1,1, y

′
1,1)

with y1,1 ⊕ y′1,1 = k1 ⊕ k2. It’s now sufficient for S to uniquely determine the two (K1,K2)-alternated E-chains
appeared in Fig. 3 (right) (i.e. the two chains starting from x1,1 and x′1,1 respectively). Therefore, the chain-

detection condition for this simulation mechanism is D querying P1−1(y1) (as well as the symmetrical case, D
querying P3(x3)).

Assuming D makes at most qe, qh, and qp queries to E/E−1, H, and Pi/Pi−1 respectively. Intuitively, D
querying H would not be helpful for it to “move” out from the structure prepared by S, thus it’s enough
for S to prepare two (K1,K2)-alternated E-chains with length longer than qe + qq. Our choice is to let the
length be 2t, with 2t = qe + qp + 3 when qe + qp is odd, and 2t = qe + qp + 4 otherwise. Thus S should query
y3,i ← E(K1, x1,i), x1,i+1 ← E−1(K2, y3,i); y

′
3,i ← E(K2, x

′
1,i), and x′1,i+1 ← E−1(K1, y

′
3,i) for i from 1 to t.

Then, S could internally set P1(x1,i)⊕P1(x
′
1,i) = k1⊕ k2 and P−13 (y3,i)⊕P−13 (y′3,i) = k1⊕ k2 for each involved

pair (x1,i, x
′
1,i) and (y3,i, y

′
3,i).
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The above process is somewhat like S extending a rhizome underground (two alternated E-chains in the query
history of E) and then making a series of structures of the form x1,i−y1,i−y1,i⊕k1−y′1,i−x′1,i “grow out of the
ground”. Thus we name it rhizome mechanism, and call the structures of the form x1,i−y1,i−y1,i⊕k1−y′1,i−x′1,i
(y3,i − x3,i − x3,i ⊕ k1 − x′3,i − y′3,i, resp) 11-shoot (33-shoot, resp).

However, for the same pair of keys (K1,K2), D could switch the order of their appearances and construct a
structure symmetrical to Fig. 3 (right). By this, S has to prepare two additional (K1,K2)-alternated E-chains:
y3,i−1 ← E(K2, x1,i), x1,i−1 ← E−1(K1, y3,i−1); y

′
3,i−1 ← E(K1, x

′
1,i), and x′1,i−1 ← E−1(K2, y

′
3,i−1) for i from

1 to −(t− 2). To avoid negative subscripts, we let S rename the mentioned (x1,1, x
′
1,1) as (x1,t+1, x

′
1,t+1), thus

the two corresponding “endpoints” being x1,1 and x1,2t+1.

5.4 Procedure ProcessShoot

In our pseudocode for S, the above mechanism is implemented by a procedure Process11Shoot. More
clearly, upon D querying P1−1(y1) → x1, if there exist (1, x′1, y

′
1) and k1, k2 ∈ Z with y1 ⊕ y′1 = k1 ⊕

k2, then it keeps a record (1, x1, {K1,K2}) for this 11-shoot,11 which later leads to S making a call to
Process11Shoot(x1, y1,K1,K2) to “process” this shoot. This call takes (x1, x

′
1) as (x1,t+1, x

′
1,t+1), and has

four phases:

(1) Make-E-Chain-Phase : take x1,t+1 and x′1,t+1 as two “starting points” and make 2 · 4t queries to E to
form two (K1,K2)-alternated E-chains with length 4t, as depicted in Fig. 4 (top left):

x′1,1
E−1

K2←−−− . . .
EK1←−−− x′1,t

E−1
K2←−−− y′3,t

EK1←−−− x′1,t+1

EK2−−−→ y′3,t+1

E−1
K1−−−→ x′1,t+2

EK2−−−→ . . .
E−1

K1−−−→ x′1,2t+1,

x1,1

E−1
K1←−−− . . .

EK2←−−− x1,t

E−1
K1←−−− y3,t

EK2←−−− x1,t+1

EK1−−−→ y3,t+1

E−1
K2−−−→ x1,t+2

EK1−−−→ . . .
E−1

K2−−−→ x1,2t+1.

In the following sections, we will call the chain adjacent to x′1,t+1 the old E-chain of the Process11Shoots-
call, and call the chain adjacent to (the newer node) x1,t+1 the new E-chain.

(2) Shoot-Growing-Phase : ensure that each node in the old E-chain has a 1- or 3-query attached to it
correspondingly. For example, for x′1,i, if x

′
1,i /∈ P1, then it creates (1, x′1,i, y

′
1,i,→), cf. Fig. 4 (top right). If

this new query sets off 31-TPs, then it pauses to create AD-2-queries to complete them—e.g., if for K ′ ∈
HTable\{K1,K2} and (3, x3, y3) it holds E.E(K ′, x′1,i) = y3, then it creates (2, y′1,i⊕k′, x3⊕k′,⊥). Note that
K1 and K2 are excluded in this checking-process because the temporary 13-/31-TPs parameterized by them
will be settled in the next Fill-in-Rung-Phase. Also note that if this phase is completed as expected, then
except for the 11-shoot formed by (1, x1,t+1, y1,t+1) and (1, x′1,t+1, y

′
1,t+1), all the other queries (1, x′1,i, y

′
1,i)

and (3, x′3,i, y
′
3,i) do not form shoot parameterized by k1 and k2. We use “incomplete shoots” to refer to the

structures formed by these queries.
(3) Fill-in-Rung-Phase : for each E-query in the old E-chain, if the chain corresponding to it has not been

completed, then create an AD-2-query to complete this chain. This process is somewhat like using AD-2-
queries as “rungs” to fill in a “ladder structure”, cf. Fig. 4 (bottom left). It should be emphasized that in
this phase, Process11Shoot takes the old E-chain as a tree rooted at x′1,t+1, and (logically) creates the
corresponding AD-2-queries in a “top-down” manner in this tree.

(4) Shoot-Completing-Phase : for each “incomplete shoot” left by the Shoot-Growing-Phase, complete it by
creating a proper AD-1- or AD-3-query. For example, for (1, x′1,i, y

′
1,i), let y1,i ← y′1,i ⊕ k1 ⊕ k2 and create

(1, x1,i, y1,i,⊥), cf. Fig. 4 (bottom right). In this phase, Process11Shoot takes the new E-chain as a tree
rooted at x1,t+1, and creates the corresponding AD-1-queries in a “top-down” manner in this tree (similarly
to the Fill-in-Rung-Phase), cf. the numbers in Fig. 4 (bottom right).
Here we believe the order of adaptations is not crucial. However, the argument seems easier to made for
this “top-down” order. For this one could jump ahead to see Proposition 21 for the proof of “safeness” of
ProcessShoot-calls.

Upon D querying P3(x3) → y3, if S finds (3, x′3, y
′
3) with x3 ⊕ x′3 = k1 ⊕ k2, then it keeps a similar record

(3, y3, {K1,K2}), and later makes a call to Process33Shoot(x3, y3,K1,K2) to process this 33-shoot. The flow
of this call is similar to Process11Shoot by symmetry, resulting in a similar structure. We similarly specify
old and new E-chains for the Process33Shoot-call. Throughout the remaining, we would use ProcessShoot

11 This record will be kept in a queue. For more details, please jump ahead to Section 6. This subsection focuses on the
flow of ProcessShoot.
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procedure/call to indifferently refer to Process11Shoot or Process33Shoot, and speak G2 processes a 11-
/33-shoot to refer to the above processes. It’s not hard to see once enhanced with this mechanism, the näıve
simulator cannot be collapsed by ABDMS’s nor our extended attack any more.

5.5 Going Beyond Two Keys

The above only exhibited the simplest instance. In fact, D could force S to simultaneously detect several shoots
that share some P-queries; as a consequence, their corresponding structures would interfere each other. For
example, D may first query H(K1) → k1, H(K2) → k2, H(K3) → k3, then chooses y1 ∈ {0, 1}n and queries
P1−1(y1)→ x1, P1

−1(y′1)→ x′1 with y′1 = y1 ⊕ k1 ⊕ k2, P1
−1(y′′1 )→ x′′1 with y′′1 = y1 ⊕ k1 ⊕ k3. Upon the last

query P1−1(y′′1 ), S detects two newly formed shoots y1−x1− y′′1 ⊕k3− y′′1 −x′′1 and y′1−x′1− y′′1 ⊕k3− y′′1 −x′′1 ,
and they share a common 1-query (1, x′′1 , y

′′
1 ). It can be seen that the two corresponding relate-key boomerang

structures indeed share the following completed chain, cf. Fig. 5 (left):

(K3, k3), (K3, x
′′
1 , y
′′
3 ), (1, x

′′
1 , y
′′
1 ), (2, x

′′
2 , y
′′
2 ), (3, x

′′
3 , y
′′
3 ), y′′1 ⊕ x′′2 = y′′2 ⊕ x′′3 = k3.

But fortunately, we are able to prove that the interference between different shoots is limited, while the structure
shared by them is consistent in the context of EMR∗3. Thus our mechanism is able to handle such complicated
cases.

On the other hand, for a fixed pair of 1-queries (1, x1, y1) and (1, x′1, y
′
1) and four distinct keys k1, k2, k3, k4 ∈

Z, if y1 ⊕ y′1 = k1 ⊕ k2 and k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0 both hold, then it also holds y1 ⊕ y′1 = k3 ⊕ k4. In this case,
in the call Process11Shoot(x1, y1,K1,K2), each time S completes a new shoot structure (under k1 and k2),
it would detect a new shoot under k3 and k4, and has to deal with it (and vice versa), cf. Fig. 5 (right). This
would render the process extremely complicated. However, note that round-keys in Z are all derived by R.H,
thus it’s unlikely to appear four round-keys k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0. By this, it can be seen that w.h.p.,a fixed
pair of 1-queries form at most one 11-shoot. A similar claim holds for 3-queries.

As we have introduced the most sophisticated mechanism, we will complete the design of S in the next
section.

6 Completing the Design of the Simulator for EMR∗
3

Our final design incorporates all the TPs of the näıve simulator S∗ as well as the aforementioned rhizome
mechanism. In this section we summarize the strategy of S. In detail, subsection 6.1 first summarizes how S
handles D’s queries, and then subsection 6.2 gives a formal description in pseudocode.

6.1 Handling New Queries

We first remark that the AD-queries internally created by S also set off TPs and shoots, once they meet the
constraints. Thus S may have to recursively complete a lot of chains; following [ABD+13a], we call such a
process a chain-reaction. However, due to the existence of rhizome simulation mechanism, queries in the history
always possess some features. As a consequence, in cases of D querying P1, P2, P2−1, P3−1, and H, w.h.p. the
possible newly-created AD-queries would not set off new TPs, thus the chain-completion is a “one-shot-deal”.
Thus we first make discussion on these simpler cases. The complicated recursive chain-completion process only
occurs when D queries P1−1(y1) and P3(x3), which is discussed at the end of this section.

Upon a New Query P1(x1): this query may set off several 31-TPs, and S should take care of each. Thus S
first samples a random y1 (and creates (1, x1, y1,→)), and then for each pair ((K, k), (3, x3, y3)) ∈ HQueries×
Queries it checks whether E.E(K,x1) = y3 (via the aforementioned procedure Check), and creates an AD-2-
query (2, y1⊕ k, x3⊕ k,⊥) if the Check-call returns true—as mentioned, S aborts, if creating the AD-2-query
would break consistency. After all these, if S does not abort, then it returns y1 to answer D.

Upon a new query P3−1(y3), S behaves similarly by symmetry.
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Fig. 4. The flow of Process11Shoot. The meanings of the colored lines resemble Fig. 3. (top left) Make-E-Chain-Phase:
S makes 2 ·4t E-queries to form two E-chains. Depicted is a simple example with 4t = 8, D querying P1−1(y1)→ x1 and
S detecting (1, x′

1, y
′
1) : y

′
1 = y1⊕k1⊕k2 and taking (x1, x

′
1) as (x1,3, x

′
1,3). The arrows of the solid directed lines indicate

the directions of S’s evaluation. However, note that some of the queries involved in this evaluation may already existed
in the history before D querying P1−1(y1)—they may even form completed chain, e.g. the chain for (K1, x1,1, y3,1) in the
figure. (top right) Shoot-Growing-Phase: S makes several 1- and 3-queries “grow out of the ground”. Each such query
will form a shoot, but the other query of this shoot remains missing. In this phase, pre-existing 1- and 3-queries stay
invariant, while the newly created 1-queries, resp. 3-queries, have dir =→, resp. dir =←. The points joined by black
dotted lines already satisfy the relation P2(x2) = y2 (logically), and this will be internally enforced in the next phase.
(bottom left) Fill-in-Rung-Phase: S fills proper AD-2-queries between the peaks of the “incomplete shoots”. The numbers
on these AD-2-queries indicate the order for S creating them. (bottom right) Shoot-Completing-Phase: S completes the
“incomplete shoots” with AD-1- and AD-3-queries (dashed lines).
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Fig. 5. Related-key boomerang structures under more than two keys. Points x1 and y3 joined by red, lime, blue, and
magenta solid lines satisfy the relations E(K1, x1) = y3, E(K2, x1) = y3, E(K3, x1) = y3, and E(K4, x1) = y4 respectively.
Points yi and xi+1 joined by red, lime, blue, and magenta dotted line satisfy the relations xi+1 = yi⊕ k1, xi+1 = yi⊕ k2,
xi+1 = yi ⊕ k3, and xi+1 = yi ⊕ k4 resp. Black (arrowed) lines are (directed) P-queries (may be internally created ones),
while black dashed lines indicate AD-queries. (Left) Two such structures share a 1-query/a complete chain; (Right) The
bad situation due to k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0. Initially, S detects two 11-shoots (1, x1, {K1,K2}) and (1, x1, {K3,K4}).
Later after S adapts and completes a 33-shoot (3, y′

3, {K1,K2}), it detects an additional one (3, y′
3, {K3,K4}); after S

completes (3, y∗
3 , {K3,K4}), it detects (3, y∗

3 , {K1,K2}), cf. the two pentagrams.

Upon a New Query P2(x2): if there exists no pair ((1, x1, y1), (K, k)) such that x2 = y1⊕ k, then this query
does not set off 12-TP, and S simply samples y2 and creates (2, x2, y2,→). Otherwise, S detects new 12-TPs.
However, to unify S’s behaviors, we let S use the mechanism for 13-TPs to handle these 12-TPs. More clearly,
due to the rhizome-mechanism, w.h.p. there exists at most one ((1, x1, y1), (K, k)) ∈ Queries × HQueries
such that x2 = y1 ⊕ k. Thus we let S runs in three steps: (1) obtains this corresponding (1, x1, y1); (2) query
y3 ← E.E(K,x2); (3) run as if D just queries P3−1(y3). Clearly, if S does not abort, then an AD-2-query
(2, x2, y2,⊥) will be created. In each case, S finally returns y2 if non-aborting.

The behaviors upon new P2−1(y2) are similar by symmetry.

Upon a New Query H(K): this query may lead S to detecting some H-TPs. Thus S first samples a random
round-key k and creates (K, k), and then for each pair ((1, x1, y1), (3, x3, y3)) ∈ Queries such that E.E(K,x1) =
y3 (verified via Check), it creates an AD-2-query (2, y1 ⊕ k, x3 ⊕ k,⊥).

Upon a New Query P1−1(y1): S collects the newly formed shoots and 21-TPs, and push them into two
queues, and then starts a recursive chain-completion process. More clearly, S first samples x1 and creates
(1, x1, y1,←), and then calls a procedure CollectTP(1, x1, y1), which (roughly) runs as follows:

– for each distinct pair (K, k), (K ′, k′) ∈ HQueries, if there exists another 1-query (1, x′1, y
′
1) such that

y′1 = y1 ⊕ k ⊕ k′ ∈ P−11 , then S detects a new 11-shoot, and pushes a 3-tuple (1, x1, {K,K ′}) into a queue
ShootQueue. We stress that the third coordinate of this tuple is a set, i.e. the order of K and K ′ does not
matter;

– for each (K, k) ∈ HQueries that is not involved in any 11-shoots—formally, ∀(K ′, k′) ̸= (K, k) ∈ HQueries
and ∀(1, x′1, y′1) ∈ Queries, y1⊕k⊕k′ ̸= y′1,—if there exists a 2-query (2, x2, y2) such that x2 = y1⊕k, then
S detects a new 21-TP, and pushes a 3-tuple (1, x1,K) into another queue MidTPQueue.

After CollectTP returns, S keeps popping tuples from the two queues and passing control to specific proce-
dures to tackle them, till both of them are empty again. For each tuple (1, x1, {K1,K2}), resp. (3, y3, {K1,K2}),
popped from ShootQueue, it obtains the corresponding query (1, x1, y1), resp. (3, x3, y3), and calls Process11-
Shoot(x1, y1,K1,K2), resp. Process33Shoot(x3, y3,K1,K2), if (1, x1, {K1,K2}), resp. (3, y3, {K1,K2}), has
not been popped before; for each tuple (1, x1,K), resp. (3, y3,K), popped from MidTPQueue, it obtains the
query (1, x1, y1), resp. (3, x3, y3), and calls Process21TP(x1, y1,K), resp. Process23TP(x3, y3,K), if (K, k)
and (1, x1, y1), resp. (3, x3, y3), have not been in a completed K-chain.

Note that the arguments of Process21TP identify a partial-chain x1−y1−x2−y2−x3, where x2 = y1⊕k,
(2, x2, y2) ∈ Queries, and x3 = y2 ⊕ k. Process21TP(x1, y1,K) completes this chain by first querying y3 ←
E.E(K,x1) and then creating an AD-3-query (3, x3, y3,⊥). It finally calls CollectTP(3, x3, y3) to collect the
TPs newly set off by this AD-3-query, and push them into ShootQueue and MidTPQueue respectively:

– for each two distinct (K, k), (K ′, k′) ∈ HQueries and (3, x′3, y
′
3) ∈ Queries, if x′3 = x3 ⊕ k ⊕ k′, then S

detects a 33-shoot and pushes a 3-tuple (3, y3, {K,K ′}) into ShootQueue;
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– for each (K, k) ∈ HQueries that is not involved in any 33-shoots and (2, x2, y2) ∈ Queries, if y2 = x3 ⊕ k,
then S detects a new 23-TP, and pushes a 3-tuple (3, y3,K) into MidTPQueue.

The flow of Process23TP is similar by symmetry, leading to creating an AD-1-query. We will use G2 processing
a 21-/23-TP to refer to G2 executing Process21TP/Process23TP.

On the other hand, the ProcessShoot-procedures have been introduced in subsection 5.4. However, we
stress that for each AD-1- and AD-3-query newly created by these calls, a call to CollectTP would be made
to collect (and enqueue) the newly detected TPs.

The process upon new P3(x3) is similar by symmetry, to wit, S first creates (3, x3, y3,→) with randomly
sampled y3, and then calls CollectTP(3, x3, y3), and then performs as described.

In the rest part, such a tuple (1, x1, {K,K ′}) is also called a 11-shoot, and (3, y3, {K,K ′}) is a 33-shoot. For
the former, x1 is its root and the corresponding y1 is its peak, while for the latter, y3 and x3 are its root and
peak respectively. Moreover, a tuple (1, x1,K) is called a 21-TP with x1 being the root and the corresponding y1
being the peak, while a tuple (3, y3,K) is a 23-TP with root y3 and peak x3. Finally, calls to the four procedures
Process21TP, Process23TP, Process11Shoot, and Process33Shoot are chain-reaction calls.

Shoots have Priority over MidTPs. One may note that in our chain-detection mechanism, shoots
have priority over MidTPs. For example, in the call to CollectTP(1, x1, y1), once there exist two dis-
tinct (K, k), (K ′, k′) ∈ HQueries and (1, x′1, y

′
1) such that y′1 = y1 ⊕ k ⊕ k′, then S only pushes a 11-shoot

(1, x1, {K,K ′}) into ShootQueue, and ignores the possibly existing 21-TPs (1, x1,K) and (1, x1,K
′). The un-

derlying considerations are as follows:

– First, since D’s queries have formed such a shoot, S has to prepare the “rhizome structure” (cf. Fig. 4), as
otherwise S would risk of being “trapped” by D’s future queries in this structure;

– Second, it can be seen once the structure around the shoot (1, x1, {K,K ′}) is prepared as wished, then the
two 21-TPs (1, x1,K) and (1, x1,K

′) would have been in completed chains. So they do not need separate
considerations.

Denote by G1 the simulated system formed by SE,R and E, and by G3 the real system formed by EMR∗3
and R. To simplify notations and highlight randomness sources, we will use G1(E,R) and G3(R) to refer to
the systems respectively.

6.2 Pseudocode of the Simulator

We first introduce some additional notations that would probably simplify the statements.

Additional Notations. As will be discussed, we use an intermediate system G2, in which a query counter
qnum is maintained for the query-records, cf. Section 7. For simplicity, we do not eliminate this counter from G1.
In other words, the query-records kept by our simulator S are also of the form (i, xi, yi, dir, num) ∈ Queries
and (K, k, num) ∈ HQueries. For P-queries recall that the forth coordinate dir ∈ {→,←,⊥} indicates the
direction of the query: dir =→ indicates forward query, dir =← indicates inverse query, while dir = ⊥ indicates
AD-queries.

Recall from subsection 4.2 that when a to-be-created AD-query would render the simulated permutations
inconsistent, G2 would abort and would not create this query. In this way, the records in Queries encodes three
partial permutations. Therefore, to simplify statements, we write Pi and P−1i for the sets {xi : ∃yi s.t. (i, xi, yi) ∈
Queries} and {yi : ∃xi s.t. (i, xi, yi) ∈ Queries} respectively, and write Pi(xi), resp. P

−1
i (yi), for the (unique)

corresponding yi, resp. xi, when xi ∈ Pi, resp. yi ∈ P−1i .
Note that the records in HQueries define a map between some main-keys K and round-keys k. S would

also ensure the map to be bijective; if not possible then it aborts.12 Thus we write HTable for the do-
main of this map and HTable(K) for the image k, and Z for the codomain of this map, i.e. HTable is
{K : ∃k, num s.t. (K, k, num) ∈ HQueries}, and Z is {k : ∃K,num s.t. (K, k, num) ∈ HQueries}. Fol-
lowing [ABD+13a], we also denote by mZ the m-fold direct ⊕-sum Z ⊕ . . .⊕ Z of Z. Note that by the above
mechanism, the sets Pi, P

−1
i , HTable, etc. change as new records are added to Queries and HQueries.

12 If not, then it necessarily be that two different main-keys K and K′ are mapped to the same round-key k. It’s not
hard to see in such cases D wins, so there is no need to execute any more. Just abort.
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Finally, to avoid calling ProcessShoot twice for the same shoot, we let S maintain a set ProcessedShoot:
whenever a shoot in completed, the corresponding tuple would be added to ProcessedShoot; and when a
shoot (i, z, {K1,K2}) is popped from ShootQueue, S makes the corresponding ProcessShoot-call only if
(i, z, {K1,K2}) /∈ ProcessedShoot. Also, to avoid re-completing the same chain, we let S maintain another
set Completed to keep track of them. Whenever a chain (K, k), (K,x1, y3), (1, x1, y1), (2, x2, y2), (3, x3, y3) is
completed, i.e. all the five queries have been in the history, three triples (1,K, x1), (2,K, x2), and (3,K, x3)
would be added to Completed. Adding three triples might be a bit redundant, but this simplifies the code.

The Code. The following pseudocode implements the simulated system G1 along with the intermediate system
G2 (cf. Section 7). When a line has a boxed variant next to it, G1 uses the original code, whereas G2 uses the
boxed one. Additionally, the underlined red sentences only exist in G2. Indeed, the code for G1 is exactly the
code for S.

Simulated System G1(E,R) Intermediate System G2(E,R)

Variables
Sets Queries and HQueries, initialized to ∅ // Sets for history.
Set EQueries, initialized to ∅ // bookkeeping set for G2

Queues ShootQueue, MidTPQueue // Queue for (detected) bamboo shoots and middle TPs, resp.
Sets Completed, ProcessedShoots, initialized to ∅ // Set of completed chains and processed shoots, resp.
Integer qnum, initialized to 1.
Set AD2Edges, initialized to ∅ // Set of 2-edges formed by AD-2-queries.
Set DUShoots, initialized to ∅ // Set of D-unaware shoots.
Set Border, initialized to ∅ // Set of x1 and y3 values that lie at the endpoints of rhizomes.
Integer cycleStartNum

// The following four enc/decryption procedures only exist in G2.
// In G1, the interfaces E and E−1 are simply provided by E.
public procedure E(K,x1) // G2

CheckDUnaware(x1, X1)
y3 ← EIn(K,x1)
RemoveDUShoots(3, y3)
return y3

private procedure EIn(K,x1) // G2

if x1 /∈ ETable[K] then
y3 ← E.E(K,x1)

if y3 ∈ P−1
3 then abort

if ∃K′ ̸= K : y3 ∈ ETable[K′]−1 then abort
EQueries← EQueries ∪ {(K,x1, y3,→, qnum)}
qnum← qnum+ 1

return ETable[K](x1)

public procedure E−1(K, y3) // G2

CheckDUnaware(y3, Y 3)

x1 ← EIn−1(K, y3)
RemoveDUShoots(1, x1)
return x1

private procedure EIn−1(K, y3) // G2

if y3 /∈ ETable[K]−1 then

x1 ← E.E−1(K, y3)
if x1 ∈ P1 then abort
if ∃K′ ̸= K : x1 ∈ ETable[K′] then abort
EQueries← EQueries ∪ {(K,x1, y3,←, qnum)}
qnum← qnum+ 1

return ETable[K]−1(y3)

private procedure RemoveDUShoots(i, z) // G2

if i = 1 and there exists a tuple of the form st = (1, {(z, y1), (x′
1, y

′
1)}) in DUShoots then

Assert(st is the unique tuple in DUShoots that contains (z, y1))
DUShoots← DUShoots \ {st}

else if there exists a tuple of the form st = (3, {(x3, z), (x
′
3, y

′
3)}) in DUShoots then // i = 3

Assert(st is the unique tuple in DUShoots that contains (x3, z))
DUShoots← DUShoots \ {st}

private procedure Assert(fact) // G2

if ¬fact then
abort

private procedure Check(K,x1, y3)

return E.E(K,x1) = y3 return ETable[K](x1) = y3

private procedure CheckDUnaware(z, tag) // G2

if DAwareness(z, tag) = 0 then abort

private procedure DAwareness(z, tag) // G2

if tag = X1 and ∃(1, {(z, y1), (x′
1, y

′
1)}) ∈ DUShoots

then return 0
if tag = Y 1 then

if ∃(1, {(x1, y1), (x
′
1, y

′
1)}) ∈ DUShoots :

if y1 ⊕ z ∈ 2Z or y′
1 ⊕ z ∈ 2Z then

return 0
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if tag = X2 then
if ∃(1, {(x1, y1), (x

′
1, y

′
1)}) ∈ DUShoots :

if y1 ⊕ z ∈ Z or y′
1 ⊕ z ∈ Z then

return 0
if tag = Y 2 then

if ∃(3, {(x3, y3), (x
′
3, y

′
3)}) ∈ DUShoots :

if x3 ⊕ z ∈ Z or x′
3 ⊕ z ∈ Z then

return 0
if tag = X3 then

if ∃(3, {(x3, y3), (x
′
3, y

′
3)}) ∈ DUShoots :

if x3 ⊕ z ∈ 2Z or x′
3 ⊕ z ∈ 2Z then

return 0
if tag = Y 3 and ∃(3, {(x3, z), (x

′
3, y

′
3)}) ∈ DUShoots

then return 0
return 1

public procedure H(K)
if K ∈ HTable then return HTable(K)
k ← R.H(K)
if k ∈ Z then abort
if there exist three distinct k′, k′′, k′′′ ∈ Z : k ⊕ k′ ⊕ k′′ ⊕ k′′′ = 0 then abort
if ∃i, yi ∈ P−1

i , xi+1 ∈ Pi+1 : yi ⊕ xi+1 ∈ (k ⊕ 4Z) ∪ {k}
if or ∃i, xi, x

′
i ∈ Pi : xi ̸= x′

i and xi ⊕ x′
i ∈ k ⊕ 5Z

if or ∃i, yi, y′
i ∈ P−1

i : yi ̸= y′
i and yi ⊕ y′

i ∈ k ⊕ 5Z then abort

HQueries← HQueries ∪ {(K, k, qnum)}
qnum← qnum+ 1
// Deal with H-TPs:
foreach (1, x1, y1), (3, x3, y3) ∈ Queries×Queries do

if Check(K,x1, y3) = true then
Take the E-query (K,x1, y3, edir, enum) from EQueries
x2 ← y1 ⊕ k, y2 ← x3 ⊕ k, Adapt(2, x2, y2, edir, enum)
// In G1, S uses arbitrary “dummy” edir and enum for this call. Same for the other calls to Adapt(2, . . .).
Assert(∀k′ ∈ Z\{k} : x2 ⊕ k′ /∈ P−1

1 and y2 ⊕ k′ /∈ P3) // The newly created 2-query would not trigger

Assert(∀k′ ∈ Z\{k} : x2 ⊕ k′ /∈ P−1
1 and y2 ⊕ k′ /∈ P3) // 12- and 32-TP.

UpdateCompleted(1,K, x1)
// Update the set of AD-2-edges:
foreach AD-2-query (2, x2, y2,⊥) ∈ Queries do

Arbitrarily choose (K′, k′) ∈ HQueries,K′ ̸= K.

Assert(the edge (x2 ⊕ k′, y2 ⊕ k′, k′) is in AD2Edges)

Take (x2 ⊕ k′, y2 ⊕ k′, k′, ad2dir, ad2num) from AD2Edges
AD2Edges← AD2Edges ∪ {(x2 ⊕ k, y2 ⊕ k, k, ad2dir, ad2num)}

return k

private procedure RandAssign(i, z, δ) // The term “random assign” is from [LS13].
if δ = + then

z′ ← R.Pi(z)
if z′ ∈ P−1

i then abort
AddQuery(i, z, z′,→)
return z′

else // δ = −
z′ ← R.Pi−1(z)
if z′ ∈ Pi then abort
AddQuery(i, z′, z,←)
return z′

// Create the record of a query.
private procedure AddQuery(i, xi, yi, dir)

if (i, dir) ∈ {(1,→), (2,→)} ∧ ∃(i+ 1, xi+1, yi+1) ∈ Queries : yi ⊕ xi+1 ∈ 5Z then
abort // Early-abortions in G2. Same for the below.

if (i, dir) = (3,→) ∧ ∃K : y3 ∈ ETable[K]−1 then abort

if dir =→ ∧∃(i, x′
i, y

′
i) ∈ Queries : yi ⊕ y′

i ∈ 6Z then abort
if (i, dir) ∈ {(2,←), (3,←)} ∧ ∃(i− 1, xi−1, yi−1) ∈ Queries : yi−1 ⊕ xi ∈ 5Z then abort
if (i, dir) = (1,←) ∧ ∃K : x1 ∈ ETable[K] then abort

if dir =← ∧∃(i, x′
i, y

′
i) ∈ Queries : xi ⊕ x′

i ∈ 6Z then abort
Queries← Queries ∪ {(i, xi, yi, dir, qnum)}
qnum← qnum+ 1

public procedure P1−1(y1)
CheckDUnaware(y1, Y 1)

if y1 ∈ P−1
1 then return P−1

1 (y1)
cycleStartNum← qnum

x1 ← RandAssign(1, y1,−)
CollectTP(1, x1, y1)
EmptyQueue()
return x1
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public procedure P3(x3)
CheckDUnaware(x3, X3)
if x3 ∈ P3 then return P3(x3)
cycleStartNum← qnum

y3 ← RandAssign(3, x3,+)
CollectTP(3, x3, y3)
EmptyQueue()
return y3

private procedure CollectTP(i, z, z′)
if i = 1 then

Take (z, z′) as (x1, y1), a new 1-query.
foreach two distinct (K, k), (K′, k′) ∈ HQueries do

if (1, x1, {K,K′}) ∈ ProcessedShoot then
continue

y′
1 ← y1 ⊕ k ⊕ k′

if y′
1 /∈ P−1

1 then continue
Take the 1-query (1, x′

1, y
′
1, d

′, num′) from Queries

Assert(x′
1 /∈ Border)

Assert(num′ < cycleStartNum)

ShootQueue.Enqueue(1, x1, {K,K′})
foreach (K, k) ∈ HQueries do

if ∃k′ ∈ Z \ {k} : y1 ⊕ k ⊕ k′ ∈ P−1
1 then

continue
x2 ← y1 ⊕ k
if x2 /∈ P2 then continue
Take the 2-query (2, x2, y2, d

′, num2) from Queries
Assert(num2 < cycleStartNum)
MidTPQueue.Enqueue(1, x1,K)

else // i = 3
Take (z, z′) as (x3, y3), a new 3-query.
foreach two distinct (K, k), (K′, k′) ∈ HQueries do

if (3, y3, {K,K′}) ∈ ProcessedShoot then
continue

x′
3 ← x3 ⊕ k ⊕ k′

if x′
3 /∈ P3 then continue

Take the 3-query (3, x′
3, y

′
3, d

′, num′) from Queries

Assert(y′
3 /∈ Border)

Assert(num′ < cycleStartNum)

ShootQueue.Enqueue(3, y3, {K,K′})
foreach (K, k) ∈ HQueries do

if ∃k′ ∈ Z \ {k} : x3 ⊕ k ⊕ k′ ∈ P3 then
continue

y2 ← x3 ⊕ k
if y2 /∈ P−1

2 then continue
Take the 2-query (2, x2, y2, d

′, num2) from Queries
Assert(num2 < cycleStartNum)
MidTPQueue.Enqueue(3, y3,K)

private procedure EmptyQueue()
do

while ¬ShootQueue.Empty() do
(i, rt, {K1,K2})← ShootQueue.Dequeue()
if (i, rt, {K1,K2}) ∈ ProcessedShoots then

continue
// Depending on the type of this shoot:
if i = 1 then

Process11Shoot(rt, P1(rt),K1,K2)
else // i = 3

Process33Shoot(P−1
3 (rt), rt,K1,K2)

while ¬MidTPQueue.Empty() do
(i, rt,K)←MidTPQueue.Dequeue()
if i = 1 then

if (1,K, rt) ∈ Completed then continue
Process21TP(rt, P1(rt),K)

else // i = 3
if (3,K, P−1

3 (rt)) ∈ Completed then continue
Process23TP(P−1

3 (rt), rt,K)
while(¬ShootQueue.Empty())

private procedure Process11Shoot(x1, y1,K1,K2)
k1 ← HTable(K1), k2 ← HTable(K2), NewDUShootSet← ∅
Take (x1, y1) as (x1,t+1, y1,t+1)
y′
1,t+1 ← y1,t+1 ⊕ k1 ⊕ k2, x

′
1,t+1 ← P−1

1 (y′
1,t+1)

// When qe + qp is odd then let qe + qp = 2t− 3; else let qe + qp = 2t− 4.
// Make-E-Chain-Phase: make 4t pairs of queries to E (in G1), or EIn and EIn−1 (in G2).

// x′
1,1

E−1
K2←−−− . . .

EK1←−−− x′
1,t

E−1
K2←−−− y′

3,t

EK1←−−− x′
1,t+1

EK2−−−→ y′
3,t+1

E−1
K1−−−→ x′

1,t+2

EK2−−−→ . . .
E−1

K1−−−→ x′
1,2t+1

// x1,1

E−1
K1←−−− . . .

EK2←−−− x1,t

E−1
K1←−−− y3,t

EK2←−−− x1,t+1

EK1−−−→ y3,t+1

E−1
K2−−−→ x1,t+2

EK1−−−→ . . .
E−1

K2−−−→ x1,2t+1

for i from t to 1 do
if x′

1,i+1 /∈ ETable[K1] then

NewDUShootSet← NewDUShootSet ∪ {(3, i)}

y′
3,i ← E.E(K1, x

′
1,i+1) y′

3,i ← Ein(K1, x
′
1,i+1)

if y′
3,i /∈ ETable[K2]

−1 then

NewDUShootSet← NewDUShootSet ∪ {(1, i)}

x′
1,i ← E.E−1(K2, y

′
3,i) x′

1,i ← Ein−1(K2, y
′
3,i)

for i from t+ 1 to 2t do
if x′

1,i /∈ ETable[K2] then

NewDUShootSet← NewDUShootSet ∪ {(3, i)}

y′
3,i ← E.E(K2, x

′
1,i) y′

3,i ← Ein(K2, x
′
1,i)
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if y′
3,i /∈ ETable[K1]

−1 then

NewDUShootSet← NewDUShootSet ∪ {(1, i+ 1)}

x′
1,i+1 ← E.E−1(K1, y

′
1,i) x′

1,i+1 ← Ein−1(K1, y
′
1,i)

for i from t to 1 do
y3,i ← E.E(K2, x1,i+1) y3,i ← Ein(K2, x1,i+1)

x1,i ← E.E−1(K1, y3,i) x1,i ← Ein−1(K1, y3,i)

for i from t+ 1 to 2t do
y3,i ← E.E(K1, x1,i) y3,i ← Ein(K1, x1,i)

x1,i+1 ← E.E−1(K2, y1,i) x1,i+1 ← Ein−1(K2, y1,i)

// Shoot-Growing-Phase: make the shoots “grow out of the ground”.
foreach x′

1,i do
if x′

1,i /∈ P1 then
y′
1,i ← RandAssign(1, x′

1,i,+)
foreach (K, k, x3, y3) : (K, k) ∈ HQueries and k ̸= k1, k2 and (3, x3, y3) ∈ Queries do

if Check(K,x′
1,i, y3) = true then

x2 ← y′
1,i ⊕ k, y2 ← x3 ⊕ k

Take (K,x′
1,i, y3, edir, enum) from EQueries

Adapt(2, x2, y2, edir, enum) // “Dummy” edir and enum in G1.
UpdateCompleted(1,K, x′

1,i)
Assert(@k′ ̸= k : x2 ⊕ k′ ∈ P−1

1 ) // The new 2-query would not trigger 12-TP.

foreach k′ ̸= k : y2 ⊕ k′ ∈ P3 do // No additional 32-TP has to be considered.
y3

′ ← P3(y2 ⊕ k′)

Assert(y3
′ /∈ Border ∧ ∃(3, y3′, {K,K′}) ∈ ShootQueue)

foreach y′
3,i do

if y′
3,i /∈ P−1

3 then
x′
3,i ← RandAssign(3, y′

3,i,−)
foreach (K, k, x1, y1) : (K, k) ∈ HTable and k ̸= k1, k2 and (1, x1, y1) ∈ Queries do

if Check(K,x1, y
′
3,i) = true then

x2 ← y1 ⊕ k, y2 ← x′
3,i ⊕ k

Take (K,x1, y
′
3,i, edir, enum) from EQueries

Adapt(2, x2, y2, edir, enum) // “Dummy” edir and enum in G1.
UpdateCompleted(1,K, x1)
Assert(@k′ ̸= k : y2 ⊕ k′ ∈ P3)

foreach k′ ̸= k : x2 ⊕ k′ ∈ P−1
1 do

x1
′ ← P−1

1 (x2 ⊕ k′)

Assert(x1
′ /∈ Border ∧ ∃(1, x1

′, {K,K′}) ∈ ShootQueue)
// Fill-in-Rung-Phase: fill in rungs with AD-2-queries
for i from t to 1 do

// Consider (x′
3,i, y

′
3,i)

x′
3,i ← P−1

3 (y′
3,i), y

′
1,i ← P1(x

′
1,i),

if x′
3,i ⊕ k1 ∈ P−1

2 then
Assert((3,K1, x

′
3,i) ∈ Completed) // If x′

3,i ⊕ k1 has been occupied then the chain has been completed.
else

y′
2,2i ← x′

3,i ⊕ k1, x
′
2,2i ← y′

1,i+1 ⊕ k1
Take (K1, x

′
1,i+1, y

′
3,i, edir, enum) from EQueries

Adapt(2, x′
2,2i, y

′
2,2i, edir, enum) // “Dummy” edir and enum in G1.

UpdateCompleted(3,K1, x
′
3,i)

Assert(@k ̸= k1, k2 : x′
2,2i ⊕ k ∈ P−1

1 or y′
2,2i ⊕ k ∈ P3) // No new 12-/32-TP.

if x′
3,i ⊕ k2 ∈ P−1

2 then
Assert((3,K2, x

′
3,i) ∈ Completed)

else
y′
2,2i−1 ← x′

3,i ⊕ k2, x
′
2,2i−1 ← y′

1,i ⊕ k2
Take (K2, x

′
1,i, y

′
3,i, edir, enum) from EQueries

Adapt(2, x′
2,2i−1, y

′
2,2i−1, edir, enum) // “Dummy” edir and enum in G1.

UpdateCompleted(3,K2, x
′
3,i)

Assert(@k ̸= k1, k2 : x′
2,2i−1 ⊕ k ∈ P−1

1 or y′
2,2i−1 ⊕ k ∈ P3)

for i from t+ 1 to 2t do
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x′
3,i ← P−1

3 (y′
3,i), y

′
1,i+1 ← P1(x

′
1,i+1),

if x′
3,i ⊕ k2 ∈ P−1

2 then
Assert((3,K2, x

′
3,i) ∈ Completed)

else
y′
2,2i−1 ← x′

3,i ⊕ k2, x
′
2,2i−1 ← y′

1,i ⊕ k2
Take (K2, x

′
1,i, y

′
3,i, edir, enum) from EQueries

Adapt(2, x′
2,2i−1, y

′
2,2i−1, edir, enum) // “Dummy” edir and enum in G1.

UpdateCompleted(3,K2, x
′
3,i)

Assert(@k ̸= k1, k2 : x′
2,2i−1 ⊕ k ∈ P−1

1 or y′
2,2i−1 ⊕ k ∈ P3)

if x′
3,i ⊕ k1 ∈ P−1

2 then
Assert((3,K1, x

′
3,i) ∈ Completed)

else
y′
2,2i ← x′

3,i ⊕ k1, x
′
2,2i ← y′

1,i+1 ⊕ k1
Take (K1, x

′
1,i+1, y

′
3,i, edir, enum) from EQueries

Adapt(2, x′
2,2i, y

′
2,2i, edir, enum) // “Dummy” edir and enum in G1.

UpdateCompleted(3,K1, x
′
3,i)

Assert(@k ̸= k1, k2 : x′
2,2i ⊕ k ∈ P−1

1 or y′
2,2i ⊕ k ∈ P3)

// Shoot-Completing-Phase: complete the bamboo shoots
ProcessedShoots← ProcessedShoots ∪ {(1, x1,t+1, {K1,K2}), (1, x′

1,t+1, {K1,K2})}
for i from t to 1 do

// Consider first (3, x′
3,i, y

′
3,i) and then (1, x′

1,i, y
′
1,i)

x3,i ← x′
3,i ⊕ k1 ⊕ k2

if x3,i ∈ P3 or y3,i ∈ P−1
3 then

// If the values have been occupied then some relevant shoots have been processed.
Assert(∃(3, y3,i, {K,K′}) ∈ ProcessedShoots and P3(x3,i) = y3,i)

else
if DAwareness(y′

3,i, Y 3) = 0 then

RemoveDUShoots(3, y′
3,i)

if (3, i) /∈ NewDUShootSet then
CheckDUnaware(x3,i, X3)

Adapt(3, x3,i, y3,i,⊥,⊥)
if ∃K ̸= K1,K2 : ETable[K]−1(y3,i) ∈ P1 then

Assert((3,K, x3,i) ∈ Completed) // No new 31-TP is triggered.
UpdateCompleted(3,K2, x3,i)
CollectTP(3, x3,i, y3,i)

ProcessedShoots← ProcessedShoots ∪ {(3, y3,i, {K1,K2}), (3, y′
3,i, {K1,K2})}

y1,i ← y′
1,i ⊕ k1 ⊕ k2

if x1,i ∈ P1 or y1,i ∈ P−1
1 then

Assert(∃(1, x1,i, {K,K′}) ∈ ProcessedShoots and P1(x1,i) = y1,i)
else

if DAwareness(x′
1,i, X1) = 0 then

RemoveDUShoots(1, x′
1,i)

if (1, i) /∈ NewDUShootSet then
CheckDUnaware(y1,i, Y 1)

Adapt(1, x1,i, y1,i,⊥,⊥)
if ∃K ̸= K1,K2 : ETable[K](x1,i) ∈ P−1

3 then
Assert((1,K, x1,i) ∈ Completed) // No new 31-TP.

UpdateCompleted(1,K1, x1,i)
CollectTP(1, x1,i, y1,i)

ProcessedShoots← ProcessedShoots ∪ {(1, x1,i, {K1,K2}), (1, x′
1,i, {K1,K2})}

for i from t+ 1 to 2t do
// First (3, x′

3,i, y
′
3,i) and then (1, x′

1,i+1, y
′
1,i+1)

x3,i ← x′
3,i ⊕ k1 ⊕ k2

if x3,i ∈ P3 or y3,i ∈ P−1
3 then

Assert(∃(3, y3,i, {K,K′}) ∈ ProcessedShoots and P3(x3,i) = y3,i)
else

if DAwareness(y′
3,i, Y 3) = 0 then

RemoveDUShoots(3, y′
3,i)

if (3, i) /∈ NewDUShootSet then
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CheckDUnaware(x3,i, X3)
Adapt(3, x3,i, y3,i,⊥,⊥)
if ∃K ̸= K1,K2 : ETable[K]−1(y3,i) ∈ P1 then

Assert((1,K, x3,i) ∈ Completed) // No new 13-TP.
UpdateCompleted(3,K1, x3,i)
CollectTP(3, x3,i, y3,i)

ProcessedShoots← ProcessedShoots ∪ {(3, y3,i, {K1,K2}), (3, y′
3,i, {K1,K2})}

y1,i+1 ← y′
1,i+1 ⊕ k1 ⊕ k2

if x1,i+1 ∈ P1 or y1,i+1 ∈ P−1
1 then

Assert(∃(1, x1,i+1, {K,K′}) ∈ ProcessedShoots and P1(x1,i+1) = y1,i+1)
else

if DAwareness(x′
1,i+1, X1) = 0 then

RemoveDUShoots(1, x′
1,i+1)

if (1, i+ 1) /∈ NewDUShootSet then
CheckDUnaware(y1,i+1, Y 1)

Adapt(1, x1,i+1, y1,i+1,⊥,⊥)
if ∃K ̸= K1,K2 : ETable[K](x1,i+1) ∈ P−1

3 then
Assert((1, k, x1,i+1) ∈ Completed) // No new 31-TP.

UpdateCompleted(1,K2, x1,i+1)
CollectTP(1, x1,i+1, y1,i+1)

ProcessedShoots← ProcessedShoots ∪ {(1, x1,i+1, {K1,K2}), (1, x′
1,i+1, {K1,K2})}

foreach (i, z) ∈ NewDUShootSet do
if i = 1 then

DUShoots← DUShoots ∪ {(1, {(x1,i, y1,i), (x
′
1,i, y

′
1,i)})}

else // i = 3

DUShoots← DUShoots ∪ {(3, {(x3,i, y3,i), (x
′
3,i, y

′
3,i)})}

Border ← Border ∪ {x1,1, x
′
1,1, x1,2t+1, x

′
1,2t+1}

// The code for Process33Shoot(x3, y3,K1,K2) is similar to Process11Shoot by symmetry, thus omitted.

private procedure UpdateCompleted(i,K, xi)
if K /∈ HTable then abort
k ← HTable(K)
for j from i to 3 do

if xj /∈ Pj then abort
yj ← Pj(xj), xj+1 ← yj ⊕ k

yi−1 ← xi ⊕ k
for j from i− 1 to 1 do

if yj /∈ P−1
j then abort

xj ← P−1
j (yj), yj−1 ← xj ⊕ k

if ETable[K](x1) ̸= y3 then abort
Completed← Completed ∪ {(1,K, x1), (2,K, x2), (3,K, x3)}

private procedure Process21TP(x1, y1,K)
k ← HTable(K)
Assert(@k′ : y1 ⊕ k ⊕ k′ ∈ P−1

1 )
x2 ← y1 ⊕ k, y2 ← P2(x2), x3 ← y2 ⊕ k

y3 ← E.E(K,x1) y3 ← EIn(K,x1)

CheckDUnaware(x3, X3)
Adapt(3, x3, y3,⊥,⊥)
UpdateCompleted(3,K, x3)
// (3, x3, y3,⊥) should not trigger new 13-TPs.
Assert(∀K′ ̸= K : ETable[K′]−1(y3) /∈ P1)
CollectTP(3, x3, y3)

private procedure Process23TP(x3, y3,K)
k ← HTable(K)
Assert(@k′ : x3 ⊕ k ⊕ k′ ∈ P3)

y2 ← x3 ⊕ k, x2 ← P−1
2 (y2), y1 ← x2 ⊕ k

x1 ← E.E−1(K, y3) x1 ← EIn−1(K, y3)

CheckDUnaware(y1, Y 1)
Adapt(1, x1, y1,⊥,⊥)
UpdateCompleted(1,K, x1)
// (1, x1, y1,⊥) should not trigger new 31-TPs.
Assert(∀K′ ̸= K : ETable[K′](x1) /∈ P−1

3 )
CollectTP(1, x1, y1)

public procedure P1(x1)
CheckDUnaware(x1, X1)
return P1In(x1)

private procedure P1In(x1)

if x1 ∈ P1 then return P1(x1)
y1 ← RandAssign(1, x1,+)
foreach (K, k, x3, y3) : (K, k) ∈ HQueries
foreach and (3, x3, y3) ∈ Queries do

if Check(K,x1, y3) = true then
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x2 ← y1 ⊕ k, y2 ← x3 ⊕ k
Take (K,x1, y3, edir, enum) from EQueries
Adapt(2, x2, y2, edir, enum)
UpdateCompleted(2,K, x2)
// No new 12-/32-TP.
Assert(∀k′ ̸= k : x2 ⊕ k′ /∈ P−1

1 )

Assert(∀k′ ̸= k : y2 ⊕ k′ /∈ P3)
return P1(x1)

public procedure P3−1(y3)
CheckDUnaware(y3, Y 3)

return P3In−1(x1)

private procedure P3In−1(x1)

if y3 ∈ P−1
3 then return P−1

3 (y3)
x3 ← RandAssign(3, y3,−)
foreach (K, k, x1, y1) : (K, k) ∈ HQueries
foreach and (1, x1, y1) ∈ Queries do

if Check(K,x1, y3) = true then
x2 ← y1 ⊕ k, y2 ← x3 ⊕ k
Take (K,x1, y3, edir, enum) from EQueries
Adapt(2, x2, y2, edir, enum)
UpdateCompleted(2,K, x2)
// No new 12-/32-TP.
Assert(∀k′ ̸= k : x2 ⊕ k′ /∈ P−1

1 )

Assert(∀k′ ̸= k : y2 ⊕ k′ /∈ P3)

return P−1
3 (y3)

public procedure P2(x2)
CheckDUnaware(x2, X2)
if x2 ∈ P2 then

y2 ← P2(x2)
Assert (♯{(3, {(x3, y3), (x

′
3, y

′
3)})|

(3, {(x3, y3), (x
′
3, y

′
3)}) ∈ DUShoots

and y2 ⊕ x3 ∈ Z ∨ y2 ⊕ x′
3 ∈ Z} ≤ 1)

foreach k ∈ Z do
x3 ← P2(x2)⊕ k
if x3 ∈ P3 then

RemoveDUShoots(3, P3(x3))
return P2(x2)

Assert(♯{k|k ∈ Z and x2 ⊕ k ∈ P−1
1 } ≤ 1)

foreach (K, k) ∈ HQueries do
if x2 ⊕ k /∈ P−1

1 then continue
x1 ← P−1

1 (x2 ⊕ k)

y3 ← E.E(K,x1) y3 ← EIn(K,x1)

P3In−1(y3)
if x2 /∈ P2 then RandAssign(2, x2,+)
return P2(x2)

public procedure P2−1(y2)
CheckDUnaware(y2, Y 2)

if y2 ∈ P−1
2 then

x2 ← P−1
2 (y2)

Assert (♯{(1, {(x1, y1), (x
′
1, y

′
1)})|

(1, {(x1, y1), (x
′
1, y

′
1)}) ∈ DUShoots

and x2 ⊕ y1 ∈ Z ∨ x2 ⊕ y′
1 ∈ Z} ≤ 1)

foreach k ∈ Z do
y1 ← P−1

2 (y2)⊕ k

if y1 ∈ P−1
1 then

RemoveDUShoots(1, P−1
1 (y1))

return P−1
2 (y2)

Assert(♯{k|k ∈ Z and y2 ⊕ k ∈ P3} ≤ 1)
foreach (K, k) ∈ HQueries do

if y2 ⊕ k /∈ P3 then continue
y3 ← P3(y2 ⊕ k)

x1 ← E.E−1(K, y3) x1 ← EIn−1(K, y3)

P1In(x1)
if y2 /∈ P−1

2 then RandAssign(2, y2,−)
return P−1

2 (y2)

private procedure Adapt(i, xi, yi, ad2dir, ad2num)
if xi ∈ Pi or yi ∈ P−1

i then abort
AddQuery(i, xi, yi,⊥)
if i = 2 then

foreach k ∈ Z do
AD2Edges← AD2Edges ∪ {(x2 ⊕ k, y2 ⊕ k, k, ad2dir, ad2num)}

7 Intermediate System G2, and Stages of the Proof

To simplify the proof, we utilize an intermediate system denoted G2. G2 takes the same randomness source as
G1, but differs from G1 in the following seven aspects:

– Explicit Bookkeeping. G2 follows the explicit bookkeeping approach of [ABD+13a]: along with each query,
G2 maintains not only its direction but also the query-counter value when it’s created;

– Modified Check Procedure. In G2, the call Check(K,x1, y3) returns true if and only if (K,x1, y3) ∈
EQueries;

– Meta-data Transferring Mechanism. As mentioned in Section 2, we transfer the meta-data of some E-queries
to the relevant AD-2-queries. To simplify proof language, we let G2 maintain a set AD2Edges to make it
explicit, and update this set whenever creating new AD-2- and H-queries;

– Procedure CheckDUnaware: Queries that Are Unaware to D. Each time G2 receives a query from D, G2

calls a procedure CheckDUnaware, which causes abort in certain cases. These reflect the cases when
D succeeds in “guessing” some history values that are supposed to be unknown to it. This is similar
to [DRST12], while the design is much more complicated;
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– Early-abortion: Abortions due to Bad Events. When the randomness sampled by G2 causes certain “bad
events” to happen, then G2 aborts to terminate this potentially bad execution. Roughly speaking, right
after G2 samples an n-bit random value z, if z can be derived from the values in the history via certain
relations, then G2 aborts and would not add the query record containing this bad random value to the
history. This is similar to [ABD+13a]. G2’s abortion due to these conditions will be referred to as early-
abortion;

– Assertions: The Execution is as Wished. In some cases, we expect certain properties to hold, e.g. some new
queries would not set off TPs/shoots, or, some queries have been in history. In G2, we use calls to a procedure
Assert to ensure such expected properties: once they do not hold, the corresponding assertion fails, and G2

aborts. We will show that if early-abortion never happens, then these assertions indeed never fail (jumping
ahead, see Lemmas 12-15);

– Keeping Starting Point of Chain-reaction. Finally, to simply some proof language, we let G2 maintain an
integer cycleStartNum for the qnum value of the most recent query from D, i.e. the “starting point” of the
current chain-reaction.

We expand on the first five (more complicated) points in the following subsubsections.

Explicit Bookkeeping, and the New Check. In detail, G2 maintains a query counter qnum initialized to
1 at the beginning of the interaction. Whenever G2 is to create a query (i, xi, yi, dir) or (K, k), it associates the
value of qnum to this query and then increment qnum by 1, i.e. it indeed keeps the record (i, xi, yi, dir, qnum)
or (K, k, qnum) in the set Queries or HQueries, resp.

Additionally, the E-queries appearing in a G2 execution are also “explicitly bookkept” in a set EQueries.
More clearly, the set EQueries is initialized to ∅. Each new call to EIn(K,x1) would lead to G2 obtaining
y3 ← E.E(K,x1) and adding a record (K,x1, y3,→, qnum) to EQueries, if early-abortion does not happen
with respect to y3. Note that the counter qnum is shared by the three types of records in EQueries, Queries,
and HQueries. Symmetrically, each new call to EIn−1(K, y3) → x1 adds a record (K,x1, y3,←, qnum) to
EQueries if early-abortion does not happen. In such cases we say G2 creates an E-query.

As all the records in EQueries are consistent with an ideal cipher E, EQueries always defines a partial
blockcipher. To simplify the language, we write ETable[K] for {x1 : ∃y3, dir, num s.t. (K,x1, y3, dir, num) ∈
EQueries}, and ETable[K](x1) for the corresponding y3. If x1 /∈ ETable[K], then we write ETable[K](x1) = ⊥.
Similarly for ETable[K]−1 and ETable[K]−1(y3). As mentioned, the procedure Check(K,x1, y3) in G2 returns
true if and only if (K,x1, y3) ∈ EQueries, in contrast to Check(K,x1, y3) in G1, which returns true whenever
E.E(K,x1) = y3.

Meta-data Transferring Mechanism. In detail, AD2Edges is updated in two cases. First, each time G2

creates an AD-2-query (2, x2, y2,⊥), it finds the E-query (K,x1, y3, edir, enum) corresponding to the chain
being completed, and then adds a tuple (x2 ⊕ k, y2 ⊕ k, k, edir, enum) to a set AD2Edges for each k ∈ Z.
Second, each time G2 creates an H-query (K, k), for each AD-2-query (2, x2, y2,⊥) ∈ Queries it picks the tuple
(x2 ⊕ k′, y2 ⊕ k′, k′, edir′, enum′) from AD2Edges for an arbitrary k′ ∈ Z\{k} and then adds a new tuple
(x2 ⊕ k, y2 ⊕ k, k, edir′, enum′) to AD2Edges.

Accessing the meta-data of E-queries during adaptations is clearly an “illegal” operation for the real simulator
S. But, G2 is an imagined intermediate system, thus no problematic issue.

Queries that Are Unaware to D. Recall from subsection 5.3 that the goal is to prevent D from obtaining the
values in shoots at the “endpoints” of the rhizomes. Thus we only have to design a mechanism around the queries
created in ProcessShoot-calls. Our solution is to take the shoots “internally” created in ProcessShoot-calls
as “unknown” to D, and once D’s query can be derived from the values in these shoots via certain relations, we
let G2 abort—this corresponds to G2 succeeding in guessing a value relevant to these “unknown” shoots/values.

More clearly, we let G2 maintain a set Border of n-bit values. The four values x1,1, x
′
1,1, x1,2t+1, x

′
1,2t+1 (in

a Process11Shoot-call) or y3,1, y
′
3,1, y3,2t+1, y

′
3,2t+1 (in a Process33Shoot-call, cf. subsection 5.4) at the

endpoints of the two alternated E-chains would be added to Border, to remind that they are “endpoints”.
We let G2 maintain another set DUShoots to keep the shoots that are supposed to be “fully unknown” to

the distinguisher. The mechanism around this set is more sophisticated, and we divide it into the following three
paragraphs: when to add new tuples to this set, how this set blocks D’s aimlessly guessing, and when should
G2 remove tuples from this set.
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Adding Tuples to DUShoots. In a call to Process11Shoot, the shoots with all the involved values being
newly sampled random ones would be added to DUShoots. E.g. for a 11-shoot formed by (1, x1,i, y1,i) and
(1, x′1,i, y

′
1,i), if x1,i, y1,i, and x′1,i are all newly sampled in this call (on the other hand, y′1,i is necessarily derived

from y1,i), then a 2-tuple (1, {(x1,i, y1,i), (x
′
1,i, y

′
1,i)}) is added to DUShoots—the second coordinate of this tuple

is also a set. Symmetrically, 2-tuples of the form (3, {(x3,i, y3,i), (x
′
3,i, y

′
3,i)}) are added to DUShoots for proper

33-shoots.
Similarly, in a call to Process33Shoot, the “fresh” shoots have their records added to DUShoots.

Checking “D-awareness”. To check whether D succeeds in guessing some history-values that should have
been unknown to it, each time G2 receives a query from D, it makes a call to a procedure CheckDUnaware,
which aborts depending on the situation.

UponD queryingE(K,x1) or P1(x1), if there exists a tuple of the form (1, {(x1, P1(x1)), (·, ·)}) inDUShoots—
in this case we say the 1-query (1, x1, P1(x1)) is in DUShoots,—G2 aborts. Upon D querying E−1(K, y3) or
P3−1(y3), G2 checks symmetrically, i.e. if (3, {(x3, y3), (·, ·)}) is in DUShoots.

Upon D querying P1−1(y1), the conditions are more cumbersome: if there exists a tuple of the form
(1, {(x′1, y′1), (x′′1 , y′′1 )}) in DUShoots such that y1 ⊕ y′1 ∈ 2Z or y1 ⊕ y′′1 ∈ 2Z, then G2 aborts. The ideas
are as follows:

(i) First, the value y1 should not appear in DUShoots, i.e. it should not be unknown to D;
(ii) Second, the (possibly) newly created query (1, x1, y1) should not form any TP nor shoot with the queries

in DUShoots.

Upon D querying P3(x3) the checking is similar by symmetry. Finally, upon D querying P2(x2), if there exists
a tuple of the form (1, {(x1, y1), (x

′
1, y
′
1)}) in DUShoots such that x2 ⊕ y1 ∈ Z or x2 ⊕ y′1 ∈ Z, then G2 aborts;

symmetrically for D querying P2−1(y2).

Besides the above cases, internally created queries may have their values known to D. Such queries should
not form any TP nor shoot with the queries in DUShoots either. Thus right before internally creating any query
with values supposed to be known to D (e.g. Process21TP creating an AD-3-query), G2 performs the same
checking as above, as if this is a query newly received from D. And if the query does not pass the checking, G2

aborts, thus avoiding creating this “bad” query.

One may notice that we never check whether a queried main-key K is unknown to D or not. This is not
surprising: because all the internally sampled random values are n-bit ones, and G1/G2 never tries to use any
main-keys that are supposed to be unknown to D.

Removing Tuples from DUShoots. A tuples in DUShoots will be removed, once its “full unawareness” to
D is supposed to be destroyed. It’s performed by a procedure RemoveDUShoots, and is divided into two
cases.

First, upon a query from D (that passes CheckDUnaware), the answer is clearly known to D, and the
tuples in DUShoots with values that can be derived from this answer via certain relations are removed from
DUShoots. For example, when D queries P2−1(y2) → x2, the tuples (1, {(x1, y1), (x

′
1, y
′
1)}) with y1 = x2 ⊕ k

or y′1 = x2 ⊕ k for some k ∈ Z are removed.
Second, in a ProcessShoot-call, G2 may internally “evaluates into” a shoot in DUShoots, and create

some queries around this shoot. In this case, the shoot may remain “fully unknown” to D, but the regularity of
its structure has been destroyed; thus in this case, we let G2 remove this shoot from DUShoots to keep clean
structural properties for all the shoots in DUShoots.

7.1 Stages of the Proof

We consider a fixed, deterministic distinguisher D, and assume D issues qe, qh, and qp queries to E/E−1, H,
and Pi/Pi−1 respectively. Following [ABD+13a], wlog assume that if an oracle aborts, then D receives an
“abort message” and outputs 1. Then our goal is to argue: (i) during the execution DG1(E,S), the simulator has
a polynomial complexity; (ii) the systems G1(E, S) and G3(EMR∗3,R) are indistinguishable to D. The proof
involves three systems as described: the simulated G1, the intermediate G2, and the real G3. For the transition
between the first two systems, note that G1(E,R) and G2(E,R) behave the same in the view of D, if:

– none of the additional abort-conditions in G2(E,R) is fulfilled in DG2(E,R), and
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– the Check calls in DG1(E,R) and DG2(E,R) return the same answers.

On the other hand, DG2 and DG3 could be related via randomness mapping. Thus the crux of the proof is
the analysis of DG2 . In the next subsection, we supply a very brief description of the analysis of G2. The full
proof is the duty of the remaining sections: first in Section 8, we collect some basic properties of DG2 ; then in
Section 9, we prove adaptations and assertions would not cause DG2 abort; thus we could give the simulator
termination argument for G2 in Section 10, and collect the probability of G2 aborting in Section 11. Finally,
in Section 12, we formally show G1, G2, and G3 are indistinguishable, thus transiting the non-abortion and
termination results in G2 to G1:

PrE,R[DG1(E,R) = 1]− PrE,R[DG2(E,R) = 1] ≤
338qh(qe + qp)

2 · q4p
N

, (Lemma 20, subsection 12.1)

PrE,R[DG2(E,R) = 1]− PrR[DG3(R) = 1] (Lemma 28, subsection 12.2)

≤
2176q6h(qe + qp)

2 · q4p
N

+
1805q2e(qe + qp)

2 · q4p
N

+
2q4h + 10q2e + qe · qh

N
.

Note that subsection 12.2 achieves the goal via our partial-randomness-mapping argument. Gathering the
above yields the bound on PrE,R[DG1(E,R) = 1]− PrR[DG3(R) = 1] which is sufficient for Theorem 1.

7.2 G2: Successful Adaptations, and Complexity Bounds—A Very Brief Description

Similarly to S in G1, G2 aborts when it cannot adapt consistently. We show such abortions never occur,
if: (a) bad events never happen, and (b) D never succeed in “guessing” unknown history values (formally,
CheckDUnaware-calls never cause abort). To keep this overview short, we focus on the (more complicated)
process of G2 handling D’s query P1−1 and P3 and recursively completing a large amount of chains. In our
formal proof, such a process will be called a long simulator cycle, cf. subsection 8.1 below.

We first see the intuition behind a single Process11Shoot-call. The hardest point is the final Shoot-
Completing-Phase. In this phase, G2 would create several AD-1- and AD-3-queries. As mentioned in Section 2,
for these AD-queries the difficulty lies in the argument for the availability of the endpoints “closer to P2”, i.e. y1
for AD-1- and x3 for AD-3-queries: these values should be available before this call, but whether an adaptation
in this call will find the corresponding value occupied by another (earlier) adaptation (which also happened in
this call)?

By reviewing subsection 5.4, it can be seen that after the completion of the Fill-in-Rung-Phase, these to-be-
occupied endpoints y1 and x3 are in the same path formed by 2-queries along with two round-keys k1 and k2,
cf. Fig. 4 (bottom right): (Note that these values are not listed in the figure for the sake of space. Instead, their
corresponding points are identified by circles.)

y1,1 − x3,1 − y1,2 − . . .− y1,t+1 − . . .− y1,2t+1.

Logically, G2 would attach the newly created AD-1- and AD-3-queries to these 4t vertices (except y1,t+1) one-
by-one. Intuitively, there should be no cycle in the above structure, i.e. it can be seen as a tree-structure.
Thus different AD-1- and AD-3-queries created in this Process11Shoot-call would consume nodes in different
subtrees, and would not interfere each other.

In our proof, the above path would be a connected component formed by 4t edges of a bipartite graph B2,
cf. subsection 8.3. Briefly, for each 2-query (2, x2, y2) and each round-key k ∈ Z, B2 would contain an edge
(x2 ⊕ k, y2 ⊕ k) labeled by k.

Now back to the (longer) process of handling P1−1 or P3. In this period, G2 may process several Pro-
cessShoot-calls as well as many MidTPs, create a lot of AD-1- and AD-3-queries, and these queries may form
more new shoots and MidTPs. Intuitively, for the to-be-created AD-1- and AD-3-queries, the endpoints “closer
to P2” would be in a large topological structure; if we could prove this structure a tree, then we’ll be able to
show the endpoints y1 and x3 to-be-occupied by G2 processing different ProcessShoot-calls and MidTPs are
in different sub-trees of the structure, and therefore these calls will not interfere each other.

If the 2-query (2, x2, y2) is not an adapted one, then its dir and num values will be associated to all the
edges (in B2) formed by it. For such a 2-query, at least one endpoint is randomly sampled. Therefore, if there’s
no AD-2-query, then proving B2 acyclic would be quite easy (such proofs were given in [ABD+13a]).
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However, the endpoints x2 and y2 of AD-2-queries depend on the other queries in Queries, and cannot be
deemed random. To settle this, we associate the edir and enum values of the 5-tuples in AD2Edges to the
edges formed by AD-2-queries. Under this definition, we show randomness is transferred to the head of these
edges. E.g. for such an edge (y1, x3, k,←, en) corresponding to (K,x1, y3,←, en), the dir value of the involved
1-query (1, x1, y1) necessarily be →, and this brings randomness to the vertex y1 (cf. the proof of Lemma 6).
These finally cinch the proof that all the connected components in B2 are indeed trees (Lemma 7). Based on
this, the Shoot-Completing-Phase would not abort due to adaptations (Lemma 15).

We then consider the termination argument, i.e. bounding the complexity of the simulator. In G2, the calls
that contribute most to |Queries| is clearly the ProcessShoot-calls. During S handling a certain P1−1 or
P3 query, each ProcessShoot-call can be associated with a unique earlier P-query from D. This argument is
based on the mentioned features of edges in B2. With this we further prove that when handling D’s l-th P-query,
S makes at most 4(l− 1) calls to ProcessShoot. Therefore, in any G2 execution, ProcessShoot is called at
most 2q2p times (Lemma 16). Starting from this we show |P1|, |P3| ≤ 13µ, |P2| ≤ 9µ|EQueries| ≤ qe + qp +16µ,
and there are at most 169qh(qe + qp)

2 · q4p Check-calls (Lemma 17). It’s then only a matter of accounting to

derive the probability of bad events and CheckDUnaware-calls aborting, which finally yields the claim: DG2

aborts with probability at most
(1462+2144q6h)·(qe+qp)

2·q4p+2q2e+2q4h
N +

32q2h·(qe+qp)
2·q3p

N .

8 Basic Properties of G2 Executions

This section presents some basic properties around G2 executions.

8.1 Terminology, Helper Functions, and Equivalent Shoots

Following [ABD+13a], we use the terminology simulator cycle to refer to the execution period from the point D
makes a query till the point D receives the answer or the abort message. Depending on the query of D, cycles
are divided into three types:

– Cycles due to D querying E or E−1 are E-cycles;
– Cycles due to D querying Pi or Pi−1 are P-cycles;
– Cycles due to D querying H are H-cycles.

We further distinguish between short simulator cycles and long simulator cycles:

– Cycles induced by D querying P1, P2, P2−1, P3−1, and H are short ones. By the code, G2 simply processes
several 13-, 31-, or H-TPs in such cycles;

– Cycles induced by D querying P1−1 and P3 are long ones. By the code, a lot of calls may emerge in such
cycles, including Process11Shoot, Process21TP, etc. The analysis of such cycles would be the hardest
part of our proof.

We then introduce two functions xebvall and yebvall to help probe in the (K,K ′)-alternated E-chains in
EQueries. Briefly speaking, xebvall takes two main-keys K and K ′ as well as a staring point x1 as inputs, and
moves in the (K,K ′)-alternated E-chain by l steps, and return the obtained new value y′3 (in case l is odd) or
x′1 (in case l is even), or ⊥, if moving l steps is not achievable due to the lack of some E-queries. yebvall takes
y3 as the staring point and runs symmetrically to xebvall. Their formal implementation is as follows.

function xebvall(K,K′, x1)
j ← 0
z ← x1

while j < l do
if j is even then

if z /∈ ETable[K] then return ⊥
z ← ETable[K](z)

else // j is odd

if z /∈ ETable[K′]−1 then return ⊥
z ← ETable[K′]−1(z)

return z

function yebvall(K,K′, y3)
j ← 0
z ← y3

while j < l do
if j is even then

if z /∈ ETable[K]−1 then return ⊥
z ← ETable[K]−1(z)

else // j is odd
if z /∈ ETable[K′] then return ⊥
z ← ETable[K′](z)

return z

Based on these functions, we define equivalent shoots. Briefly speaking, shoots rooted at the same “proper”
alternated E-chain are equivalent; when G2 is processing a shoot, it would “reach” every shoots that are
equivalent to this shoot.
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Definition 2. Two shoots (i, z, {K1,K2}) and (j, z′, {K1,K2}) (with the same keys) are equivalent (denoted
(i, z, {K1,K2}) ≡ (j, z′, {K1,K2})), if:

– (i, z) = (j, z′), or
– z = xebvall(K1,K2, z

′) ∨ z = xebvall(K2,K1, z
′) for some l (when j = 1), or

– z = yebvall(K1,K2, z
′) ∨ z = yebvall(K2,K1, z

′) for some l (when j = 3).

8.2 Invariants: for Structural Properties, and Chain-Completion

Due to the incorporated early abort conditions (Section 7), certain features in Queries, HQueries, and
EQueries are ensured at any point in any G2 execution. First, each tuple in Completed corresponds to a
completed chain.

Lemma 1. At any point in a G2 execution, for any (i,K, xi) ∈ Completed, the following completed K-chain
is in the three sets HQueries, Queries and EQueries:

(K, k), (K,x1, y3), (1, x1, y1), (2, x2, y2), (3, x3, y3), with y1 ⊕ x2 = y2 ⊕ x3 = k.

Proof. The set Completed is fully maintained by UpdateCompleted. By inspection of this procedure, it can
be seen that only the tuples satisfying the requirements can be added to Completed, thus the claim. ⊓⊔

We then present several invariants, which are somewhat similar to [ABD+13a].

Inv1. (About the derived round-keys) There does not exist a pair of distinct main-keys K1,K2 such that
HTable(K1) = HTable(K2), nor four distinct k1, k2, k3, k4 ∈ Z such that k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0. (This is
ensured by H.)

Inv2. (About two P-queries to two consecutive rounds) For n > n′, there does not exist two queries (i, xi, yi,→, n)
and (i + 1, xi+1, yi+1, d, n

′) (in Queries) such that yi ⊕ xi+1 ∈ 5Z; there does not exist two queries (i +
1, xi+1, yi+1,←, n) and (i, xi, yi, d, n

′) such that yi ⊕ xi+1 ∈ 5Z either. (This is ensured by AddQuery and H.
Jumping ahead, the full power of this Inv is used in Lemma 6 and Proposition 8.)

Inv3. (About two P-queries to the same round) For n > n′, there does not exist two queries (i, xi, yi,→, n) and
(i, x′i, y

′
i, d, n

′) such that yi ⊕ y′i ∈ 6Z; there does not exist two queries (i, xi, yi,←, n) and (i, x′i, y
′
i, d, n

′) such
that xi ⊕ x′i ∈ 6Z (ensured by AddQuery and H, with full power used in Lemma 6 and Proposition 8.).

Inv4. (About two E-queries) For n > n′, there does not exist two E-queries (K,x1, y3,→, n) and (K ′, x′1, y3, d, n
′);

there does not exist two E-queries (K,x1, y3,←, n) and (K ′, x1, y
′
3, d, n

′) (ensured by Ein and Ein−1).

Inv5. (About an E-query and a 1/3-query) Directed 1/3-queries and E-queries never head towards each other
(obviously follows from AddQuery, Ein, and Ein−1):

– There does not exist an E-query (K,x1, y3, de, ne) and a 1-query (1, x1, y1, d1, n1) such that either: (i)
n1 > ne and d1 =←, or (ii) ne > n1 and de =←;

– There does not exist an E-query (K,x1, y3, de, ne) and a 3-query (3, x3, y3, d3, n3) such that either: (i)
n3 > ne and d3 =→, or (ii) ne > n3 and de =→.

It’s not hard to see that the above five invariants hold throughout any G2 execution.

The remaining three invariants state that the tripwires and rhizome-mechanism function as wished.

Inv6. (“Static” TPs indicate completed chains) In each of the following cases, the involved queries are part of
the same completed K-chain, and the 3-tuples corresponding to this chain are in Completed:

(i) There are three queries (K, k), (i, xi, yi), and (i+ 1, xi+1, yi+1) (i = 1, 2) such that k = yi ⊕ xi+1;
(ii) There are three queries (K, k), (1, x1, y1), and (3, x3, y3) such that G2.Check(K,x1, y3) = true.
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Inv7. (Processed shoots indicate completed chains) For any tuple (1, x1, {K1,K2}) ∈ ProcessedShoots, let
x′1 = P−11 (P1(x1) ⊕ k1 ⊕ k2). If x1 /∈ Border, then (1,K1, x1), (1,K2, x1), (1,K1, x

′
1), and (1,K2, x

′
1) are all

in Completed; otherwise, for x ∈ {x1, x
′
1} and (K, k) ∈ {(K1, k1), (K2, k2)}, the tuples (1,K, x) such that

P1(x)⊕ k ∈ P2 are in Completed.
Symmetrically, for any tuple (3, y3, {K1,K2}) ∈ ProcessedShoots, let x3 = P−13 (y3), and x′3 = x3⊕ k1⊕ k2.

If y3 /∈ Border, then (3,K1, x3), (3,K2, x3), (3,K1, x
′
3), and (3,K2, x

′
3) are all in Completed; otherwise, for

x ∈ {x3, x
′
3} and (K, k) ∈ {(K1, k1), (K2, k2)}, the tuples (3,K, x) such that x⊕ k ∈ P−13 are in Completed.

Inv8. (“Static” shoots indicate processed shoots) For any two 1-queries (1, x1, y1) and (1, x′1, y
′
1) such that y1 ⊕

y′1 = k1⊕k2 for some k1, k2 ∈ Z, both (1, x1, {K1,K2}) and (1, x′1, {K1,K2}) are in ProcessedShoots. Moreover,
any (i, z, {K1,K2}) ≡ (1, x1, {K1,K2}) and (i, z′, {K1,K2}) ≡ (1, x′1, {K1,K2}) are also in ProcessedShoots.

Symmetrically, for any two 3-queries (3, x3, y3) and (3, x′3, y
′
3) such that x3 ⊕ x′3 = k1 ⊕ k2 for some k1, k2 ∈

Z, both (3, y3, {K1,K2}) and (3, y′3, {K1,K2}) are in ProcessedShoots. Moreover, any (i, z, {K1,K2}) ≡
(3, y3, {K1,K2}) and (i, z′, {K1,K2}) ≡ (3, y′3, {K1,K2}) are also in ProcessedShoots.

Lemma 2. Inv6-Inv8 hold at the end of each simulator cycle as long as G2 does not abort.

Proof. We prove Inv7 first. Note that tuples of the form (1, x1, {K1,K2}) can only be added to ProcessedShoots
in ProcessShoot-calls. The claim thus can be seen from the code of ProcessShoot.

We then consider Inv8. Wlog consider four queries (1, x1, y1, d1, n1), (1, x
′
1, y
′
1, d
′
1, n
′
1), (K1, k1, nk1), and

(K2, k2, nk2) with y1 ⊕ y′1 = k1 ⊕ k2. It must be nk1, nk2 ̸= Max{n1, n
′
1, nk1, nk2}, otherwise G2 would have

aborted in H(K1) or H(K2) and not create (K1, k1) nor (K2, k2). Thus wlog assume n1 = Max{n1, n
′
1, nk1, nk2}.

Then d1 =← or ⊥ by Inv3, and we have two possibilities:

Case 1.1: d1 =←. By the code, (1, x1, y1,←) can only be created in P1−1(y1), after which (1, x1, {K1,K2})
will be in ShootQueue. Later when (1, x1, {K1,K2}) is popped, either (1, x1, {K1,K2}) ∈ ProcessedShoot, or
G2 would call Process11Shoot(x1, y1,K1,K2), and if this call returns without abortion then the claim holds
by the code.

Case 1.2: d1 = ⊥. It falls into three cases:

(i) (1, x1, y1) is created in a call to Process23TP. Then by the code, the subsequent call CollectTP(1, x1, y1)
would push (1, x1, {K1,K2}) into ShootQueue, and the claim would hold after (1, x1, {K1,K2}) is later
popped without abortion;

(ii) (1, x1, y1) is created in a call to Process11Shoot(x′′1 , y
′′
1 ,K,K ′) or Process33Shoot(x′′3 , y

′′
3 ,K,K ′) with

{K,K ′} ̸= {K1,K2}. Then similarly to case (i), (1, x1, {K1,K2}) would be pushed into ShootQueue and
later popped and thus the claim;

(iii) (1, x1, y1) is created in a call to Process11Shoot(x′′1 , y
′′
1 ,K1,K2) or Process33Shoot(x′′3 , y

′′
3 ,K1,K2).

Wlog we focus on the former. Note that in this case, it necessarily be (1, x1, {K1,K2}) ≡ (1, x′′1 , {K1,K2})
or (1, x′1, {K1,K2}) ≡ (1, x′′1 , {K1,K2}). Thus (1, x1, {K1,K2}), (1, x′1, {K1,K2}) ∈ ProcessedShoots holds
after this call (once non-aborting).

We finally turn to Inv6, and consider three queries (K, k, nk), (1, x1, y1, d1, n1), and (2, x2, y2, d2, n2) with
k = x1 ⊕ y2 first. Note that nk ̸= Max{nk, n1, n2}, otherwise G2 would have aborted in H(K). Thus we have
two possibilities:

Case 2.1: n1 = Max{nk, n1, n2}. Then d1 =← or ⊥, otherwise contradicting Inv2. According to the pseudocode,
right after G2 creating (1, x1, y1,←) or (1, x1, y1,⊥), G2 would make a call to CollectTP(1, x1, y1). By the
code of CollectTP, it falls into two cases:

(i) ∀k′ ∈ Z\{k}, y1⊕k⊕k′ /∈ P−11 . Then a 21-TP (1, x1,K) is pushed into MidTPQueue. Thus when G2 pops
(1, x1,K), either (1,K, x1) ∈ Completed, or G2 calls Process21TP, after which (1,K, x1) ∈ Completed
holds (once non-aborting);

(ii) ∃(K ′, k′) ∈ HQueries\{(K, k)} : y1 ⊕ k ⊕ k′ ∈ P−11 . Then G2 detects a 11-shoot (1, x1, {K,K ′}), and:
– if (1, x1, {K,K ′}) ∈ ProcessedShoot, then (1,K, x1) ∈ Completed by Inv7 (note that the existence of

(2, x2, y2) indicates y1 ⊕ k ∈ P2);
– if (1, x1, {K,K ′}) /∈ ProcessedShoot, then (1, x1, {K,K ′}) is pushed into ShootQueue. Therefore, after

being popped without abortion, (1, x1, {K,K ′}) is in ProcessedShoots. This further implies (1,K, x1) ∈
Completed by Inv7.
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Case 2.2: n2 = Max{nk, n1, n2}. By Inv2 we get d2 =→ or ⊥. According to the code, RandAssign(2, x2,+)
only happens in P2, when @k ∈ Z : x2 ⊕ k ∈ P−11 . Thus d2 necessarily equals ⊥. According to the code around
calls to Adapt(2, x2, y2, ·, ·), one can see that right after G2 creates (2, x2, y2,⊥), it falls into one of the following
three cases:

(i) (2,K, x2) ∈ Completed (Indeed, G2 creating (2, x2, y2,⊥) is exactly the adaptation of the chain (2,K, x2).),
or

(ii) the purported 1-query (1, x1, y1) dose not exist (otherwise an assertion fails), or
(iii) (1, x1, {K,K ′}) ∈ ShootQueue for some K ′ ̸= K, thus by Inv7, the claims will hold after the cycle

((1, x1, {K,K ′}) has been popped without abortion). The AD-2-queries created in the Shoot-Growing-Phase
of ProcessShoot-calls may fall into this case.

The case of three queries (K, k), (2, x2, y2), and (3, x3, y3) with k = x2 ⊕ y3 is similar by symmetry.

Then, consider three queries (K, k, nk), (1, x1, y1, d1, n1), and (3, x3, y3, d3, n3). We also have two possibilities:

Case 3.1: n1 = Max{nk, n1, n3}. Then d1 ̸=← by Inv5. According to the statements subsequent to the call
Adapt(1, x1, y1,⊥,⊥), if d1 = ⊥, then either (1,K, x1) ∈ Complete, or G2 aborts—for example, if (1, x1, y1) is
created in a call to Process23TP(x3, y3,K

′), then either K ′ = K, or the purported 3-query (3, x3, y3) should
not exist. On the other hand, if d1 =→, then (1, x1, y1) is created in a call to P1In(x1), or ProcessShoot with
associated keysK1,K2. In the former case, according to the statements in P1In(x1), after G2 creating (1, x1, y1),
G2 would find (3, x3, y3) via calling Check, and thus (1,K, x1) ∈ Completed after this cycle once non-aborting.
In the later case, if K ̸= K1,K2, then it has no difference; if K = K1 or K2, then (1,K, x1) ∈ Completed also
holds after this ProcessShoot-call returns.

The case of n3 = Max{nk, n1, n3} is similar to the above case by symmetry.

Case 3.2: nk = Max{nk, n1, n3}. Then in the call to H, G2 would find (1, x1, y1) and (3, x3, y3) via Check, and
thus (1,K, x1) ∈ Completed after this cycle. ⊓⊔

8.3 Bipartite Graphs B2, EB

To establish further structural properties of good G2 executions, we define and analyze two bipartite graph B2

and EB, which encode the information from Queries, HQueries, and EQueries. Both B2 and EB have shores
{0, 1}n, and are time-dependent.

We describe B2 first. Edges of B2 are directed and labeled, and constructed as follows. For every 2-query
(2, x2, y2, dir, num) ∈ Queries with dir ̸= ⊥ and every k ∈ Z, we construct an RA-2-edge (y1, x3) with
y1 = x2⊕k and x3 = y2⊕k, of label k, of direction and an associated num value equaling the dir and num value
of the 2-query respectively (this edge is “RA” because (2, x2, y2) is created by RandAssign). For convenience,
we use a 5-tuple (y1, x3, k, edir, enum) to refer to this edge. For every 2-query (2, x2, y2,⊥, num) ∈ Queries
and every k ∈ Z we construct an AD-2-edge (y1, x3) with y1 = x2 ⊕ k and x3 = y2 ⊕ k, but the direction
and edge-number do not follow the 2-query. Indeed, from the pseudocode one can see that for each such pair
((2, x2, y2,⊥, num), k) there would be a 5-tuple (y1, x3, k, edir, enum) in AD2Edge; we take this tuple as the
constructed edge. The above constitute all edges of B2. Thus each edge of B2 is associated to a pair comprised
of one 2-query and of one H-query. We call 1-queries with dir =→ and 3-queries with dir =← heading towards
B2.

We write B2(z) for the connected component in B2 containing the vertex z. Note that B2(z) may contain
only one node (say, the case of z not adjacent to any edge). Also note that B2(z) and B2(z

′) may be the same
connected component even if z ̸= z′; more clearly, one can see they are the same structure if and only if z is a
node in B2(z

′) (or vice versa). In this case, we write z ∈ B2(z
′).

In B2, a node y1 in the left shore that satisfies y1 ∈ P−11 is called pebbled ; symmetrically, a node x3 with
x3 ∈ P3 is pebbled.

One may see proving B2 to be acyclic is indispensable for the proof: if the distinguisher is able to “create”
a cycle structure in B2, then the burden of finding a similar cycle of E-queries would be put on the simulator’s
shoulders, and this clearly could collapse any polynomial-complexity simulator. However this is not an easy task,
and took us a lot of efforts. Due to its complexity, we defer this discussion to subsection 8.6. In a departure
from this paper, the graph B2 used in [ABD+13a] is easily seen to contains no multiple edges, since ABDMS’s
simulated 2-queries are always created by random assignments.
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To help probe in B2, we use two additional functions yb2vall and xb2vall. They take two round-keys k and
k′ and a starting point as inputs and move in B2 in a “(k, k′)-alternated manner” (somewhat symmetrically to
xebvall and yebvall).

function yb2vall(k, k
′, y1)

j ← 0
z ← y1

while j < l do
if j is even then

if k ⊕ z /∈ P2 then return ⊥
z ← k ⊕ P2(k ⊕ z)

else // j is odd

if k′ ⊕ z /∈ P−1
2 then return ⊥

z ← k′ ⊕ P−1
2 (k′ ⊕ z)

return z

function xb2vall(k, k
′, x3)

j ← 0
z ← x3

while j < l do
if j is even then

if k ⊕ z /∈ P−1
2 then return ⊥

z ← k ⊕ P−1
2 (k ⊕ z)

else // j is odd
if k′ ⊕ z /∈ P2 then return ⊥
z ← k′ ⊕ P2(k

′ ⊕ z)
return z

We then describe EB. For every E-query (K,x1, y3, dir, num) ∈ EQueries, we construct an edge (x1, y3)
of label K, of direction dir (dir ∈ {→,←} for E-queries), and of an associated num value equaling the num
value of the E-query. This constitutes all edges of EB. We simply use the E-query (K,x1, y3, dir, num) to refer
to the corresponding edge. Due to Inv4, two distinct E-queries cannot give rise to two edges of EB with the
same endpoints, and thus EB contains no multiple edges. If (K,x1, y3) has been in a completed K-chain, then
we say the E-query/edge is dead, otherwise live.

We write EB(z) for the connected component in EB containing the vertex z. Also, EB(z) may contain
only one node; and EB(z) and EB(z′) are the same connected component if and only if z is a node in EB(z′)
(denoted z ∈ EB(z′); or vice versa).

It’s not hard to see that for any z, EB(z) is a tree. The formal proof is almost the same as Lemmas 12 and
14 of [ABD+13a].

Proposition 1. Connected components of EB are directed trees with edges directed away from the root, and
the num values on the edges of any directed path in EB are strictly increasing.

Proof. Due to Inv4, every vertex of EB has indegree at most 1. Moreover, since queries are totally ordered and
a single E-query exactly raises a single edge in EB, two adjacent edges have different num values. Due to Inv4,
these num values go from smaller to larger according to the edge directions, hence the connected component is
also acyclic. ⊓⊔

In EB, there is an exponential number of trees that contain only one node. Some of these trees are more
interesting than the others; to identify them, we follow [HKT11] and define table-defined trees.

Definition 3. The tree EB(x1) is table-defined, if x1 ∈ P1 or ∃K : x1 ∈ ETable[K]. Symmetrically, EB(y3)
is table-defined if y3 ∈ P−13 or ∃K : y3 ∈ ETable[K]−1.

Two different table-defined trees in EB never subsequently merge.

Proposition 2. If both EB(z) and EB(z′) are table-defined and z /∈ EB(z′), then z ∈ EB(z′) is never possible.

Proof. Consider two such trees EB(z) and EB(z′). Wlog assume that a forward E-query E(K,x1) such that
x1 ∈ EB(z) appears, and this leads to G2 creating (K,x1, y3,→, ne) for y3 = E.E(K,x1). Clearly ne is larger
than the num of any edge in EB(z′). Thus if y3 falls into the edges of EB(z′), then it contradicts Inv4. On the
other hand, if EB(z′) only contains z′, then it has to be y3 = z′; as EB(z′) was table-defined, y3 ∈ P−13 already
held before E(K,x1) appears, and it contradicts Inv5. Thus the claim. ⊓⊔

8.4 Internally Created E-queries Are Killed Soon

During chain-reaction calls (cf. subsection 6.1), G2 may internally calls Ein and Ein−1, leading to creating new
E-queries. However, these queries are killed soon.

Lemma 3. Assume that G2 processes a chain-reaction call without abortion. Then all the E-queries newly
created in this call are dead right after this call is finished.

Proof. By tracking the boxed statements in the pseudocode, the following six calls are able to lead to G2

“internally” creating E-queries:

(i) Process21TP and Process23TP;
(ii) Process11Shoot and Process33Shoot;
(iii) P2 and P2−1.

We then proceed to argue for each of the above calls:
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For Process21TP and Process23TP: Wlog consider a call to Process21TP(x◦1, y
◦
1 ,K

◦). By the code, this
call first makes a query to Ein(K,x◦1) to obtain y◦3 , and then obtains the value x◦3 by accessing the sets. We
distinguish two possibilities:

– right before the query to Ein(K,x◦1), it holds x
◦
1 /∈ ETable[K]. By the code, this is the only E-query created

in this call. Later after Adapt(3, x◦3, y
◦
3) returns, this new query is in a completed chain and thus dead;

– opposite to the first case—then no new E-query is created and the claim trivially follows.

Thus the claim holds for E-queries newly created in Process21TP- and Process23TP-calls.

For Process11Shoot and Process33Shoot: Wlog consider a call to Process11Shoot(x◦1, y
◦
1 ,K1,K2). Let

y◦◦1 = y◦1 ⊕ k1 ⊕ k2 and x◦◦1 = P−11 (y◦1). For this lemma, we simply need to note that the call would first take
(x◦1, x

◦◦
1 ) as (x◦1,t+1, x

◦◦
1,t+1) and make the following two chains of E-queries

x◦◦1,1
Ein−1

K2←−−−− . . .
EinK1←−−−− x◦◦1,t

Ein−1
K2←−−−− y◦◦3,t

EinK1←−−−− x◦◦1,t+1

EinK2−−−−→ y◦◦3,t+1

Ein−1
K1−−−−→ x◦◦1,t+2

EinK2−−−−→ . . .
Ein−1

K1−−−−→ x◦◦1,2t+1

and

x◦1,1
Ein−1

K1←−−−− . . .
EinK2←−−−− x◦1,t

Ein−1
K1←−−−− y◦3,t

EinK2←−−−− x◦1,t+1

EinK1−−−−→ y◦3,t+1

Ein−1
K2−−−−→ x◦1,t+2

EinK1−−−−→ . . .
Ein−1

K2−−−−→ x◦1,2t+1.

The claim could be established similarly to the argument for Process21TP: G2 creates at most 8t new E-
queries. Then in the Fill-in-Rung-Phase, Process11Shoot would create a series of AD-2-queries. It can be seen
from the calls to UpdateCompleted that if G2 does not abort, then the (at most 4t) newly created E-queries
adjacent to x◦◦1 are killed in this phase. Later in the Shoot-Completing-Phase, the Process11Shoot-call would
attach an AD-1-query to each x◦1,i and an AD-3-query to each y◦3,i. This however kills all the newly created
E-queries adjacent to x◦1 (also at most 4t). Thus the claim holds for E-queries created in ProcessShoot-calls.

For P2 and P2−1: Wlog consider P2−1(y2) with y2 /∈ P−12 (otherwise G2 simply reads the records and does
not call EIn−1). G2 first checks an assertion. If the assertion does not cause abort, then there exists exactly one
(K, k) such that x3 = y2 ⊕ k ∈ P3. Let the involved 3-query be (3, x3, y3), then we distinguish two possibilities:

(i) first, y3 /∈ ETable[K]−1. Then the call to EIn−1(K, y3) would lead to creating a new E-query (K,x1, y3,←).
By Inv4 and Inv5, right after this point, it holds: (i) ∀K ′ ̸= K,x1 /∈ ETable[K ′]; (ii) x1 /∈ P1. By this, the
subsequent call to P1In(x1) would lead to creating (1, x1, y1,→) with y1 = R.P1(x1) and G2 completing
the chain formed by (1, x1, y1), (K,x1, y3), and (3, x3, y3). It’s clear that if this process is finished without
abortion, then (K,x1, y3) would be in a complete chain;

(ii) second, y3 ∈ ETable[K]−1. In this case G2 does not create new E-queries.

Thus the claim holds for E-queries created in P2 and P2−1. These complete the proof. ⊓⊔

As a corollary, 13-, 31-, and H-TPs are associated with D’s queries to E or E−1.

Proposition 3. For any 13-/31-/H-TP, the involved E-query was necessarily created due to D querying E or
E−1.

Proof. Right after a 13-, 31-, or H-TP is detected, the involved E-query is necessarily live. But by Lemma 3, any
internally-created E-query would be dead after the call during which the query is created. Thus the claim. ⊓⊔

8.5 Properties of AD-1- and AD-3-queries

Note that AD-1- and AD-3-queries can only be created during long simulator cycles (this can be easily seen
from the code or the overview of simulation strategy). The whole process of a long cycle could be informally
described as follows. First, if a query P1−1(z) or P3(z) sets off several tripwires, then the E-queries internally
created by G2 would form a tree in EB. This tree is “new”, in the sense that it would not be adjacent to any
trees in EB that have been table-defined before the simulator cycle. Moreover, all the newly created AD-1- and
AD-3-queries are attached to this tree, cf. Fig. 4.

On the other hand, during the cycle, G2 also extends the connected component B2(z). More importantly,
all the newly created AD-1- and AD-3-queries are also adjacent to B2(z) (also cf. Fig. 4.).
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Lemma 4. Assume that D issues a new query P1−1(z) or P3(z), which results in RandAssign returning z′.
Then after this point, with respect to the connected components EB(z′) and B2(z), we have:

(i) z′ is the root of EB(z′). Moreover, for any tree EB(z∗) that has been table-defined before the query P1−1(z),
resp. P3(z), z′ ∈ EB(z∗) is never possible;

(ii) during the subsequent simulator cycle, all the newly created AD-1- and AD-3-queries are adjacent to both
EB(z′) and B2(z);

(iii) after the subsequent simulator cycle, if G2 does not abort, then all the E-queries in EB(z′) are dead.

Proof. We focus on a new P1−1(y1); the case of P3(x3) is indeed similar. Assume RandAssign(1, y1,−) returns
x1. Then right after this point, we have ∀K : x1 /∈ ETable[K] by Inv5. This means x1 is not adjacent to any
edge in EB. Thus all the paths in EB(x1) are necessarily directed away from x1, i.e. x1 is the root. Moreover,
for any EB(z∗) that has been table-defined before the query, x1 ∈ EB(z∗) does not hold at this point, and
would never be possible by Proposition 2. Thus (i).

To show (ii), we show the following sub-claims:

– Sub-claim 1: for any call to CollectTP(1, z, z′,−) or CollectTP(3, z′, z,+), (a) if z ∈ EB(x1), then the
root of each shoot and MidTP detected in this call lies in EB(x1); (b) if z

′ ∈ B2(y1), then the peak of each
shoot and MidTP detected in this call lies in B2(y1);

– Sub-claim 2: for any MidTP to be processed by a call to Process21TP or Process23TP, if its root lies
in EB(x1) and its peak lies in B2(y1), then unless abortion occurs, (a) the AD-query created in this call is
adjacent to both EB(x1) and B2(y1); (b) the sub-call to CollectTP meets the requirement of Sub-claim
1 ;

– Sub-claim 3: for any call to Process11Shoot or Process33Shoot, if the root of the shoot to be processed
lies in EB(x1) while the peak lies in B2(y1), then unless abortion occurs, (a) the AD-1- and AD-3-queries
created in this call are adjacent to both EB(x1) and B2(y1); (b) the sub-calls to CollectTP meet the
requirement of Sub-claim 1.

By these, (ii) can be proved via induction. We then argue for them one-by-one.

For sub-claim 1: Wlog we consider a call CollectTP(1, x◦1, y
◦
1 ,−); the argument for CollectTP(3, x◦3, y

◦
3 ,+)

has no essential difference. This CollectTP-call would check the entries in sets and push the newly detected
shoots and 21-TPs into ShootQueue and MidTPQueue respectively. It can be seen from the code that: all the
newly enqueued shoots are of the form (1, x◦1, {K◦,K◦◦}) for some K◦,K◦◦, the root of which is x◦1 ∈ EB(x1),
and the peak is y◦1 ∈ B2(y1); all the newly enqueued 21-TPs are of the form (1, x◦1,K

∗) for some K∗, which is
also rooted at x◦1 and “peaked” at y◦1 . Thus the (sub-)claim.

For sub-claim 2: Wlog we consider a call to Process21TP(x◦1, y
◦
1 ,K

◦). Recall from Lemma 3 that this call
first makes a query to EIn(K,x◦1) to obtain y◦3 , and then obtains the value x◦3 by accessing the sets. If abortion
does not occur, then y◦3 ∈ EB(x1) clearly holds; and x◦3 ∈ B2(y1) as x◦3 = k◦ ⊕ P2(k

◦ ⊕ y◦1) and y◦1 ∈ B2(y1).
Thus the AD-3-query created by the sub-call to Adapt(3, x◦3, y

◦
3) is adjacent to EB(x1) and B2(y1). Moreover,

the subsequent call is to CollectTP(3, x◦3, y
◦
3 ,+), which clearly meets the requirement of Sub-claim 1 (i.e.

y◦3 ∈ EB(x1) and x◦3 ∈ B2(y1)).

For sub-claim 3: Wlog consider a call to Process11Shoot(x◦1, y
◦
1 ,K1,K2), and let y◦◦1 = y◦1 ⊕ k1 ⊕ k2 and

x◦◦1 = P−11 (y◦1). Following the flow analyzed in Lemma 3, we note that the Process11Shoot-call would first
take (x◦1, x

◦◦
1 ) as (x◦1,t+1, x

◦◦
1,t+1) and make two chains of E-queries, each with length 4t. Cf. the proof of Lemma

3 for an illustration of these two chains, which are omitted here to save space.
Then in the Fill-in-Rung-Phase, Process11Shoot would create a series of AD-2-queries. It can be seen

that these AD-2-queries form a (k1, k2)-alternated path in B2 with length 4t, which is adjacent to y1.
Later in the Shoot-Completing-Phase, the Process11Shoot-call would attach an AD-1-query to each x◦1,i

and an AD-3-query to each y◦3,i. These constitute all the newly created AD-1- and AD-3-queries, which are
indeed adjacent to EB(x◦1)—and thus adjacent to EB(x1). Moreover, it can be seen all these new AD-1- and
AD-3-queries are adjacent to the (k1, k2)-alternated path in B2 mentioned before, thus adjacent to B2(y1).
These establish claim (a).

Then, note that the newly created 1- and 3-queries adjacent toEB(x◦◦1 ) would not trigger calls toCollectTP
(Indeed, these queries can only be heading towards B2, and cannot form shoots nor MidTPs due to Inv2 and
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Inv3); all the CollectTP-calls are of the form (1, x◦1,i, y
◦
1,i,−) and (3, x◦3,i, y

◦
3,i,+) which meet x◦1,i, y

◦
3,i ∈

EB(x1) as well as y
◦
1,i, x

◦
3,i ∈ B2(y1). These establish claim (b).

As mentioned, (ii) can then be proved via induction.
Finally, consider (iii). We already mentioned right after RandAssign(1, y1,−) returns x1 it holds ∀K : x1 /∈

ETable[K] by Inv5. This means EB(x1) contains no edges at this point. By Proposition 2 we further know
all the edges in EB(x1) are newly created by the sub-calls. By Lemma 3, each sub-call to Process21TP,
Process23TP, Process11Shoot, and Process33Shoot would “kill” all the E-queries newly created by
it. We also note that these constitute all the sub-calls that are able to add E-queries into EB(x1). Thus the
claim. ⊓⊔

The last lemma in this subsection states that the E-queries lying between certain 1-/3-queries must be dead.

Lemma 5. At the end of each non-aborting simulator cycle, if two 1- or 3-queries not heading towards B2 are
adjacent to the same E-chain, then all the E-queries in this chain are dead.

Proof. Consider the case of two 1-queries (1, x1
1, y

1
1 , d, n) and (1, xt+1

1 , yt+1
1 , d′, n′) first (by the assumption,

d, d′ ̸=→), and assuming an E-chain (K1, x
1
1, y

2
3 , d1, n1), (K2, x

3
1, y

2
3 , d2, n2), . . . , (Kt, x

t+1
1 , yt3, dt, nt). Note that

d =← ∧d′ =← is not possible: if d =← then n1 > n and d1 =→ by Inv5, and further n2 > n1 and d2 =←,...
This sequence finally yields dt =←, n′ > nt > . . . > n, and thus d′ ̸=← by Inv5.

We then show that the claim holds for adapted queries. For this, wlog assume n > n′. As argued, this implies
d ̸=←. Thus d = ⊥. Assume that (1, x1

1, y
1
1 ,⊥, n) is created in a (long) simulator cycle triggered by D querying

Piδ(z)→ z′ with qnum = n∗; note that it necessarily be n > n∗.
We now argue that n∗ > n′ is not possible. Otherwise, when G2 receives the query Piδ, EB(xt+1

1 ) has
already been table-defined. Thus: (i) by Lemma 4 (i), z′ ∈ EB(xt+1

1 ) is never possible; (ii) by Lemma 4 (ii), it
must be x1

1 ∈ EB(z′). By these, x1
1 /∈ EB(xt+1

1 ), and the two assumed 1-queries can never be adjacent to the
same E-chain.

By all the above, (1, x1
1, y

1
1 ,⊥, n) and (1, xt+1

1 , yt+1
1 , d′, n′) could be adjacent to the same E-chain only if

n∗ ≤ n′. We get two possibilities:

– If n∗ = n′, then the query (1, xt+1
1 , yt+1

1 ,←, n′) is exactly the one that triggers the simulator cycle in
question. By Lemma 4 (ii), it must be x1

1 ∈ EB(xt+1
1 ), and the E-edges between x1

1 and xt+1
1 all lie in

EB(xt+1
1 ). Thus these E-queries are dead by Lemma 4 (iii) and our assumption on G2’s non-aborting;

– if n∗ < n′, then both (1, x1
1, y

1
1 ,⊥, n) and (1, xt+1

1 , yt+1
1 , d′, n′) are created during this cycle (due to Piδ(z)→

z′). As x1
1 ∈ EB(z′), it also holds xt+1

1 ∈ EB(z′). Thus similarly to the previous case, the E-queries between
x1
1 and xt+1

1 are dead after the cycle.

These conclude the case of two 1-queries. For all the other cases there’s indeed no essential difference. ⊓⊔

8.6 B2 is Acyclic & Properties of AD-2-queries

For readers familiar with the proof in [ABD+13a], it is easy to see the connected components formed by RA-
2-edges are acyclic. The difficulties lie in the AD-2-edges. We first note AD-2-edges cannot be involved in
MidTPs.

Proposition 4. For any MidTP that is to be processed, the associated 2-query was necessarily created by Ran-
dAssign. This also means it was created due to D querying P2 or P2−1.

Proof. We argue that it can never be an AD-2-query. For this, for an arbitrary AD-2-query (2, x2, y2,⊥), assume
that it was created when G2 is completing the following chain:

(K, k), (K,x1, y3), (1, x1, y1), (2, x2, y2), (3, x3, y3).

Then right before (2, x2, y2) is in Queries, it already holds x2 ⊕ k ∈ P−11 and y2 ⊕ k ∈ P3. After (2, x2, y2) is
created, a call to UpdateCompleted is made, which (if does not abort) adds (1,K, x1), (2,K, x2), (3,K, x3)
to Completed.

If UpdateCompleted aborts, then no further actions would happen after the creation of (2, x2, y2). Oth-
erwise, for any k′ : x2 ⊕ k′ ∈ P−11 , it falls into either of the following two cases:
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– k′ = k: then (1, x1,K) would not be processed again as (1,K, x1) ∈ Completed;
– k′ ̸= k: then G2 would take the queries as a 11-shoot to process rather than a 21-TP.

Thus no new 21-TP would be found around (2, x2, y2). The argument for 23-TPs is similar by symmetry. Finally,
according to the pseudocode, in chain-reaction calls, the 2-queries internally created by G2 can only be adapted
ones. Thus the involved (2, x2, y2) was necessarily created due to D querying P2 or P2−1. ⊓⊔

Then, note that by our code, each AD-2-edge is associated with a “mirror” E-query, cf. Section 7. More
clearly, each time G2 is to create an AD-2-query, it is completing a chain, and the meta-data of the E-query
corresponding to this chain is kept as the meta-data of the AD-2-edges formed by this AD-2-query (e.g. the
code of P1In). Due to this arrangement, we are able to prove an invariant for the edges in B2.

Lemma 6. At any point in any G2 execution, for en > en′, there does not exist two edges (y1, x3, k,→, en)
and (y′1, x

′
3, k
′, ed′, en′) in B2 such that x3 ⊕ x′3 ∈ 4Z; there does not exist two edges (y1, x3, k,←, en) and

(y′1, x
′
3, k
′, ed′, en′) in B2 such that y1 ⊕ y′1 ∈ 4Z.

The full power of this lemma will be used in Propositions 24 and 25. Moreover, since ∃y2, y′2 ∈ P−12 : x3⊕k =
y2 and x′3 ⊕ k′ = y′2, this “invariant” is somewhat similar to Inv3. However, we correctly assign the meta-data
ed, en, ed′, en′ to the two 2-edges—otherwise there’s no means to state this “invariant”.

Proof. Wlog we show there does not exist two edges (y1, x3, k,→, en) and (y′1, x
′
3, k
′, ed′, en′) in B2 such that

x3 ⊕ x′3 ∈ 4Z. To this end, let (2, x2, y2, d2, n2) and (2, x′2, y
′
2, d
′
2, n
′
2) be the 2-queries such that x2 = y1 ⊕ k,

y2 = x3 ⊕ k, x′2 = y′1 ⊕ k′, and y′2 = x′3 ⊕ k′. We distinguish four cases.

Case 1: d2, d
′
2 ̸= ⊥. Then n2 = en, n′2 = en′, and d2 = ed =→, and the impossibility directly follows from Inv3.

Case 2: d2 = ⊥ while d′2 ̸= ⊥. Then n′2 = en′. Let (K,x1, y3,→, en) be the mirror E-query of (2, x2, y2,⊥, n2),
and let (1, x1, y1, d1, n1) and (3, x3, y3, d3, n3) be the involved 1- and 3-queries. Then n3 > en and d3 ̸=→ by
Inv5, thus n3 > en > en′/n′2.

Next, a crucial point is that the 1-/3-query lies between the heads of an AD-2-edge and its mirror E-query
must head towards B2. More clearly, we argue that it cannot be d3 = ⊥ (so that d3 =←), by eliminating both
of the two possibilities of the pair ((K1, x1, y3,→), (3, x3, y3,⊥)):

– (3, x3, y3,⊥) is created in a call to Process21TP(x1, y1,K). Then by Proposition 4, the 2-query (2, x2, y2)
cannot be an adapted one;

– (3, x3, y3,⊥) is created in a call to ProcessShoot. Then by Lemma 4 (ii), the E-query (K,x1, y3) necessarily
belongs to the new E-chain of this call, and thus cannot be the mirror E-query of any AD-2-query.

Thus d3 ̸= ⊥; thus d3 =← as argued. Then x3 ⊕ x′3 ∈ 4Z is not possible, as otherwise we got x3 ⊕ y′2 ∈ 5Z
which contradict Inv2.

Case 3: d2 ̸= ⊥ while d′2 = ⊥. Then n2 = en. Let (K ′, x′1, y
′
3, ed

′, en′) be the mirror E-query of (2, x′2, y
′
2, d
′
2, n
′
2),

and let (1, x′1, y
′
1, d
′
1, n
′
1) and (3, x′3, y

′
3, d
′
3, n
′
3) be the involved 1- and 3-queries. We exclude two possibilities:

– If en/n2 > n′3, then y2 ⊕ x′3 = x3 ⊕ k ⊕ x′3 ∈ 5Z contradicts Inv2;
– If n′3 > en/n2, then n′3 > en/n2 > en′. By the pseudocode, we know that the creation of (2, x2, y2,→, n2)
must be an “isolated” simulator cycle. (The case has to be: D makes a query to P2, G2 does not detect
any tripwire, and calls RandAssign. In this cycle, no chain would be completed, and only one (2-)query
is created.) Thus (3, x′3, y

′
3, d
′
3, n
′
3) is created in a later cycle, and thus d′3 ̸= ⊥ (because each later-created

AD-3-query is adjacent to some connected component EB(z) which satisfies y′3 /∈ EB(z) as y′3 has been
table-defined). Also d′3 ̸=→ by Inv5, thus d′3 =←, and the impossibility finally follows from Inv2.

Case 4: d2 = d′2 = ⊥. Let (K,x1, y3,→, en) be the mirror E-query of (2, x2, y2, d2, n2), and let (1, x1, y1, d1, n1)
and (3, x3, y3, d3, n3) be the involved 1- and 3-queries; let (K ′, x′1, y

′
3, ed

′, en′) be the mirror of (2, x′2, y
′
2, d
′
2, n
′
2),

and let (1, x′1, y
′
1, d
′
1, n
′
1), (3, x

′
3, y
′
3, d
′
3, n
′
3) be the involved 1- and 3-queries. Then d3 =← as argued in Case 2,

and n3 > en > en′. We also exclude two possibilities as follows.
First, if en > n′3, then n3 > en > n′3, and the impossibility follows from Inv3;
Second, if n′3 > en, then n′3 > en > en′, and d′3 ̸=→ by Inv5. Note that if d′3 =← then the impossibility

directly follows from Inv3. Thus we proceed to argue d′3 ̸= ⊥. For this consider two possibilities:
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– If (K ′, x′1, y
′
3, ed

′, en′) and (3, x′3, y
′
3, d
′
3, n
′
3) are not created in the same cycle, then as argued in Case 3,

d′3 ̸= ⊥;
– If (K ′, x′1, y

′
3, ed

′, en′) and (3, x′3, y
′
3, d
′
3, n
′
3) are indeed created in the same cycle, then they must be created

in the same chain-reaction call: because after the chain-reaction call during which (K ′, x′1, y
′
3) is created,

unless abortion occurs, (K ′, x′1, y
′
3) should have been dead by Lemma 3, which implies (3, x′3, y

′
3) ∈ Queries.

By this, d′3 = ⊥ is already excluded: by the pseudocode, the only possibility for G2 first creating an E-query
and then creating an AD-3-query adjacent to this E-query is in a call to ProcessShoot;13 but in this
case, the E-query lies in the new E-chain, and thus (K ′, x′1, y

′
3) cannot have been the mirror E-query of

(2, x′2, y
′
2, d
′
2, n
′
2).

The above complete the proof. ⊓⊔

Finally we are able to prove that B2 does not contain any cycles either.

Lemma 7. Connected components of B2 are directed trees with edges directed away from the root, and the num
values on the edges of any directed path in B2 are strictly increasing.

Proof. The proof follows the same line as Proposition 1, with the help of Lemma 6. ⊓⊔

At any point, given a node x1 (or y3) in EB, we denote by Tr(x1) (Tr(y3), resp.) the (time-dependent)
tree obtained by “dangling” the connected component EB(x1) (EB(y3), resp.) by x1 (y3, resp.), such that x1

(y3, resp.) is the root. Similarly, given a node y1 (or x3) in B2, we write Tr(y1) (Tr(x3), resp.) for the (time-
dependent) tree obtained by “dangling” the connected component B2(y1) (B2(x3), resp.) by y1 (x3, resp.).

We would frequently refer the subtrees of some certain tree (either in EB or in B2). For this, for a tree T
and a node z in T , we write SubT (T, z) for the subtree of T rooted at z; if z is the root, then SubT (T, z) = T .

We have another corollary: the same 2-query cannot be involved in two distinct MidTPs.

Proposition 5. The same 2-query (2, x2, y2) cannot be involved in two distinct detected MidTPs.

Proof. If the two MidTPs are not detected in the same cycle, then after G2 processing the earlier-detected
MidTP, (2, x2, y2) must be in a complete chain (since non-aborting), and following the same line as Proposition
4 we know it cannot be involved in MidTPs any more. Thus the two MidTPs are detected in the same cycle.
By the code, the only cycle that can meet this requirement is the long cycle. Assume that this cycle is induced
by D querying Piδ(z)→ z′ ((i, δ) ∈ {(1,−), (3,+)}). We exclude two possibilities.

Case 1: the two MidTPs are two 21- or 23-TPs. Wlog consider the case of G2 detecting two 21-TPs induced by
creating (1, x1, y1, d1) and (1, x′1, y

′
1, d
′
1). This means ∃k ̸= k′ ∈ Z : y1 ⊕ k = x2 and y′1 ⊕ k′ = x2. This implies

y1 ⊕ y′1 = k ⊕ k′. In long cycles, no 2-query with dir ̸= ⊥ can be created, thus by Proposition 4, (2, x2, y2)
existed before this cycle, and by Inv2 we have d1, d

′
1 ̸=→. By Lemma 4 (ii) we got y1, y

′
1 ∈ B2(z)—note that

it might be y1 = z or y′1 = z, however this does not hinder the claim. Thus right before G2 detecting the later

MidTP, there exists a “pseudo-cycle” in B2: y1 − . . .− y′1
⊕k⊕k′

o (y1). We exclude two possibilities:

(i) The path between y1 and y′1 is directed from y1 to y′1: y1 → x∗3 → . . .→ x∗∗3 → y′1 (for some x∗3, x
∗∗
3 ). Then

by Lemma 7, the edge between x∗∗3 and y′1 necessarily has enum larger than that of the edge between x∗3
and y1, and thus y′′1 = y1 ⊕ k ⊕ k′ is not possible by Lemma 6.

When the path is directed from y′1 to y1, the argument is indeed similar.

(ii) There exists a vertex z∗ such that the path is directed from z∗ to y1, and from z∗ to y′1: y1 ← x∗3 ← . . .←
z∗ → . . .→ x∗∗3 → y′1 (for some x∗3, x

∗∗
3 ). Then y′1 = y1 ⊕ k ⊕ k′ is not possible by Lemma 6.

The above contradiction with Lemma 6 indeed indicates that G2 necessarily aborted before creating the later
1-query and detecting the later MidTP, and this contradicts our (implicit) non-aborting assumption.

13 It cannot have been a call to Process21TP, because otherwise (2, x′
2, y

′
2) cannot have been an adapted one due to

Proposition 4.
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Case 2: the two MidTPs are a 21-TP and a 23-TP. Assume that the 21-TP is induced by G2 creating
(1, x1, y1, d1) with y1 = x2 ⊕ k, while the 23-TP is induced by G2 creating (3, x3, y3, d3) with x3 = y2 ⊕ k′.
Similarly to Case 1, d1 ̸=→ and d3 ̸=←, and y1 ∈ B2(z) and x3 ∈ B2(z). Let x

′
3 = y2⊕k, then x′3 = x3⊕k⊕k′,

and right before G2 detecting the later MidTP, there exists a “pseudo-cycle” in B2: x
′
3−y1− . . .−x3

⊕k⊕k′

o (x′3).
Thus the impossibility is established similarly to Case 1. ⊓⊔

Finally, MidTPs and Shoots are somewhat “mutual exclusive”.

Proposition 6. During a long simulator cycle, assume that when G2 is processing a MidTP, it completes
a chain corresponding to (K,x◦1, y

◦
3) without abortion. Then G2 would not process any shoot of the form

(1, x◦1, {K,K ′}) or (3, y◦3 , {K,K ′}) (K ′ ̸= K) in this cycle.

Proof. Wlog consider the case of processing a 21-TP (1,K, x◦1), and assume the involved chain is

(K, k), (K,x◦1, y
◦
3), (1, x

◦
1, y
◦
1), (2, x

◦
2, y
◦
2 , d
◦
2, n
◦
2), (3, x

◦
3, y
◦
3 ,⊥, n◦3). (y◦1 ⊕ x◦2 = y◦2 ⊕ x◦3 = k)

By Proposition 4 we have n◦2 < cycleStartNum (recall that cycleStartNum is the qnum value of the query
which sets off this long cycle). Then G2 clearly would not detect any 11-shoots of the form (1, x◦1, {K,K ′}) after
it creates (1, x◦1, y

◦
1), as otherwise it holds y◦1 ⊕ k ⊕ k′ ∈ P−11 and G2 should have not detected (1,K, x◦1).

On the other hand, assume thatG2 detects a 33-shoot (3, y
◦
3 , {K,K ′}) after creating (3, x◦3, y◦3). This indicates

the existence of a 3-query (3, x′3, y
′
3, d
′
3, n
′
3) with x′3 = x◦3⊕k⊕k′ = y◦2⊕k′. It necessarily be n′3 < cycleStartNum,

as otherwise G2 detecting a new 33-shoot formed by (3, x◦3, y
◦
3) and (3, x′3, y

′
3) would lead to abortion in

CollectTP, and thus G2 would not “process” the 33-shoot. Thus (3, x′3, y
′
3) along with (2, x◦2, y

◦
2) indicate

x◦2 ⊕ k′ = y◦1 ⊕ k ⊕ k′ ∈ P−11 by Inv6, and after creating (1, x◦1, y
◦
1), G2 should have detected (1, x◦1, {K,K ′})

rather than (1,K, x◦1), a contradiction. These establish the claim for 21-TPs. ⊓⊔

8.7 Properties Around DUShoots

Generally, the goal of this subsection is to prove D cannot trap S by using queries from the “unready structures”
(cf. Section 2). This requires analyzing properties around the set DUShoots.

First, we reconsider the conditions for ProcessShoot to add new tuples to DUShoots. For conceptual
convenience, we imagine the call “extends” the old and the new E-chains simultaneously. Then we note that
for some pair of values (x′1,i, x1,i) (in the old and new E-chains, resp.), if it holds x′1,i /∈ ETable[K] for the
corresponding K, then G2 would add the 33-shoot “anchored” at the “next” pair (y′3,i, y3,i) to DUShoots. The
intuition is the value y′3,i ← E.E(K,x′1,i) is indeed fresh in this case. However, recalling from Section 7 that for
a shoot in DUShoots, we wish both of the two involved queries are fresh. Thus there seems a contradiction.

However, our design is sound: the rationale is that for a pair of corresponding values in the old and the new
E-chain, if the value in the old one is not in ETable, then the value in the new one is not in ETable either.

Lemma 8. Consider the Make-E-Chain-Phase of a call to Process11Shoot(x1, y1,K1,K2). Following the
notations in the pseudocode, in the first iteration, for each i, if x′1,i+1 /∈ ETable[K1], then the corresponding value

x1,i+1 in the new E-chain would not be in ETable[K2] either; if y
′
3,i /∈ ETable[K2]

−1, then the corresponding y3,i
would not be in ETable[K1]

−1. In the second iteration, for each i, if x′1,i /∈ ETable[K2] (y
′
3,i /∈ ETable[K1]

−1,

resp.), then the corresponding x1,i (y3,i, resp.) would not be in ETable[K1] (ETable[K2]
−1, resp.) either. Similar

claim holds for Process33Shoot-calls.

Proof. Wlog consider a pair (x′1,i+1, x1,i+1) in the first iteration of Process11Shoot(x1, y1,K1,K2). To show
the claim, we argue once x1,i+1 ∈ ETable[K2] then it must hold x′1,i+1 ∈ ETable[K1]. We distinguish two cases:

the Process11Shoot-call is triggered by D directly querying P1−1, or by an AD-1-query.

Case 1: Process11Shoot(x1, y1,K1,K2) happens in a cycle due to D querying P1−1(y1), and x1,i+1 = x1.
Then right after RandAssign in P1−1(y1) return x1, it holds ∀K,x1 /∈ ETable[K]. By the code, all the chain-
reaction calls made before Process11Shoot(x1, y1,K1,K2) are of the form Process11Shoot(x1, y1,K3,K4).
Thus if G2 finds x1 ∈ ETable[K2] in Process11Shoot(x1, y1,K1,K2), there necessarily be an earlier call to
Process11Shoot(x1, y1,K2,K3) with K3 ̸= K1. These imply the existence of two 1-queries (1, x′1, y

′
1) and

(1, x′′1 , y
′′
1 ) with y′1 = y1⊕k1⊕k2 and y′′1 = y1⊕k2⊕k3. Thus y′1⊕y′′1 = k1⊕k3. The two 1-queries necessarily existed

before this cycle and x′1, x
′′
1 /∈ Border, as otherwise G2 would have aborted in CollectTP when detecting

11-shoots formed by (1, x1, y1) and them (see the two assertions in CollectTP). Thus (1,K1, x
′
1) ∈ Completed

by Inv8 and Inv7, and x′1 ∈ ETable[K1] by Lemma 1. As we assumed x1,i+1 = x1, we got x′1,i+1 = x′1; thus the
claim.
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Case 2: Process11Shoot(x1, y1,K1,K2) is in a cycle due to D querying Piδ(z)→ z′ ((i, δ) ∈ {(1,−), (3,+)}),
with z ̸= x1,i+1. Then by Lemma 4 (i), it holds x1,i+1 ∈ EB(z′), and the path between z′ and x1,i+1 is directed
from z′ to x1,i+1. Thus there exists an E-query of the form (K∗, x1,i+1, y

∗
3 ,←), and right after x1,i+1 ∈ EB(z′)

holds, it holds ∀K ̸= K∗, x1,i+1 /∈ ETable[K]. By Proposition 6, the E-query (K2, x1,i+1, y3,i) cannot be
created during G2 processing a MidTP. Thus by Lemma 4 (ii), G2 necessarily popped (and processed) a shoot
equivalent to (1, x1,i+1, {K2,K3}) with K3 ̸= K1. These imply the existence of two 1-queries (1, x′1,i+1, y

′
1,i+1)

and (1, x′′1,i+1, y
′′
1,i+1) with y′1,i+1 = y1,i+1⊕k1⊕k2 and y′′1,i+1 = y1,i+1⊕k2⊕k3. Thus y

′
1,i+1⊕ y′′1,i+1 = k1⊕k3.

The two 1-queries necessarily existed before this cycle and x′1,i+1, x
′′
1,i+1 /∈ Border, as otherwise G2 would have

aborted in CollectTP when detecting 11-shoots formed by (1, x1,i+1, y1,i+1) and them. Thus similarly to Case
1, the claim holds. ⊓⊔

By these, shoots in DUShoots have regular structures.

Proposition 7. At any point in a G2 execution, for any tuple (1, {(x1, y1), (x
′
1, y
′
1)}) ∈ DUShoots, it holds:

(i) ∃K,K ′, y3, and y′3 : (K,x1, y3,←), (K ′, x′1, y
′
3,←) ∈ EQueries;

(ii) (1, x1, y1, d), (1, x
′
1, y
′
1, d
′) ∈ Queries, y1⊕ y′1 = k⊕ k′, and one of d and d′ equals →, while the other equals

⊥;
(iii) For any k′′ /∈ {k, k′}, y1 ⊕ k ⊕ k′′ /∈ P−11 , y1 ⊕ k′ ⊕ k′′ /∈ P−11 .

Symmetrically, for any tuple (3, {(x3, y3), (x
′
3, y
′
3)}) ∈ DUShoots, it holds:

(i) ∃K,K ′, x1, and x′1 : (K,x1, y3,→), (K ′, x′1, y
′
3,→) ∈ EQueries;

(ii) (3, x3, y3, d), (3, x
′
3, y
′
3, d
′) ∈ Queries, x3⊕x′3 = k⊕ k′, and one of d and d′ equals ←, while the other equals

⊥;
(iii) For any k′′ /∈ {k, k′}, x3⊕k⊕k′′ /∈ P3, x3⊕k′⊕k′′ /∈ P3. Consequently, the assertion in RemoveDUShoots

never causes G2 abort.

Proof. Wlog consider a tuple (1, {(x1, y1), (x
′
1, y
′
1)}) ∈ DUShoots. From the code we know such a tuple can only

be added to DUShoots in ProcessShoot. Wlog consider a call to Process11Shoot(x◦1, y
◦
1 ,K1,K2), let x

◦◦
1 =

P−11 (y◦1 ⊕ k1 ⊕ k2), and assume that x1 ∈ EB(x◦◦1 ). Then by the conditions around the set NewDUShootSet,
it can be seen that x1 ∈ EB(x◦◦1 ) does not hold before Process11Shoot(x◦1, y

◦
1 ,K1,K2) is made. Thus the

query that brings x1 into EB(x◦◦1 ) is either of the form (K1, x1, y3,←) or (K2, x1, y3,←) for some y3. Wlog
assume this query is (K1, x1, y3,←). Then by Lemma 8 it implies the existence of (K2, x

′
1, y
′
3,←) for some y′3.

These establish (i).

Based on (i), right after x1 ∈ EB(x◦◦1 ) holds, it holds x1 /∈ P1 by Inv5. Thus by the code, G2 soon creates a
1-query (1, x1, y1,→). At this point, it holds ∀z ∈ 2Z\{0}, y1⊕z /∈ P−11 by Inv3. G2 then creates the AD-1-query
(1, x′1, y

′
1,⊥) with y′1 = y1 ⊕ k1 ⊕ k2 (if abortion does not occur). These establish (ii), and show that (iii) holds

right after a tuple is added to DUShoots.

We then proceed to argue that (iii) keeps holding after a tuple is added to DUShoots. For this, we consider
each case of G2 creating a new 1-query (1, x′′1 , y

′′
1 ) with y′′1 = y1 ⊕ k ⊕ k′′ for k′′ ̸= k, k′. In some of the cases

(e.g. Case 1 below), it’s not possible to form such a structure; in the others (e.g. Case 2), the tuple has been
removed from DUShoots.

Case 1: (1, x′′1 , y
′′
1 ) is created as the result of D querying P1, or a short simulator cycle (cf. subsection 8.1).

However, 1-queries created in these cases are necessarily with dir =→, and cannot have y′′1 ⊕ y1 ∈ 2Z by Inv3;

Case 2: (1, x′′1 , y
′′
1 ) is created as the result of RandAssign(1, y′′1 ,−) (after D querying P1−1(y′′1 )). In this case,

(1, {(x1, y1), (x
′
1, y
′
1)}) must have been removed from DUShoots, otherwise y′′1 ⊕ y1 ∈ 2Z would have caused G2

abort in the call CheckDUnaware(y′′1 , Y 1);

Case 3: (1, x′′1 , y
′′
1 ) is an AD-1-query created as the result of G2 processing a 23-TP. By the code, G2 would call

CheckDUnaware(y′′1 , Y 1) before trying to create it, and would abort since y′′1 = y1 ⊕ k ⊕ k′′, thus would not
create it.
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Case 4: (1, x′′1 , y
′′
1 ) is an AD-1-query created in a later ProcessShoot-call. Assume that in this call, the 1-

query that forms a shoot with (1, x′′1 , y
′′
1 ) is (1, x

′′′
1 , y′′′1 ). Thus (1, x′′′1 , y′′′1 ) cannot be newly created in this later

ProcessShoot-call, as otherwise y′′′1 ⊕ y1 ∈ 4Z can be inferred from y′′1 ⊕ y1 ∈ 2Z, contradicting Inv3. Then
it necessarily falls into two cases:

(i) (1, x′′′1 , y′′′1 ) = (1, x1, y1) or (1, x′1, y
′
1). This implies in this later ProcessShoot-call, G2 obtains x1 or x′1

when evaluating along the old E-chain; by the pseudocode of ProcessShoot, this necessarily cause G2

remove (1, {(x1, y1), (x
′
1, y
′
1)}) from DUShoots right before creating (1, x′′1 , y

′′
1 );

(ii) (1, x′′′1 , y′′′1 ) ̸= (1, x1, y1), (1, x
′
1, y
′
1). Then by the code, as (1, x′′′1 , y′′′1 ) exists before the later ProcessShoot-

call, G2 would deem it as “D-aware”, and would call CheckDUnaware(y′′1 , Y 1) before trying to create
(1, x′′1 , y

′′
1 ), and would abort since y′′1 = y1 ⊕ k ⊕ k′′.

By the above, (iii) keeps holding, unless (1, {(x1, y1), (x
′
1, y
′
1)}) is removed from DUShoots. These complete

the proof. ⊓⊔

A direct corollary is the non-abortion of the assertions (in P2 and P2−1) on tuples in DUShoots.

Corollary 1. In P2 and P2−1, the assertions on tuples in DUShoots never cause G2 abort.

Proof. Wlog consider a query P2(x2)→ y2. Such assertions are checked when x2 ∈ P2 before this query. Assume
that for the obtained y2 there exist two tuples (3, {(x3, y3), (x

′
3, y
′
3)}) and (3, {(x′′3 , y′′3 ), (x′′′3 , y′′′3 )}) in DUShoots

such that y2 ⊕ x3 = z ∈ Z and y2 ⊕ x′′3 = z′ ∈ Z. By Proposition 7 (iii) we know x3 ̸= x′3 ̸= x′′3 ̸= x′′′3 ,
thus by Proposition 7 (ii) we could wlog assume four 3-queries (3, x3, y3,←), (3, x′3, y

′
3,⊥), (3, x′′3 , y′′3 ,←), and

(3, x′′′3 , y′′′3 ,⊥) in Queries. Since x3 ̸= x′′3 we have z ̸= z′, thus x3 ⊕ x′′3 = z ⊕ z′ ∈ 2Z which would contradict
Inv3. Thus the claim. ⊓⊔

Then, queries in DUShoots cannot form interesting shoots.

Proposition 8. Right before any call to Process11Shoot(x1, y1,K1,K2), let x
′
1 = P−11 (y1⊕k1⊕k2), then both

DAwareness(x1, X1) and DAwareness(x′1, X1) equal 1; symmetrically, right before any Process33Shoot(x3,
y3,K1,K2), DAwareness returns 1 on both y3 and y′3 = P3(x3 ⊕ k1 ⊕ k2).

Proof. Wlog consider such a call to Process11Shoot(x1, y1,K1,K2). This call is necessarily due to G2 popping
a shoot (1, x1, {K1,K2}) from ShootQueue such that (1, x1, {K1,K2}) /∈ ProcessedShoot. By the pseudocode,
it’s necessarily due to G2 creating a 1-query (1, x1, y1) and then detecting (1, x′1, y

′
1, d
′
1, n
′
1) s.t. y1⊕y′1 = k1⊕k2.

Under these assumptions, we consider each case where G2 would create (1, x1, y1):

Case 1: D directly queries P1−1(y1). In this case DAwareness(x1, X1) clearly equals 1 before the Pro-
cess11Shoot-call. On the other hand, if DAwareness(x′1, X1) = 0, then since y1 ⊕ y′1 = k1 ⊕ k2 ∈ 2Z, D
querying P1−1(y1) would have caused G2 abort in CheckDUnaware(y1, Y 1). Thus DAwareness(x′1, X1) = 1
before the call.

Case 2: G2 creates (1, x1, y1,⊥) in a call to Process23TP(x3, y3,K). Then since G2 would not add any shoots
containing (1, x1, y1) to DUShoots after creating (1, x1, y1), it holds DAwareness(x1, X1) = 1 before the
Process11Shoot-call. On the other hand, if DAwareness(x′1, X1) = 0, then the fact that y1 ⊕ y′1 = k1 ⊕ k2
would have caused G2 abort in CheckDUnaware(y1, Y 1) before trying to create (1, x1, y1) (note that by
assumption, when (1, x1, y1) is created, (1, x

′
1, y
′
1) ∈ Queries already holds).

Case 3: G2 creates (1, x1, y1,⊥) in a ProcessShoot-call. Wlog assume that this call is Process11Shoot(x∗1,
y∗1 ,K3,K4), and the shoot leading to this call is (1, x∗1, {K3,K4}).

If {K3,K4} = {K1,K2}, then it’s not hard to see (1, x∗1, {K1,K2}) ≡ (1, x1, {K1,K2}) (discarding the nota-
tionsK3 andK4). This implies (1, x1, {K1,K2}) would be in ProcessedShoot afterProcess11Shoot(x∗1, y

∗
1 ,K1,

K2) returns, thus the purported call to Process11Shoot(x1, y1,K1,K2) would not have been possible. By this,
it has to be {K3,K4} ̸= {K1,K2}.

We then assume that inProcess11Shoot(x∗1, y
∗
1 ,K3,K4), the 1-query corresponding to creating (1, x1, y1,⊥)

is (1, x◦1, y
◦
1 , d
◦
1, n
◦
1). Furthermore, assume that G2 computes x◦1 via Ein−1(K3, y

◦
3). It necessarily be y◦3 ∈
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ETable[K3]
−1 before the call Process11Shoot(x∗1, y

∗
1 ,K3,K4), as otherwise y1 would be somewhat ran-

dom and could not form new interesting shoots.14 However, by the code of Process11Shoot, since y◦3 ∈
ETable[K3]

−1, (1, {(x1, y1), (x
◦
1, y
◦
1)}) would not be added to DUShoots and thus DAwareness(x1, X1) = 1.

Then, similarly to Case 2, if DAwareness(x′1, X1) = 0, then y1⊕y′1 = k1⊕k2 would have caused G2 abort in
CheckDUnaware(y1, Y 1) before trying to create (1, x1, y1) (note thatG2 would callCheckDUnaware(y1, Y 1)
because y◦3 ∈ ETable[K3]

−1).

The above complete the proof. ⊓⊔

Proposition 9. In any simulator cycle, a tuple (1, {(x1, y1), (x
′
1, y
′
1)}) or (3, {(x3, y3), (x

′
3, y
′
3)}) cannot first be

added to DUShoots while then be removed.

Proof. Wlog consider such a tuple (1, {(x1, y1), (x
′
1, y
′
1)}), and assume: (i) y1 ⊕ y′1 = k ⊕ k′; (ii) (1, x1, y1) is

“anchored” at the old E-chain corresponding to the ProcessShoot-call which adds (1, {(x1, y1), (x
′
1, y
′
1)}) to

DUShoots; (iii) in this ProcessShoot-call, G2 creates two E-queries (K,x1, y3,←) and (K ′, x1, y3,→), cf.
Fig. 6 (left); (iv) this ProcessShoot-call happens in a long cycle due to D querying P1−1(y◦1) → x◦1 (this is
wlog). Then by Inv4 and the code, after this ProcessShoot-call returns, it holds x1 /∈ ETable[K∗] for any
K∗ ̸= K,K ′.

EB

x′′
1 y′′

1

P1 P2 P3

x1 y1
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1x′

1
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x′′
1 y′′

1

P1 P2 P3

x1 y1

y′
1x′

1

y◦
1

y3

y3 y3

y3

Fig. 6. For Proposition 9: lines in red, blue, and lime indicate edges with (K, k), (K′, k′), and (K′′, k′′) respectively.
(right) illustration of the “pseudo-cycle”.

Now, if (1, {(x1, y1), (x
′
1, y
′
1)}) is later removed from DUShoots, then G2 necessarily “reaches” (1, x1, y1)

via either (K,x1, y3) or (K
′, x1, y3) when it is evaluating along the old E-chain of a later ProcessShoot-call.

Wlog assume that the later ProcessShoot-call shares the key K with the earlier ProcessShoot-call, and
the other key of the later ProcessShoot-call is K ′′ ̸= K,K ′. Then in the earlier ProcessShoot-call, G2

created an AD-1-query (1, x′1, y
′
1,⊥) with y′1 = y1 ⊕ k ⊕ k′, while in later ProcessShoot-call, G2 is to create

an AD-1-query (1, x′′1 , y
′′
1 ,⊥) with y′′1 = y1⊕k⊕k′′. Thus y′1⊕ y′′1 = k′⊕k′′ ∈ 2Z. By Lemma 4 (ii), both y′1 and

y′′1 are in B2(y
◦
1). Therefore, right before G2 is to remove (1, {(x1, y1), (x

′
1, y
′
1)}) (and then create (1, x′′1 , y

′′
1 ,⊥)),

a “pseudo-cycle” y◦1 − . . . − y′1
⊕k′⊕k′′

o y′′1 − . . . − y◦1 exists in B2, cf. Fig. 6 (right), which contradicts Lemma 6
(similarly to Proposition 5). This implies G2 should have aborted at some earlier point, and would not remove
(1, {(x1, y1), (x

′
1, y
′
1)}). Thus the claim. ⊓⊔

Remark 1. Consider the previous proof. Assume that (1, x′′1 , y
′′
1 ,⊥) is created later than (1, x′1, y

′
1,⊥, n′1). Then

as n′1 > cycleStartNum, G2 would abort in CollectTP(1, x′′1 , y
′′
1 ) after creating (1, x′′1 , y

′′
1 ). However, at this

point, (1, {(x1, y1), (x
′
1, y
′
1)}) has been removed. This explains why we take the above more complicated pseudo-

cycle-based proof—we’d like to show that G2 would abort before removing (1, {(x1, y1), (x
′
1, y
′
1)}).

Consider an E-chain z1− . . .− zi− . . .− zl (informally). If the DAwareness function values of both z1 and
zl equal 1 while the DAwareness value of zi equals 0 for some 1 < i < l, then we call this chain bad. Such bad
E-chains in fact never exist. The proof relies on three propositions.

Proposition 10. When an E-chain is originally created, it cannot be a bad one.

Proof. We note that if the DAwareness function values of some nodes in an E-chain are 0, then some parts
of the E-chain were necessarily created in ProcessShoot. Wlog assume that there exists a value x1 such
that DAwareness(x1, X1) = 0. Further assume that x1 is in the old E-chain of this ProcessShoot-call

14 If y◦
3 /∈ ETable[K3]

−1 then Process11Shoot(x∗
1, y

∗
1 ,K3,K4) would create a new E-query (K3, x

◦
1, y

◦
3 ,←), right after

which x◦
1 /∈ P1 by Inv5, and thus Process11Shoot(x∗

1, y
∗
1 ,K3,K4) would create a new 1-query (1, x◦

1, y
◦
1 ,→). Thus

by Inv3, after Process11Shoot(x∗
1, y

∗
1 ,K3,K4) returns, (1, x

◦
1, y

◦
1) is the only 1-query satisfying y1 ⊕ y◦

1 ∈ 2Z.
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(this assumption is wlog because the return values of DAwareness on both the new E-chain and the old E-
chain are determined by the state of the old E-chain). Then by the code, it can be seen that there necessarily
exists a query (K,x1, y3,←) such that when the ProcessShoot-call computes y3 (in the Make-E-Chain-
Phase), it finds y3 /∈ ETable[K]−1. Thus right after (K,x1, y3) is created and x1 is in this chain, it holds
∀K ′ ̸= K,x1 /∈ ETable[K ′] by Inv4. Thus DAwareness returns 0 on all the nodes in the tree SubT (Tr(y3), x1)
(cf. page 36 for this notation), and x1 cannot be the purported “turning point” zi. ⊓⊔

Proposition 11. Consider G2 creating a new E-query. It cannot be that an E-chain was good before this
creating action, but turns bad after it.

Proof. Towards a contradiction, wlog assume that there is a node x1 in an E-chain such that

– DAwareness(x1, X1) = 0, and
– x1 /∈ ETable[K] for some K,

whereas later G2 creates an E-query (K,x1, y3,→), after which DAwareness(x1, X1) remains 0 while DAwar-
eness(y3, Y 3) = 1. To show the impossibility, we exclude each possibility of G2 creating (K,x1, y3,→):

Case 1: D querying E(K,x1). This is clearly not possible, as if DAwareness(x1, X1) = 0 then D querying
E(K,x1) would have caused G2 abort in CheckDUnaware(x1, X1).

Case 2: D querying P2(x2) for some x2 and k ∈ Z s.t. x1 = P−11 (k⊕x2). Similarly, DAwareness(x1, X1) = 0
would have caused G2 abort in CheckDUnaware(x2, X2).

Case 3: A call to Process21TP(x1, y1,K). It necessarily be thatG2 detects the 21-TP after creating (1, x1, y1,⊥)
in some ProcessShoot-call. By Proposition 7 (ii) and the code of ProcessShoot, we know that in this call,
before creating (1, x1, y1,⊥), G2 necessarily created another 1-query (1, x′1, y

′
1,→, n′1) with y′1 = y1⊕ k′⊕ k′′ for

k′, k′′ ∈ Z. On the other hand, by Proposition 4 we know the 2-query (2, x2, y2, n2) (x2 = y′1 ⊕ k) involved in
the purported 21-TP was necessarily created in an earlier cycle. Thus n′1 > n2 while y′1⊕x2 = k⊕k′⊕k′′ ∈ 3Z,
contradicting Inv2. Thus the impossibility.

Case 4: A call to ProcessShoot. Assume that this call is due to G2 popping a shoot (i, z, {K,K ′}), and wlog
assume that this call is made in a long simulator cycle due to D querying P1−1(y◦1)→ x◦1.

Now if x1 lies in the old E-chain of the ProcessShoot-call for (i, z, {K,K ′}), then by the pseudocode
around NewDUShootSet, DAwareness(y3, Y 3) should have been 0 after G2 creating (K,x1, y3) and never
turns 1 by Proposition 9, contradicting our assumption. On the other hand, if x1 ∈ EB(z), then x1 is also in
EB(x◦1), and the ProcessShoot-call right before x1 ∈ EB(x◦1) holds is also made in the simulator cycle due to
D querying P1−1(y◦1) (otherwise x1 ∈ EB(z) cannot hold by Lemma 4). In this case, it holds (i, z, {K,K ′}) ≡
(1, x1, {K,K ′}); moreover, by Lemma 4 (i), x1 is in the new E-chain of a ProcessShoot-call for a shoot
(j, z′, {K ′′,K ′′′}) processed earlier in this cycle. Then it can be deduced that DAwareness(x1, X1) cannot be
0 right after x1 ∈ EB(x◦1) holds. More clearly:

– If K ̸= K ′ ̸= K ′′ ̸= K ′′′, then it has to be (i, z, {K,K ′}) = (1, x1, {K,K ′}), i.e. G2 detects (and later
processes) (1, x1, {K,K ′}) after creating (1, x1, y1). However, if DAwareness(x1, X1) = 0 then (1, x1, y1)
forming new 11-shoot contradicts Proposition 8;

– Otherwise, wlog assume K = K ′′′, then by Proposition 8, DAwareness(x1, X1) = 0 and (i, z, {K,K ′}) =
(1, x1, {K,K ′}) cannot simultaneously hold either. However, if (i, z, {K,K ′}) = (3, y3, {K,K ′}) with y3 =
ETable[K](x1), then there exists two 3-queries (3, x′3, y

′
3) and (3, x′′3 , y

′′
3 ), and after G2 creating (3, x3, y3,⊥),

it holds x′3 = x3⊕k⊕k′′ and x′′3 = x3⊕k⊕k′ (so that G2 detects (3, y3, {K,K ′})). But these imply y′3⊕y′′3 =
k′ ⊕ k′′, and by an argument similar to Lemma 8 we got (3, x′′3 ,K

′′) ∈ Completed and y′′3 ∈ ETable[K ′′]−1

before the cycle, thus DAwareness(x1, X1) = 1 right after x1 ∈ EB(x◦1) holds.

The above exclude all possibilities and conclude. ⊓⊔

Proposition 12. Since being created, an E-chain never turns bad.

Proof. There are two possibilities for a good E-chain to turn to bad:
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(i) First, in this E-chain, there might be some node x1 (this is wlog) with DAwareness(x1, X1) = 0 and x1 /∈
ETable[K] for some K, and later an E-query (K,x1, y3,→) is created, after which DAwareness(x1, X1)
remains 0 while DAwareness(y3, Y 3) = 1;

(ii) Second, at some point the DAwareness functions values of some nodes in this E-chain are “flipped”, after
which the E-chain turns bad.

The first possibility has been excluded by Proposition 11, thus we focus on excluding the second possibility.
We note that the DAwareness function values of the nodes of an E-chain can be flipped in the following three
cases:

Case 1: D querying E or E−1. In this case, for some x1 with DAwareness(x1, X1) = 0, only if x1 is adjacent
to some y3 such that DAwareness(y3, Y 3) = 1 can the action turns DAwareness(x1, X1) to 1. To show this,
wlog consider D querying E−1(K, y3). If the E-chain contains y3, then the claim clearly holds. Otherwise, for
convenience of notations we re-assumeD querying E−1(K ′, y′3), then it necessarily be: (i) x′1 = ETable[K]−1(y′3);
(ii) there exists a tuple (1, {(x1, y1), (x

′
1, y
′
1)}) ∈ DUShoots before the query, and this tuple is removed after

the query; (iii) ∃(K ′, k′) ∈ HQueries : y1 ⊕ y′1 = k ⊕ k′. By Proposition 7 (i), there exists (K, y3, x1) ∈
EQueries. By the code, it’s not hard to see that the two 3-queries adjacent to y3 and y′3 also form a shoot, and
(3, y3, {K1,K2}) ≡ (1, x1, {K1,K2}). Thus it cannot be (3, {(·, y3), (·, y′3)}) ∈ DUShoots before the query, as
otherwise D would have aborted in CheckDUnaware(y′3, Y 3). This implies DAwareness(y3, Y 3) = 1. Thus
the claim on DAwareness(y3, Y 3) holds.

Moreover, for a fixed E-chain containing x1, only one node in this chain (say, x1) has the DAwareness func-
tion value influenced by such an action. Formally speaking, the nodes x1, . . . , xl such thatDAwareness(xi, X1) =
0 before this action while DAwareness(xi, X1) = 1 after it are not in the same E-chain. To show this, note
that it’s the subsequent call to RemoveDUShoots(1, x1) that flip DAwareness(x1, X1) from 0 to 1. By
the code of RemoveDUShoots, it only removes two queries from DUShoots, i.e. (1, x1, y1) and (1, x′1, y

′
1),

with y1 ⊕ y′1 = k ⊕ k′ for some k, k′ ∈ Z. By the code, these two queries are necessarily created in an earlier
ProcessShoot-call. Thus by Lemma 4 (i), x1 and x′1 are never in the same connected component in EB. On
the other hand, by Proposition 7 (iii, (1, {(x1, y1), (x

′
1, y
′
1)}) is the unique tuple that is removed in the current

cycle. By the above, for a fixed E-chain, D querying E, etc. at most turns one of its nodes from “D-unaware”
to “D-aware”, and this node has to be adjacent to some “D-aware” nodes.

Case 2: D querying P2 or P2−1. Similarly to Case 1 :

(i) For some x1 withDAwareness(x1, X1) = 0, only if x1 is adjacent to some y3 such thatDAwareness(y3, Y 3) =
1 can the action turns DAwareness(x1, X1) to 1. To this end, wlog consider D querying P2−1(y2), and
assume that for the following chain (note that if RemoveDUShoots is called in P2−1(y2) and affects x1,
then x1 and y2 are necessarily in the same completed chain by Inv6)

(K, k), (K,x1, y3), (1, x1, y1), (2, x2, y2), (3, x3, y3), y1 ⊕ x2 = y2 ⊕ x3 = k ∈ Z

it holds DAwareness(x1, X1) = 0 before this query. Then it necessarily be DAwareness(y3, Y 3) = 1,
as otherwise y2 = x3 ⊕ k would have caused G2 abort in CheckDUnaware(y2, Y 2) upon D querying
P2−1(y2);

(ii) According to Corollary 1 and Proposition 7 (iii), in the subsequent process there is at most one tuple that
is removed from DUShoots. Thus similarly to Case 1, the subsequent call to RemoveDUShoots flips the
DAwareness function value for at most one node per E-chain.

Case 3: G2 processing a ProcessShoot-call. Informally speaking, a ProcessShoot-call causes |DUShoots|
decrease when the old E-chain “extends” into a shoot in DUShoots. This indicates that when evaluating
along this old E-chain, G2 obtains a vertex zu in an E-chain created by an earlier ProcessShoot-call, and
DAwareness(zu, tag) = 0 (for the appropriate tag; the same for those below).

As the formal argument is expected to be very long and consisting of a lot of case-studies, we only give a
somewhat informal presentation. Assume that:

(i) The RemoveDUShoots-call that turns DAwareness(zu, tag) to 1 is made in a ProcessShoot-call for
a shoot (i, z, {K1,K2}), and assume that before this call is made, all the E-chains are good. Let z′ =
P−11 (k1⊕k2⊕P1(z)). The assumption of goodness of all E-chains clearly holds for the first ProcessShoot-
call, and is preserved as we will demonstrate;
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(ii) The E-chain containing the vertex zu is created in the ProcessShoot-call corresponding to a shoot
(i∗, z∗, {K∗1 ,K∗2}), and z∗∗ = P−11 (k∗1 ⊕ k∗2 ⊕ P1(z

∗)), and zu ∈ EB(z◦) with z◦ ∈ {z∗, z∗∗}.

We now focus on the point right before the ProcessShoot-call for (i, z, {K1,K2}) is made. Assume that
the children of zu in Tr(zu) are z1, . . . , zl, and assume z◦ ∈ SubT (Tr(zu), z1)—informally, the E-chain be-
tween z◦ and zu is of the form z◦ − . . . − z1 − zu. Then as DAwareness(z◦, tag) = 1 by Proposition 8 while
DAwareness(zu, tag) = 0,DAwareness necessarily return 0 on all the nodes in SubT (Tr(zu), z2), . . . , SubT (Tr(zu), zl)
(otherwise contradicting the assumption that all the E-chains are good now).

Then, DAwareness(z′, tag) also equals 1 by Proposition 8. Thus it cannot be z′ ∈ SubT (Tr(zu), zi) for
i = 2, . . . , l, otherwise contradicting the assumption that all the E-chains are good now. Thus the only possi-
bility is z′ ∈ SubT (Tr(zu), z1). Additionally, the path between zu and z′ necessarily existed before the Pro-
cessShoot-call for (i, z, {K1,K2}), otherwise G2 cannot “reach” zu by Proposition 2. Therefore, right before
the RemoveDUShoots-call turningDAwareness(zu, tag) to 1,DAwareness(z1, tag) must already be 1. This
implies thatDAwareness returns 1 for all the nodes in the E-chain between z1 and z◦. AsDAwareness(zu, tag)
turns 1 after the ProcessShoot-call for (i, z, {K1,K2}), the goodness of all E-chains are kept before and after
this ProcessShoot-call.

Similarly to Case 1, each subsequent call to RemoveDUShoots turns at most one node per E-chain from
“D-unaware” to “D-aware”. These complete the analysis of Case 3. ⊓⊔

Lemma 9. During any execution DG2 , all E-chains are good.

Proof. Simply gathering Propositions 10 and 12. ⊓⊔

For an E-chain, if each of its nodes has the DAwareness function value equals 1, then this chain is called
D-aware. At the end of each chain-reaction call, as long as G2 does not abort, the length of D-aware alternated
E-chains cannot exceed the total number of E- and P-cycle (cf. subsection 8.1 for these two notions). The proof
relies on two sub-claims as follows.

Proposition 13. In any simulator cycle, at the end of each chain-reaction call, as long as G2 does not abort,
the length of any D-aware E-chain newly created in this cycle does not exceed the number of E- and P-cycles
that have happened before.

Proof. We consider the cycle in which the first E-query (K1, x1, y3) of a D-aware E-chain is created. Here by
“created” we mean the creation of the first E-query (K1, x1, y3) of this chain with DAwareness(x1, X1) =
DAwareness(y3, Y 3) = 1. Note that (K1, x1, y3) may not be “really” created in this cycle: it may already
existed, but it is this cycle that flips DAwareness(x1, X1) or DAwareness(y3, Y 3) (or both) from 0 to 1.

We make discussion for each cycle as follows:

Case 1: A cycle due to D querying H, P1, or P3−1. During such a cycle, it’s not hard to see: (a) no new
E-query is created; (b) |DUShoots| does not decrease. Thus such a cycle cannot “create” any new D-aware
E-chains.

Case 2: A cycle due to D querying E or E−1. Wlog consider D querying E(K,x1) → y3. It has to be
DAwareness(x1, X1) = 1. We show that the newly “created” D-aware E-chain x1 − y3 has length at most 1.
For this we distinguish two sub-cases:

(i) x1 /∈ ETable[K] before the query. Then by Inv4, right after this cycle, it holds ∀K ′ ̸= K, y3 /∈ ETable[K ′]−1.
Thus the newly created E-chain x1 − y3 has length 1;

(ii) x1 ∈ ETable[K] before the query, say, this cycle triggers a call to RemoveDUShoots(3, y3), which turns
DAwareness(y3, Y 3) as well as DAwareness(y′3, Y 3) for another node y′3 from 0 to 1. According to our
assumption, x1 is the only node of the imagined E-chain that has its DAwareness function value equals
1. On the other hand, y3 and y′3 cannot be in the same E-chain, cf. the analysis in Case 1 of Proposition
12. Thus y1 is the only node of the imagined E-chain that have its DAwareness function value “flipped”
during this cycle, and thus the newly created D-aware E-chain x1 − y3 has length 1.

Clearly, at least one E-/P-cycle (i.e. the cycle for E(K,x1)) has happened. Thus in this case, the length of
“newly created” D-aware E-chains does not exceed the number of earlier E- and P-cycles.
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Case 3: A cycle due to D querying P2 or P2−1. Wlog consider D querying P2(x2) → y2. We also show that
the newly “created” D-aware E-chain x1 − y3 has length at most 1. For this we distinguish three sub-cases:

(i) x2 /∈ P2 before the query, and @k ∈ Z : x2 ⊕ k ∈ P−11 . Then by the code, (a) no new E-query is created; (b)
|DUShoots| does not decrease.

(ii) x2 /∈ P2 before the query, and ∃k ∈ Z : x2 ⊕ k ∈ P−11 . By the code, if G2 does not abort, then there exists
exactly one (K, k) : x2 ⊕ k ∈ P−11 . Let the 1-query adjacent to x2 ⊕ k be (1, x1, y1). According to the code,
if this cycle “creates” a new D-aware E-chain, then it has to be x1 /∈ ETable[K] (and thus G2 creates a new
E-query (K,x1, y3,→)).
Then the case is similar to Case 2 (i): (a) DAwareness(x1, X1) = 1, otherwise CheckDUnaware(x2, X2)
would have caused abort; (b) right after this cycle, it holds ∀K ′ ̸= K, y3 /∈ ETable[K ′]−1 by Inv4, and thus
the newly created E-chain x1 − y3 has length 1.

(iii) x2 ∈ P2 before the query, say, this cycle triggers a call to RemoveDUShoots(3, y3) for some y3. Then the
case is similar to Case 2 (ii) (and the analysis is similar to Case 2 of Proposition 12), and the length of the
“newly created” D-aware E-chain is at most 1.

Thus in this case, the length of “newly created” D-aware E-chains does not exceed the number of earlier E- and
P-cycles either.

Case 4: A cycle due to D querying P1−1 or P3. Wlog consider D querying P1−1(y◦1)→ x◦1. If y
◦
1 ∈ P−11 before

the cycle, then (similarly to Case 1 ): (a) no new E-query is created; (b) |DUShoots| does not decrease. Thus
we focus on the case of y◦1 /∈ P−11 , i.e. the case of a long simulator cycle.

Assume that in this cycle, l E-queries either are newly created or have their corresponding DAwareness
function values “flipped”, and form a D-aware (K1,K2)-alternated E-chain with length l. To show the main
claim, we associate a unique earlier E-/P-cycle to each of them. Consider one of them, e.g. (K1, x1, y3, d1). The
action around this query may be due to two possibilities:

Sub-case 4.1: (K1, x1, y3) is a newly created query. We further distinguish two cases:

Sub-case 4.1.1: (K1, x1, y3) is created in a call to Process21TP(x1, y1,K). Let the involved 2-query be
(2, x2, y2) (x2 = y1⊕k). Then by Proposition 4, this 2-query was necessarily created in an earlier cycle due to D
querying P2(x2) or P2

−1(y2). Furthermore, if two different such E-queries (K1, x1,i, y3,i) and (K1, x1,j , y3,j) are
associated with the same 2-query (2, x2, y2), then (2, x2, y2) is involved in two distinct MidTPs, contradicting
Proposition 5. Thus each E-query created in Process21TP-calls is associated with a unique earlier cycle due
to D querying P2(x2) or P2−1(y2). The case of (K1, x1, y3) created in a call to Process23TP is similar by
symmetry.

Sub-case 4.1.2: (K1, x1, y3) is created in a ProcessShoot-call corresponding to G2 popping (i′, z, {K1,K
′}).

Wlog assume d1 =→. Then it has to be x1 ∈ EB(z) and thus x1 ∈ EB(x◦1), as otherwise the fact that x1 /∈
ETable[K1] would have caused G2 adding the shoot containing y3 to DUShoots, so that DAwareness(y3, Y 3)
equals 0 and cannot be flipped in this cycle due to Proposition 9, a contradiction. Thus there exists some E-
query (K ′, x′1, y

′
3) which existed before this ProcessShoot-call, and in this call, when G2 is evaluating along

the old E-chain, it reaches (K ′, x′1, y
′
3), finds x′1 ∈ ETable[K ′], and thus does not add the shoot containing y3

to DUShoots.
We now show that two different such new E-queries (Ki, x1,i, y3,i) and (Kj , x1,j , y3,j) cannot be associated

with the same pre-existing E-query (K ′, x′1, y
′
3).

15 By the pseudocode of ProcessShoot, if this situation
occurs, then it would hold P1(x1,i) ∈ B2(y

◦
1) and P1(x1,i) ∈ B2(y

◦
1). Then P1(x1,i) = P1(x

′
1) ⊕ ki ⊕ k′ and

P1(x1,j) = P1(x
′
1) ⊕ kj ⊕ k′ implies P1(x1,i) ⊕ P1(x1,j) = ki ⊕ kj ∈ 2Z, the existence of a pseudo-cycle

similar to that appeared in the proof of Proposition 9. Thus two different such new E-queries (Ki, x1,i, y3,i) and
(Kj , x1,j , y3,j) are associated with two different pre-existing E-queries (K ′i, x

′
1,i, y

′
3,i) and (K ′j , x

′
1,j , y

′
3,j).

Now, we argue that (K ′i, x
′
1,i, y

′
3,i) and (K ′j , x

′
1,j , y

′
3,j) must be created in two different earlier E-/P-cycles.

For this we consider G2 creating (K ′i, x
′
1,i, y

′
3,i) and (K ′j , x

′
1,j , y

′
3,j). Cf. Case 1 of this proof, this cannot be due

to D querying H, P1, or P1−1. Thus this may be due to the following possibilities:

15 (Ki, x1,i, y3,i) and (Kj , x1,j , y3,j) may be created in two different ProcessShoot-calls. But this does not affect the
agrement.

44



– D querying E, E−1, P2, or P2−1. It’s not hard to see that each such cycle creates at most 1 E-queries.
Thus if (K ′i, x

′
1,i, y

′
3,i) and (K ′j , x

′
1,j , y

′
3,j) are both created in such cycles, then they would have two different

associated cycles;
– A long cycle due to e.g. D querying P1−1(y∗1). Let y

′
1,i = P1(x

′
1,i) and y′1,j = P1(x

′
1,j). Then by the code, we

know that in the later ProcessShoot-call,G2 creates two AD-1-queries (1, x1,i, y1,i,⊥) and (1, x1,j , y1,j ,⊥),
with y1,i = y′1,i ⊕ ki ⊕ k′i and y1,j = y′1,j ⊕ kj ⊕ k′j . Now, in the earlier ProcessShoot-call,

• if G2 creates two AD-1-queries (1, x′1,i, y
′
1,i,⊥) and (1, x′1,j , y

′
1,j ,⊥), then by Lemma 4 (ii), it holds

y′1,i, y
′
1,j ∈ B2(y

∗
1). This along with y1,i, y1,j ∈ B2(z) indicates the existence of a “pseudo-cycle” z− . . .−

y1,i
⊕ki⊕k′

i

o y′1,i− . . .− y∗1 − . . .− y′1,j
⊕kj⊕k′

j

o y1,j − . . .− (z) in B2, cf. Fig. 7 (left), which would ultimately
contradict Lemma 6 (similarly to Proposition 5, albeit more complicated).

• if G2 does not create (1, x′1,i, y
′
1,i,⊥) nor (1, x′1,j , y

′
1,j ,⊥), then there exists k′′i , k

′′
j ∈ Z such that G2

creates two AD-1-queries (1, x′′1,i, y
′′
1,i,⊥) and (1, x′′1,j , y

′′
1,j ,⊥) with y′′1,i = y′1,i ⊕ k′i ⊕ k′′i and y′′1,j =

y′1,j⊕k′j⊕k′′j . We also have y′′1,i, y
′′
1,j ∈ B2(y

∗
1) by Lemma 4 (ii). This along with y1,i, y1,j ∈ B2(z) indicates

the existence of a “pseudo-cycle” z − . . .− y1,i
⊕ki⊕k′′

i

o y′′1,i − . . .− y∗1 − . . .− y′′1,j
⊕kj⊕k′′

j

o y1,j − . . .− (z) in
B2, cf. Fig. 7 (right), which would ultimately contradict Lemma 6.

• The “hybrid case”: if G2 creates (1, x′1,i, y
′
1,i,⊥) but not (1, x′1,j , y

′
1,j ,⊥), then following the same line

as the above discussion, it can be seen that a “pseudo-cycle” z − . . .− y1,i
⊕ki⊕k′

i

o y′1,i − . . .− y∗1 − . . .−

y′′1,j
⊕kj⊕k′′

j−−−−−→ y1,j − . . .− z would be in B2.

The “pseudo-cycle” appeared in the above discussion implies that, among the two ProcessShoot-calls that
create (K ′i, x

′
1,i, y

′
3,i) and (K ′j , x

′
1,j , y

′
3,j), the later one necessarily causes abort before it returns.16Whereas the

premise of this lemma is all the earlier chain-reaction calls returned without abortion. Thus the analysis for
sub-case 4.1.2 is completed.
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Fig. 7. For Proposition 13: the two “pseudo-cycles” for sub-case 4.1.2. The two arrowed curves indicate G2 evaluating
along the old E-chains in the later ProcessShoot-call.

Sub-case 4.2: (K1, x1, y3) is included due to a call Process11Shoot(x′1, y
′
1,K1,K

′) flipping the DAwareness
function value of x1 or y3. This sub-case describes one of the following two cases:

(i) G2 reaching the query (K1, x1, y3) when evaluating along the old E-chain of the ProcessShoot-call
for (i′, z, {K1,K

′}), and thus calling RemoveDUShoots and removing e.g. a tuple containing y3 from
DUShoots;

(ii) G2 reaching a query (K ′1, x
′
1, y
′
3) when evaluating along the old E-chain of the ProcessShoot-call for

(i′, z, {K1,K
′}), and calling RemoveDUShoots and removing e.g. a tuple of the form (3, {(·, y3), (·, y′3)})

from DUShoots.

By Proposition 9, in each case, (K1, x1, y3) was necessarily created in an earlier long cycle; thus by Lemma 4
(i), it holds x1 /∈ EB(x◦1).

Now, similarly to sub-case 4.1.2 above, we argue that two such “flipped” E-queries (K ′i, x
′
1,i, y

′
3,i) and

(K ′j , x
′
1,j , y

′
3,j) must be created in two different earlier E-/P-cycles. First, wlog assume thatDAwareness(y′3,i, Y 3) =

DAwareness(y′3,j , Y 3) = 1 before this call, and this call flips the DAwareness function value of x′1,i and x′1,j .
Then:

16 If (K′
i, x

′
1,i, y

′
3,i) and (K′

j , x
′
1,j , y

′
3,j) are created in the same ProcessShoot-call, then this call necessarily aborts.
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(i) If x′1,i and x′1,j are not in the same shoot, then the analysis follows the same line as sub-case 4.1.2—
specifically, leading to “pseudo-cycles” in each case. This implies that among the two ProcessShoot-calls
that flip DAwareness(x′1,i, X1) and DAwareness(x′1,j , X1), the later one necessarily aborts (similarly to
sub-case 4.1.2, if they are flipped in the same call, then this call would abort);

(ii) If x′1,i and x′1,j are in the same shoot, then by Lemma 4 and Proposition 2, (K ′i, x
′
1,i, y

′
3,i) and (K ′j , x

′
1,j , y

′
3,j)

cannot be in the same connected component.

This also shows that for (K1, x1, y3), it cannot be DAwareness(x1, X1) = DAwareness(y3, Y 3) = 0
before this cycle while DAwareness(x1, X1) = DAwareness(y3, Y 3) = 1 after this cycle: because such a
query (K1, x1, y3) was necessarily created in an earlier ProcessShoot, and thus adjacent to some (K1,K

′)-
alternated E-chain. Hence DAwareness(x1, X1) = DAwareness(y3, Y 3) = 1 after this cycle would contradict
what we have just argued. By the above, each such increment in length can also be associated with a unique
earlier E-/P-cycle. These complete the analysis for sub-case 4.2.

Summary for Case 4. By the above, all the “newly created” E-queries are in EB(x◦1), while all the “flipped”
E-queries are not in EB(x◦1). Thus by Proposition 2, the two types of new “D-aware” E-queries do not add up.
As the number of each type does not exceed the number of earlier E- and P-cycles, we reach the claim, and
complete the proof. ⊓⊔

Proposition 14. For any fixed (K1,K2)-alternated E-chain, since being created, its length increases by at most
1 after each E- and P-cycle, while stays constant during H-cycles.

Proof. Similarly to Proposition 12, there are also two possibilities for such an E-chain extending:

(i) First, in this E-chain, there might be some node x1 with x1 /∈ ETable[K1] (wlog), and later an E-query
(K1, x1, y3,→) is created with DAwareness(y3, Y 3) = 1;

(ii) Second, at some point the DAwareness function values of some nodes in this E-chain are “flipped’.

We make discussion for each cycle as follows:

Case 1: A cycle due to D querying H, P1, or P3−1. As discussed in the proof of Proposition 13, in such a
cycle no new E-query is created and no node has its DAwareness function value flipped. Thus the length of
each pre-existing D-aware E-chain stays constant.

Case 2: A cycle due to D querying E or E−1. Wlog consider D querying E(K,x1). If x1 /∈ ETable[K], then
this cycle may bring new E-query to pre-existing E-chains. By Inv4, y3 /∈ ETable[K ′] holds for any K ′ ̸= K,
and thus the increment is at most 1. On the other hand, if x1 ∈ ETable[K], then this cycle may flip some
DAwareness function values. However, cf. the analysis in Case 1 of Proposition 12, for a fixed E-chain, D
querying E(K,x1) turns at most one of its nodes from “D-unaware” to “D-aware”. Thus such increment does
not exceed 1 either.

Case 3: A cycle due to D querying P2 or P2−1. Wlog consider D querying P2(x2). We distinguish three
sub-cases similar to Case 3 of Proposition 13:

(i) x2 /∈ P2, and @k ∈ Z : x2 ⊕ k ∈ P−11 . Then no new E-query is created, and |DUShoots| does not decrease,
thus no increment.

(ii) x2 /∈ P2, and ∃k ∈ Z : x2 ⊕ k ∈ P−11 , and x1 /∈ ETable[K] for x1 = P−11 (x2 ⊕ k), so that a new E-query is
created in this cycle. Then the case is similar to Case 2 : by Inv4, y3 /∈ ETable[K ′] holds for any K ′ ̸= K,
and thus the increment is at most 1.

(iii) x2 ∈ P2, say, this cycle triggers a call to RemoveDUShoots(3, y3) for some y3. Then cf. the analysis in Case
2 of Proposition 12, for a fixed E-chain, D querying P2 turns at most one of its nodes from “D-unaware”
to “D-aware”. Thus in this case, the increment does not exceed 1 either.

Case 4: A (long) cycle due to D querying P1−1, or P3. We first argue that long cycles cannot bring in “new-
E-query-type” increment to pre-existing E-chains. Wlog consider D querying P1−1(y◦1) → x◦1. We note that
(K,x1, y3) cannot be created due to G2 subsequent processing a MidTP (i, z,K), as x1 /∈ EB(x◦1) by Lemma
4 (i). Thus x1 lies in the old E-chain of a subsequent ProcessShoot-call. As x1 /∈ ETable[K], after this
ProcessShoot-call, it would hold DAwareness(y3, Y 3) = 0, which would not be flipped in this cycle due to
Proposition 9.
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By this, pre-existing D-aware E-chains extend only due to subsequent calls to RemoveDUShoots. As
RemoveDUShoots may be called more than once, the case is more complicated than Case 2 and 3. However,
we proceed to show that the length of any alternated E-chain cannot increase by more than 1. To this end, we
make the following assumptions:

(i) There exist four 1-queries (1, x1, y1,→), (1, x′1, y
′
1,⊥), (1, x′′1 , y

′′
1 ,→), and (1, x′′′1 , y′′′1 ,⊥) with y1 ⊕ y′1 =

y′′1 ⊕ y′′′1 = k1 ⊕ k2, DAwareness(x1, X1) = 0, and DAwareness(x′′1 , X1) = 0. The soundness of this
assumption comes from Proposition 7 and the code of ProcessShoot;

(ii) x′′1 = xebvall(K1,K2, x1), say, the two “D-unaware” shoots are in the same (K1,K2)-alternated E-chain;
(iii) In a long simulator cycle due to D querying P1(y◦1), G2 reaches first x1 and then x′′1 when evaluating

along the old E-chains in subsequent ProcessShoot-calls, which causes both (1, {(x1, y1), (x
′
1, y
′
1)}) and

(1, {(x′′1 , y′′1 ), (x′′′1 , y′′′1 )}) be removed fromDUShoots (and thus the length of the (K1,K2)-alternated E-chain
underlying the two shoots increases by two).

Note that these assumptions are made concrete for clearness, but they are wlog. For example, one could sub-
stitute (1, x′′1 , y

′′
1 ,→) and (1, x′′′1 , y′′′1 ,⊥) with (3, x3, y3,←) and (3, x′3, y

′
3,⊥), and the argument carries as well.

EB
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1
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1 y′′′

1
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x1 y1
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Fig. 8. For Proposition 14, Case 4 : lines in blue and red indicate the (K1,K2)-alternated E-chain, while lines in green
and magenta indicate E-queries with keys K3 and K4, resp. (right) illustration for the “pseudo-cycle”.

Now, assume that after G2 reaches x1, it is to create an AD-1-query of the form (1, ·, y1⊕ k1⊕ k3); after G2

reaches x′′1 , it is to create an AD-1-query of the form (1, ·, y′′1 ⊕k1⊕k4), cf. Fig. 8 (according to the pseudocode,
this assumption is reasonable). Then by Lemma 4 (ii), right before G2 callsRemoveDUShoots(y′′1⊕k1⊕k4, Y 1)
(and creates (1, ·, y′′1 ⊕ k1 ⊕ k4)), it holds:

– y1 ⊕ k1 ⊕ k3 ∈ B2(y
◦
1) and y′′1 ⊕ k1 ⊕ k4 ∈ B2(y

◦
1);

– there exists z such that y′1 ∈ B2(z) and y′′′1 ∈ B2(z) (because (1, x′1, y
′
1,⊥) and (1, x′′′1 , y′′′1 ,⊥) are created in

the same ProcessShoot-call).

Note that y1 ⊕ k1 ⊕ k3 = y′1 ⊕ k2 ⊕ k3 and y′′1 ⊕ k1 ⊕ k4 = y′′′1 ⊕ k2 ⊕ k4. This implies a “pseudo-cycle”
y1− . . .− y′′′1

⊕k2⊕k4

o y′′1 ⊕ k1⊕ k4− . . .− y1⊕ k1⊕ k3
⊕k2⊕k3

o (y1) in B2, cf. Fig. 8 (right), which would ultimately
contradict Lemma 6. Thus G2 should have aborted, and would not call RemoveDUShoots(y′′1 ⊕ k1 ⊕ k4, Y 1)
to remove the second shoot.

The above discussion assumes x1 and x′′1 in the old E-chain of the earlier ProcessShoot-call. If not, i.e.
the four involved 1-queries are (1, x1, y1,⊥), (1, x′1, y′1,→), (1, x′′1 , y

′′
1 ,⊥), and (1, x′′′1 , y′′′1 ,→) (with the dir values

“swapped”), then the pseudo-cycle y1 − . . . − y′′1
⊕k1⊕k4

o y′′1 ⊕ k1 ⊕ k4 − . . . − y1 ⊕ k1 ⊕ k3
⊕k1⊕k3

o y1 still exists.
These complete the proof. ⊓⊔

Gathering the above yields the desired claim.

Lemma 10. At the end of each chain-reaction call, if G2 does not abort, then for any (K1,K2), the length of
D-aware (K1,K2)-alternated E-chain is at most qe + qp.

Proof. By Propositions 13 and 14, the length of any D-aware (K1,K2)-alternated E-chain does not exceed the
total number of E- and P-cycles, which does not exceed qe+qp and thus enforcing the claimed bound. Note that
although Proposition 14 holds “unconditionally”, Proposition 13 enforces the condition(s) of this lemma. ⊓⊔

Thus the intuition of rhizome strategy is sound: shoots in Border can never be “reached” by D.
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Lemma 11. (a) For any tuple (1, {(x1, y1), (x
′
1, y
′
1)}) ∈ DUShoots, x1 ∈ Border ⇔ x′1 ∈ Border; (b) If

x1 ∈ Border, then there exists a tuple st = (1, {(x1, y1), (x
′
1, y
′
1)}) in DUShoots, and st ∈ DUShoots always

holds.

Proof. x1 ∈ Border ⇔ x′1 ∈ Border can be seen from the code of Process11Shoot. On the other hand, if (b)
does not hold, then there are two possibilities:

(i) In some Process11Shoot-call, a shoot formed at the “endpoints” is not added to DUShoots;
(ii) For some x1 ∈ Border, the shoot (1, {(x1, y1), (x

′
1, y
′
1)}) (containing it) is later removed from DUShoots.

Consider possibility (i) first. Wlog assume that in Process11Shoot(x∗1, y
∗
1 ,K1,K2) (let x∗∗1 = P−11 (y∗1 ⊕

k1⊕k2)), when G2 obtains y′3 = xebval2t−1(x
∗∗
1 ,K1,K2), it finds y

′
3 ∈ ETable[K2]

−1, and thus does not add the
shoot containing x′1 = xebval2t(x

∗∗
1 ,K1,K2) into DUShoots. This indicates the E-chain x∗∗1 − . . .−y′3−x′1 exists

before Process11Shoot(x∗1, y
∗
1 ,K1,K2) (otherwise y′3 ∈ ETable[K2]

−1 is not possible by Proposition 2). By
Proposition 8, before the call to Process11Shoot(x∗1, y

∗
1 ,K1,K2), it already holdsDAwareness(x∗∗1 , X1) = 1.

According to how (K2, x
′
1, y
′
3) is created, we distinguish two cases:

Case 1.1: (K2, x
′
1, y
′
3) is created in a short cycle, or a call to Process21/23TP. Then it necessarily holds

DAwareness(y′3, Y 3) = 1, thus by Lemma 9 we know before the call to Process11Shoot(x∗1, y
∗
1 ,K1,K2), the

E-chain x∗∗1 − . . .− y′3 is a D-aware alternated E-chain, with length 2t− 1 > qe+ qp; this contradicts Lemma 10.

Case 1.2: (K2, x
′
1, y
′
3) is created in the ProcessShoot-call for a shoot (i, z, {K2,K3}). In this case, it has to be

K3 ̸= K1, otherwise (1, x∗1, {K1,K2}) ≡ (i, z, {K2,K1}) and thus Process11Shoot(x∗1, y
∗
1 ,K1,K2) would not

happen. Wlog assume (i, z) = (1, x◦1), and let x◦◦1 = P−11 (P1(x
◦
1)⊕ k2 ⊕ k3). Then it’s not hard to see either x◦1

or x◦◦1 lies in SubT (x∗∗1 , y′3). By Proposition 8 we know the DAwareness function values of both x◦1 and x◦◦1 are
1, thus by Lemma 9 we (again) have DAwareness(y′3, Y 3) = 1, and before Process11Shoot(x∗1, y

∗
1 ,K1,K2),

the E-chain x∗∗1 − . . .− y′3 is a D-aware alternated E-chain with length 2t− 1, contradicting Lemma 10.

We then consider possibility (ii). Wlog assume (1, {(x1, y1), (x
′
1, y
′
1)}) is added to DUShoots in Pro-

cess11Shoot(x∗1, y
∗
1 ,K1,K2), and x1 ∈ EB(x∗1). Then we exclude two cases for it being removed:

Case 2.1: D querying E, E−1, P2, or P2−1. Then it can be seen from the analysis of Case 1 and 2 in Proposition
12 that the current cycle can only increase the length of the D-aware (K1,K2)-alternated E-chain containing x∗1
by at most 1. Whereas by Proposition 8 we have DAwareness(x∗1, X1) = 1. Therefore, before this cycle, there
necessarily exists a D-aware (K1,K2)-alternated E-chain with length 2t− 1 > qe + qp, contradicting Lemma 10.

Case 2.2: G2 processing a long cycle. It can be seen from the analysis of Case 3 in Proposition 12 that long
cycle can only increase the length of the D-aware (K1,K2)-alternated E-chain containing x∗1 by at most 1.
Thus (similarly to Case 2.1 ), before this cycle, there exists a D-aware (K1,K2)-alternated E-chain with length
2t− 1 > qe + qp, contradicting Lemma 10. These complete the proof. ⊓⊔

Another corollary is that the old E-chains of ProcessShoot-calls never “extend into” the set Border.

Proposition 15. Consider the old E-chain of a ProcessShoots-call. None of the values in this chain lies in
the set Border, except for the two new endpoints.

Proof. Assume otherwise, i.e. in the ProcessShoots-call corresponding to popping a shoot (i, z, {K1,K2}),
when G2 is evaluating along the old E-chain, it obtains a value x∗1,2t+1 which was added to Border by an earlier

call to Process11Shoot(x∗1, y
∗
1 ,K

∗
1 ,K

∗
2 ), and x∗1,2t+1 ∈ EB(x∗1) (these are wlog). Let z

′ = P−11 (k1⊕k2⊕P1(z)).
Then, right before (i, z, {K1,K2}) is popped, the E-chain between z′ and x∗1,2t+1 exists, as otherwise x∗1,2t+1 ∈
EB(z′) never holds by Lemma 2 andG2 cannot obtain x∗1,2t+1. Assume that in this E-chain, the E-query adjacent
to x∗1,2t+1 is (K1, x

∗
1,2t+1, y

′
3). Then, similarly to Lemma 11, if (K1, x

∗
1,2t+1, y

′
3) is created in a short cycle or a call

to Process21/23TP, then it necessarily be DAwareness(x∗1,2t+1, X1) = 1, thus before the ProcessShoot-
call for (i, z, {K1,K2}), the E-chain x∗1 − . . .− x∗1,2t+1 is a D-aware alternated E-chain with length 2t > qe + qp,
contradicting Lemma 10. On the other hand, if (K1, x

∗
1,2t+1, y

′
3) is created in Process11Shoot(x∗1, y

∗
1 ,K

∗
1 ,K

∗
2 ),

then it’s not hard to see z′ ∈ SubT (x∗1, y
′
3), thus the DAwareness function value of z′ is 1 by Proposition 8, and

further DAwareness(y′3, Y 3) = 1 by Lemma 9. Therefore, before the ProcessShoot-call for (i, z, {K1,K2})
happens, the E-chain x∗1 − . . .− y′3 is a D-aware alternated E-chain with length 2t− 1 > qe + qp, contradicting
Lemma 10. Thus the claim. ⊓⊔
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Remark 2. Back to the proof of Proposition 15, one may note that according to the assumption, the later
ProcessShoots-call will cause the shoot in Border be removed from DUShoots, thus contradicting Lemma
11. However, we should show the old E-chains never extend into Border, rather than such a ProcessShoots-
call is deemed to abort in future. Thus we cannot simply prove it via Lemma 11.

9 Assertions and Adaptations Never Cause Abort

With the above preparations, we are able to prove the non-abortion of assertions and adaptations in simulator
cycles.

9.1 Short Simulator Cycles Can be Correctly Handled

Recall that short cycles are induced by D making P1, P2, P2−1, P3−1, or H, and are simpler to analyze.

Lemma 12. The adaptations and assertions in a simulator cycle induced by D making P1(x1) or P3−1(y3)
never cause abort.

Proof. Consider the cycle due to P1(x1) first. Assuming x1 /∈ P1, as the other case is of no interest. If early-
abortions do not occur in the subsequent RandAssign-call, then right after RandAssign returns y1, by Inv2
and Inv3 it holds

∀z ∈ 5Z, y1 ⊕ z /∈ P2 and ∀z ∈ 6Z, y1 ⊕ z /∈ P−11 . (1)

By construction, G2 then complete a chain for each (Ki, ki) and (3, xi
3, y

i
3) such that Check(Ki, x1, y

i
3) =

true (or: the E-query (Ki, x1, y
i
3, edir

i, enumi) pre-exists). The adaptations and assertions in these chain-
completions constitute all those in this cycle.

Consider the chain-completion for (Ki, x1, y
i
3) and (3, xi

3, y
i
3). We first prove that the adaptation does not

cause abort. Consider xi
2 = y1 ⊕ ki first. By (1), xi

2 /∈ P2 holds right after the RandAssign-call. During the
period between RandAssign and Adapt(2, xi

2, y
i
2, edir

i, enumi), there only exist calls to Adapt(2, x1⊕kj , . . .)
for Kj ̸= Ki. As Kj ̸= Ki implies kj ̸= ki and xj

2 = y1 ⊕ kj ̸= xi
2, these earlier Adapt-calls cannot add xi

2 to
P2. Thus x

i
2 /∈ P2 holds till the call Adapt(2, xi

2, y
i
2, edir

i, enumi) is made.
Consider yi2 = xi

3 ⊕ ki then. Right before the simulator cycle, yi2 = xi
3 ⊕ ki ∈ P−12 is not possible, as

otherwise (3,Ki, x
i
3) should have been in Completed by Inv6 and x1 = ETable[Ki]

−1(yi3) should have been
in P1, contradicting the assumption x1 /∈ P1 at the beginning of the proof. Moreover yi2 cannot be added to
P−12 by the earlier Adapt-calls. For this, consider such a call to Adapt(2, xj

2, y
j
2, edir

j , enumj) with j ̸= i.

Note that the involved E-queries (Kj , x1, y
j
3) necessarily has yj3 ̸= yi3, as otherwise contradicting Inv4. The four

involved queries (Ki, x1, y
i
3), (Kj , x1, y

j
3), (3, x

i
3, y

i
3), and (3, xj

3, y
j
3) have been in the history before this cycle,

and the two E-queries were live. Thus by Lemma 5, among (3, xi
3, y

i
3) and (3, xj

3, y
j
3), the one created later

has direction ←. Thus xi
3 ⊕ ki = yi2 = yj2 = xj

3 ⊕ kj is not possible by Inv3. Thus yi2 /∈ P−12 till the call to
Adapt(2, xi

2, y
i
2, edir

i, enumi). By the above, the call to Adapt(2, xi
2, y

i
2, edir

i, enumi) would not cause abort.

Then consider the subsequent assertions. The first assertion causes abort if ∃k′ ̸= ki : xi
2 ⊕ k′ ∈ P−11 .

This implies x1 ⊕ ki ⊕ k′ ∈ P−11 , which is not possible right after RandAssign by (1), and would never
be possible during the cycle since no new 1-query would be created. The second assertion causes abort if
∃k′ ̸= ki : y

i
2⊕k′ ∈ P3. This implies xi

3⊕ki⊕k′ ∈ P3. This is not possible before the cycle. To show this, we first
note that all the involved E-queries are due to D (by Proposition 3). Thus it holds DAwareness(x1, X1) = 1
and ∀i,DAwareness(yi3, Y 3) = 1. Thus if xi

3 ⊕ ki ⊕ k′ ∈ P3, then the 33-shoot (3, yi3, {ki, k′}) cannot be in
Border by Lemma 11, and (3,Ki, x

i
3) ∈ Completed by Inv8 and Inv7, and thus x1 ∈ P1, a contradiction. As no

new 3-query would be created in the cycle, the second assertion would not cause abort either. These complete
the proof for P1(x1).

The argument for P3−1(y3) is similar by symmetry. ⊓⊔

Lemma 13. The adaptations and assertions in a simulator cycle induced by D making P2(x2) or P2−1(y2)
never cause abort.

Proof. Consider P2−1(y2) first. When y2 ∈ P−12 , G2 would check an assertion; the non-abortion of this assertion
has been proved by Corollary 1. We next assume y2 /∈ P−12 . In this case, there would be an assertion, which fails if
there exist more than one k such that y2⊕k ∈ P3. But this is not possible, as otherwise the more than one involved
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3-queries would form 33-shoots, and it has to fall into either of the two cases: (i) the shoots are in Border and
thus in DUShoots by Lemma 11, and G2 should have aborted in the earlier call to CheckDUnaware(x2, X2);
(ii) the shoots are not in Border and thus y2 ∈ P−12 by Inv8 and Inv7. Thus this assertion never causes abort.

We note that adaptations and assertions occur in the rest part of this cycle only if there exists exactly one
(K, k) such that x3 = y2 ⊕ k ∈ P3. Let the involved 3-query be (3, x3, y3), then we distinguish two possibilities:

(i) first, y3 /∈ ETable[K]−1. Then the call to EIn−1(K, y3) would lead to creating a new E-query (K,x1, y3,←).
By Inv4 and Inv5, right after this point, it holds: (i) ∀K ′ ̸= K,x1 /∈ ETable[K ′]; (ii) x1 /∈ P1. By this, the
subsequent call to P1In(x1) would lead to a process similar to that analyzed in Lemma 12, and thus the
adaptations and assertions would not cause abort;

(ii) second, y3 ∈ ETable[K]−1. Let the involved E-query be (K,x1, y3). It necessarily holds x1 /∈ P1, as otherwise
(1,K, x1) ∈ Completed by Inv6 and y2 ∈ P−12 before the cycle. Thus in this case, the subsequent call to
P1In(x1) would also lead to a process similar to that analyzed in Lemma 12 (thus no abortion).

This finishes the analysis for P2(x2). For P2
−1(y2) it’s similar by symmetry. ⊓⊔

Lemma 14. The adaptations and assertions in a simulator cycle induced by D making H(K) never cause abort.

Proof. Assuming K /∈ HTable. G2 first gets k ← R.H(K), and then checks the “goodness” of k. If early-
abortions do not occur in this phase, then it holds (can be seen from the conditions in H)

∀(1, x1, y1) ∈ Queries, y1 ⊕ k /∈ P2 and ∀k′ ∈ Z \ {k}, y1 ⊕ k ⊕ k′ /∈ P−11 , (2)

and
∀(3, x3, y3) ∈ Queries, x3 ⊕ k /∈ P−12 and ∀k′ ∈ Z \ {k}, x3 ⊕ k ⊕ k′ /∈ P3. (3)

By construction, G2 then makes a call to Check(x1, y1,K) for each query-pair (1, x1, y1) and (3, x3, y3).
17

If this Check-call returns true, then it indicates (K,x1, y3, edir, enum) ∈ EQueries. G2 then makes a call to
Adapt(2, x2, y2, edir, enum) for x2 = y1⊕k and y2 = x3⊕k to complete the chain corresponding to (K,x1, y3).
According to (2) and (3), right after k is got fromR, it holds x2 /∈ P2 and y2 /∈ P−12 . We note that the query-pairs
processed in this cycle have to be distinct: for example, for y′1 ̸= y1, Check(x1, y1,K) and Check(x1, y

′
1,K)

cannot both return true. Thus x2 /∈ P2 and y2 /∈ P−12 keep holding till the Adapt-call, and thus the call
does not cause abortion. As a result, the subsequent UpdateCompleted-call does not cause abortion either.
Furthermore, the subsequent assertion never fails by (2) and (3).

After the above chain-completing process, G2 would check an assertion, which essentially states that for each
AD-2-query (2, x2, y2,⊥) and each (K, k), the edge (x2⊕k, y2⊕k, k) is in AD2Edges. This assertion never fails
because:

(i) When (2, x2, y2) is created, by the code of Adapt, each H-query (K, k) ∈ HQueries would lead to G2 adding
an edge (x2 ⊕ k, y2 ⊕ k, k) to AD2Edges. Moreover, since G2 called Adapt, G2 is necessarily completing
a chain; this implies |HQueries| ≥ 1, and thus the Adapt-call could add (at least one) AD-2-edges to
AD2Edges successfully;

(ii) Since (2, x2, y2) is created, each newly created H-query (K, k) would lead to G2 adding (x2 ⊕ k, y2 ⊕ k, k)
to AD2Edges in the call to H(K).

The above complete the analysis. ⊓⊔

9.2 Long Simulator Cycles Can be Correctly Handled

This subsection devotes to proving the non-abortion of adaptations and assertions in long simulator cycles. By
the pseudocode, during such cycles, creations of new queries, adaptations, and assertions would emerge in calls
to RandAssign, CollectTP, Process11Shoot, Process33Shoot, Process21TP and Process23TP.
Another call that would emerge is EmptyQueue, but such calls would not have any “interesting” effects.

The whole analysis would undoubtedly be depressingly long. To remedy this situation, we divide the analysis
into several parts, summarized by several propositions:

(1) First, Proposition 17 claims that CollectTP never aborts;

17 It must be (1,K, x1) /∈ Completed, otherwise K ∈ HTable by Lemma 1.
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(2) Second, Propositions 18 and 19 analyzed the maximal effects that can be brought in by G2 processing
MidTPs and shoots;

(3) Third, based on these mentioned effects, we define ProcessShoot-calls that satisfy certain constraints as
safe in definition 4, and then shows all such calls are indeed safe in Proposition 21;

(4) Forth, Proposition 22 shows the non-abortion of assertions and adaptations in calls to Process21TP and
Process23TP, while Proposition 23 establishes similar claims for ProcessShoot-calls;

(5) Finally, Lemma 15 gathering the conclusions above and complete the proof.

We first give an observation: in a ProcessShoot-call, the 1- and 3-queries “anchored” at the old E-chain
either have qnum less than the current cycleStartNum value, or head towards B2.

Proposition 16. Assume that D queries P1−1(z) → z′ or P3(z) → z′ which triggers a long simulator cycle.
Consider the old E-chain of any ProcessShoot-call in this cycle x′1,1−y′1,1−x′2,1−y′2,1− . . .. For any 1-query
(1, x′1, y

′
1, d
′
1, n
′
1) (3-query (3, x′3, y

′
3, d
′
3, n
′
3), resp.) such that x′1 ∈ EB(x′1,1) (y′3 ∈ EB(x′1,1), resp.), it holds

either n′1 < cycleStartNum (n′3 < cycleStartNum, resp.), or d′1 =→ (d′3 =←, resp.).

Proof. Consider (1, x′1, y
′
1, d
′
1, n
′
1) first. Towards a contradiction, assuming both n′1 ≥ cycleStartNum and

d′1 ̸=→. Then x′1 ∈ EB(z′): if d′1 = ⊥ then it follows from Lemma 4 (ii), whereas if d′1 =← then it has to
be x′1 = z′. By Proposition 2, x′1 cannot be reached from any vertex z∗ /∈ EB(z′); thus it necessarily be that G2

detects a shoot formed by two 1- or 3-queries that are both “anchored” at EB(z′) (it might be that (1, x′1, y
′
1)

itself is involved in this shoot), and when processing this shoot, it takes a path in EB(z′) as the old E-chain,
so that (1, x′1, y

′
1) could be adjacent to the old E-chain of some ProcessShoot-call. For example, it might be

that G2 detects a shoot formed by two AD-1-queries. However, this is not possible, as otherwise G2 would have
aborted in a previous call to CollectTP. For (3, x′3, y

′
3) the argument is similar. ⊓⊔

Then we claim that CollectTP never aborts.

Proposition 17. Calls to CollectTP never cause abort.

Proof. Assume that the current long cycle is induced by D querying P1−1(z)→ z′ or P3(z)→ z′. As captured
by the assertions, CollectTP-calls may abort in two cases: first, values in Border are involved in newly
detected shoots; second, unexpectedly detected shoots or TPs appear. The former type is clearly not possible:
the values involved in detected shoots necessarily have their DAwareness function values equal 1 (Proposition
8), while the values in Border always have their DAwareness function values equal 0 (Lemma 11).

We then focus on the latter type of abortion. First, consider the two assertions around newly-detected
MidTPs, which require G2 to abort if a newly-created 1-/3-query form a new MidTP with a 2-query newly
created in this cycle (i.e. num2 is larger than the current cycleStartNum value). In this cycle, new 2-queries
can only be created in calls to Process11Shoot and Process33Shoot; such new 2-queries are necessarily
adapted ones, and thus can not form new MidTPs by Proposition 4. Thus these two assertions never fail.

Second, consider the two assertions around newly-detected shoots, which require G2 to abort if a newly-
created 1-/3-query form a new shoot with a 1-/3-query newly created in this cycle (i.e. num′ ≥ cycleStartNum).
First, note that the CollectTP-call for (1, z′, z,←) or (3, z, z′,→) would not abort at this stage, because when
this call is made, (1, z′, z) or (3, z, z′) is the only query with num ≥ cycleStartNum. Thus we focus on newly
created AD-1-queries (which is wlog). For any such 1-query (1, x1, y1,⊥), it falls into two possibilities:

– it is created by Process23TP, i.e. there exist (2, x2, y2, n2) and (K, k) s.t. n2 < cycleStartNum and
x2 ⊕ k = y1;

– it is created by ProcessShoot, i.e. when (1, x1, y1,⊥) is created, there exist (1, x′1, y
′
1, d
′
1, n
′
1), (K, k), and

(K ′, k′) s.t. y′1 ⊕ k ⊕ k′ = y1 and (1, x1, {K,K ′}) /∈ ProcessedShoots.

Then, note that in this cycle, new 1-queries may have directions equal→, or←, or⊥. The first type clearly cannot
form new (unprocessed) 11-shoot with (1, x1, y1,⊥). For this, assume otherwise, i.e. a new query (1, x◦1, y

◦
1 ,→, n◦1)

satisfy y◦1 = y1 ⊕ k′′ ⊕ k′′′ and (1, x1, {K ′′,K ′′′}) /∈ ProcessedShoots for some k′′, k′′′ ∈ Z. Then:

– If there exist (2, x2, y2, n2) and (K, k) s.t. n2 < cycleStartNum and x2⊕k = y1, then n2 < cycleStartNum <
n◦1 which contradicts Inv2;

– If there exist (1, x′1, y
′
1, d
′
1, n
′
1), (K, k), and (K ′, k′) s.t. y′1 ⊕ k ⊕ k′ = y1 when (1, x1, y1,⊥) is created,

then (1, x′1, y
′
1) and (1, x◦1, y

◦
1) cannot be the same query, otherwise either {K ′′,K ′′′} = {K,K ′} and

(1, x1, {K,K ′}) ∈ ProcessedShoots, or k ⊕ k′ ⊕ k′′ ⊕ k′′′ = 0 contradicts Inv1.18 Thus:

18 Recalling from subsection 5.5: given Inv1, a fixed pair of 1-queries can form at most one 11-shoot.
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• if n′1 ≤ cycleStartNum < n◦1 then it contradicts Inv3;
• if n′1 > cycleStartNum then d′1 =→ by Proposition 16 and it necessarily contradicts Inv3.

On the other hand, the other two types of new 1-queries cannot form new 11-shoot with (1, x1, y1,⊥) either.
For this, assume otherwise, i.e. a new query (1, x◦1, y

◦
1 , d
◦
1, n
◦
1) satisfies y

◦
1 = y1 ⊕ k′′ ⊕ k′′′ for some k′′, k′′′ ∈ Z.

Then according to Lemma 4 (ii), it holds y1 ∈ B2(z) and y◦1 ∈ B2(z) (when n◦1 = cycleStartNum we have y◦1 = z,

thus y◦1 ∈ B2(z) also holds). This implies that there exists a “pseudo-cycle” in B2: y1−. . . z−. . .−y◦1 ⊕k
′′⊕k′′′

o (y1),
and the impossibility is established similarly to Proposition 5. The above establishes the claim. ⊓⊔

Effects of G2 Processing Shoots and MidTPs. The next proposition describes the influences of non-
aborting Process21TP- and Process23TP-calls on the trees anchored at the arguments.

Proposition 18. A non-aborting call to Process21TP(x◦1, y
◦
1 ,K) (Process23TP(x◦3, y

◦
3 ,K), resp.) has at

most two effects on EB(x◦1) and B2(y
◦
1) (EB(x◦3) and B2(y

◦
3), resp.) as follows:

(i) Attaching a new edge labeled K to x◦1 (y◦3 , resp.);
(ii) Making y◦1 (x◦3, resp.) pebbled.

Proof. By the code, a call to Process21TP(x◦1, y
◦
1 ,K) would consist of two “relevant” operations. First, it calls

EIn(K,x◦1), which has two possibilities:

– if x◦1 ∈ ETable[K] before this EIn-call, then no new E-query would be created;
– if x◦1 /∈ ETable[K] before this EIn-call, then a new E-query (K,x◦1, y

◦
3 ,→) would be created, with y◦3 =

E.E(K,x◦1). By Inv4, right after this point, y◦3 is not adjacent to any E-query except for (K,x◦1, y
◦
3). Thus

exactly one new edge is attached to x◦1.

The above matches (i). Second, it calls Adapt(3, x◦3, y
◦
3 ,⊥,⊥), which will make x◦3 pebbled (if it has not been

pebbled yet). This matches (ii). The case of Process23TP is similar by symmetry. ⊓⊔

The next proposition considers the influences of non-aborting ProcessShoot-calls.

Proposition 19. After a non-aborting call to Process11Shoot(x◦1, y
◦
1 ,K1,K2), it holds:

(i) for any 1 ≤ l ≤ 2t, xebvall(K1,K2, x
◦
1) ̸= ⊥, xebvall(K2,K1, x

◦
1) ̸= ⊥, and xebval2t+1(K1,K2, x

◦
1) =

xebval2t+1(K2,K1, x
◦
1) = ⊥;

(ii) Among the nodes of the form yb2vall(K1,K2, y
◦
1) and yb2vall(K1,K2, y

◦
1), at most 4t nodes are newly-pebbled

by this call, i.e. those with l = 1, 2, . . . , 2t.

Symmetrically, after a non-aborting call to Process33Shoot(x◦3, y
◦
3 ,K1,K2), it holds:

(i) for any 1 ≤ l ≤ 2t, yebvall(K1,K2, y
◦
3) ̸= ⊥, yebvall(K2,K1, y

◦
3) ̸= ⊥, and yebval2t+1(K1,K2, y

◦
3) =

yebval2t+1(K2,K1, y
◦
3) = ⊥;

(ii) Among the nodes of the form xb2vall(K1,K2, x
◦
3) and xb2vall(K1,K2, x

◦
3), at most 4t nodes are newly-

pebbled by this call, i.e. those with l = 1, 2, . . . , 2t.

Proof. Wlog we focus on Process11Shoot(x◦1, y
◦
1 ,K1,K2), and let y◦◦1 = y◦1 ⊕ k1 ⊕ k2 and x◦◦1 = P−11 (y◦◦1 ).

As mentioned before, the subsequent process is divided into four phases: the Make-E-Chain-Phase, the Shoot-
Growing-Phase, the Fill-in-Rung-Phase, and the Shoot-Completing-Phase. To avoid taking us afield, we eschew
the concrete statements in favor of informal descriptions.

In the Make-E-Chain-Phase, G2 would take x◦◦1 and x◦1 as the “starting points” and make 2 · 4t queries to
Ein/Ein−1. To save page, we follow the notations used in Lemma 3. This would result in two E-chains of length
2t that are adjacent to x◦1, thus xebvall(K1,K2, x

◦
1) ̸= ⊥ and xebvall(K2,K1, x

◦
1) ̸= ⊥ hold for any 1 ≤ l ≤ 2t.

On the other hand, when G2 reaches y◦◦3,1 when it is evaluating along the old E-chain, if y◦◦3,1 ∈ ETable[K2]
−1,

then (1, {(x◦1,1, y◦1,1), (x◦◦1,1, y◦◦1,1)}) (with x◦1,1 and x◦◦1,1, the two values that are supposed to be in Border) would
not be added to DUShoots, contradicting Lemma 11. Thus it necessarily holds y◦◦3,1 /∈ ETable[K2]

−1, and the
E-query (K2, x

◦◦
1,1, y

◦◦
3,1,←) would be new. Similarly, the E-query (K1, x

◦◦
1,2t+1, y

◦◦
3,2t,←) at the other side would

also be new, thus xebval2t+1(K1,K2, x
◦
1) = xebval2t+1(K2,K1, x

◦
1) = ⊥ follows from Inv4 and (i) is established.

On the other hand, the AD-2-queries created in the Fill-in-Rung-Phase would make yb2vall(K1,K2, y
◦
1) and

yb2vall(K1,K2, y
◦
1) change to non-empty for every 1 ≤ l ≤ 2t (if they were ⊥).19 None of these 4t nodes could

19 One could see Fig. 4 (bottom right) for an illustration. However, to give a formal argument seems intricate.
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be pebbled by the 1- and 3-queries created in Shoot-Growing-Phase, since these queries head towards B2.
20

Therefore, the only mechanism that pebbles them is the Shoot-Completing-Phase, which indeed pebbles exactly
all of them. These establishes (ii). ⊓⊔

Safe Calls to ProcessShoot. ProcessShoot-calls that meet certain constraints would be called safe (this
terminology is borrowed from [LS13], though the details significantly deviate).

Definition 4. A call to Process11Shoot(x′1, y
′
1,K1,K2) is safe if for any l ≥ 2, it holds xebvall(K1,K2, x

′
1) =

xebvall(K2,K1, x
′
1) = ⊥ right before the call is made;21 symmetrically, a call to Process33Shoot(x′3, y

′
3,K1,K2)

is safe if for any l ≥ 2, it holds yebvall(K1,K2, y
′
3) = yebvall(K2,K1, y

′
3) = ⊥ right before the call.

Safe calls to ProcessShoot are easier to analyze. Indeed, we will show that all ProcessShoot-calls are
safe. We first point out a helper property cinched by the design of ProcessShoot procedures: shoots are
processed in a strict order.

Proposition 20. Assume that two shoots (i, z◦, {K1,K2}) and (j, z◦◦, {K ′1,K ′2}) are popped and processed in
the same long simulator cycle due to D querying P1−1(z) → z′ or P3(z) → z′, with (i, z◦, {K1,K2}) being
popped earlier. Then it cannot be z◦ ∈ SubT (EB(z′), z◦◦), i.e. z◦ cannot lie beneath z◦◦ in EB(z′).

Proof. This can been seen from the order of adaptations in the Shoot-Completing-Phase of ProcessShoot
procedure. Briefly speaking, if z◦ lies beneath z◦◦, then AD-1- and AD-3-queries are necessarily first attached
to z◦◦ and then to z◦, thus the shoots rooted at z◦◦ are necessarily closer to the front of ShootQueue than the
shoots rooted at z◦—and would be popped earlier. ⊓⊔

Then the main claim:

Proposition 21. All calls to ProcessShoot are safe.

Proof. Wlog consider a call to Process11Shoot(x′1, y
′
1,K1,K2), and assume that its simulator cycle is in-

duced by D querying P1−1(z) → z′ or P3(z) → z′. Then by Lemma 4 (ii) it holds x′1 ∈ EB(z′) before
Process11Shoot(x′1, y

′
1,K1,K2).

We first argue that right after x′1 becomes a node of EB(z′) (i.e. x′1 ∈ EB(z′) holds), it holds

xebval2(K1,K2, x
′
1) = xebval2(K2,K1, x

′
1) = ⊥.

This is clear when x′1 = z′, since right after (1, z′, z,←) or (3, z, z′,→) is created, z′ is not adjacent to any
edge in EB. Otherwise, by Lemma 4 (i), the path between z′ and x′1 is directed from z′ to x′1. This implies the
existence of an E-query (K∗, x′1, y

∗
3 ,←) for some y∗3 . By Inv4, right after (K∗, x′1, y

∗
3) is created, it holds

∀K ̸= K∗, x′1 /∈ ETable[K]. (4)

We now argueK∗ /∈ {K1,K2}—indeed, we are trying to show ifK∗ = K1 orK2 thenG2 popping (1, x
′
1, {K1,K2})

would not lead to calling Process11Shoot. Assume otherwise, and wlog assume K∗ = K1. Then by Proposi-
tion 6, (K1, x

′
1, y
∗
3) cannot have been created during G2 processing a MidTP. Thus assuming G2 was processing

a shoot of the form (i, z◦, {K1,K3}) with K3 ̸= K2.
22 According to the code and the assumptions, the following

hold right before G2 creates (1, x′1, y
′
1,⊥), cf. Fig. 9 (left):

(i) there exists a 1-query (1, x′′1 , y
′′
1 , n
′′
1 , d
′′
1) with y′′1 = y′1 ⊕ k1 ⊕ k3 (this query is involved in G2 processing

(i, z◦, {K1,K3}), and G2 computes y′1 as y′1 ← y′′1 ⊕ k1 ⊕ k3, cf. the code of ProcessShoot procedures);
(ii) there exists a 1-query (1, x′′′1 , y′′′1 , n′′′1 , d′′′1 ) with y′′′1 = y′1⊕ k1⊕ k2 (so that G2 could detect (1, x′1, {K1,K2})

after creating (1, x′1, y
′
1,⊥)).

We proceed to argue n′′1 , n
′′′
1 < cycleStartNum. For this, we note:

20 Note that in this phase, G2 processing 13- and 31-TPs may attach new AD-2-edges to B2(y
◦
1), but would not create

new 1- and 3-queries and thus not pebbling any nodes.
21 This implies: (i) x′

1 /∈ ETable[K1] or ETable[K1](x
′
1) /∈ ETable[K2]

−1, and (ii) x′
1 /∈ ETable[K2] or ETable[K2](x

′
1) /∈

ETable[K1]
−1.

22 If K3 = K2 then there would not be any sub-call to Process11Shoot(x′
1, y

′
1,K1,K2) because (1, x′

1, {K1,K2}) ∈
ProcessedShoot, cf. the code of CollectTP procedures.
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Fig. 9. For Proposition 21: the lines in red, green, and blue indicate E-queries labeled K1, K2, and K3 respectively, while
the colored dotted lines indicate the connection under the corresponding round-keys. (left) the two 1-queries supposed
to exist. The arrowed silver line indicates the direction of G2’s evaluation during processing (i, z◦, {K1,K3}); (right) the
1-queries imply completed chains as well as G2 detecting (3, y∗

3 , {K1,K2}) earlier.

(i) If n′′1 ≥ cycleStartNum and n′′1 > n′′′1 , then d′′1 =→ by Proposition 16. But this contradicts Inv3;
(ii) If n′′′1 ≥ cycleStartNum and n′′′1 > n′′1 , then d′′′1 ∈ {←,⊥} by Inv2. Thus right before (1, x′1, y

′
1,⊥) is created,

it holds:
(a) y′1 ∈ B2(z) (by Lemma 4 (ii));
(b) y′′′1 ∈ B2(z) (if d

′′′
1 = ⊥ then this follows from Lemma 4 (ii), otherwise it holds y′′′1 = z);

(c) y′1 ⊕ y′′′1 = k1 ⊕ k2 ∈ 2Z.
Thus by an argument similar to Proposition 17, we could show that at some point before (1, x′1, y

′
1,⊥) is

created, G2 should have aborted. As a consequence, the purported call to Process11Shoot(x′1, y
′
1,K1,K2)

should not have been possible, a contradiction.

It’s not hard to see that the above have excluded all the possibilities of n′′1 or n′′′1 ≥ cycleStartNum. Thus
n′′1 , n

′′′
1 < cycleStartNum. By Proposition 15 we got x′′1 /∈ Border, thus (1,K3, x

′′
1), (1,K2, x

′′′
1 ) ∈ Completed be-

fore this cycle by Inv8 and Inv7. This implies the existence of four queries (K3, x
′′
1 , y
′′
3 ), (3, x

′′
3 , y
′′
3 ), (K2, x

′′′
1 , y′′′3 ),

and (3, x′′′3 , y′′′3 ) before this cycle, with x′′3⊕x′′′3 = k2⊕k3. Consider the point right beforeG2 creating (1, x
′
1, y
′
1,⊥).

By the pseudocode, it can be seen that G2 must have created the 3-query (3, x∗3, y
∗
3 , d
∗
3) before this point (d

∗
3 may

be→ or ⊥, but this does not matter), and as G2 detects x
′′′
3 = x∗3⊕k1⊕k2, a 33-shoot (3, y∗3 , {K1,K2}) must have

been pushed into ShootQueue before (1, x′1, {K1,K2}) is pushed, cf. Fig. 9 (right). This shoot (3, y∗3 , {K1,K2})
would be popped earlier than (1, x′1, {K1,K2}), leading to a call to Process33Shoot(x∗3, y

∗
3 ,K1,K2), after

which (1, x′1, {K1,K2}) would be in ProcessedShoot (as they are obviously equivalent), and thus the purported
call to Process11Shoot(x′1, y

′
1,K1,K2) would not have happened when (1, x′1, {K1,K2}) is (later) popped.

This contradicts the assumption.
By the above, it holds K∗ /∈ {K1,K2}, so that right after x′1 ∈ EB(z′) holds, we have x′1 /∈ ETable[K1] and

x′1 /∈ ETable[K2], and thus xebval2(K1,K2, x
′
1) = xebval2(K2,K1, x

′
1) = ⊥.

We then argue that xebval2(K1,K2, x
′
1) = xebval2(K2,K1, x

′
1) = ⊥ is kept till (1, x′1, {K1,K2}) is popped

and processed. We first note that if at some point, G2 detects a 23-TP (3, y3,1,K2) for y3,1 = ETable[K1](x
′
1),

and this 23-TP is popped (and processed) before Process11Shoot(x′1, y
′
1,K1,K2), then xebval2(K1,K2, x

′
1)

would be changed to non-empty. However, the possibility is ruined out by Proposition 6. Similarly, G2 detecting a
23-TP (3, ETable[K2](x

′
1),K1) is not possible either. According to Propositions 18, these are the only cases that

earlier-processed MidTPs can affect xebval2(K1,K2, x
′
1) and xebval2(K2,K1, x

′
1). Thus MidTPs are excluded.

We then show that the two values cannot be affected by earlier-processed shoots either. Briefly speaking,
this relies on the order of adaptations in the Shoot-Completing-Phase. More clearly, since K∗ /∈ {K1,K2}, by
Propositions 20 and 19, all the shoots that simultaneously meet the following constraints are necessarily of
the form (3, y∗3 , {K∗,K1}), (3, y∗3 , {K∗,K2}), or (1, x′1, {K1,K3}) with K3 ̸= K1,K2, or (1, x′1, {K2,K4}) with
K4 ̸= K1,K2 (note we assumed (K∗, x′1, y

∗
3 ,←)):

(i) they are popped earlier than (1, x′1, {K1,K2});
(ii) they are able to attach edges to x′1.

23

By an inspection of these cases and Proposition 19, one could see that none of them is able to change
xebval2(K1,K2, x

′
1) and xebval2(K2,K1, x

′
1) to non-empty. Therefore, xebval2(K1,K2, x

′
1) and xebval2(K2,K1, x

′
1)

remain ⊥ till the call to Process11Shoot(x′1, y
′
1,K1,K2). Thus the claim. ⊓⊔

23 Shoots of the form e.g. (1, x∗
1, {K∗,K1}) with x∗

1 = ETable[K∗](y∗
3) also meet the constraints, but note that

(1, x∗
1, {K∗,K1}) ≡ (3, y∗

3 , {K∗,K1}), so they have been covered by the discussion.
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After all the preparations above, we are now able to present the non-abortion arguments for G2 processing
MidTPs and shoots. We first consider MidTPs.

MidTPs Can be Handled. Formally stated as the following proposition.

Proposition 22. Adaptations and assertions in calls to Process21TP and Process23TP never lead to
abortion.

Proof. Consider such a call to Process21TP(x◦1, y
◦
1 ,K

◦), and assume that its simulator cycle is induced by D
querying P1−1(z)→ z′ or P3(z)→ z′.

First, we argue that right before this call is made, it holds:

(i) x◦1 /∈ ETable[K◦];

(ii) the vertex x◦3 = k◦ ⊕ P2(k
◦ ⊕ y◦1) has not been pebbled.

For Claim (i): We first argue that right after x◦1 ∈ EB(z′) holds, it holds x◦1 /∈ ETable[K◦]. This is clear when

x◦1 = z′, since right after (1, z′, z,←) or (3, z, z′,→) is created by RandAssign, z′ is not adjacent to any edge
in EB. Otherwise, by Lemma 4 (i), the path is directed from z′ to x◦1. This implies the existence of an E-query
(K∗, x◦1, y

∗
3 ,←) for some y∗3 . By Inv4, right after (K∗, x◦1, y

∗
3 ,←) is created (and x◦1 ∈ EB(z′) holds), it holds

∀K ̸= K∗, x◦1 /∈ ETable[K]. (5)

Moreover, K∗ ̸= K◦, as otherwise (K◦, x◦1, y
∗
3) is dead after the call which creates it due to Lemma 3, which

implies (1,K◦, x◦1) ∈ Completed and the purported call to Process21TP(x◦1, y
◦
1 ,K

◦) should not have happened
(cf. the code of EmptyQueue). Hence claim (i) holds right after x◦1 ∈ EB(z′) holds.

We then argue that from this point till the call to Process21TP(x◦1, y
◦
1 ,K

◦) is made, x◦1 ∈ ETable[K◦] is
never possible. Assume otherwise, then there must be a detected shoot that is processed in this period, and
G2 processing this shoot leads to calling Ein(K◦, x◦1). We will show this is impossible: briefly speaking, if such
a shoot exists, then there must be some additional queries around x◦1 that should have led to G2 detecting a
shoot of the form (1, x◦1, {K◦,K ′}) rather the purported 21-TP (1,K◦, x◦1).

In detail, according to Propositions 18 and 19, it can be seen that the following three cases would lead to
G2 calling Ein(K◦, x◦1):

Case 1.1: At some point, G2 detects a 11-shoot of the form (1, x◦1, {K◦,K ′}) for some K ′ ̸= K◦, and this shoot
is popped (and processed) before (1,K◦, x◦1) is popped. The possibility of this case is immediately ruined out
by Proposition 6.

Case 1.2: G2 detects a 33-shoot of the form (3, y3,1, {K◦,K1}) for some K1 ̸= K◦ and y3,1 = ETable[K1](x
◦
1),

and this shoot is popped before (1,K◦, x◦1) is popped.

By Proposition 6, it is not possible that the E-query (K1, x
◦
1, y3,1,→) is created when G2 is processing

a MidTP. Assume that (K1, x
◦
1, y3,1) is created when G2 is processing a shoot of the form (i, z◦, {K1,K2}).

This implies the existence of a 1-query (1, x◦◦1 , y◦◦1 , d◦◦1 , n◦◦1 ) with y◦◦1 = y◦1 ⊕ k1 ⊕ k2. Furthermore, when
G2 is processing the purported shoot (i, z◦, {K1,K2}), there necessarily exists a point such that if we let
y3,1 = ETable[K1](x

◦
1), y

◦◦
3 = ETable[K2](x

◦◦
1 ), and let the two involved 3-queries be (3, x3,1, y3,1,⊥, n3,1) and

(3, x◦◦3 , y◦◦3 , d◦◦3 , n◦◦3 ), then there exists a 3-query (3, x′3,1, y
′
3,1, d

′
3,1, n

′
3,1) with x′3,1 = x3,1 ⊕ k1 ⊕ k◦ (so that G2

would detect the purported 33-shoot (3, y3,1, {K1,K
◦}) after creating (3, x3,1, y3,1)), cf. Fig. 10 (left).

It necessarily be n′3,1 < cycleStartNum, as otherwise G2 should have aborted in CollectTP(3, x3,1, y3,1)
when detecting x3,1 = x′3,1 ⊕ k1 ⊕ k◦. On the other hand, it also holds n◦◦3 < cycleStartNum, as otherwise
d◦◦3 =← by Proposition 16 and x′3,1 = x3,1 ⊕ k1 ⊕ k◦ is not possible by Inv2. n◦◦3 < cycleStartNum also
implies that y◦◦3 cannot be the “endpoints” of the old E-chain corresponding to (i, z◦, {K1,K2}); thus y◦◦3 /∈
Border by Proposition 15. Thus before this cycle, (3,K◦, x′3,1) ∈ Completed by Inv8 and Inv7. This implies

y◦◦1 ⊕ k2 ⊕ k◦ = y◦1 ⊕ k1 ⊕ k◦ ∈ P−11 , cf. Fig. 10 (right), and thus after creating (1, x◦1, y
◦
1), G2 should have

detected (1, x◦1, {K◦,K1}) rather than (1,K◦, x◦1).
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Fig. 10. For Proposition 22: lines in green, red, and blue indicate E-queries/relations keyed (K◦, k◦), (K1, k1), and
(K2, k2) respectively. (left) the involved 1- and 3-queries; (right) the implication.

Case 1.3: For some K1 ̸= K◦ and l ≥ 2, G2 detects a shoot (i, z◦, {K◦,K1}) with z◦ = xebvall(K1,K
◦, x◦1)

or z◦ = xebvall(K
◦,K1, x

◦
1), and this shoot is popped before (1,K◦, x◦1) is popped. We note that the Pro-

cessShoot-call corresponding to this shoot is not safe, cf. definition 4. Thus it contradicts Proposition 21,
which states that all ProcessShoot-calls are safe.

The above establish claim (i).

For Claim (ii): We first note that x◦3 /∈ P3 before this cycle: otherwise (3,K◦, x◦3) ∈ Completed by Inv6, and
the purported 21-TP should not have appeared.

We then argue that from this point till the call to Process21TP(x◦1, y
◦
1 ,K

◦) is made, x◦3 ∈ P3 is not possible.
According to Propositions 18 and 19, since the effects on the two trees in EB and B2 are somewhat symmetric,
G2 pebbling x◦3 also falls into three cases as follows:

Case 2.1: At some point, for some K ′ ̸= K◦, G2 detects a 11-shoot of the form (1, x◦1, {K◦,K ′}), which is
popped before (1,K◦, x◦1) is popped. Immediately ruled out by Proposition 6.

Case 2.2: for some K1 ̸= K◦ and y3,1 = ETable[K1](x
◦
1), G2 detects a 33-shoot of the form (3, y3,1, {K◦,K1}),

which is popped before (1,K◦, x◦1) is popped (thus there will be a 2-edge (y◦1 , P
−1
3 (y3,1), k1), and x◦3 = xb2val2(k1,

k◦, P−13 (y3,1))). However, the possibility of such shoots has already been ruined out in the argument for claim
(i) (cf. Case 1.2 above, page 55).

Case 2.3: For some K1 ̸= K◦ and l ≥ 2, G2 detects a shoot of the form (i, z◦, {K◦,K1})) with z◦ =
xebvall(K1,K

◦, x◦1) or z◦ = xebvall(K
◦,K1, x

◦
1), and this shoot is popped before (1,K◦, x◦1) is popped (thus

it will be x◦3 = xb2vall(k
◦, k1, P1(z

◦)) (when i = 1) or x◦3 = xb2vall(k1, k
◦, P−13 (z◦)) (when i = 3)). But the

ProcessShoot-call corresponding to this shoot is not safe, contradicting Proposition 21.

Then, based on the above, we argue the adaptations and assertions in this call Process21TP(x◦1, y
◦
1 ,K

◦) do
not cause abort. By the code, this call would consist of five “interesting” operations:

(1) Checking an assertion, which fails if ∃k′ ̸= k◦ : y◦1 ⊕ k◦ ⊕ k′ ∈ P−11 ;
(2) Calls EIn(K◦, x◦1);
(3) Calls CheckDUnaware(x◦3, X3), which is assumed non-aborting in this section;
(4) Calls Adapt(3, x◦3, y

◦
3 ,⊥,⊥) and UpdateCompleted(3,K◦, x◦3);

(5) Checks another assertion, which fails if ∃K ̸= K◦ : ETable[K]−1(y◦3) ∈ P1. Then callsCollectTP(3, x◦3, y
◦
3).

We consider these operations one-by-one. First, the first assertion would not fail, because by the code of Col-
lectTP, if ∃k′ ̸= k◦ : x◦1 ⊕ k◦ ⊕ k′ ∈ P−11 then CollectTP(1, x◦1, y

◦
1) would ignore the fact y◦1 ⊕ k◦ ∈ P2 and

thus (1, x◦1,K
◦) would not have been in MidTPQueue.

Second, as already argued, x◦1 /∈ ETable[K◦] holds right before this call, thus the EIn-call would lead to
creating a new E-query (K,x◦1, y

◦
3 ,→) (with y◦3 = E.E(K◦, x◦1)). By Inv5 and Inv4, right after this point, it

holds
y◦3 /∈ P−13 and ∀K ′ ̸= K◦, y◦3 /∈ ETable[K ′]−1. (6)

By this and claim (ii) (x◦3 /∈ P3 right before this call), the adaptation Adapt(3, x◦3, y
◦
3 ,⊥,⊥) would not abort.

(Consequently, UpdateCompleted(3,K◦, x◦3) would not abort either.)
Finally, the assertion fails if ∃K ̸= K◦ : ETable[K]−1(y◦3) ∈ P1, which is not possible by (6). ⊓⊔

We then focus on shoots.
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Shoots Can be Handled. Formally stated as follows:

Proposition 23. Adaptations and assertions in ProcessShoot-calls never lead to abortion.

Proof. Consider such a call to Process11Shoot(x◦1, y
◦
1 ,K1,K2), let y

◦◦
1 = y◦1 ⊕ k1 ⊕ k2 and x◦◦1 = P−11 (y◦◦1 ),

and wlog assume that its simulator cycle is induced by D querying P1−1(z) → z′ or P3(z) → z′. By the
code, adaptations and assertions only appear in the Shoot-Growing-Phase, the Fill-in-Rung-Phase, and the
Shoot-Completing-Phase. We proceed to analyze one-by-one.

G2 Never Aborts During the Shoot-Growing-Phase. In this phase, G2 first iterates for all nodes x′1,i in the old
E-chain. We proceed to show that G2 does not abort in this iteration.

By the code, for each x′1,i, if x
′
1,i /∈ P1, G2 would create a new 1-query with direction→ and (possibly) detect

and process several 31-TPs. This (sub-)process is somewhat similar to that analyzed in Lemma 12 (though much
more complicated): right after the subsequent RandAssign-call returns y′1,i, the following holds by Inv2 and
Inv3:

∀z′′ ∈ 5Z, y′1,i ⊕ z′′ /∈ P2 and ∀z′′ ∈ 6Z, y′1,i ⊕ z′′ /∈ P−11 . (7)

G2 then completes a chain for each (Ki, ki) and (3, xi
3, y

i
3, d

i
3, n

i
3) such that the E-query (Ki, x′1,i, y

i
3) pre-

exists. Note that by Proposition 3, this query (Ki, x′1,i, y
i
3) was necessarily created before this cycle, and

DAwareness(yi3, Y 3) = 1, thus yi3 /∈ Border by Lemma 11.

Consider the chain-completion for (Ki, x′1,i, y
i
3) and (3, xi

3, y
i
3). We first prove the non-abortion of the sub-

sequent call to Adapt(2, xi
2, y

i
2, . . .). First, by (7), xi

2 = y′1,i ⊕ ki /∈ P2 holds right after the RandAssign-call.

During the period between RandAssign and Adapt(2, xi
2, y

i
2, . . .), there only exist calls to Adapt(2, xj

2, y
j
2, . . .)

for Kj ̸= Ki which implies xj
2 = y′1,i ⊕ kj ̸= xi

2. Therefore, x
i
2 /∈ P2 cannot be changed by these earlier Adapt-

calls, and is kept till Adapt(2, xj
2, y

j
2, . . .).

Second, before the simulator cycle, yi2 = xi
3⊕ ki ∈ P−12 is not possible, as otherwise (3,Ki, xi

3) ∈ Completed

by Inv6 and x′1,i = ETable[Ki]−1(yi3) ∈ P1, contradicting the earlier assumption x′1,i /∈ P1.

Moreover yi2 cannot be added to P−12 by the earlier Adapt-calls. To show this, assume otherwise, then there

should have been a call to Adapt(2, x∗2, y
i
2, edir

∗, enum∗), as all the 2-queries newly created in this cycle are

adapted ones. Assume that this call corresponds to the chain (y∗1 ⊕ k∗ = x∗2 and x∗3 ⊕ k∗ = yi2)

(K∗, k∗), (K∗, x∗1, y
∗
3), (1, x

∗
1, y
∗
1), (3, x

∗
3, y
∗
3 , d
∗
3, n
∗
3),

then it holds x∗3 ⊕ xi
3 = k∗ ⊕ ki. However, this is not possible, as we will exclude each possibility:

(i) If ni
3, n
∗
3 < cycleStartNum, then by yi3 /∈ Border (already argued), Inv8, and Inv7 it holds (3,Ki, xi

3) ∈
Completed and x′1,i ∈ P1 before the cycle, contradicting the assumption;

(ii) If ni
3, n
∗
3 ≥ cycleStartNum, wlog assume ni

3 > n∗3, then di3 ̸=← by Inv2, thus di3 = ⊥. Consider the

point when G2 created (3, xi
3, y

i
3). If G2 was processing a shoot equivalent to (3, yi3, {Ki,K ′}), then we

have yi2 ∈ P−12 after this point, and the purported call to Adapt(2, xi
2, y

i
2, . . .) would not have happened.

Otherwise, after G2 created (3, xi
3, y

i
3), G2 would detect a shoot formed by (3, xi

3, y
i
3) and (3, x∗3, y

∗
3) in the

subsequent CollectTP-call and would have aborted;

(iii) If ni
3 ≥ cycleStartNum > n∗3, then since it cannot be yi3 ∈ EB(z′), by Lemma 4 (i) and (ii) we have di3 =←.

However, this along with x∗3 ⊕ xi
3 = k∗ ⊕ ki contradicts Inv3;

(iv) If n∗3 ≥ cycleStartNum > ni
3, then: if d

∗
3 =← then it contradicts Inv3; otherwise, it contradicts Proposition

16—here we note that the purported call to Adapt(2, x∗2, y
i
2, edir

∗, enum∗) may happen during G2 process-
ing a 13- or 31-TP, or during the Fill-in-Rung-Phase of an earlier ProcessShoot-call; however, in each
case, the involved 3-query is “anchored” at the involved old E-chain, so that the argument carries.

By the above, the purported call to Adapt(2, x∗2, y
i
2, edir

∗, enum∗) would not have been possible. Thus yi2 /∈ P−12

is kept till the call to Adapt(2, xi
2, y

i
2, . . .), and the latter would not cause abort.

Then consider the subsequent assertions. The first assertion causes abort if ∃k′ ̸= ki : xi
2 ⊕ k′ ∈ P−11 . This

is not possible right after RandAssign by (7), and would never hold till G2 checking the assertion since no
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new 1-query is created during this (short) period. The second assertion states that if there exists some k′ ̸= ki

and (3, xi
3

′
, yi3
′
, di3
′
, ni

3

′
) such that xi

3

′
= yi2 ⊕ k′, then yi3

′
/∈ Border and the 33-shoot (3, yi3

′
, {Ki,K ′}) has been

in ShootQueue. Note that this implies xi
3

′
⊕ xi

3 = ki ⊕ k′, thus ni
3

′
≥ cycleStartNum, as otherwise it along

with ni
3 < cycleStartNum implies (3,Ki, xi

3) ∈ Completed before the cycle by Inv8 and Inv7, a contradiction.

Moreover, di3
′
̸=←, otherwise contradicts Inv3. As no 3-query with di3

′
∈ {→,⊥} has been created in the current

Process11Shoot-call, (3, xi
3

′
, yi3
′
) was created in an earlier chain-reaction call; and after creating (3, xi

3

′
, yi3
′
),

G2 would have detected (3, yi3
′
, {Ki,K ′}) and pushed it into ShootQueue. Furthermore, by Proposition 8 we

have DAwareness(yi3
′
, Y 3) = 1, thus yi3

′
/∈ Border by Lemma 11. Therefore, the second assertion never causes

abort either.24

G2 then iterates for all nodes y′3,i. The non-abortion argument is similar to the above by symmetry.

G2 Never Aborts During the Fill-in-Rung-Phase. In this phase, G2 first iterates from (x′3,t, y
′
3,t) to (x′3,1, y

′
3,1).

Consider an arbitrary pair (x′3,i, y
′
3,i) encountered in this iteration, and assume the query is (3, x′3,i, y

′
3,i, d

′
3,i, n

′
3,i).

When G2 finds a 2-query (2, x2,2i, y2,2i, d2, n2) with y2,2i = x′3,i ⊕ k1, it would check an assertion, which fails if
(3,K1, x

′
3,i) /∈ Completed. We proceed to argue that this assertion never fails. For this, we argue that n′3,i, n2 <

cycleStartNum, so that the claim holds by Inv6.

– Towards a contradiction, we first assume n2 > cycleStartNum. Then there should have been a call to
Adapt(2, x∗2, y2,2i, edir

∗, enum∗), as all the 2-queries newly created in this cycle are adapted ones. Assume
that this call corresponds to the chain

(K∗, k∗), (K∗, x∗1, y
∗
3), (1, x

∗
1, y
∗
1), (3, x

∗
3, y
∗
3 , d
∗
3, n
∗
3), (k∗ = y∗1 ⊕ x∗2 = x∗3 ⊕ y2,2i),

then it holds x∗3 ⊕ x′3,i = k∗ ⊕ k1.

We now show n′3,i, n
∗
3 < cycleStartNum, thus y∗3 /∈ Border by Proposition 15,25 and further y2,2i ∈ P−12

before the cycle by Inv8 and Inv7, and the purported Adapt-calls should not have happened. Wlog assume
n∗3 ≥ cycleStartNum and n∗3 > n′3,i. Then: if d

∗
3 =←, then x∗3 ⊕ x′3,i = k∗ ⊕ k1 is not possible by Inv3;

otherwise, it contradicts Proposition 16—similarly to the above argument for the Shoot-Growing-Phase,
the involved 3-query (3, x∗3, y

∗
3) is necessarily “anchored” at the involved old E-chain, so that the argument

carries. Thus n2 < cycleStartNum.
– We then assume n′3,i ≥ cycleStartNum. Then as the previous discussion establishes n2 < cycleStartNum,
we got n′3,i ≥ cycleStartNum > n2, thus d

′
3,i ̸=← by Inv2. This however contradicts Proposition 16. Thus

n′3,i < cycleStartNum.

By the above, the first assertion never causes abort.

On the other hand, when G2 finds x′3,i ⊕ k1 /∈ P−12 , it would evaluate in the (incomplete) chain corre-
sponding to (3,K1, x

′
3,i), make a call to Adapt(2, x2,2i, y2,2i, edir, enum), call UpdateCompleted, and finally

check another assertion. We proceed to argue none of these three actions causes abortion. First, as argued, if
(3,K1, x

′
3,i) /∈ Completed, then y2,2i /∈ P−12 necessarily holds right before this call. A similar argument could

show that x2,2i /∈ P2 also necessarily holds, thus this Adapt-call does not abort. As a consequence, the values
in the chain would be consistent, and UpdateCompleted does not abort either.

Second, the assertion fails if ∃k ̸= k1, k2 : x2,2i⊕k ∈ P−11 or y2,2i⊕k ∈ P3. Assume otherwise, e.g. there exists
a 3-query (3, x◦3, y

◦
3 , d
◦
3, n
◦
3) and k◦ ∈ Z \{k1, k2} such that x◦3⊕k◦ = y2,2i. Then it holds x◦3⊕k◦ = x′3,i⊕k1. But

this is not possible, as we would exclude each possibility (similar to what we did for the Shoot-Growing-Phase):

(i) If n◦3, n
′
3,i < cycleStartNum, then y′3,i /∈ Border by Proposition 15, and thus y2,2i ∈ P−12 before the cycle

by Inv8 and Inv7, and the purported Adapt-calls should not have happened;
(ii) If n◦3, n

′
3,i ≥ cycleStartNum, wlog assume n◦3 > n′3,i, then n◦3 > cycleStartNum, thus d◦3 = ⊥ by Inv2,

and either the purported Adapt-call should not have happened, or G2 would have aborted in an earlier
CollectTP-call.

24 In fact, we feel that such 3-queries (3, xi
3

′
, yi

3

′
) cannot exist. But we cannot find a proof, so we take the current argument

and implementation.
25 By Proposition 15, if y∗

3 ∈ Border, then (3, x∗
3, y

∗
3 , d

∗
3, n

∗
3) must be newly created in this Process11Shoot-call, and

thus n∗
3 > cycleStartNum.
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(iii) The case of n′3,i ≥ cycleStartNum > n◦3 is excluded by an argument similar to the previous discussion on
the query (3, x∗3, y

∗
3);

(iv) If n◦3 ≥ cycleStartNum > n′3,i, then d◦3 ̸=← by Inv2, thus d◦3 ∈ {→,⊥}. From the code we know that
right after (2, x2,2i, y2,2i,⊥) is created, it holds y2,2i ⊕ k2(= x′3,i ⊕ k1 ⊕ k2) ∈ B2(z). On the other hand,
x◦3 = x′3,i ⊕ k1 ⊕ k◦; thus (y2,2i ⊕ k2) ⊕ x◦3 = k2 ⊕ k◦ ∈ 2Z. From Lemma 4 (ii) we know x◦3 ∈ B2(z) (note
that when n◦3 = cycleStartNum it holds x◦3 = z); then, by an argument similar to Proposition 17, we could
reach a “pseudo-cycle” in B2 and show that (y2,2i ⊕ k2)⊕ x◦3 = k2 ⊕ k◦ is not possible.

G2 then checks for x′3,i ⊕ k2, and the involved argument is similar to the above. Furthermore, the argument
for the second iteration also follows the same line. Thus the Fill-in-Rung-Phase would not cause abort.

G2 Never Aborts During the Shoot-Completing-Phase. In this phase, G2 first iterates from (3, x′3,t, y
′
3,t) and

(1, x′1,t, y
′
1,t) to (3, x′3,1, y

′
3,1) and (1, x′1,1, y

′
1,1), and calls Adapt(3, x3,i, y3,i,⊥,⊥) and Adapt(1, x1,i, y1,i,⊥,⊥)

for each of them.
We consider the involved “outer” values y3,i and x1,i first. As the Process11Shoot-call is safe (Propo-

sition 21), when this call is made, it holds xebvall(K2,K1, x
◦
1) = ⊥ for any l ≥ 2. Thus the 2t − 1 values

x1,t, y3,t−1, x1,t−1, . . . , y3,1, x1,1 are all newly-sampled during the Make-E-Chain-Phase, and by Inv5, these val-
ues are not in P1 and P−13 respectively.

We then consider the involved “inner” values x3,i and y1,i. For each i, the value y1,i is computed from the
corresponding 1-query (1, x′1,i, y

′
1,i, d

′
1,i, n

′
1,i) with x′1,i being a node of the involved old E-chain. We distinguish

two cases:

(i) When n′1,i ≥ cycleStartNum, then d′1,i =→ by Proposition 16. Thus y1,i = y′1,i ⊕ k1 ⊕ k2 /∈ P−11 right
after (1, x′1,i, y

′
1,i) is created. Note that according to Propositions 6, 18 and 19, if y1,i is pebbled at some

later point (but earlier than Process11Shoot(x◦1, y
◦
1 ,K1,K2) is called), then it’s necessarily due to some

earlier-processed shoots;
(ii) When n′1,i < cycleStartNum, then y′1,i ⊕ k1 ⊕ k2 /∈ P−11 holds before this simulator cycle, as otherwise

y◦1 ∈ P−11 would be inferred by Inv8 and Inv7, so that this call to Process11Shoot would not have
happened. Similarly, according to Propositions 6, 18 and 19, if y1,i ∈ P−11 holds at some later point (but
earlier than Process11Shoot(x◦1, y

◦
1 ,K1,K2) is called), then it’s necessarily due to some earlier-processed

shoots.

Similar argument carries for each x3,i.
We note that if G2 has not aborted till the Shoot-Completing-Phase, then the 2t values x3,i and y1,i corre-

spond to yb2vall(k2, k1, y
◦
1) for l = 1, . . . , 2t. More concretely, x3,t = yb2val1(k2, k1, y

◦
1), y1,t = yb2val2(k2, k1, y

◦
1),

x3,t−1 = yb2val3(k2, k1, y
◦
1), y1,t−1 = yb2val4(k2, k1, y

◦
1), . . .

Now we distinguish two possibilities, to figure out the ProcessShoot-calls that happened earlier than
Process11Shoot(x◦1, y

◦
1 ,K1,K2) and may affect the 2t “inner” values:

(i) When x◦1 = z′ (note that the current simulator cycle is due to D querying Piδ(z) → z′), these earlier-
processed shoots are of the form (1, x◦1, {K1,K4}) and (1, x◦1, {K2,K3}) for K3,K4 /∈ {K1,K2};

(ii) When x◦1 ̸= z′, by Lemma 4 (i), the path between x◦1 and z′ is directed from z′ to x◦1. This implies
the existence of an E-query (K∗, x◦1, y

∗
3 ,←) for some y∗3 . Following the same line as the argument for

Proposition 21, it can be seen the “interesting” earlier-processed shoots are of the form (3, y∗3 , {K∗,K1}),
(3, y∗3 , {K∗,K2}), (1, x◦1, {K1,K4}), or (1, x◦1, {K2,K3}) with K3,K4 /∈ {K1,K2}.

By an inspection of these cases and Proposition 19, it can be seen none of them can pebble yb2vall(k2, k1, y
◦
1)

for l ≥ 2. By all the above, the Adapt-calls for the 2t − 1 pairs (x1,t, y1,t), (x3,t−1, y3,t−1), (x1,t−1, y1,t−1), . . .
would not cause abort. More clearly:

(i) For 1 ≤ i ≤ t − 1, G2 necessarily finds x3,i /∈ P3 and y3,i /∈ P−13 , thus calling Adapt(3, x3,i, y3,i,⊥,⊥),
which would not cause abort;

(ii) For 1 ≤ i ≤ t, G2 necessarily finds x1,i /∈ P1 and y1,i /∈ P−11 and calls Adapt(1, x1,i, y1,i,⊥,⊥) which does
not cause abort.

The pair (x3,t, y3,t) is not covered by the above analysis. For this pair, note that y3,t = xebval1(K2,K1, x
◦
1)

and x3,t = yb2val1(K2,K1, y
◦
1). It can be seen that the earlier-processed shoots of the form (1, x◦1, {K2,K3})

and (3, y∗3 , {K∗,K2}) (y∗3 is the parent of x◦1 in EB(z′)) may affect the state of y3,t and x3,t. We distinguish
three cases:
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(i) The earliest “interesting” shoot processed before Process11Shoot(x◦1, y
◦
1 ,K1,K2) is (1, x◦1, {K2,K3}).

This implies the existence of an additional 1-query (1, x◦◦◦1 , y◦◦◦1 , d◦◦◦1 , n◦◦◦1 ) (with y◦1 ⊕ y◦◦◦1 = k2 ⊕ k3)
besides (1, x◦◦1 , y◦◦1 , d◦◦1 , n◦◦1 ) with y◦◦1 ⊕ y◦1 = k1⊕ k2, the one that helps form the 11-shoot (1, x◦1, {K1,K2})
(so that G2 could detect (1, x◦1, {K2,K3}) after creating (1, x◦1, y

◦
1)). These imply y◦◦◦1 ⊕ y◦◦1 = k1 ⊕ k3.

Furthermore, both (1, x◦◦1 , y◦◦1 ) and (1, x◦◦◦1 , y◦◦◦1 ) already exist before this cycle, as otherwise G2 would
have aborted in CollectTP(1, x◦1, y

◦
1). Also, they cannot be in Border, otherwise contradicting Lemma 11

and Proposition 8. Thus by Inv8 and Inv7, two chains

(K1, k1), (K1, x
◦◦
1 , y′3,t), (1, x

◦◦
1 , y◦◦1 ), (2, x◦2, y

◦
2), (3, x

′
3,t, y

′
3,t) with y◦◦1 ⊕ x◦2 = y◦2 ⊕ x′3,t = k1

and

(K3, k3), (K3, x
◦◦◦
1 , y◦◦◦3 ), (1, x◦◦◦1 , y◦◦◦1 ), (2, x◦2, y

◦
2), (3, x

◦◦◦
3 , y◦◦◦3 ) with y◦◦◦1 ⊕ x◦2 = y◦2 ⊕ x◦◦◦3 = k3

exist in the history, cf. Fig. 11 (left).26 We note it holds x3,t = x′3,t ⊕ k1 ⊕ k2 = x◦◦◦3 ⊕ k2 ⊕ k3.

EB

x◦
1 y◦

1

x◦◦
1 y◦◦

1

x◦◦◦
1 y◦◦◦

1

x◦
2 y◦

2

x3,t y3,t

x′
3,t y′

3,t

x◦◦◦
3 y◦◦◦

3

P1 P2 P3

y3,t

y′
3,t

y◦◦◦
3

EB

x◦
1 y◦

1

x◦◦◦
1 y◦◦◦

1

P1 P2 P3

y∗
3 y∗
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Fig. 11. (Left) For case (i): the two involved completed chains and the two 11-shoots. The lines in red, blue, and green
indicate E-queries labeled K1, K2, and K3 respectively, while the colored dotted lines indicate the connection under the
corresponding round-keys. (Right) For case (ii): implying the existence of (1, x◦◦◦

1 , y◦◦◦
1 ). The lines in blue and green

indicate connections under (K2, k2) and (K∗, k∗) respectively.

Then, G2 popping (1, x◦1, {K2,K3}) leads to a call to Process11Shoot(x◦1, y
◦
1 ,K2,K3). Inside this call, G2

would find x3,t /∈ P3 and y3,t /∈ P−13 —as we argued for (x3,i, y3,i), and since we assumed (1, x◦1, {K2,K3}) is
the “earliest interesting” shoot. Thus G2 would make a non-aborting call to Adapt(3, x3,t, y3,t,⊥,⊥). After
this adaptation, the following chain exists in the history:

(K2, k2), (K2, x
◦
1, y3,t), (1, x

◦
1, y
◦
1), (2, x

◦
2, y
◦
2), (3, x3,t, y3,t), with y◦1 ⊕ x◦2 = y◦2 ⊕ x3,t = k2.

Moreover, G2 would add the tuple (3, y3,t, {K2,K3}) to ProcessedShoots. Therefore, later inside the call to
Process11Shoot(x◦1, y

◦
1 ,K1,K2), when G2 iterates for (x3,t, y3,t), it indeed finds both P3(x

′
3,t⊕k1⊕k2) =

y3,t and ∃(3, y3,t, {K2,K3}) ∈ ProcessedShoots hold ((3, y3,t, {K2,K3}) is equivalent to the processed
(1, x◦1, {K2,K3})). Thus in this case, whenAdapt(3, x3,t, x3,t,⊥,⊥) is not called in Process11Shoot(x◦1, y

◦
1 ,

K1,K2), the involved assertions would not cause abort;
(ii) The earliest “interesting” shoot processed before Process11Shoot(x◦1, y

◦
1 ,K1,K2) is (i, z◦, {K∗,K2})

which is equivalent to (3, y∗3 , {K∗,K2}). This implies the existence of an additional 1-query (1, x◦◦◦1 , y◦◦◦1 )
with y◦1 ⊕ y◦◦◦1 = k2 ⊕ k∗ when G2 is to create (1, x◦1, y

◦
1), cf. Fig. 11 (right). Then one can see that the

analysis for this case has no essential difference with the analysis for case (i), leading to the same conclusion:
in this case, when Adapt(3, x3,t, x3,t,⊥,⊥) is not called in Process11Shoot(x◦1, y

◦
1 ,K1,K2), the involved

assertions would not cause abort;
(iii) Otherwise, x3,t /∈ P3 and y3,t /∈ P−13 would be kept till Process11Shoot(x◦1, y

◦
1 ,K1,K2), and G2 would

make a non-aborting call to Adapt(3, x3,t, y3,t,⊥,⊥) similarly as described.

Finally, for each (x1,i, y1,i), if Adapt(1, x1,i, y1,i,⊥,⊥) is called, then G2 would check two additional groups
of assertions. The first assertion states that this newly created AD-1-query would not form any 31-TPs that
makes sense (i.e. not in a completed chain): it fails, if there exists K /∈ {K1,K2} such that ETable[K](x1,i) ∈
P−13 but (1,K, x1,i) /∈ Completed. This assertion clearly never fails, because if x1,i ∈ ETable[K] then the
corresponding E-query was necessarily created in an earlier chain-reaction call in this cycle, after which the
E-query is indeed in a completed chain by Lemma 3. The second group of assertions are in the subsequent

26 Note that the query (3, x′
3,t, y

′
3,t) is consistent with the notations for Process11Shoot(x◦

1, y
◦
1 ,K1,K2).
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call to UpdateCompleted, which never fail because the previous call to Adapt(1, x1,i, y1,i,⊥,⊥) succeeds.
Similar assertions exist for each (x3,i, y3,i), and the non-abortion argument is similar by symmetry.

By all the above, the assertions and adaptations in the iteration from (3, x′3,t, y
′
3,t) and (1, x′1,t, y

′
1,t) to

(3, x′3,1, y
′
3,1) and (1, x′1,1, y

′
1,1) would not cause abort.G2 then iterates from (3, x′3,t+1, y

′
3,t+1) and (1, x′1,t+2, y

′
1,t+2)

to (3, x′3,2t, y
′
3,2t) and (1, x′1,2t+1, y

′
1,2t+1) and calls Adapt(3, x3,i, y3,i,⊥,⊥) and Adapt(1, x1,i, y1,i,⊥,⊥) for

each of them. The argument for this iteration is similar to the previous one by symmetry. These complete the
proof. ⊓⊔

Concluding. We conclude with the following lemma.

Lemma 15. The adaptations and assertions in a simulator cycle induced by D making P1−1(y1) or P3(x3)
never cause abort.

Proof. By the pseudocode, adaptations and assertions only occur in the subsequent calls to CollectTP,
ProcessShoot, Process21TP, and Process23TP, the non-abortions of which have been established by
Propositions 17, 23, and 22 respectively. ⊓⊔

10 Termination

Recall from subsection 7.1 that D makes qe, qh, and qp queries to E/E−1, H, and Pi/Pi−1 respectively. We
further assume that D makes qp1 , qp2 , and qp3 queries to P1/P1−1, P2/P2−1, and P3/P3−1 respectively
(qp1 + qp2 + qp3 = qp). Then we have:

(i) |HQueries| = |Z| ≤ qh, as |HQueries| only increasing by at most 1 per D’s query to H;
(ii) The number of detected 13-, 31-, and H-TPs is at most qe in total;

– Following the idea of Coron et al. [CPS08,HKT11]: by Proposition 3, the number of such TPs does not
exceed the number of E-queries made by D.

(iii) The number of detected 12-, 32-, and MidTPs is at most qp2 in total.
– ConsiderD querying P2(x2); for P2

−1(y2) the discussion is similar by symmetry. If there exists a 1-query
(1, x1, y1) meets y1 = x2 ⊕ k and x1 /∈ ETable[K], then only one 12-TP would be processed, and G2

would finally create an AD-2-query (2, x2, y2,⊥), which is unable to help form MidTPs by Proposition
4. Otherwise, G2 would create a 2-query (2, x2, y2,→), which can be involved in a MidTP. However, by
Proposition 5 we know the 2-query created in this case would help form at most one MidTP. The two
cases are mutual exclusive, thus the total number never exceeds qp2 .

ProcessShoot-calls clearly contribute to |Queries| and |EQueries| a lot, and we should bound the number
of such calls. This task is a bit harder. It relies on two propositions.

Proposition 24. During any long simulator cycle, for each newly created 1-query (1, x1, y1, d) with d =← or
⊥, the number of 11-shoots (1, x1, {K,K ′}) /∈ ProcessedShoots that can be formed by (1, x1, y1, d) does not
exceed twice the number of earlier P-cycles. Similar claim holds for each newly created 3-query (3, x3, y3, d) with
d =→ or ⊥.

Proof. Wlog consider (1, x1, y1, d). If the claimed bound does not hold, then there necessarily exists three 1-
queries (1, x′1, y

′
1, d
′), (1, x′′1 , y

′′
1 , d
′′), and (1, x′′′1 , y′′′1 , d′′′), such that for k1, k2, k3, k4, k5, k6 ∈ Z it holds:

– y1 = y′1 ⊕ k1 ⊕ k2, and y1 = y′′1 ⊕ k3 ⊕ k4, and y1 = y′′′1 ⊕ k5 ⊕ k6, and
– (1, x′1, y

′
1, d
′), (1, x′′1 , y

′′
1 , d
′′), and (1, x′′′1 , y′′′1 , d′′′) are created in the same simulator cycle.

Note that the three queries were necessarily created in a long cycle. Assume that the cycle is induced by D
querying Piδ(z)→ z′ ((i, δ) ∈ {(1,−), (3,+)}). As argued, we have d′, d′′, d′′′ =→ or ⊥. However, if two of them
equal →, then it would contradict Inv3; thus at least two of them equal ⊥. Wlog assume d′, d′′ = ⊥. Then by
Lemma 4 (ii) we have y′1, y

′′
1 ∈ B2(z). Thus we got a “pseudo-cycle” z − . . . − y′1

⊕k1⊕k2⊕k3⊕k4

o y′′1 − . . . − (z)
in B2, which would ultimately contradict Lemma 6, and thus G2 would have aborted in this earlier cycle of
Piδ(z)→ z′. Therefore, it is not possible for a 1-query forming unprocessed shoots with more than two 1-queries
created in the same cycle.

Then, as 1- and 3-queries cannot be created in E- nor H-cycles, we reach the claim. ⊓⊔
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Proposition 25. During any long cycle, two distinct newly created 1-queries (1, x1, y1, d) and (1, x′1, y
′
1, d
′)

(d, d′ ∈ {←,⊥}) cannot both form unprocessed shoots (shoots not in ProcessedShoots) with the 1-queries
created in the same earlier cycle.

Proof. Consider 1-queries first. Assume that the long cycle creating (1, x1, y1, d) and (1, x′1, y
′
1, d
′) is induced by

D querying Piδ(z)→ z′ ((i, δ) ∈ {(1,−), (3,+)}). By Lemma 4 (ii) we have y1, y
′
1 ∈ B2(z).

Then, towards a contradiction, assume that there are two 1-queries (1, x′′1 , y
′′
1 , d
′′) and (1, x′′′1 , y′′′1 , d′′′) and

k1, k2, k3, k4 ∈ Z such that:

– y1 = y′′1 ⊕ k1 ⊕ k2, and y′1 = y′′′1 ⊕ k3 ⊕ k4, and

– (1, x′′1 , y
′′
1 , d
′′) and (1, x′′′1 , y′′′1 , d′′′) are created in the same (necessarily long, as argued) simulator cycle.

Assume that the long cycle creating (1, x′′1 , y
′′
1 , d
′′) and (1, x′′′1 , y′′′1 , d′′′) is induced by D querying Piδ(z◦)→ z◦◦

((i, δ) ∈ {(1,−), (3,+)}). As argued, we have d′′, d′′′ =→ or ⊥. It falls into three cases:

Case 1: (1, x′′1 , y
′′
1 , d
′′) = (1, x′′′1 , y′′′1 , d′′′). In this case, y1 = y′′1 ⊕ k1 ⊕ k2 and y′1 = y′′1 ⊕ k3 ⊕ k4 would imply

y1 ⊕ y′1 = k1 ⊕ k2 ⊕ k3 ⊕ k4 ∈ 4Z, and by y1, y
′
1 ∈ EB(z) (Lemma 4 (ii)) we got a “pseudo-cycle” z − . . . −

y1
k1⊕k2⊕k3⊕k4

o y′1 − . . .− (z) in B2, so that G2 necessarily aborts before it completes creating the two 1-queries
(1, x1, y1, d) and (1, x′1, y

′
1, d
′).

Case 2: During the earlier long cycle, (1, x′′1 , y
′′
1 , d
′′) and (1, x′′′1 , y′′′1 , d′′′) are in the same shoot. Then there exists

a ProcessShoot-call such that (1, x′′1 , y
′′
1 , d
′′) is “anchored” at its old E-chain while (1, x′′′1 , y′′′1 ,⊥) at its new

E-chain (or may be opposite; this does not matter), and y′′1 ⊕ y′′′1 = k5 ⊕ k6 for k5, k6 ∈ Z. By Proposition 16,
it has to be d′′ =→, otherwise (1, x′′1 , y

′′
1 ) was not created in the same cycle as (1, x′′′1 , y′′′1 ).

Now, as y1, y
′
1 ∈ B2(z), either the path between z and y1 is directed from z to y1, or the path between z

and y′1 is from z to y′1 (it’s not hard to see this holds even if z equals y1 or y′1).

First, assume that the path z → . . .→ y1 is to y1. This implies the existence of a 2-edge (y1, x3, k
∗,←) in B2.

This implies the existence of a 2-query (2, x∗2, y
∗
2 , d
∗
2) with x∗2 = y1 ⊕ k∗, y∗2 = x3 ⊕ k∗, and d∗2 ̸=→. Depending

on d∗2, we distinguish two sub-cases:

Sub-case 2.1: d∗2 =←, i.e. (y1, x3, k
∗) is an RA-2-edge. As y1 = y′′1 ⊕k1⊕k2, we got x

∗
2⊕y′′1 = k∗⊕k1⊕k2 ∈ 3Z.

Thus (1, x′′1 , y
′′
1 ,→) and (2, x∗2, y

∗
2 ,←) would contradict Inv2, cf. Fig. 12 (left).

Sub-case 2.2: d∗2 = ⊥, i.e. (y1, x3, k
∗) is an AD-2-edge. Assume that the mirror E-query of (2, x∗2, y

∗
2 ,⊥) is

(K∗∗, x∗∗1 , y∗∗3 ,←). These imply the existence of another 1-query (1, x∗∗1 , y∗∗1 , d∗∗1 ) with y∗∗1 = x∗2 ⊕ k∗∗ = y1 ⊕
k∗⊕k∗∗ (thus y∗∗1 ⊕y′′1 ∈ 4Z). As argued (cf. Case 2 in the proof of Lemma 6), since (1, x∗∗1 , y∗∗1 ) lies between the
heads of (K∗∗, x∗∗1 , y∗∗3 ) and (y∗∗1 , x∗∗3 , k∗∗), it must be d∗∗1 =→; this along with (1, x′′1 , y

′′
1 ,→) would contradict

Inv3, cf. Fig. 12 (right).
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Fig. 12. For Proposition 25. Arrowed lines indicate directed queries, with arrows consistent with directions; dashed lines
indicate AD-queries. (left) sub-case 2.1: (y1, x3, k

∗) is an RA-2-edge; (right) sub-case 2.2: (y1, x3, k
∗) is an AD-2-edge.

The above shows the contradiction based on the assumption that the path z → . . . → y1 is to y1. For the
other case, i.e . the path z → . . . → y′1 is from z to y′1, there is no significant difference (except for replacing
3Z and 4Z in sub-case 2.1 and 2.2 by 5Z and 6Z respectively). In each subcase, G2 cannot complete creating
(1, x1, y1, d) and (1, x′1, y

′
1, d
′). These complete the analysis for Case 2.
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Case 3: During the earlier long cycle, (1, x′′1 , y
′′
1 , d
′′) and (1, x′′′1 , y′′′1 , d′′′) are in two different shoots. We exclude

three possibilities (which are a bit similar to Sub-case 4.1.2 in the proof of Proposition 13) to show that G2

cannot complete creating (1, x1, y1, d) and (1, x′1, y
′
1, d
′):

– If both d′′ and d′′′ equal ⊥, then by Lemma 4 (ii) we have y′′1 , y
′′′
1 ∈ B2(z

◦). Thus we got a “pseudo-cycle”
z− . . .− y1

⊕k1⊕k2

o y′′1 − . . .− z◦− . . .− y′′′1
⊕k3⊕k4

o y′1− . . .− (z) in B2, which would finally contradict Lemma
6;

– If both d′′ and d′′′ equal→, then by construction, in this earlier-long cycle, G2 necessarily created two AD-1-
queries (1, x◦1, y

◦
1 ,⊥) and (1, x◦◦1 , y◦◦1 ,⊥) with y◦1 = y′′1 ⊕k5⊕k6 and y◦◦1 = y′′′1 ⊕k7⊕k8 for k5, k6, k7, k8 ∈ Z.

By Lemma 4 (ii) we have y◦1 , y
◦◦
1 ∈ B2(z

◦), thus we got a “pseudo-cycle” z− . . .− y1
⊕k1⊕k2⊕k5⊕k6

o y◦1 − . . .−
z◦ − . . .− y′′′1

⊕k3⊕k4⊕k7⊕k8

o y′1 − . . .− (z) in B2, which would finally contradict Lemma 6;
– The “hybrid case”: e.g. if d′′ =→ while d′′′ = ⊥, then there exists (1, x◦1, y

◦
1 ,⊥) such that y◦1 = y′′1⊕k5⊕k6 for

k5, k6 ∈ Z, and we got a “pseudo-cycle” z− . . .−y1
⊕k1⊕k2⊕k5⊕k6

o y◦1 − . . .−z◦− . . .−y′′′1
⊕k3⊕k4

o y′1− . . .− (z)
in B2.

These complete the analysis for 1-queries. For 3-queries the argument is similar by symmetry. ⊓⊔

Therefore, we reach the main claim:

Lemma 16. The number of Process11Shoot-calls (Process33Shoot-calls, resp.) that appear in the l-th
P-cycle is at most 2(l − 1). As a consequence, In any G2 execution, the number of ProcessShoot-calls is at
most 2q2p.

Proof. It can be seen that if the l-th P-cycle is not a long one, then there will be no ProcessShoot-call.
Otherwise, assume that 2(l − 1) + 1 Process11Shoot-calls—in other words, 2(l − 1) + 1 unprocessed 11-
shoots—appear in a long cycle. By Inv1, distinct 11-shoots are necessarily formed by distinct pairs of 1-queries

(cf. the analysis in subsection 5.5). By Proposition 24, these pairs are necessarily formed by ⌈ 2(l−1)+1
2 ⌉ = l

distinct 1-queries with dir ∈ {←,⊥} newly created in this cycle. However, by Proposition 25 we know any two
distinct 1-queries among these l ones cannot form unprocessed shoots with the 1-queries created in the same
earlier P-cycle. Thus there necessarily exist l earlier P-cycles, a contradiction. For Process33Shoot-calls the
argument is similar by symmetry. The maximum number of long cycles is qp1 + qp3 ≤ qp. Therefore, the total
number of Process11Shoot-calls is at most

∑qp
l=1(2l− 2) ≤ q2p; the same bound holds for Process33Shoot-

calls, thus the claimed 2q2p. ⊓⊔

The above culminate with the following bounds.

Lemma 17. Let µ = (qe + qp) · q2p. Then in any execution DG2 , it holds:

(i) |P1|, |P3| ≤ 13µ, |P2| ≤ 9µ, |EQueries| ≤ qe + qp + 16µ, and the number of 11-shoots (33-shoots, resp.) in
DUShoots is at most 4µ;

(ii) the number of distinct calls to Check is at most 169qhµ
2.

Proof. Assuming qe + qp ≥ 4, then t ≤ qe+qp+4
2 ≤ qe + qp (recalling from subsection 5.3 for the parameter t).

For qe + qp = 3 it also holds t = 3+3
2 ≤ qe + qp.

Then we derive the bounds one-by-one. 2-queries can be created in three cases:

(i) D queries P2 or P2−1—≤ qp2 ≤ qp;
(ii) G2 processing 13-, 31-, or H-TPs—≤ qe;
(iii) ProcessShoot-calls. Each such call creates at most 4t ≤ 4(qe + qp) 2-queries, while the number of such

calls is at most 2q2p by Lemma 16.

In total, |P2| ≤ qe + qp + 8µ ≤ 9µ assuming qp ≥ 1. Clearly, it still holds when qp = 0 (in this case |P2| = 0).
1-queries can be created in three cases

(i) D queries P1 or P1−1 – ≤ qp1 ;
(ii) G2 processing 12-, 32-, or MidTPs – ≤ qp2 ;
(iii) ProcessShoot-calls. Each such call creates at most 4t + 2 1-queries, thus in total it’s (4t + 2) · 2q2p =

(8t+ 4)q2p ≤ 12µ.
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They sum to ≤ qp + 12µ ≤ 13µ (similarly to |P2|, regardless of qp = 0 or not). The argument for |P3| is similar
by symmetry.

E-queries can be created in three cases:

(i) D queries E or E−1 – ≤ qe;
(ii) G2 processing 12-, 32-, or MidTPs – ≤ qp2 ;
(iii) ProcessShoot-calls. Each such call creates at most 8t E-queries, thus in total it’s 16µ.

In total ≤ qe + qp + 16µ.
Each ProcessShoot-call adds at most 2t 11-shoots to DUShoots—note that, indeed, at most 2t + 1 11-

shoots are involved in each such call; however, by Proposition 8 and the pseudocode, at least one of them cannot
be in DUShoots. Thus the number of 11-shoots in DUShoots is at most 4µ. For 33-shoots in DUShoots it’s
similar.

The above claims assume qe + qp ≥ 3. One could check that when qe + qp ≤ 2, the bounds still hold: when
qe + qp = 1, then only one set among EQueries, P1, P2, P3 gets an element; when qe + qp = 2, it’s not hard to
see one of the best choices is to make two queries to P1−1 to induce one call to Process11Shoot, and the
resulted “real sizes” do not exceed our “claimed bounds”, cf. Table 2.

Table 2. For Lemma 17: cases of qe + qp = 2.

Case t |EQueries| |P1| |P2| |P3| 11-shoots in DUShoots 33-shoots in DUShoots

“real” 3 24 14 12 12 6 6
“claimed” 3 130 100 68 100 32 32

Finally, in any cases, the number of distinct Check-calls is at most qh · |P1| · |P3| ≤ qh · (13µ)2. ⊓⊔

The bound O(q2p) given by Lemma 16 is clearly tight, as it can be matched by a very simple attack.
Consequently, |EQueries| = O(q3) also seems tight. However, the tightness of all the other bounds remain
unclear. Since the current simulator design has been extremely complicated, we defer seeking for tight bounds
for future.

Based on the above bounds, in the next section we bound the abort probability of G2.

11 Abort-Probability of G2

We first consider early-abortions, then the CheckDUnaware-calls. As proved in Lemmas 12-15, these consti-
tute all the abortions in G2 executions.

Lemma 18. In DG2 , the probability of early-abortion is at most
(1462+2144q6h)·(qe+qp)

2·q4p+2q2e+2q4h
N .

Proof. Consider a pair of queries ((K,x1, y3), (1, x1, y1)). If the last call before this pair (logically) exist is
EIn−1(K, y3) or P1

−1(y1), then G2 would abort. The number of such pairs is at most |EQueries| · |P3|, while
the probability for G2 to abort on a single pair is at most 1

N−Max{|EQueries|,|P1|} ≤
1

N−|EQueries| , thus the bound

in total is |EQueries|·|P3|
N−|EQueries| ≤

13µ·(qe+qp+16µ)
N−|EQueries| ≤

221µ2

N−|EQueries| (holds even if qp = 0). Similarly, the probability of

abortion due to pairs of the form ((K,x1, y3), (3, x3, y3)) is at most |EQueries|·|P1|
N−|EQueries| ≤

221µ2

N−|EQueries| .

Consider a pair of queries ((K,x1, y3), (K
′, x1, y

′
3)). If the last call before this pair (logically) exist is

EIn−1(K, y3) or EIn
−1(K ′, y′3), then G2 would abort. The probability for a single pair is at most 1

N−|EQueries| .

For a pair of queries ((K,x1, y3), (K
′, x′1, y3)), if the last call before this pair (logically) exist is EIn(K,x1) or

EIn(K ′, x′1), then G2 would abort. However, the two types of bad cases are mutual exclusive, thus the bound

in total is |EQueries|2
N−|EQueries| ≤

(qe+qp+16µ)2

N−|EQueries| . When qp ≥ 1, qe + qp ≤ µ, and we got 289µ2

N−|EQueries| ; when qp = 0, it’s

clearly
q2e

N−|EQueries| . Thus the bound in total is
q2e+289µ2

N−|EQueries| .

Consider a triple (z, (i, xi, yi), (i, x
′
i, y
′
i)) with z ∈ 6Z and yi ⊕ y′i = z. If the last call before this triple

(logically) exist is RandAssign(i, xi,+), or RandAssign(i, x′i,+), or H, then G2 would abort. The probability

is at most
q6h·|Pi|2
N−|Pi| in total. Similarly for triples (z, (i, xi, yi), (i, x

′
i, y
′
i)) with z ∈ 6Z and xi ⊕ x′i = z, thus

the bound in total is
∑

i=1,2,3
2·q6h·|Pi|2
N−|Pi| ≤

838q6hµ
2

N−|P1| . As 0 ∈ 6Z, these already include the events z′ ∈ P−1i in

RandAssign(i, z,+) and z′ ∈ Pi in RandAssign(i, z,−).
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Consider a triple (z, (1, x1, y1), (2, x2, y2)) with z ∈ 5Z and y1 ⊕ x2 = z. If the last call before this triple
(logically) exist is RandAssign(1, x1,+), or RandAssign(2, y2,−), or H, then G2 would abort. The probability

is at most
q5h·|P1|·|P2|
N−|P1| in total (as |P1| ≥ |P2|). Similarly for triples (z, (2, x2, y2), (3, x3, y3)) with z ∈ 5Z and

y2 ⊕ x3 = z, thus in total
2·q5h·|P1|·|P2|

N−|P1| ≤ 234q5hµ
2

N−|P1| (the upper bound on |P1| equals that on |P3|).

Finally, in H, there are two other types of abortion, i.e. Pr[∃K1 ̸= K2 : R.H(K1) = R.H(K2)] ≤ q2h
N and

Pr[∃K1 ̸= K2 ̸= K3 ̸= K4 :
⊕

i=1,2,3,4 R.H(Ki) = 0] ≤ q4h
N . Thus assuming |P1| ≤ 13(qe + qp) · q2p ≪ N

2 ,

|EQueries| ≤ qe + qp + 16(qe + qp) · q2p ≪ N
2 , and substituting µ by (qe + qp) · q2p, we obtain the bound

(1462 + 2144q6h) · (qe + qp)
2 · q4p + 2q2e + 2q4h

N
.

⊓⊔

For clearness, we use a sub-claim for CheckDUnaware-calls.

Proposition 26. A call to CheckDUnaware aborts with probability at most
8q2hµ

N−qe−qp−16µ .

Proof. Consider a call to CheckDUnaware(x◦1, X1) first. It is necessarily made due to D querying E(K◦, x◦1)
or P1(x◦1). Consider an arbitrary tuple (1, {(x1, y1), (x

′
1, y
′
1)}) ∈ DUShoots. By Proposition 7, (a) there exists

two E-queries (K,x1, y3,←) and (K ′, x′1, y
′
3,←) in EQueries for some K,K ′, y3, y

′
3; (b) wlog we could assume

that two 1-queries (1, x1, y1,→) and (1, x′1, y
′
1,⊥) are in Queries, with y1 ⊕ y′1 = k ⊕ k′. By these, before the

call to CheckDUnaware(x◦1, X1) is made, G2 has queried E.E−1(K, y3) → x1, E.E−1(K ′, y′3) → x′1, and
R.P1(x1)→ y1. Since these three values are all in DUShoots, based on the queries not in DUShoots (note that
by design, this already includes all the earlier query-answer pairs obtained by D) and the new query from D,
the three values x′1, x1, and y1 cannot be determined; thus they remain fresh when CheckDUnaware(x◦1, X1)
is made. By this, the probability for CheckDUnaware(x◦1, X1) to abort due to (1, {(x1, y1), (x

′
1, y
′
1)}) is at

most 2
N−|EQueries| . Since there are at most 4µ such tuples (by Lemma 17), the total bound is 8µ

N−|EQueries| .

Similar analysis establishes the following bounds:

– The probability of CheckDUnaware(y◦3 , Y 3) aborting does not exceed 8µ
N−|EQueries| either;

– The probability of CheckDUnaware(x2, X2) aborting due to (1, {(x1, y1), (x
′
1, y
′
1)}) equals Pr[y1 ⊕ x2 ∈

Z ∨ y1 ⊕ k ⊕ k′ ⊕ x2 ∈ Z] (for R.P1(x1) → y1). Thus in total it’s 8qhµ
N−|P1| . Similarly, the probability of

CheckDUnaware(y2, Y 2) is at most 8qhµ
N−|P3| .

It remains to consider calls to CheckDUnaware(y1, Y 1) and CheckDUnaware(x3, X3). Such calls only
occur in long cycles. Thus we assume a long cycle due to D querying Piδ(z)→ z′ ((i, δ) ∈ {(1,−), (3,+)}), and
make discussion for each type of new 1- and 3-queries that are to be involved in CheckDUnaware-calls:

Case 1: the 1-query (1, x1, y1,←). Such queries are necessarily due to D querying P1−1(y1). It’s not hard to

see the above analysis can be similarly carried for such 1-queries, leading to the bound
8q2hµ

N−|P1| . For a 3-query

(3, x3, y3,→) we similarly obtain
8q2hµ

N−|P3| .

Case 2: the 1-query (1, x1, y1,⊥) Created in Process23TP. From the code of Process23TP and the analysis
in Proposition 22, we find the fact that although G2 queries E for x1 to create this query, the value y1 at the
other side is computed �without any additional randomness. Thus based on the queries not in DUShoots and
the last query Piδ(z) from D, the value y1 can be fully determined, and does not increase the “knowledge” of
D. This also means based on these values, the queries in DUShoots remain fully undermined, and distribute
uniformly. Thus Pr[CheckDUnaware(y1, Y 1) aborts] ≤ Pr[∃(1, {(x′1, y′1), (x′′1 , y′′1 )}) ∈ DUShoots : y′1 ⊕ y1 ∈
2Z ∨ y′′1 ⊕ y1 ∈ 2Z] ≤ 8q2hµ

N−|P1| .

Case 3: the 1-query (1, x1, y1,⊥) Created in ProcessShoot. In this case, there necessarily exists another
1-query (1, x∗1, y

∗
1) and k∗, k∗∗ ∈ Z such that G2 obtains y1 ← y∗1 ⊕ k∗ ⊕ k∗∗ in this ProcessShoot-call. We

further distinguish two cases:
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(i) Right after the Fill-in-Rung-Phase of this ProcessShoot-call, (1, x∗1, y
∗
1) is not in DUShoots. Then

the case is similar to Case 2: based on the queries not in DUShoots and the last query Piδ(z) from
D, the value y1 can be fully determined, while the queries in DUShoots remain undermined, and thus

Pr[CheckDUnaware(y1, Y 1) aborts] ≤ 8q2hµ
N−|P1| ;

(ii) Right after the Fill-in-Rung-Phase of this ProcessShoot-call, (1, x∗1, y
∗
1) is in DUShoots. Then it neces-

sarily be that G2 “reaches” a shoot (1, {(x∗1, y∗1), (x∗∗1 , y∗∗1 )}) in DUShoots when evaluating along the old
E-chain (and soon remove this shoot). It’s ensured that y∗1 ⊕ y1 ∈ 2Z; however, right before G2 is to call
CheckDUnaware(y1, Y 1), (1, {(x∗1, y∗1), (x∗∗1 , y∗∗1 )}) will be removed, and will not causeCheckDUnaware(y1, Y 1)
abort. Based on the additional values in this shoot, the other queries in DUShoots remain undermined,

thus it holds Pr[CheckDUnaware(y1, Y 1) aborts] ≤ 8q2hµ
N−|P1| .

Finally, by Lemma 17 we have
8q2hµ

N−|P1| ≤
8q2hµ

N−|EQueries| . On the other hand, if qh ≥ 1 then 8µ
N−|EQueries| ≤

8q2hµ
N−|EQueries| ; while when qh = 0 we have |DUShoots| = 0 and CheckDUnaware never aborts. Thus the

claim. ⊓⊔

Then the total bound for CheckDUnaware.

Lemma 19. In DG2 , the probability of CheckDUnaware-calls cause abort is at most
32q2h·(qe+qp)

2·q3p
N in total.

Proof. We show that the number of CheckDUnaware-calls is at most 2(qe + qp) · qp. This multiplied by the

bound
8q2hµ

N−qe−qp−16µ given by Proposition 26 yields the claim (assuming qe + qp + 16(qe + qp) · q2p ≪ N/2).

First, in each simulator cycle induced by D querying E, E−1, P1, P2, P2−1, or P3−1, there’s exactly one
call to CheckDUnaware.

On the other hand, in a long cycle induced by D querying Piδ(z) → z′ ((i, δ) ∈ {(1,−), (3,+)}), it can
be seen from the code that G2 would make a call to CheckDUnaware(y1, Y 1) for each newly created 1-
query (1, x1, y1, d1) such that d1 ∈ {←,⊥}, x1 ∈ EB(z′), and DAwareness(x1, X1) = 1 (and a call to
CheckDUnaware(x3, X3) for each new 3-query (3, x3, y3, d3) such that d3 ∈ {→,⊥}, y3 ∈ EB(z′), and
DAwareness(y3, Y 3) = 1).27 According to the analysis in sub-case 4.1 of the proof of Proposition 13, we know
the number of D-aware E-queries in EB(z′) does not exceed the total number of earlier E- and P-cycles, which
is at most qe + qp − 1 (the current cycle excluded). By Lemma 9 we know these E-queries form a connected
component (a sub-graph of EB(z′)), thus these qe + qp − 1 E-queries provide qe + qp nodes with DAwareness
function value 1. Thus in each long cycle, there are at most qe + qp DAwareness-calls.

By the above, the number of DAwareness-calls in total is at most qe+qp2+qp1(qe+qp) ≤ (qp+1)(qe+qp) ≤
2(qe + qp) · qp (when qp ≥ 1). When qp = 0 we have |DUShoots| = 0 and CheckDUnaware never aborts, thus
the bound still holds. Thus the claim. ⊓⊔

12 From G2 to the Final Indistinguishability Results

12.1 G1 and G2 Behave the same: Around Check Procedures

This subsection gives the transition from G1 to G2. Briefly, if DG2(E,R) does not abort then the difference
between DG2(E,R) and DG1(E,R) is necessarily due to the procedure Check. This difference is bounded via
the idea initiated by Coron et al. [CPS08,HKT11] with no novelty. We thus omit the boring details, and
directly apply the conclusion of [GL15b] and yield: conditioned on DG2(E,R) non-aborting, D’s advantage in
distinguishing G1 and G2 does not exceed twice the number of distinct calls to Check in DG2 divided by N
(a similar argument could be found in [DSSL16]). Incorporating a little more analysis we obtain the following
lemma.

Lemma 20. (i) PrE,R[DG1(E,R) = 1]− PrE,R[DG2(E,R) = 1] ≤ 338qh(qe+qp)
2·q4p

N ;

(ii) during DG1(E,R), with probability at least 1 − 2514q6h(qe+qp)
2·q4p+1462(qe+qp)

2·q4p+2q4h+2q2e
N , S issues at most

26qh(qe + qp) · q2p queries to E, and runs in time at most O((qe + qp)
2 · q4p + qh(qe + qp)

2 · q4p).

27 The new 1-/3-query may be created in RandAssign, in ProcessShoot, or in Process21/23TP, but this does not
matter.
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Proof. Consider a random tuple (E,R). If DG2(E,R) does not abort, then by Lemma 17 we know there are
at most 169qh · q4p(qe + qp)

2 distinct Check-calls in DG2(E,R). Since DG1(E,R) and DG2(E,R) take the same
randomness source, the transcripts of queries to (E,R) and their answers in the two executions are the same.
Now if the number of distinct Check-calls in DG2(E,R) is |Check|, and the first distinct |Check| Check-calls
in DG1(E,R) return the same values as in DG2(E,R), then the two executions have essentially the same process.
By this argument one also see DG1(E,R) would not abort, since the abort conditions in G1 are also in G2 and
they do not cause DG2(E,R) abort. Assuming E is queried q∗ ≪ N/2 times in DG1 , then the distinguishing
advantage due to Check-calls is ϵ ≤ 2 · |Check|/N ≤ 338qh · q4p(qe + qp)

2. Thus we have:

PrE,R[DG1(E,R) = 1]− PrE,R[DG2(E,R) = 1]

≤Pr[DG1(E,R) = 1 ∧DG2(E,R) aborts]− Pr[DG2(E,R) = 1 ∧DG2(E,R) aborts]

+ (Pr[DG1(E,R) = 1 | ¬DG2(E,R) aborts]− Pr[DG2(E,R) = 1 | ¬DG2(E,R) aborts]) · Pr[¬DG2(E,R) aborts]

≤(Pr[DG1(E,R) = 1 ∧DG2(E,R) aborts]− 1) + ϵ (since abortion implies D outputting 1) ≤ ϵ

On the other hand, the absolute value of the above bound is ϵ′ ≤ ϵ+ Pr[DG2 aborts]. Thus the complexity of
S in G1 is consistent with the bounds given in Lemma 17, except with probability at most ϵ′. Thus the second
claim follows from Lemmas 18 and 19. For the formal proof please see [GL15b].

The most time consuming procedure of S is ProcessShoot, with the four phases Make-E-Chain, Shoot-
Growing, Fill-in-Rung, and Shoot-Completing requiring O(qe+qp), O(qh(qe+qp)·q2p), O(qe+qp), and O((qe+qp)

2 ·
q2p) time respectively—note that the running time of Shoot-Growing-Phase is dominated by O(qhµ) Check-calls,
while that of Shoot-Completing-Phase is dominated by O(qe + qp) CollectTP-calls, each can be implemented
to run in time O(µ). As the number of ProcessShoot-calls is O(q2p) (Lemma 16), ProcessShoot-calls cost
O(qh(qe + qp) · q4p + (qe + qp)

2 · q4p) in total. Meanwhile, we got O(qh(qe + qp)
2 · q4p) calls to Check. Thus the

running time in total is O((qe + qp)
2 · q4p + qh(qe + qp)

2 · q4p). (The first term cannot be omitted, as the time cost
cannot be 0 even if qh = 0.) ⊓⊔

12.2 G2 and G3 Behave the same: the Partial Randomness Mapping

Consider the set EQueries standing at the end of a non-aborting G2 execution. Note that E-queries (K,x1, y3)
in EQueries can be divided into two types:

(i) Type I: (K,x1, y3) has been in a completed K-chain;
(ii) Type II: (K,x1, y3) has not been in any completed chains.

Assume that the number of the two types are q1 and q2 (so q1 + q2 = |EQueries|) respectively. We denote
by EH2 the set of type II E-queries, and denote by ST the tuple composed of HQueries and Queries, say,
ST = (HQueries,Queries). Finally, let R = (EH2, ST ).

Then, the formalism of the randomness mapping part is very similar to [CS15b]. First, with respect to the
fixed D, a tuple α = (E,R) is a good G2-tuple, if the execution DG2(α) does not abort. Second, denote by
R the set of all possible tuples of sets R = (EH2, ST ) standing at the end of non-aborting G2 executions.
For a good G2-tuple α and a tuple of sets R ∈ R, if the sets EH2 and ST standing at the end of DG2(α)

are exactly the same as R, then we write DG2(α) → R. Third, consider a set-tuple R = (EH2, ST ) ∈ R
with ST = (HQueries,Queries). For a tuple of random primitives R, if for any (K, k) ∈ HQueries it holds
R.H(K) = k and for any (i, xi, yi) ∈ Queries it holds R.Pi(xi) = yi, then R coincides with ST ; this is denoted
R ∼= ST .

We start with the following claim: the number of adapted (P-)queries (queries with dir = ⊥) equals the
number of type I E-queries. This slightly deviates from the previous works, which usually proved the number
of adapted queries equaling that of the ideal-cipher-queries, but the idea is quite similar.

Lemma 21. At the end of any non-aborting G2 execution DG2(E,R), it holds

|{(i, xi, yi, dir) ∈ Queries : dir = ⊥}| = |Type I E-queries|.

Proof. Note that right before each call to UpdateCompleted, there is a call to Adapt. Thus there is a
bijective mapping between the completed chains and the AD-queries. As type I E-queries are in completed
chains, this bijective mapping extends to type I E-queries and thus the claim. ⊓⊔

67



Following the spirit of H-coefficient technique, we should prove that the non-aborting-execution-history R
has close probability to occur in G2 and G3 executions.

For a G2 execution we consider the probability that it exactly generates the history R. We denote this value
by PrE,R[DG2(E,R) → R]. Let |HQueries| = h and |EQueries| = w, and assume that the number of 1-, 2-,
and 3-queries created by randomly sampling are r1, r2, and r3 respectively. Then by Lemma 21, it should be
r1 + r2 + r3 + q1 = |P1|+ |P2|+ |P3|; and, obviously,

PrE,R[DG2(E,R) → R] ≤

 ∏
i=1,2,3

ri−1∏
j=0

1

N − j

 · ( 1

N − q1 − q2

)q1+q2

· 1

Nh
.

We notice another probability:

Pr[R ∼= ST ] =

 ∏
i=1,2,3

|Pi|−1∏
j=0

1

N − j

 · 1

Nh
≥

 ∏
i=1,2,3

ri−1∏
j=0

1

N − j

 · 1

Nq1
· 1

Nh
.

Moreover, it can be seen if DG2(E,R) → R and R ∼= ST , then D would get the same answers for all its H- and
P- and type I E-queries in the two executions DG2 and DG3(R). Next, we consider the probability that D’s
type II E-queries in DG3(R) also lead to the same answers as in DG2 . Since these answers are given by EMR∗3
with R as the underlying primitives, we denote this event by EMR∗3(R) ∼= EH2. To derive its probability, we
first list several properties of type II E-queries.

Proposition 27. For any R ∈ R, let R = (EH2, ST ) and ST = (HQueries,Queries). Then for any query
(K,x1, y3) ∈ EH2, at least two among its six corresponding “round values” have not been fixed by ST . More
formally, (K,x1, y3) necessarily satisfy the following conditions:

– if x1 ∈ P1 then either y3 /∈ P−13 or K /∈ HTable. Furthermore, if K ∈ HTable and k = HTable(K) then:
• P1(x1)⊕ k /∈ P2;
• for any k′ ∈ Z\{k}, P1(x1)⊕ k ⊕ k′ /∈ P−11 ;

– if y3 ∈ P−13 then either x1 /∈ P1 or K /∈ HTable. Furthermore, if K ∈ HTable and k = HTable(K) then:
• P−13 (y3)⊕ k /∈ P−12 ;
• for any k′ ∈ Z\{k}, P−13 (y3)⊕ k ⊕ k′ /∈ P3.

Proof. Consider the case of x1 ∈ P1, and assume the involved 1-query is (1, x1, y1); the argument for the other
case is similar by symmetry. First, if y3 ∈ P−13 and K ∈ HTable simultaneously hold, then (1,K, x1) should
have been in Completed by Inv6, and (K,x1, y3) should not have been a type II E-query. This shows either
y3 /∈ P−13 or K /∈ HTable.

We then consider the case of k = HTable(K). Under this condition, P1(x1)⊕k /∈ P2 is obvious, as otherwise
(K,x1, y3) should have been in a completed chain by Inv6 and thus should not be type II. On the other hand,
if there exists k′ ∈ Z : k′ ̸= k such that P1(x1)⊕k⊕k′ /∈ P−11 , then the involved 1-query (1, x′1, y

′
1, d
′
1, n
′
1) along

with (1, x1, y1, d1, n1) (y
′
1 = y1 ⊕ k ⊕ k′) form a 11-shoot. Now:

– If x1 /∈ Border, then (K,x1, y3) should have been in a completed chain by Inv8 and Inv7;
– If x1 ∈ Border, then DAwareness(x1, X1) = 1 by Lemma 11. In this case, if (K,x1, y3) was “internally”
created by G2, then it should have been in a completed chain by Lemma 3, a contradiction; if (K,x1, y3)
was created due to D querying E/E−1, then it would have caused G2 abort in CheckDUnaware.

The case of y3 ∈ P−13 is similar by symmetry. Thus the claim. ⊓⊔

As the second step, with respect to a given R = (EH2, ST ), PrR[EMR∗3(R) ∼= EH2 | R ∼= ST ] is easier to
compute when the tuples meet certain constraints. We call these tuples good G3-tuples and good for short (here
the approach is somewhat similar to [CS15a]). We now specify the first group of conditions for R to be “bad ”.

Definition 5. With respect to R = (EH2, ST ), R.H is bad, if one of the following conditions is fulfilled:

– (BH-1) ∃(K,x1, y3) ∈ EH2 and K ′ ̸= K: (a) K /∈ HTable, and (b) either K ′ ∈ HTable, or ∃(K ′, x′1, y′3) ∈
EH2, and (c) R.H(K) = R.H(K ′);
• Idea of (BH-1): for each type II E-query (K,x1, y3), if K /∈ HTable, then R is “responsible” for

assigning a round-key to K. These new round-keys should not collide with the other round-keys.
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– (BH-2) ∃(K,x1, y3) ∈ EH2: (a) K /∈ HTable, and (b) x1 ∈ P1, and (c) P1(x1)⊕R.H(K) ∈ P2;

• Idea of (BH-2): for such a type II E-query (K,x1, y3), the “newly assigned” round-key R.H(K) should
not suddenly cause the chain of (K,x1, y3) extend to filling P2.

– (BH-3) ∃(K,x1, y3) ∈ EH2: (a) K /∈ HTable, and (b) y3 ∈ P−13 , and (c) P−13 (y3)⊕R.H(K) ∈ P−12 ;

• Idea of (BH-3): similar to (BH-2) by symmetry.

– (BH-4) ∃(K,x1, y3), (K
′, x′1, y

′
3) ∈ EH2, (K,x1, y3) ̸= (K ′, x′1, y

′
3): (a) K /∈ HTable, and (b) x1 ∈ P1,

x′1 ∈ P1, and (c) P1(x1)⊕R.H(K) = P1(x
′
1)⊕R.H(K ′);

• Idea of (BH-4): the two chains for two type II E-queries may simultaneously “extend”, when R is
“assigning new round-keys” to their corresponding main-keys. In such a process, these two chains should
not be lead to the same x2 value.

– (BH-5) ∃(K,x1, y3), (K
′, x′1, y

′
3) ∈ EH2, (K,x1, y3) ̸= (K ′, x′1, y

′
3): (a) K /∈ HTable, and (b) y3 ∈ P−13 ,

y′3 ∈ P−13 , and (c) P−13 (y3)⊕R.H(K) = P−13 (y′3)⊕R.H(K ′);

• Idea of (BH-5): similar to (BH-4) by symmetry.

Under the conditions R ∼= ST and R.H is good, we further define good R.P as follows.

Definition 6. With respect to R = (EH2, ST ), R.P is bad, if one of the following conditions is fulfilled:

– (BP1-1) ∃(K,x1, y3) ∈ EH2 : x1 /∈ P1 and R.P1(x1)⊕R.H(K) ∈ P2;

• Idea of (BP1-1): a type II E-query (K,x1, y3) may has x1 /∈ P1. In this case, the “newly assigned”
round-value R.P1(x1) should not suddenly cause (K,x1, y3) extend to filling P2.

– (BP1-2) ∃(K,x1, y3) ̸= (K ′, x′1, y
′
3) ∈ EH2 : x1 /∈ P1 and R.P1(x1)⊕R.H(K) = R.P1(x′1)⊕R.H(K ′);

• Idea of (BP1-2): similarly to (BH-4), two chains for two type II E-queries should not be lead to the
same x2 value, when R is “assigning new round-values y1” to their corresponding x1 values.

– (BP3-1) ∃(K,x1, y3) ∈ EH2 : y3 /∈ P−13 and R.P3−1(y3)⊕R.H(K) ∈ P−12 ;

– (BP3-2) ∃(K,x1, y3) ̸= (K ′, x′1, y
′
3) ∈ EH2 : y3 /∈ P−13 and R.P3−1(y3)⊕R.H(K) = R.P3−1(y′3)⊕R.H(K ′);

Given R = (EH2, ST ) ∈ R, we bound the probability of R being bad:

Lemma 22. For any R = (EH2, ST ) ∈ R, it holds

PrR[R is bad ∧R ∼= ST ] ≤ (q2 + qh) · q2 + 2q2 · |P2|+ 2q22
N

+
2q2 · |P2|+ 2q22
N − |P1| − q2

.

Proof. We first bound the probability of each condition corresponding to bad R.H.

Condition (BH-1). Since K /∈ HTable, conditioned on R ∼= ST , R.H(K) is an unknown random value, and
thus Pr[R.H(K) = R.H(K ′)] ≤ 1/N . The number of such pairs of keys (K,K ′) is at most |EH2| ·(|HQueries|+
|EH2|) ≤ q2(q2 + qh), thus Pr[BH-1] ≤ (q2+qh)·q2

N .

The Others. Following the same line we got Pr[BH-2] ≤ q2·|P2|
N , Pr[BH-3] ≤ q2·|P2|

N , Pr[BH-4] ≤ q22
N , and

Pr[BH-5] ≤ q22
N .

Assuming R.H good, we then bound the probability of each condition corresponding to bad R.P.

Condition (BP1-1), (BP3-1). If x1 /∈ P1, then conditioned on R ∼= ST , R.P1(x1) can be seen as randomly
picked from a pool of size at least N − |P1| − |EH2|, thus for any such type II E-query (K,x1, y3) we have

Pr[R.P1(x1) ⊕R.H(K) ∈ P2] ≤ |P2|/(N − |P1| − |EH2|), and in total Pr[BP1-1] ≤ q2·|P2|
N−|P1|−q2 . For (BP3-1 )

the argument is similar by symmetry, resulting in Pr[BP3-1] ≤ q2·|P2|
N−|P3|−q2 .
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Condition (BP1-2), (BP3-2). Consider any two such type II E-queries (K,x1, y3) and (K ′, x′1, y
′
3). We distin-

guish two cases as follows:

(i) x1 ̸= x′1: then similarly to (BP1-1 ), it holds Pr[R.P1(x1) = R.P1(x′1) ⊕R.H(K) ⊕R.H(K ′)] ≤ 1/(N −
|P1| − |EH2|).

(ii) x1 = x′1: then it necessarily be K ̸= K ′, and thus R.H(K) ̸= R.H(K ′) by ¬BH-1. Thus in this case, it must
be R.P1(x1)⊕R.H(K) ̸= R.P1(x′1)⊕R.H(K ′).

Thus for each pair of type II E-queries, the probability of (BP1-2) is at most 1/(N − |P1| − |EH2|). As there

are at most q22 such pairs of E-queries, we got Pr[BP1-2] ≤ q22
N−|P1|−q2 . For (BP3-1 ) the analysis is similar by

symmetry, obtaining Pr[BP3-1] ≤ q22
N−|P3|−q2 . The above sum up to the bound (note that the upper bounds of

|P1| and |P3| are equal). ⊓⊔

Finally, we are able to use the following lemma to bound the probability of EMR∗3(R) ∼= EH2 conditioned
on R ∼= ST . The core idea is to show that each such type II E-query would give rise to a new pair of input
and output of R.P2.

Lemma 23. PrR[EMR∗3(R) ∼= EH2 | R ∼= ST ] ≥ (1− Pr[R is bad]) · 1
Nq2

.

Proof. Let ST = (HQueries,Queries). Consider the (l+1)th type II E-query (Kl+1, xl+1
1 , yl+1

3 ). Conditioned
on R ∼= ST and R is good, we show that each (Kl+1, xl+1

1 , yl+1
3 ) can be associated with a unique pair (xl+1

2 , yl+1
2 )

such that xl+1
2 /∈ P2 and yl+1

2 /∈ P−12 , so that PrR[EMR∗3(R)(Kl+1, xl+1
1 ) → yl+1

3 ] = PrR[R.P2(xl+1
2 ) =

yl+1
2 ] ≥ 1

N . More clearly, for (Kl+1, xl+1
1 , yl+1

3 ), we let kl+1 = R.H(Kl+1), xl+1
2 = R.P1(xl+1

1 ) ⊕ kl+1, and

yl+1
2 = R.P3−1(yl+1

3 ) ⊕ kl+1. We note that type II E-queries can be grouped into the following seven groups
(somewhat similar to [CLS15]. See Fig. 13 for illustration.):

– Group1 = {(K,x1, y3) ∈ EH2 : K ∈ HTable and x1 ∈ P1}.
• If (Kl+1, xl+1

1 , yl+1
3 ) ∈ Group1 then kl+1 = HTable(Kl+1), xl+1

2 = P1(x
l+1
1 ) ⊕ kl+1, and yl+1

2 =
R.P3−1(yl+1

3 ) ⊕ kl+1. Meanwhile, xl+1
2 /∈ P2 by Proposition 27, while yl+1

2 /∈ P−12 since R.P is good
(more clearly, since BP3-1 does not occur);

– Group2 = {(K,x1, y3) ∈ EH2 : K ∈ HTable and y3 ∈ P−13 }.
• If (Kl+1, xl+1

1 , yl+1
3 ) ∈ Group2 then kl+1 = HTable(Kl+1), xl+1

2 = R.P1(xl+1
1 ) ⊕ kl+1, and yl+1

2 =
P−13 (yl+1

3 ) ⊕ kl+1. And yl+1
2 /∈ P−12 by Proposition 27, while xl+1

2 /∈ P2 follows from the goodness of
R.P (more clearly, ¬BP1-1 );

– Group3 = {(K,x1, y3) ∈ EH2 : K /∈ HTable and x1 ∈ P1 and y3 ∈ P−13 }.
• If (Kl+1, xl+1

1 , yl+1
3 ) ∈ Group3 then kl+1 = R.H(Kl+1), xl+1

2 = P1(x
l+1
1 )⊕kl+1, and yl+1

2 = P−13 (yl+1
3 )⊕

kl+1. Now xl+1
2 /∈ P2 and yl+1

2 /∈ P−12 follow from ¬BH-2 and ¬BH-3 respectively;
– Group4 = {(K,x1, y3) ∈ EH2 : K /∈ HTable and x1 ∈ P1 and y3 /∈ P−13 }.
• If (Kl+1, xl+1

1 , yl+1
3 ) ∈ Group4 then it holds kl+1 = R.H(Kl+1), xl+1

2 = P1(x
l+1
1 ) ⊕ kl+1, and yl+1

2 =
R.P3−1(yl+1

3 )⊕ kl+1. Now xl+1
2 /∈ P2 by ¬BH-2, and yl+1

2 /∈ P−12 by ¬BP3-1 ;
– Group5 = {(K,x1, y3) ∈ EH2 : K /∈ HTable and x1 /∈ P1 and y3 ∈ P−13 }.
• If (Kl+1, xl+1

1 , yl+1
3 ) ∈ Group5 then kl+1 = R.H(Kl+1), xl+1

2 = R.P1(xl+1
1 ) ⊕ kl+1, and yl+1

2 =
P−13 (yl+1

3 )⊕ kl+1. Now xl+1
2 /∈ P2 by ¬BP1-1, and yl+1

2 /∈ P−12 by ¬BH-3 ;
– Group6 = {(K,x1, y3) ∈ EH2 : K ∈ HTable and x1 /∈ P1 and y3 /∈ P−13 }.
• If (Kl+1, xl+1

1 , yl+1
3 ) ∈ Group6 then kl+1 = HTable(Kl+1), xl+1

2 = R.P1(xl+1
1 ) ⊕ kl+1, and yl+1

2 =
R.P3−1(yl+1

3 )⊕ kl+1. Now xl+1
2 /∈ P2 and yl+1

2 /∈ P−12 follow from ¬BP1-1 and ¬BP3-1 respectively.
– Group7 = {(K,x1, y3) ∈ EH2 : K /∈ HTable and x1 /∈ P1 and y3 /∈ P−13 }.
• If (Kl+1, xl+1

1 , yl+1
3 ) ∈ Group7 then kl+1 = R.H(Kl+1), xl+1

2 = R.P1(xl+1
1 ) ⊕ kl+1, and yl+1

2 =
R.P3−1(yl+1

3 )⊕ kl+1. Similarly to Group6, x
l+1
2 /∈ P2 and yl+1

2 /∈ P−12 follow from ¬BP1-1 and ¬BP3-1
respectively.

We then show that the associated (xl+1
2 , yl+1

2 ) would not collide with the associated (xj
2, y

j
2) for any type

II E-query (Kj , xj
1, y

j
3) with j < l + 1. For this we consider the following possibilities:

Case I: (Kl+1, xl+1
1 , yl+1

3 ) ∈ Group1. Depending on which group (Kj , xj
1, y

j
3) belongs to, we got seven possibil-

ities. However, the key points can be summarized as follows:

(i) If xj
1 /∈ P1, then xj

2 ̸= xl+1
2 by ¬BP1-2. If xj

1 ∈ P1, then if Kj /∈ HTable, then xj
2 ̸= xl+1

2 by ¬BH-4 ; if
xj
1 = xl+1

1 , then it must be Kj ̸= Kl+1, kj ̸= kl+1 by ¬BH-1, thus xj
2 ̸= xl+1

2 ; otherwise by Proposition 27;

(ii) On the other hand, in each case, yj2 ̸= yl+1
2 holds by ¬BP3-2.

70



xl+1
1Group1

xl+1
2

yl+1
3yl+1

1

xl+1
1Group2 yl+1

3yl+1
3

yl+1
2

xl+1
1Group3 yl+1
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Fig. 13. Groups of type II E-queries.

Case II: (Kl+1, xl+1
1 , yl+1

3 ) ∈ Group2. Depending on which features (Kj , xj
1, y

j
3) possesses, we have the following

discussion (symmetrically to Case I ):

(i) xj
2 ̸= xl+1

2 follows from ¬BP1-2 ;
(ii) If yj3 /∈ P−13 , then yj2 ̸= yl+1

2 by ¬BP3-2. Otherwise, if Kj /∈ HTable, then yj2 ̸= yl+1
2 by ¬BH-5 ; if yj3 = yl+1

3 ,

then it must be Kj ̸= Kl+1, thus yj2 ̸= yl+1
2 ; else yj2 ̸= yl+1

2 by Proposition 27;

Case III: (Kl+1, xl+1
1 , yl+1

3 ) ∈ Group3. Depending on which group (Kj , xj
1, y

j
3) belongs to, we got four possibil-

ities:

(i) (Kj , xj
1, y

j
3) ∈ Group6 ∪ Group7. Then we have xj

1 /∈ P1 and yj3 /∈ P−13 , and thus xj
2 ̸= xl+1

2 and yj2 ̸= yl+1
2

follow from ¬BP1-2 and ¬BP3-2 respectively;
(ii) (Kj , xj

1, y
j
3) ∈ Group5. Then xj

2 ̸= xl+1
2 follows from ¬BP1-2. On the other hand, if Kj ̸= Kl+1, then

yj2 ̸= yl+1
2 by ¬BH-5 ;28 otherwise, it necessarily holds yj3 ̸= yl+1

3 and thus yj2 ̸= yl+1
2 is guaranteed;

(iii) (Kj , xj
1, y

j
3) ∈ Group4. Similar to the previous case by symmetry, yj2 ̸= yl+1

2 follows from ¬BP3-2, while
xj
2 ̸= xl+1

2 follows from ¬BH-4 when Kj ̸= Kl+1 (and is ensured otherwise);

(iv) (Kj , xj
1, y

j
3) ∈ Group3. Then, if K

j ̸= Kl+1, then xj
2 ̸= xl+1

2 follows from ¬BH-4 while yj2 ̸= yl+1
2 by ¬BH-5 ;

otherwise, it has to be xj
1 ̸= xl+1

1 ⇒ xj
2 ̸= xl+1

2 and yj3 ̸= yl+1
3 ⇒ yj2 ̸= yl+1

2 ;

(v) (Kj , xj
1, y

j
3) ∈ Group1 ∪Group2. These subcases have been taken into account in the above analysis of Case

I and II.

Case IV: (Kl+1, xl+1
1 , yl+1

3 ) ∈ Group4. Depending on which group (Kj , xj
1, y

j
3) belongs to, we got three possi-

bilities:

(i) (Kj , xj
1, y

j
3) ∈ Group5 ∪Group6 ∪Group7. Then xj

1 /∈ P1 and xj
2 ̸= xl+1

2 by ¬BP1-2 while yl+1
2 /∈ P−13 and

thus yj2 ̸= yl+1
2 by ¬BP3-2 ;

(ii) (Kj , xj
1, y

j
3) ∈ Group4. Then yj2 ̸= yl+1

2 follows from ¬BP3-2. On the other hand, if Kj ̸= Kl+1, then

xj
2 ̸= xl+1

2 follows from ¬BH-4 ; otherwise we have xj
1 ̸= xl+1

1 and further xj
2 ̸= xl+1

2 ;

(iii) (Kj , xj
1, y

j
3) ∈ Group1 ∪Group2 ∪Group3. Already included in Case I-III.

28 If yj
3 = yl+1

3 then Kj ̸= Kl+1 ensures yj
2 ̸= yl+1

2 .
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Case V: (Kl+1, xl+1
1 , yl+1

3 ) ∈ Group5. Then we got three possibilities:

(i) (Kj , xj
1, y

j
3) ∈ Group6 ∪Group7. Then xj

2 ̸= xl+1
2 by ¬BP1-2, while yj2 ̸= yl+1

2 by ¬BP3-2 ;
(ii) (Kj , xj

1, y
j
3) ∈ Group5. Then xj

2 ̸= xl+1
2 follows from ¬BP1-2. On the other hand, if Kj ̸= Kl+1, then

yj2 ̸= yl+1
2 follows from ¬BH-5 ; otherwise, it has to be yj3 ̸= yl+1

3 and yj2 ̸= yl+1
2 is ensured;

(iii) (Kj , xj
1, y

j
3) ∈ Group1 ∪Group2 ∪Group3 ∪Group4. Already included in Case I-IV.

Case VI: (Kl+1, xl+1
1 , yl+1

3 ) ∈ Group6 ∪Group7. Then:

(i) If (Kj , xj
1, y

j
3) ∈ Group6 ∪Group7, then xj

2 ̸= xl+1
2 by ¬BP1-2 and yj2 ̸= yl+1

2 by ¬BP3-2 ;
(ii) The other cases have been included in Case I-V.

By the above, for each type II E-query (Kl+1, xl+1
1 , yl+1

3 ) it indeed holds PrR[EMR∗3(R)(Kl+1, xl+1
1 ) →

yl+1
3 ] = PrR[R.P2(xl+1

2 ) = yl+1
2 ] ≥ 1

N . Thus

PrR[EMR∗3(R) ∼= EH2 | R ∼= ST ]

≥Pr[R is good] ·
q2−1∏
l=0

Pr[EMR∗3(R)(Kl+1, xl+1
1 )→ yl+1

3 | (R ∼= ST ∧R is good)]

≥(1− Pr[R is bad]) · 1

Nq2

as claimed. ⊓⊔

Thus the ratio:

Lemma 24. For any R ∈ R, it holds

PrR[EMR∗3(R) ∼= EH2 ∧R ∼= ST ]

PrE,R[DG2(E,R) → R]
≥ 1− w2

N
− PrR[R is bad].

Proof. By Lemma 23 and the above discussions we have:

PrR[EMR∗3(R) ∼= EH2 ∧R ∼= ST ]

PrE,R[DG2(E,R) → R]
=

PrR[EMR∗3(R) ∼= EH2 | R ∼= ST ] · PrR[R ∼= ST ]

PrE,R[DG2(E,R) → R]

≥
(1− PrR[R is bad]) · 1

Nq2
·
(∏

i=1,2,3

∏ri−1
j=0

1
N−j

)
· 1
Nq1
· 1
Nh(∏

i=1,2,3

∏ri−1
j=0

1
N−j

)
· ( 1

N−q1−q2 )
q1+q2 · 1

Nh

(by Lemma 23)

≥(1− PrR[R is bad]) ·
(
N − w

N

)w

≥ (1− PrR[R is bad]) ·
(
1− w2

N

)
≥ 1− w2

N
− PrR[R is bad]

Thus the claim. ⊓⊔

The above already exhibited a sufficient condition for D giving the same output during the interactions with
G2 and G3.

Lemma 25. For any good G2-tuple (E,R) and R′, if the following three are simultaneously fulfilled,

– DG2(E,R) → R(= (EH2, ST ));
– R′ ∼= ST ;
– EMR∗3(R

′) ∼= EH2;

then the transcripts of queries and answers of D in the two executions DG2(E,R) and DG3(R
′) are the same, and

D gives the same output: DG2(E,R) = DG3(R
′).

Proof. We show the claim via an induction on D’s transcript of queries and answers. Assume that the transcripts
of D in the two executions are the same up to some point, and consider the next query. As D is deterministic,
D’s next queries in the two executions are the same. We prove that D obtains the same answer. For this we
consider the following possibilities:
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(i) the query is to H/Pi/Pi−1: then the answers are the same, since the answer obtained in DG2(E,R) equals
the value in ST , and R′ ∼= ST ;

(ii) the query is an E-query, and it does not fall into EH2. This means this query turns out type I when the
G2 execution ends. Then as type I E-queries are in completed chains, and the values of the corresponding
chain are in ST which are followed by R′, the answers obtained in DG2(E,R) and DG3(R

′) are the same;
(iii) the query is an E-query which falls into EH2. Then as we assumed EMR∗3(R

′) ∼= EH2, the answer obtained
in DG2(E,R) and DG3(R

′) are the same.

Therefore, the answers are the same, and the two transcripts of D turn out the same as the induction proceeds.
Since D is deterministic, D outputs the same in the two executions. ⊓⊔

Good G2 executions can be partitioned with respect to the sets generated by them: for any R ∈ R and any
two tuples (E,R) and (E′,R′), once DG2(E,R) → R and DG2(E

′,R′) → R, then DG2(E,R) = DG2(E
′,R′).

Lemma 26. PrE,R[DG2(E,R) = 1] =
∑

R∈R:∃(E∗,R∗) s.t. DG2(E∗,R∗)→R∧DG2(E∗,R∗)=1 PrE,R[DG2(E,R) → R].

Proof. We proceed to argue that for any R = (EH2, ST ) ∈ R, if there is a tuple (E∗,R∗) such thatDG2(E
∗,R∗) →

R, then for any tuple (E,R) such thatDG2(E,R) → R, it holdsDG2(E,R) = DG2(E
∗,R∗). For this we show that the

transcripts of queries and answers in the two executions DG2(E,R) and DG2(E
∗,R∗) are the same. The transcripts

encode all the randomness that influences the executions, thus they include queries to H, Pi, Pi−1, E, E−1, and
Check. We use an induction similar to Lemma 25—we assume the transcripts generated so far are the same
and consider the next query:

(i) the query is to H/Pi/Pi−1: then the answers are the same, since the answer equals the value in R, and both
DG2(E,R) → R and DG2(E

∗,R∗) → R;
(ii) the query is an E-query, and it does not fall into EH2. This means in both DG2(E,R) and DG2(E

∗,R∗), the
query is type I. Then as type I E-queries are in completed chains, and the values of the corresponding
chain are in ST , and both DG2(E,R) → (EH2, ST ) and DG2(E

∗,R∗) → (EH2, ST ), the answers obtained in
DG2(E,R) and DG2(E

∗,R∗) are the same;
(iii) the query is an E-query in EH2. Then the answers clearly equal, as both DG2(E,R) → (EH2, ST ) and

DG2(E
∗,R∗) → (EH2, ST );

(iv) the query is to Check: as the transcripts obtained so far are equal, the entries in EQueries in the two
executions are also the same, so that the answers to Check are the same.

Hence the transcripts obtained by D are also the same and thus DG2(E,R) = DG2(E
∗,R∗). These complete the

proof. ⊓⊔

With Lemma 26 in mind, let Θ1 be the subset of R such that for any tuple (E,R) such that DG2(E,R) →
R ∈ Θ1 it holds DG2(E,R) = 1. Then we have the following inequality.

Lemma 27. PrR[DG3(R) = 1] ≥
∑

R=(EH2,ST )∈Θ1
PrR[R ∼= ST ∧ EMR∗3(R) ∼= EH2].

Proof. We show that for any tuple R∗, there is at most one R = (EH2, ST ) ∈ R s.t. R∗ ∼= ST ∧ EMR∗3(R
∗) ∼=

EH2. Assume otherwise, i.e. ∃R′ = (EH′2, ST ′) ∈ R such that:

– R ̸= R′;
– R∗ ∼= ST ′;
– EMR∗3(R

∗) ∼= EH′2 (not necessarily EH′2 = EH2).

Assume that for two good tuples α = (E,R) and α′ = (E′,R′), it holds DG2(α) → R and DG2(α
′) → R′.

Note that in DG2(α), for each type I E-query, the values in the corresponding chain are in ST , which are
followed by R∗. Meanwhile, EMR∗3(R

∗) ∼= EH2. Thus for each E-query (K,x1, y3) appeared in DG2(α) it holds
y3 = EMR∗3(R

∗).E(K,x1). Similar claim holds for DG2(α
′). By these observations and an induction similar to

Lemma 26, we could show the transcripts (cf. Lemma 26) of the two executions DG2(α) and DG2(α
′) are the

same, so that the two set-tuples R and R′ should be the same, which is a contradiction. Assume the transcripts
obtained so far are the same and consider the next query:

(i) the query is to H/Pi/Pi−1: the answers are the same, as they equal the corresponding entries in ST and
ST ′ respectively, and R∗ ∼= ST ∧R∗ ∼= ST ′;
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(ii) the query is an encryption queryE(K,x1). Then as argued, both of the two answers equal EMR∗3(R
∗).E(K,x1)

and thus the same. Similarly for a decryption query E−1(K, y3);
(iii) the query is to Check: similarly to Lemma 26, the answers are the same.

The above establish that for any tuple R∗, there exists at most one R = (EH2, ST ) ∈ R s.t. R∗ ∼= ST and
EMR∗3(R

∗) ∼= EH2. After this, we have

PrR[DG3(R) = 1] ≥ PrR[DG3(R) = 1 ∧ ∃R = (EH2, ST ) ∈ R s.t. R ∼= ST ∧ EMR∗3(R
∗) ∼= EH2]

=
∑

R=(EH2,ST )∈Θ1

PrR[R ∼= ST ∧ EMR∗3(R
∗) ∼= EH2] (by Lemma 25)

as claimed. ⊓⊔
The above finally yields the following distinguishing bound.

Lemma 28. The advantage of D distinguishing G2 and G3 is at most

PrE,R[DG2(E,R) = 1]−PrR[DG3(R) = 1] ≤
2176q6h(qe + qp)

2 · q4p
N

+
1805q2e(qe + qp)

2 · q4p
N

+
2q4h + 10q2e + qe · qh

N
.

Proof. We have

PrE,R[DG2(E,R) = 1]− PrR[DG3(R) = 1]

≤PrE,R[(E,R) is not a good G2-tuple]︸ ︷︷ ︸
≤PrE,R[DG2(E,R) aborts]

+ PrE,R[(E,R) is a good G2-tuple ∧DG2(E,R) = 1]− PrE[D
G3(E) = 1]

≤PrE,R[DG2(E,R) aborts] +
∑
R∈Θ1

PrE,R[DG2(E,R) → R] (by Lemma 26)

−
∑
R∈Θ1

PrR[R ∼= ST ∧ EMR∗3(R) ∼= EH2] (by Lemma 27)

≤PrE,R[DG2(E,R) aborts] +
∑
R∈Θ1

(
w2

N
+ PrR[R is bad]

)
· PrE,R[DG2(E,R) → R] (by Lemma 24)

≤PrE,R[DG2(E,R) aborts] +
w2

N
+ PrR[R is bad]

Gathering the bounds given in Lemmas 18, 19, 22, and 17, and assuming 13(qe + qp) · q2p + qe ≪ N/2, we
obtain the following upper bound:

(1462 + 2144q6h) · (qe + qp)
2 · q4p + 2q2e + 2q4h

N
+

32q2h(qe + qp)
2 · q3p

N

+

(
(qe + qh) · qe + 18qe(qe + qp) · q2p + 2q2e

N
+

18qe(qe + qp) · q2p + 2q2e
N − 13(qe + qp) · q2p − qe

)

+
(qe + qp + 16(qe + qp) · q2p)2 (≤ q2e + 172(qe + qp)

2 · q4p)
N

≤
2176q6h(qe + qp)

2 · q4p
N

+
1805q2e(qe + qp)

2 · q4p
N

+
2q4h + 10q2e + qe · qh

N
.

as claimed. ⊓⊔

13 To EMR3: a Formal Proof

This section proves Theorem 1 based on Theorem 2. We first describe the simulator S̃E,R. S̃E,R runs S (in

Section 6), relaying S’s queries to R. On the other hand, each time S issues a query Eδ(K, z), S̃ finds the query
(K, k) ∈ HQueries and answers with k⊕Eδ(K, k⊕z). This design requires (K, k) ∈ HQueries before S issuing
such a query; according to the pseudocode in subsection 6.2, our simulator S indeed meets this constraint.

Clearly, the query and time complexities of S̃ are the same as S. We now argue for any distinguisher D̃
making at most qe, qh, and qp queries to the three oracles, Advindif

EMR3,E,S̃
(D̃) does not exceed the bound in

Theorem 2. To this end, we consider the following sequence of games:
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G̃1: this game takes (E,R) as the randomness source, and captures the interaction between D̃, S̃, and E. After

D̃ outputs, G̃1 outputs the same as D̃.

G̃2: this imagined game takes (E,R) as the randomness source, and captures the interaction between D̃, S̃, and

a “shelled” cipher ẼE,R. Upon each query Eδ(K, z), ẼE,R sets k ← R.H(K) and answers with k⊕Eδ(K, k⊕z).

As an imagined intermediate game, this design is not problematic. G̃2 also outputs the same as D̃. Clearly, for
any random tuple (E,R), it’s easy to find a corresponding tuple (E∗,R) such that D̃ and S̃ generate the same

transcript of queries and answers in G̃1(E,R) and G̃2(E
∗,R), thus Pr[G̃1 = 1] = Pr[G̃2 = 1].

G̃3: this imagined game takes (E,R) as the randomness source, and captures the interaction between an “illegal”

distinguisher Dil, the simulator SE,R, and the ideal cipher E. The distinguisher Dil runs D̃, and handles D̃’s
queries as follows:

– D̃’s P- and H-queries are simply relayed;

– for each E-query Eδ(K, z) from D̃, Dil “illegally” accesses the randomness source R to get k ← R.H(K)
and answers with k ⊕ Eδ(K, k ⊕ z).

By construction, for any (K, k) ∈ HQueries it always holds k = R.H(K) (even if S aborts). Thus the executions

of G̃2(E,R) and G̃3(E,R) are essentially the same, and Pr[G̃2 = 1] = Pr[G̃3 = 1]. On the other hand, note

that the total number of queries issued by Dil to S and E is the same as D̃.

G̃4: this imagined game takes R as the randomness source, and captures the interaction between the distin-
guisher Dil, the cipher EMR∗3, and the random primitives R. Since Dil issues the same number of queries as D̃,

by Theorem 2 we get |Pr[G̃4 = 1] = Pr[G̃3 = 1]| ≤ 2514q6h(qe+qp)
2·q4p

N +
1805q2e(qe+qp)

2·q4p
N +

2q4h+10q2e+qe·qh
N .

G̃5: this game takes R as the randomness source, and captures the interaction between the distinguisher D̃,
the cipher EMR3, and the random primitives R. Clearly Pr[G̃5 = 1] = Pr[G̃4 = 1]. Finally, it’s easy to see

Advindif
EMR3,E,S̃

(D̃) = |Pr[G̃5 = 1]− Pr[G̃1 = 1]|. Thus the claim.

Discussion 1: Towards Understanding Dil. The constructed distinguisher Dil seems quite odd. To increase
confidence, we present another proposal: consider a powerful “god” distinguisher Dg, which also runs D̃, relaying

D̃’s P- and H-queries. But for each E-query Eδ(K, z) from D̃:

– If D̃ has asked H(K)→ k, then Dg supplies k ⊕Eδ(K, k ⊕ z) to D̃;

– Otherwise, Dg can precisely predict if D̃ will query H(K) in future (since it’s “god”). If D̃ indeed will query

H(K) → k, then Dg supplies k ⊕ Eδ(K, k ⊕ z); else, Dg randomly samples a “dummy” round-key k∗ and

supplies k∗ ⊕ Eδ(K, k∗ ⊕ z). In the latter case, since D̃ will not verify if H(K) = k∗, D̃ will not be aware
this is a dummy round-key.

One can see the constructed illegal distinguisher Dil in fact behaves as the “god” Dg.

Discussion 2: An Alternative Approach. Given D̃ on EMR3, consider a distinguisher D, which runs D̃ and
handles D̃’s queries as follows:

– D̃’s P- and H-queries are simply relayed;

– for each E-query Eδ(K, z) from D̃, D queries the right oracle H→ k and answers with k ⊕Eδ(K, k ⊕ z).

Clearly D is a distinguisher on EMR∗3, and is sufficient to prove EMR3 indifferentiable. However, D may issue
qe + qh queries to H in total, and this would bring in an uncomfortable security loss. This explains why we rely
on the illegal distinguisher Dil and the quite complicated sequence of games.
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14 Eliminating the Random Oracle: to EMDP3

The second result of this work is formally presented as follows.

Theorem 3. Assuming that P is a tuple of four independent random permutations. Then for the 3-round
Even-Mansour

EMDP3(K,m) = k ⊕P3(k ⊕P2(k ⊕P1(k ⊕m)))

with k = P0(K)⊕K, there exists a simulator S such that AdvindifEMDP3,E,S ≤ O( q
12

N ) for any distinguisher D that

makes at most q queries (here E stands for ideal (n, n)-ciphers). Moreover, S makes at most O(q4) queries to
E, and runs in time O(q7).

We then brief how to modify EMR3’s simulator S for Theorem 3. However, to save pages, we did not try to
work out all the concrete constant factors of Theorem 3.

Modified Simulator SE,P. We let the simulator S’s randomness source P supply two additional interfaces
P0 and P0−1. The interface provided by S is exactly the same as P. The overall strategy of S is very close to
that of S—except for replacing the procedure H by P0 and P0−1. The modifications around P0 is described
as the following pseudocode.

Simulated System G′
1

Variables
// The same as G1 in subsection 6.2, thus omitted.

public procedure P0(x0)
if x0 ∈ P0 then return P0(x0)
y0 ← P.P0(x0)
K ← x0, k ← x0 ⊕ y0

if k ∈ Z then abort
if ∃k′, k′′, k′′′ ∈ Z : k ⊕ k′ ⊕ k′′ ⊕ k′′′ = 0 then abort
if ∃i, yi ∈ P−1

i , xi+1 ∈ Pi+1 : yi ⊕ xi+1 ∈ (k ⊕ 4Z) ∪ {k}
if or ∃i, xi, x

′
i ∈ Pi : xi ⊕ x′

i ∈ k ⊕ 5Z
if or ∃i, yi, y

′
i ∈ P−1

i : yi ⊕ y′
i ∈ k ⊕ 5Z then abort

Queries← Queries ∪ {(0, x0, y0)}
HQueries← HQueries ∪ {(K, k, qnum)}
qnum← qnum + 1
foreach (1, x1, y1), (3, x3, y3) ∈ Queries do

y0 ← x1 ⊕ k, x4 ← y3 ⊕ k
if Check(K, y0, x4) = true then

Take (K, y0, x4, edir, enum) from EQueries

Adapt(2, y1 ⊕ k, x3 ⊕ k, edir, enum)
// “Dummy” edir and enum in G′

1.

Assert(∀k′ ∈ Z\{k} : x2 ⊕ k′ /∈ P−1
1 and y2 ⊕ k′ /∈ P3)

UpdateCompleted(1,K, x1)
// Update AD2Edges: same as G1, omitted

return P0(x0)

public procedure P0−1(y0)

if y0 ∈ P−1
0 then return P−1

0 (y0)

x0 ← P.P0−1(y0)
K ← x0, k ← x0 ⊕ y0

if k ∈ Z then abort
if ∃k′, k′′, k′′′ ∈ Z : k ⊕ k′ ⊕ k′′ ⊕ k′′′ = 0 then abort
if ∃i, yi ∈ P−1

i , xi+1 ∈ Pi+1 : yi ⊕ xi+1 ∈ (k ⊕ 4Z) ∪ {k}
if or ∃i, xi, x

′
i ∈ Pi : xi ⊕ x′

i ∈ k ⊕ 5Z
if or ∃i, yi, y

′
i ∈ P−1

i : yi ⊕ y′
i ∈ k ⊕ 5Z then abort

Queries← Queries ∪ {(0, x0, y0)}
HQueries← HQueries ∪ {(K, k, qnum)}
qnum← qnum + 1
foreach (1, x1, y1), (3, x3, y3) ∈ Queries do

y0 ← x1 ⊕ k, x4 ← y3 ⊕ k
if Check(K, y0, x4) = true then

Take (K, y0, x4, edir, enum) from EQueries

Adapt(2, y1 ⊕ k, x3 ⊕ k, edir, enum)
// “Dummy” edir and enum in G′

1.

Assert(∀k′ ∈ Z\{k} : x2 ⊕ k′ /∈ P−1
1 and y2 ⊕ k′ /∈ P3)

UpdateCompleted(1, K, x1)
// Update AD2Edges: same as G1, omitted

return P−1
0 (y0)

Discussion. Since EMDP3 has the whitening keys, the mechanism for H-TPs can be replaced by abortion
checks, i.e. if a newly derived round-key k links pre-existing E-queries and 1-/3-queries, then G′2 aborts. E.g.
∃(K, y0, x4) and (1, x1, y1) with k = y0 ⊕ x1. However, to keep the bounds at the same order as Theorem 1, we
do not incorporate this change.

15 Implication on Multiple Known-Key Indifferentiability of 3-round
Even-Mansour

The main result in this section is formally stated as follows.

Theorem 4. Assuming that P is a tuple of three independent random permutations, and consider the (n, n)-
blockcipher SEM3 built from P. Then for any ζ, under ζ random known-keys, there exists a simulator SKK such
that

AdvindifSEM3,E,SKK
≤

2514ζ6(qe + qp)
2 · q4p

N
+

1787q2e(qe + qp)
2 · q4p

N
+

ζ4 + 7q2e
N

for any distinguisher D that makes at most qe and qp queries to the (fixed-key) encryption/decryption oracle
and the random permutations respectively. Moreover, SKK makes at most 26ζ · (qe + qp) · q2p queries to the ideal
(n, n)-blockcipher E and runs in time O((qe + qp)

2 · q4p + ζ(qe + qp)
2 · q4p).
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The simulator SKK is built from S of section 6, in an almost-black-box manner. At the beginning of the
interaction, SKK checks the set K of ζ known-keys k1, . . . , kζ . If there exist four distinct keys k, k′, k′′, k′′′ ∈ K
such that k ⊕ k′ ⊕ k′′ ⊕ k′′′ = 0, SKK aborts. Otherwise, it runs an instance of the simulator S for EMR3—but
it enforce the set HQueries of S to contain ζ tuples (k1, k1), . . . , (kζ , kζ). It then answers D’s queries with
S’s interfaces, and aborts whenever S aborts. It’s not hard to see that this experiment is equivalent to D first
issuing ζ H-queries and then issuing the others. Thus the claim.

However, to calculate the indifferentiability bound, we should replace qh in the bound of Theorem 1 by ζ,
and subtract the following terms from it:

(i) The term ζ2

N . The “original term”
q2h
N is introduced due to the bad event of two distinct main-keys being

mapped to the same round-key. However, the ζ known-keys are ensured to be distinct.

(ii) The terms
(qe+ζ)·qe+18qe(qe+qp)·q2p+2q2e

N . The “original version” of them are introduced by the possibility of
the random oracle being a bad one for G3, cf. Lemma 22. In the context of this section, these “bad events”
have no chance to occur.

Having the above subtracted, we got the bound
2514ζ6(qe+qp)

2·q4p
N +

1787q2e(qe+qp)
2·q4p

N +
ζ4+7q2e

N .

Discussion. For the term ζ4

N , we have the following discussion. Among the ζ known-keys, if there exist four
distinct keys k1, k2, k3, k4 such that k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0, then our simulator is not applicable. We stress that
this does not necessarily means SEM3 is not indifferentiable in this case; it only means we should turn to some
other simulator to completely solve this—indeed, we conjecture that SEM3 is indifferentiable under any set of
ζ known-keys, i.e. ζ-KK-indifferentiable [CS16]. On the other hand, if the known-keys are ensured not contain

such four keys, then (informally) SEM3 is (q,O(ζ · q3), O(ζ · q6), O
(

ζ6·q6+q8

N

)
)-indifferentiable. In particular,

when ζ ≤ 3, e.g. building compression functions from three permutations [MP12], our analysis ensures the
known-key security of SEM3.
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A On Eliminating Whitening-Keys

In this section, we exhibit an artificial “insane” simulator S∗ for EMR∗3, which is effective but cannot be used
by the argument in Section 13. Basically, S∗ is built from the successful simulator S, with some additional silly
actions which do not harm the effectiveness but hinder the argument in Section 13. To wit, S∗ runs S: upon
each query H(K), S∗ first internally samples a random pair (K ′, x′) and makes a “dummy” query E(K ′, x′)
to E, and then answers H(K) with S.H(K). It’s clear that: (i) this simulator works as well as S, except for
making qh additional dummy queries to E; (ii) w.h.p. K ′ /∈ S.HTable before S∗ queries E(K ′, x′), and thus the

approach in Section 13 cannot be used to build S̃ from S∗.

If we slightly tweak the strategy of S̃ by letting it query S∗.H(K ′) for k′ and answer with k′⊕E(K ′, k′⊕x′),
then S∗ would pushes another dummy query E(K ′′, x′′). In such a way, the interaction would run forever.
Thus the method in this section seems not capable of proving indifferentiability of EMR∗t is equivalent to
indifferentiability of EMRt.

29

In all, while we believe EMRt and EMR∗t have the same indifferentiability security (regardless of t’s value),
we did not find a general proof for this transformation.

29 Say assuming EMR∗
t is indifferentiable, but who can guarantee not all of the competent simulators are “insane”?
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B Keeping P2 Random is an Impossible Mission

The aforementioned distinguisher D works as follows:

(1) Chooses x1 ∈ {0, 1}n, 6 distinct main-keysK1,K2, . . . ,K6 ∈ {0, 1}κ, and queriesH(Ki)→ ki for i = 1, . . . , 6,
P1(x1)→ y1;

(2) Makes 6 queries to E and E−1: E(K1, x1) → y1, E
−1(K2, y1) → x′1, E(K3, x

′
1) → y′1, E

−1(K4, y
′
1) → x′′1 ,

E(K5, x
′′
1)→ y′′1 , and E−1(K6, y

′′
1 )→ x′′′1 ;

(3) Queries P1(x′′′1 )→ y′′′1 ;
(4) Completes the six chains corresponding to (K1, x1, y1), (K2, x

′
1, y1), (K3, x

′
1, y
′
1), (K4, x

′′
1 , y
′
1), (K5, x

′′
1 , y
′′
1 ),

and (K6, x
′′′
1 , y′′1 ).

Now the simulator has to adapt six chains. However, after it completes step (3), there are only five 1- and
3-queries that can be defined as adapted ones, i.e. (3, x3, y3), (1, x

′
1, y
′
1), (3, x

′
3, y
′
3), (1, x

′′
1 , y
′′
1 ), and (3, x′′3 , y

′′
3 ).

The simulator thus cannot settle all the six chains, and has to use P2 for adaptation.
Here we only give an instructive example. The distinguisher could indeed choose q main-keys and make q

queries to E and E−1. If the simulator wants to “go ahead” to keep P2 “random”, then it probably has to make
O(qq) queries to E/E−1. Keeping P2 random is thus not possible.
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