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Abstract. Leakage-resilience and misuse-resistance are two important properties for the deployment
of authenticated encryption schemes. They aim at mitigating the impact of implementation flaws due
to side-channel leakages and misused randomness. In this paper, we discuss their interactions and
incompatibilities.
For this purpose, we first show a generic composition mode of a MAC with an encryption scheme
that leads to a misuse-resistant authenticated encryption scheme, and also show that misuse-resistance
does not hold anymore in the presence of leakages, even when relying on leakage-resilient MACs and
encryption schemes.
Next, we argue that full misuse-resistance with leakage may be impossible to achieve with simple
primitives such as hash functions and block ciphers. As a result, we formalize a new security notion
of ciphertext integrity with misuse and leakage, which seems to be the best that can be achieved in a
symmetric cryptographic setting, and describe first efficient constructions satisfying it.

1 Introduction

State-of-the-art. At CCS 2015, Pereira et al. introduced Leakage-Resilient (LR) authentication and en-
cryption schemes, which they proved to be secure in a pragmatic model combining the minimal use of
an (expensive) leak-free component with much more efficient (less protected) implementations [35]. Such a
model nicely matches the reality of modern embedded devices, where physical security against side-channel
attacks is now a necessary condition for deployment, while cost constraints require to limit the overheads of
the countermeasures against such attacks. Concretely, the leak-free component will typically be implemented
by a block cipher (e.g., the AES Rijndael) protected with a combination of hardware and algorithmic tech-
niques, e.g., noise addition [25], masking [40] and shuffling [48]. The latter ones usually increase the “code
size × cycle count” metric (for software implementations) or the “throughput / area” metric (for hardware
ones) by factors ranging from hundreds to thousands, hence motivating their minimal use.1 In practice,
this good tradeoff between security and performance is achieved by requiring only a single execution of the
leak-free component, independently of the length of the message to be encrypted or authenticated. For long
messages, the majority of the computational work can then be performed by weakly protected block-cipher
implementations.

Besides, the recent work in standardization bodies and research also indicates a strong interest for com-
bined primitives such as Authenticated Encryption (AE), introduced by Bellare and Namprempre as CPA-
secure encryption with ciphertext integrity [7] (similar definitions have been proposed by Katz and Yung
in [22]), and which typically aims to prevent flaws in the interaction between secret-key encryption and
secret-key authentication, as exhibited, e.g., in [2,12,34]. In this context, a desirable security notion is ran-
domness Misuse-Resistance (MR), as introduced by Rogaway and Shrimpton [43], which guarantees that
the encryption scheme only provides minimum advantage to the adversary in case the nonce or IV (which
is needed for semantic security) is weak or even controlled by the adversary for this purpose). Informally,
the only thing an adversary will be able to detect is whether the same message is encrypted with the same
nonce/IV twice. So, to some extent, misuse-resistance can also be viewed as an important property to prevent
implementation flaws.

Eventually, we note that leakage-resilience also becomes a desirable feature for implementation in high(er)-
end devices, as suggested by recent works on timing attacks against OpenSSL [1,20], or power and electro-
magnetic analyses of powerful ARM cores running at high frequencies [4,24].

1 See Table 4 in [35] for an illustration of these overheads.



Our contributions. Based on this state-of-the-art, it appears as an important challenge to design (jointly)
leakage-resilient and misuse-resistant encryption schemes. Our results in this direction are in six parts.

First, we show how to generically construct a misuse-resistant authenticated encryption scheme by com-
bining an IV-based Message Authentication Code and an IV-based encryption scheme [32]. The resulting
“Double IV” (DIV) composition differs from the SIV composition due to [42,43] (and generalized in [32,33])
since it encrypts the IV. While this may seem useless in front of an adversary controlling the IV, we argue
that it leads to interesting opportunities to improve security in the presence of leakages (see Section 8 for the
details). Since these properties are ensured by the CCS 2015 MAC and encryption schemes, such building
blocks can be used to design a misuse-resistant authenticated encryption scheme (without leakages), next
denoted as PSV-AE.

Second, we show that as soon as a leakage oracle is added to the adversary’s capabilities, the misuse-
resistance of PSV-AE falls down. More precisely, we show that there is a realistic standard Differential Power
Analysis (DPA) attack [26] targeting the ephemeral key(s) of PSV-AE which, with just a few queries, breaks
the ciphertext integrity property required for misuse resistant AE.2 The attack essentially exploits the fact
that the leakage-resilience of PSV-AE heavily relies on the randomness of its IVs, which can be forced to
constant thanks to misuse.

Third, we introduce a new construction for authenticated encryption, that we denote as the DTE scheme
(for Digest, Tag and Encrypt), which follows the blueprint of the DIV composition but allows preventing this
DPA forgery attack. We show that the DTE scheme remains misuse-resistant without leakage and actually
guarantees a new notion of security called Ciphertext Integrity with Misuse and Leakage (CIML), which is
a natural extension of the ciphertext integrity notion given in [7].

Fourth, we argue that full misuse-resistance with leakage may be impossible to achieve from standard
symmetric cryptographic primitives only. We illustrate our argument by putting forward a (more theoretical)
Simple Power Analysis (SPA) attack against the DTE scheme, which also targets an ephemeral key forced to
a constant thanks to misuse, and allows distinguishing actual ciphertexts from random ones.3 Interestingly,
this distinguishing attack can be viewed as an amplification of the impossibility result for leakage-resilient
semantic security with negligible advantage discussed in [35], which is another illustration of the separation
between unpredictability-based and indistinguishability-based security in the presence of leakages put for-
ward in [31]. As a result, we identify CIML security as the most realistic integrity target for authenticated
encryption schemes used with adversarially-controlled randomness and leakages.

Fifth, and based on our conclusion that full misuse-resistance and leakage-resilience appears to be im-
possible to reach (again, based on standard symmetric cryptographic primitives), we investigate the gains
that can be obtained if we also drop the requirement of misuse-resistance in the absence of leakages and
only focus on CIML security. As a result, we introduce another authenticated encryption scheme, that we
denote as the DCE scheme (for Digest, Commit and Encrypt) which reduces the number of leak-free block
cipher executions from two (in DTE) to one, at the cost of moving to the random oracle model for proving
CIML security instead of relying on standard assumptions. We insist that the introduction of such an ide-
alized assumption in the analysis of leakage-resilient constructions is questionable (since the random oracle
abstraction excludes leakages). So this last proposal should be viewed as provocative and is mainly aimed at
stimulating discussions and cryptanalysis.

Eventually, we show the leakage-resilient CPA security of the DTE and DCE constructions in a model
borrowed from [35] and refined to capture hash functions leakages. Here, leakage-resilient CPA security
means that one can reduce the security of many iterations of a primitive to the security of one iteration,
without claims on the exact security of this iteration (which depends on the implementations) – see [35] and
Section 8 for the details. It is next denoted as LMCPA (for multiple messages and blocks leakage-resilient
CPA security).

These results are summarized in Table 1.

We conclude the paper by discussing the remaining challenge of protecting an authenticated encryption
scheme where the leakage of the decryption algorithm can also be exploited by the adversary (which was left

2 Informally, standard DPAs are side-channel attacks taking advantage of the leakage of multiple (different) inputs.
3 Informally, SPAs are side-channel attacks taking advantage of the leakage of a single input, possibly measured

multiple times to reduce the measurement noise, e.g., by exploiting powerful (yet less practical) algebraic/analytical
techniques [19,47].
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Table 1. Summary of our constructions. LMCPA = leakage-resilient chosen plaintext attack security for
multiple messages and blocks; (��LR) MR = misuse-resistance in the absence of leakage; CIML = ciphertext
integrity with misuse and leakage; LF executions counts the number of executions of the leak free component
that are required for an encryption; the models are either the standard one or the random oracle model.

LMCPA (��LR) MR CIML LF executions
PSV-AE std. std. 7 2
DTE std. std. std. 2
DCE std. 7 RO 1

out of the analysis in [35], motivated by applications such as smart cards where one low-cost prover has to
be protected against side-channel attacks).

Paper structure and leakage models. Technically, our analyzes will be based on two different settings. For
proving the CIML property, we use a (new) “unbounded leakage model” (given in Section 5.3, Definition 11),
which formalizes the interesting fact that our primitives remain secure against forgery attacks even when all
their ephemeral secrets are leaked in full. Of course it remains that long-term secrets manipulated by the
(minimally used) leak-free component must be safe.

For discussing CPA security, the situation is more tricky since we face the general challenge of finding
realistic ways to limit the adversary’s leakage, a problem for which no perfect solution exist so far [45],
and we therefore argue in two steps. First, and as general in leakage-resilient cryptography, we consider
continuous leakages.4 Next, and for limiting their informativeness per iteration, we rely on the simulatable
leakage assumption introduced in [46]. While we are aware of the ongoing discussion about how to implement
block ciphers ensuring this assumption [23], we borrow the motivation from the CCS 2015 constructions that
it remains the most realistic solution to reason about leakage we currently have (and in particular, the only
one that can be challenged by hardware engineers) [35]. We also refer to the more formal analysis of Fuller
and Hamlin at ICITS 2015, who showed that this assumption is among the least demanding among the ones
available in the literature [16].

Editorially, we therefore chose to present our results in each leakage model separately, leading to three
main parts in the paper. First we discuss the generic DIV composition without leakage and its limitations in
front of an adversary performing concrete side-channel attacks in Sections 3 and 4. Second we introduce our
DTE and DCE constructions together with the new CIML security notion, and argue why stronger guarantees
seem hard to reach with block ciphers and hash functions, in Sections 5, 6 and 7. This second part, is based
on the unbounded leakage model. Third, we discuss CPA security under simulatable leakages in Section 8.

Related works. Two recent (independent) reports proposed alternative constructions of leakage-resilient
authenticated encryption schemes. The first one, by Dobraunig et al. [9], combines a concrete instance of
fresh re-keying (borrowed from [28,10]), with a sponge-based construction [8]. Due to the nature of these
components, their security analysis is (so far) more heuristic. Yet, it comes with the nice and intuitive
observation that one can naturally capture certain classes of leakage functions by reducing the capacity of
the sponge.

The second one, by Barwell et al. [5], shares some goals with ours (as it also aims to combine both misuse-
resistance and leakage-resilience) with a few significant differences though. First, and conceptually, the work
in [5] is more focused on composition results, while we pay a particular attention to efficient instances of
authenticated encryption schemes. As a result of this choice, a second difference is that their instantiations
require all the building blocks to be well protected against side-channel analysis, while we aim to minimize
the use of a leak-free component. Concretely, this difference is reflected by different encryption modes: the
instances in [5] are based on the standard Cipher Feed Back (CFB) mode, while we leverage the literature
on leakage-resilient stream ciphers in order to reduce the use of our leak-free component [14,37,50,15,49,46].
Third, and more technically, we discuss what can be achieved by symmetric cryptographic building blocks,
while the work by Barwell et al. is based on asymmetric cryptography. So eventually, these two pieces

4 Since if a system is used for a sufficiently long period of time, the amount of leakage observed by an attacker may
exceed any a priori determined bound.
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of work are complementary. In particular, our motivation for considering a leak-free building block starts
from the observation in [35] that leakage-resilience based on re-keying is most effective when specialized to
stateful primitives (such as stream ciphers). By contrast, leakage-resilient stateless primitives (such as PRFs
or PRPs [11,15]), which are needed for initializing an authentication or encryption mechanism, generally
lead to lower concrete security against side-channel analysis [6]. So all our constructions try to minimize the
use of such stateless primitives, that we formalized as leak-free components, and for which we concretely rely
on heuristic protections such as, e.g., noise addition, masking or shuffling. In this respect, the pairing-based
leakage-resilient PRF proposed in [5] could be one more option to instantiate our leak-free component (see
the discussion in conclusions).

2 Background

We use calligraphic fonts for sets and denote as a (q, t)-bounded algorithm a probabilistic algorithm that
can make at most q queries to the oracles he is granted access to and can perform computation bounded by
running time t.

2.1 Definitions

We first need the following definition of collision-resistant hash function.

Definition 1. A (0, t, εcr)-collision resistant hash function H : S×M→ B is a function that is such that, for
every (0, t)-bounded adversary A, the probability that A(s) outputs a pair of distinct messages (m0,m1) ∈M2

such that Hs(m0) = Hs(m1) is bounded by εcr, where s← S is selected uniformly at random.

We next need the following definition of range-oriented preimage resistance.

Definition 2. A (1, t, εpr)-range-oriented preimage resistant hash function H : S ×M → B is a function
that is such that, for every (1, t)-bounded adversary A, the probability that A(s, y) outputs a message m ∈M
such that Hs(m) = y is bounded by εpr, where s← S, y ← B are selected uniformly at random.

Note that the usual notion of preimage resistance samples a random m0 ←M over the domain of Hs and
then sets y = Hs(m0). Definition 2 uniformly samples y ← B over the range of Hs, which was introduced
in [3]. Here, A is (1, t)-bounded to hightlight that A receives one target y.

In the following, we assume that the key s is not private, and refer to the hash function simply as H for
simplicity, the key s being implicit.

We also need the following definition of pseudorandom function.

Definition 3. A function F : K×B → T is a (q, t, εF)-pseudorandom function (PRF) if for all (q, t)-bounded
adversaries A provided with oracle access to the function, the advantage∣∣∣ Pr

[
AFk(.) ⇒ 1

]
− Pr

[
Af(.) ⇒ 1

] ∣∣∣
is upper-bounded by εF, where k and f are chosen uniformly at random from their domains, namely K and
the set of functions matching the signature of F.

In order to capture authenticity, we additionally introduce the notion of IV-based MAC. We use this variant
of the standard definition of MAC because it actually corresponds to the construction of leakage-resilient
MAC in [35]. We will naturally say that ivM = (K,Mac,Vrfy) is an IV-based MAC if there is a probabilistic
algorithm MAC : K×M→ T which on inputs k ∈ K and m ∈M picks a random IV ∈ IV and outputs IV
and τ ← Mack(IV,m).

Definition 4. An IV-based MAC is a tuple ivM = (K,Mac,Vrfy) such that:
– Mac : K × IV ×M→ T takes a key, an IV, and a message and outputs a tag.
– Vrfy : K×IV ×M×T → {>∪⊥} and outputs > only if τ is a valid tag for IV, message m and key k.

More precisely, ∀k ∈ K, ∀IV ∈ IV, ∀m ∈M: Vrfyk(IV,m,Mack(IV,m)) = >.
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While the traditional property required from MACs is unforgeability, our constructions will rely on a stronger
property of the Mac function. Namely, we will require Mac to be a pseudorandom function for any (potentially
repeated) adversarially chosen IV.

Definition 5. ivM is (q, t, εcip) chosen-IV pseudorandom if for all (q, t)-bounded adversary A, the cip ad-
vantage

Advcip
ivM,A :=

∣∣∣Pr
[
AO

cip
real ⇒ 1

]
− Pr

[
AO

cip
rand ⇒ 1

] ∣∣∣
is upper-bounded by εcip. Here, Ocip

real is an oracle initialized on k ← K which on input (IV,m) outputs

τ ← Mack(IV,m), and where Ocip
rand is an oracle which on new input (IV,m) outputs a random τ ← T and

on re-used input outputs the corresponding previous outcome.

Note that this security property of ivM does not introduce a significantly new object. If Mac′k(m1‖m2) is
a (usual) pseudorandom MAC with message space M2, then Mack(IV,m) := Mac′k(IV ‖m) easily leads
to a chosen-IV pseudorandom IV-based MAC. Besides, this property is directly fulfilled by the CCS 2015
leakage-resilient MAC.

Besides, our authenticated encryption schemes will be based on IV-based encryption schemes, which we
define following Rogaway and Shrimpton [42].

Definition 6. An IV-based encryption scheme is a tuple ivE = (K,Enc,Dec) such that:
– Enc : K × IV ×M→ C maps a key selected from K, an IV selected from IV and a message from M to

a ciphertext from C.
– Dec : K × IV × C →M provides the decryption of a pair containing an IV and a ciphertext.

We will use ENC : K ×M → IV × C for the probabilistic function that picks a uniformly random IV and
returns (IV,Enc(k, IV,m))← ENCk(m).

To capture message secrecy, we use the security definition of Namprempre et al. [32] and consider a
distinguishing game in which the adversary tries to determine whether he is facing an encryption oracle or
a random function.

Definition 7. An IV-based encryption scheme ivE = (K,Enc,Dec) is (q, t, εIV-sec)-IV-sec secure if for any
k ← K and for every (q, t)-adversary A, the advantage

AdvIV-sec
ivE,A :=

∣∣∣ Pr
[
AENCk(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

] ∣∣∣
is upper-bounded by εIV-sec, where $(m) picks a random IV ← IV and outputs (IV, σ), where σ is a random
bit string of length |Enck(IV,m)|.

Resistance against misuse then captures the security in front of an adversary controlling the generation of the
randomness used for encryption. In the case of authenticated encryption, the adversary is also granted access
to a decryption oracle. We consider a definition of misuse-resistant authenticated encryption equivalent to
the one appearing in [42].

Definition 8. An authenticated encryption scheme is a tuple AE = (K,Enc,Dec) such that:
– Enc : K×R×M→ C maps a key selected from K, randomness selected from R and a message from M

to a ciphertext in C.
– Dec : K × C →M∪ {⊥} provides the decryption of a ciphertext, and can return the special symbol ⊥ if

decryption fails.

The associated probabilistic algorithm first picks a random coin r ∈ R and returns c = Enck(r,m) :=
Enc(k, r,m). We stress that Deck only needs c to recover m, which is the main difference between our
definition and previous IV-based schemes for which an IV additionally needs to be provided. By contrast, in
our case, the encrypted randomness is part of the ciphertext.
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Definition 9. An authenticated encryption scheme AE = (K,Enc,Dec) offers (q, t, ε) misuse-resistance if,
for every (q, t)-bounded adversary A, the advantage

Advmr
AE,A :=

∣∣∣ Pr
[
AEnck(·,·),Deck(·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·) ⇒ 1

] ∣∣∣
is upper-bounded by ε, where $(r,m) outputs c selected as a random bit string of length Enck(r,m) and the
oracle ⊥(c) outputs ⊥ except if c was output by the $(·, ·) oracle earlier, in which case it returns the associated
m.

As mentioned in introduction, this slight variation of the definition from [42] (i.e., the fact that we encrypt
the randomness) is motivated by our improved leakage-resilience goal.

Note that our encryption algorithms are formally defined as deterministic functions to support definitions
of misuse, but they are normally used in a probabilistic way for CPA security. We remind this throughout
the paper by explicitly including the IV or randomness in the arguments when referring to the probabilistic
variant.

Note also that for conciseness we ignore the specific treatment of associated data in our constructions,
which is orthogonal to the discussions on misuse-resistance and leakage-resistance that motivate our results
and could be carried out using standard techniques (see [36] for a recent example).

Eventually, we provide explicit advantages for all the constructions in the paper. Whenever instantiating
our building blocks, we will consider K = T = R = B = IV = {0, 1}n using n as a security parameter, and
M = {0, 1}n`, (i.e., a message is made of on ` blocks of n bits) so that the advantages are negligible in n.

2.2 Building blocks

Our starting points are the block-cipher based leakage-resilient MAC and encryption schemes from CCS
2015. In the next sections, we will explore their composition into an authenticated encryption scheme, point
out limitations in this composition, and propose improved solutions.

The CCS 2015 leakage-resilient MAC is represented in Figure 1. For readability, we use the color code
red for long-term secrets, orange for ephemeral secrets and green for publicly released values. It is based on
two block-ciphers F and F∗, both treated as PRF’s, but with the distinction that F is assumed to be cheap
and efficiently implemented but leaking, while F∗ is assumed to be an expensive and leak-free component.
In other words, formally F∗ is just a standard PRF without leakage while F is a leaking PRF (as in the CCS
2015 model).

CCS 2015 leakage-resilient MAC (PSV-MAC)

Mack(IV,m) where m = m1‖ · · · ‖m`

– k0 ← F∗k(IV )
– ki ← Fki−1(mi), ∀i ∈ [1, `]
– return τ ← k`

Vrfyk(IV,m, τ) proceeds in the natural way.

Fig. 1. PSV-MAC leakage-resilient MAC [35].

The CCS 2015 leakage-resilient encryption scheme in Figure 2 is based on the same components as
the previous leakage-resilient MAC.
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CCS 2015 leakage-resilient encryption (PSV-ENC)

Enck(IV,m), where m = m1‖ · · · ‖m`

– k0 ← F∗k(IV )
– ∀i ∈ [1, `] : ki ← Fki−1(pA), yi ← Fki−1(pB),
ci ← yi ⊕mi, where pA, pB are public constants

– return C = c1||c2|| · · · ||c`
Deck(IV, C) proceeds in the natural way

Fig. 2. PSV-ENC leakage-resilient encryption [35].

3 Generic misuse-resistance

We now show how an IV-based MAC can be composed with an IV-based encryption scheme to get an
authenticated encryption scheme. This composition is named DIV referring to Double-IV. Note that as
mentioned in introduction, the motivation for this composition will only appear in Section 8, where we
explain why encrypting the IV is expected to bring stronger security (compared to SIV) for confidentiality
in the presence of leakages. Besides, encrypting the IV will also be instrumental in designing CIML-secure
schemes (such as DTE and DCE) in Sections 5 and 7.

3.1 The DIV Composition

Let ivM = (K,Mac,Vrfy) be an IV-based MAC with IV-space IV, message space M and tag space T , and
let ivE = (K,Enc,Dec) be an IV-based encryption scheme with message space IV × M, IV-space T and
ciphertext space C. Then, AEDIV = (K2,DIV.Enc,DIV.Dec) is an authenticated encryption resulting from the
DIV composition if:
– (kM , kE) is the key selected from K2

– DIV.EnckM ,kE
(IV,m), given IV ∈ IV and m ∈M, returns τ ← MackM

(IV,m) and c← EnckE
(τ, (IV,m)).

– DIV.DeckM ,kE
(τ, c) computes (IV,m) ← DeckE

(τ, c) and returns m if
VrfykM

(IV,m, τ) succeeds. The error symbol ⊥ is returned otherwise.
We have RDIV = IV, MDIV = M, CDIV = T × C and the correctness of AEDIV follows from the correctness
of ivM and ivE in their respective sense. We will show that the authenticated encryption AEDIV is misuse-
resistant as long as (1) ivM is chosen-IV pseudorandom (2) ivE is IV-sec-secure.

Note that we saw in Section 2.1 that chosen-IV pseudorandom IV-based MAC derives easily from usual
pseudorandom MAC. In fact, this security notion is unavoidable for our purpose: if the authenticated en-
cryption AEDIV is misuse-resistant then the underlying ivM must be chosen-IV pseudorandom as well (which
directly follows from the definitions).

Before moving to the security analysis of the DIV composition, we introduce a strong flavor of ciphertext
integrity which simplifies the presentation of the proof.
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3.2 Strong Authentication

Namprempre et al. introduced a nonce-based variant of ciphertext integrity [33, Appendix A], called authen-
ticity (Auth), to ease their security analysis. In the same spirit, we introduce an even stronger notion: strong
authenticity (SA). While Auth lets A choose non-repeating nonces in the INT-CTXT experiment, SA lets A
completely free in its choice of random coins. It can be viewed as a misuse-resistant variation of ciphertext
integrity.

Definition 10. Let AE = (K,Enc,Dec) be an authenticated encryption scheme. Then, AE satisfies the notion
of (q, t, εsa)-strong authenticity if, for each (q, t)-bounded adversary A, the sa advantage

Advsa
AE,A :=

∣∣∣Pr
[
AO

Enc
real ,O

Dec
real ⇒ 1

]
− Pr

[
AO

Enc
real ,O

Dec
fake ⇒ 1

] ∣∣∣
is upper-bounded by εsa, where OEnc

real is an oracle which on input a coin r ∈ R and a message m ∈M outputs
a ciphertext c← Enck(r,m), ODec

real is an oracle which on input c ∈ C outputs Deck(c), and ODec
fake is an oracle

which on input c ∈ C outputs ⊥ except if c is an output of OEnc
real on a past query (r,m), in which case it

returns the corresponding m ∈M.

Clearly, a misuse-resistant authenticated encryption scheme satisfies this indistinguishability-based notion.
The next section shows that a combination of weaker primitives is in fact enough to get misuse-resistant AE.
So the SA notion is only useful as an intermediate step which appears in the hybrid argument of Section 3.3
through the following result.

Lemma 1. Let AE†DIV = (K2,DIV.Enc†,DIV.Dec†) be the scheme obtained from AEDIV by replacing the Mac
algorithm by a truly random function f : IV ×M→ T . Namely, DIV.Enc†kM ,kE

(IV,m) outputs τ ← f(IV,m)

and c ← EnckE
(τ, (IV,m)) using ivE (and DIV.Dec†kM ,kE

also tests whether τ = f(IV,m) holds). Then, for
any (q,∞)-bounded adversary A, Advsa

AE†DIV,A
(n) ≤ q/|T |.

The proof of Lemma 1 is given in Appendix B.1.

3.3 Security Analysis

Our security proof follows standard hybrid arguments and extends those of [33] from nonce-based security
to misuse-resistance. We do not consider any leakage-resilient security so far.

Theorem 1. Let ivM be a chosen-IV pseudorandom IV-based MAC and let ivE be a secure IV-based encryp-
tion scheme. Then AEDIV is a misuse-resistant authenticated encryption scheme. More precisely, let A be a
(q, t)-bounded adversary against AEDIV, then we build a (q, t1)-bounded adversary B1(A) against ivM and a
(q, t2)-bounded adversary B2(A) against ivE such that Advmr

AEDIV,A is upper-bounded by

Advcip
ivM,B1(A) + Advsa

AE†DIV,A
+ AdvIV-sec

ivE,B2(A),

where AE†DIV is the scheme described in Lemma 1. Moreover, the running times satisfy t1 ≤ t + q · te and
t2 ≤ t+ q · t′, where te is the maximum time needed to perform encryption or decryption in ivE and t′ is the
time to look for an entry in a table of size at most q.

The proof of Theorem 1 is given in Appendix B.2.

4 The PSV-AE authenticated encryption

In this section, we apply the DIV composition to PSV-MAC (Figure 1) and PSV-ENC (Figure 2) to get
PSV-AE. Theorem 1 directly implies that PSV-AE is misuse-resistant without leakage. We then illustrate
the limitations of this combination by trying to improve PSV-AE in two ways: first we look at its single key
variant, next we try look at its misuse-resistance with leakage. However, none of these attempts succeeds
and we exhibit attacks in both cases, which therefore motivates our new constructions in the next sections.
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4.1 Specification

We instantiate PSV-MAC with ` blocks and PSV-ENC with ` + 1 blocks to get PSV-AE with ` blocks by
applying the DIV composition. We split PSV-AE into two parts: the first part generates an authenticated
ephemeral key k0, as shown in Figure 3.

Fig. 3. PSV-AE leakage-resilient AE (part I).

Given k0, the second part generates, using the public constant pA and pB , a pseudorandom vector (y0, y1, . . . , y`)
of `+ 1 blocks in order to XOR (r,m1, . . . ,m`) with it, as shown in Figure 4. The full specification is given
in the PSV-AE box.

Fig. 4. PSV-AE leakage-resilient AE (part II).

4.2 Misuse-resistance without leakage

The security of PSV-AE is stated in the next theorem.

Theorem 2. Let assume that the functions F∗ and F are pseudorandom, then PSV-AE is a misuse-resistant
authenticated encryption scheme.

It is already established that PSV-ENC is a chosen-IV pseudorandom IV-based MAC and PSV-ENC is a
secure IV-based encryption if the underlying functions F are taken within a PRF familly. Therefore, the
result follows directly from Theorem 1. Note that this result is qualitative and proven for the authenticated
encryption of fixed-length messages. We ignored the treatment of quantitative bounds and variable-length
messages because the following sections will anyway show that PSV-AE is not a good candidate for misuse-
resistance with leakage. Quantitative bounds will be given for our improved constructions, for which variable-
length security is directly obtained by the use of a hash function.
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PSV-AE: PSV-ENC ◦DIV PSV-MAC

Enck(m):
– Parse m = (m1, . . . ,m`)

– Pick r
$← {0, 1}n

– k′0 ← F∗kM
(r)

– k′i ← Fk′i−1
(mi) ∀i = 1, . . . , `

– τ ← k′l
– k0 ← F∗kE

(τ)
– c0 ← Fk0(pB)⊕ r // yi := Fki(pB)
– ki ← Fki−1(pA), ci ← Fki(pB)⊕mi ∀i = 1, . . . , `
– return C ← (τ, c0, c1, c2, . . . , cl)

Deck(C):
– Parse C = (τ, c0, c1, c2, . . . , cl)
– k0 ← F∗kE

(τ)
– r ← Fk0(pB)⊕ c0
– ki ← Fki−1(pA), mi ← Fki(pB)⊕ ci ∀i = 1, . . . , `
– k′0 ← F∗kM

(r)
– k′i ← Fk′i−1

(mi) ∀i = 1, . . . , `

– if k′l = τ return (m1, ...,ml), else return ⊥.

4.3 Insecurity of single-key variant

One natural improvement of the PSV-AE would be to use a single long-term key k, i.e. kM = kE , for its
two leak-free components. We show here that misuse-resistance falls down in this case due to the following
attack (when ` = 2). (1) The adversary A requests an encryption on (r,m1,m2), where r is any chosen
value of {0, 1}n. A receives back (τ, c0, c1, c2) (2) A requests a second encryption on (τ, pA, pB) and gets
(τ ′, c′0, c

′
1, c
′
2). These queries allow A to distinguish the evaluation of the real encryption scheme from the

function which outputs random elements. Indeed, A simply has to test whether c1 ⊕ τ ′ = m1 holds: if A is
facing the real encryption, this is always true, and if A receives random answer, it fails with overwhelming
probability. Misuse-resistance no more holds.

4.4 Misuse with leakage

We now consider the case where the adversary can not only control the random coins r of Figures 3 and 4
but also observe the leakages due to the computation of these schemes. In this context, we show that the
leakage security argument used in [35] directly falls down, leading to an even more serious (forgery) attack.
For this purpose, let us start by considering the variant of PSV-AE with a single long-term key (of which
misuse-resistance has just been broken) and assume F is instantiated with a block cipher such as the AES.
In this case, by keeping the r constant, the adversary can ensure that the ephemeral keys k′0 and k0 actually
become long-term secrets, which can directly be turned into a forgery attack. More precisely, the adversary
can proceed as follows: (1) Fix the random coin r. (2) Recover k′0 via standard DPA by encrypting several
(different) `-block messages m. (3) Pick up a new (`− 1)-block message m′ that has not been encrypted yet.
(4) For i = 1 to `− 1, compute k′i = Fk′i−1

(mi). (5) Compute m` = F−1k′`−1
(τ). (6) Encrypt m′ with k′0.

Intuitively, the attack essentially works by adapting the last message block m` so that the tag produced
corresponds to the chosen coin r, which ensures that the two ephemeral keys k′0 and k0 are identical which
consequently allows forging valid ciphertexts (without the target chip).

Now just observe that for the actual PSV-AE scheme with two long-term keys, the forgery of a valid
tag (for the first part of the authenticated encryption scheme) remains unchanged. And the forgery of valid
ciphertexts could simply take advantage of the fact that the encryption mode of Figure 4 emulates a one-time
pad so that if the ephemeral key k′0 is fixed (despite unknown), it is directly possible to forge the ciphertexts
corresponding to any linear combination of previously observed messages.5 As explained in Appendix A,
the alternative leakage-resilient MAC proposed in [35] could be broken by similar (though slightly more
elaborate) attacks.

5 Note that recovering the k0 corresponding to the selected τ = r thanks to SPA is also feasible (see Section 6).
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5 Digest, Tag and Encrypt (DTE)

The (forgery) attack in the previous section actually beaks the ciphertext integrity of PSV-AE in the presence
of leakages. In this section, we build a misuse-resistant AE (without leakage) with a single key which provably
avoids this attack. We formalize the additional security guarantee we achieve with the notion of Ciphertext
Integrity with Misuse and Leakage (CIML).

5.1 Specifications of DTE

We apply the DIV composition – with the exception that kM and kE are replaced by a unique key k – to
another IV-based MAC combined with PSV-ENC, resulting in DTE. This MAC uses a hash function as a
sub-ingredient, hence the name DTE for digest, tag, and encrypt.

Fig. 5. DTE leakage-resilient AE (part I). Part II is identical to Fig. 4.

The full description of DTE is given below. The values pA and pB are public constants in {0, 1}n.

DTE

Enck(m):
– Parse m = (m1,m2, . . . ,m`)

– r
$← {0, 1}n

– h← H(r||m) // digest
– τ ← F∗k(h) // tag
– k0 ← F∗k(τ) // ...and encrypt
– c0 ← Fk0(pB)⊕ r // yi := Fki(pB)
– ki ← Fki−1(pA), ci ← Fki(pB)⊕mi ∀i = 1, . . . , `
– return C ← (τ, c0, c1, c2, . . . , c`)

Deck(C):
– Parse C = (τ, c0, c1, c2, . . . , c`)
– k0 ← F∗k(τ)
– r ← Fk0(pB)⊕ c0
– ki ← Fki−1(pA), mi ← Fki(pB)⊕ ci ∀i = 1, . . . , `
– h← H(r||m)
– if τ = F∗k(h) return (m1, ...,m`), return ⊥.

5.2 Misuse-resistance without leakage

It would be possible to prove the misuse-resistance of DTE by applying Theorem 1 and showing that the
single-key variant is indistinguishable from the two-key variant. However, to get a better bound, we analyze
the misuse-resistance of DTE from scratch.
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Theorem 3. Let H : {0, 1}n × {0, 1}? → {0, 1}n be a (0, t1, εcr)-collision resistant and (1, t1, εpr)-range-
oriented preimage resistant hash function. Let F? : {0, 1}n×{0, 1}n → {0, 1}n be a (2q, t1, εF?)-pseudorandom
function and F : {0, 1}n × {0, 1}n → {0, 1}n be a (2, t2, εF)-pseudorandom function. Then the DTE au-
thenticated encryption scheme which encrypts `-block messages is (q, t, ε)-misuse-resistant as long as t ≤
min{t1−q(tH +2`tF), t2−qe(tH +2`tF)} with 0 ≤ qe +qd ≤ q, where qe (resp. qd) is the number of encryption
(resp. decryption) queries, where tH and tF are the time needed to evaluate H and F, and we have

ε ≤ εF? + εcr + 2q · εpr + q(`+ 1) · εF +
(
qd + q2e + q2e(`+ 1)2

)
· 2−n.

The guideline of the proof follows the same principle as in the proof of Theorem 1 for the generic
construction. First we start by arguing that all decryption queries can be answered by ⊥ and then answers
to encryption queries are gradually replaced by random outputs, block by block.

The easiest transition relies on the pseudorandmoness of F∗, which is replaced by a truly random function
f. Therefrom, we can move to show the invalidity of the first fresh decryption query C = (τ, c), where
c = (c0, c1, . . . , c`). Since (τ, c) is fresh, we will see that the decrypted tuple (r,m = (m1, . . . ,m`)) is fresh.
Thereby, the collision resistance ensures that h = H(r‖m) is not the output of any previous evaluation of H
during the encryption queries. If h never appeared until the first decryption query, then f(h) 6= τ except by
chance. However, we must also consider the event by which h = τ ′, where τ ′ is the returned tag associated
to some previous encryption query.6 Hence the need of the range-oriented preimage resistance of H since, as
an output of f , τi is random over {0, 1}n. Note that in order to ease the process of the proof, we rely on
an equivalent definition of range-oriented preimage resistance where an adversary can ask as many targets
y

$← {0, 1}n as wanted to return one preimage. A straightforward hybrid argument shows that any efficient
(q, t)-adversary receiving at most q targets can be reduced to an adversary receiving at most one target with
a security loss factor q, in the same time.

Remark 1. A stronger flavor of range-oriented preimage resistance was introduced by Rogaway and Shrimp-
ton [41] under the name of everywhere preimage resistance. In their definition, the hardness of computing
preimage must hold for all the possible targets y ∈ {0, 1}n and thus for all the possible distributions over
{0, 1}n where y is sampled. Like standard preimage resistance, Definition 2 focuses on the hardness over a
single distribution.

The proof of Theorem 3 is given in Appendix B.3.

5.3 Ciphertext integrity with misuse & leakage

We now generalize the definition of ciphertext-integrity given by Bellare and Namprempre [7] to capture
both the ability for an adversary to generate the random coins and to learn more information from a leakage
function of the encryption algorithm. In this respect, a significant issue that appears when trying to deal
with side-channel information in a formal way is the problem of defining and quantifying, or at least upper-
bounding, the amount of information that can be disclosed through side-channel leakage. We will indeed
have to tackle this problem in Section 8. However, in the current section, we are able to provide a positive
result (i.e., a provably secure construction) in a conservative context where no assumptions are needed to
limit the amount of information leaked to the adversary (beyond our leak-free execution). We first define
this unbounded leakage model.

Definition 11. We define the unbounded leakage model as a model in which, when queried, oracles return,
in addition to the usual output values, a function L yielding all ephemeral keys and random coins generated
during the computation of the oracle’s answer.

So this definition is in line with our assumptions (in Section 2.2) regarding the availability of two distinct
pseudorandom functions: a cheap, leaking F, and an expensive but leak-free component F∗. In other words,
our model assumes that the only values that will not be revealed through leakage are the long-term secrets
used exclusively in combination with F∗. All other processed data and intermediary values are supposed to
be totally disclosed through leakage, which is modeled by the fact that they can be reconstructed by the

6 Intuitively, this event would reveal information to the adversary: since f(τ ′) = k′0 and is revealed to the adversary,
we could not state that f(h) is independent from all other observed values.

12



attacker based on the output of L by the oracle. As an example, in the unbounded leakage model, our DTE
construction yields the leakage function L(r,m; k) := k0 (r is not explicitly needed as part of the output as
it can be reconstructed from k0).

Considering an authenticated encryption AE = (K,Enc,Dec), we define the CIML experiment, in which
the adversary tries to generate a fresh valid ciphertext having access to unbounded leakage during encryption
queries in addition to the encryption and decryption oracle. Note again that as in [35], the adversary is not
given the leakage during decryption queries (see the conclusions section for a complementary discussion on
this issue).

CIML experiment

Initialization: Oracle EncLk(r,m):

k
$← K C = Enck(r,m)

S ← ∅ S ← S ∪ {C}
Finalization: return (C, L(r,m; k))

C ← AEncLk(·,·),Deck(·)

If C ∈ S, return b = 0 Oracle ODeck(C):
If ⊥ = Deck(C), return b = 0 return Deck(C)
return b = 1

Definition 12. An authenticated encryption AE provides (q, t, ε)-ciphertext integrity with coin misuse and
unbounded leakage on encryption if for all (q, t)-bounded adversaries A, we have:

Pr [CIMLAE,A ⇒ 1] ≤ ε.

As usual, q is an upper bound on the total number of queries made to oracles.

We now prove that DTE meets this definition.

Theorem 4. Let H : {0, 1}n × {0, 1}? → {0, 1}n be a (0, t′, εcr)-collision resistant and (1, t′, εpr)-range-
oriented preimage resistant hash function. Let F∗ : {0, 1}n×{0, 1}n → {0, 1}n be a (2q+2, t′, εF∗)-pseudorandom
function. Then DTE provides (q, t, ε)-ciphertext integerity with coin misuse and unbounded leakage on en-
cryption as long as t ≤ t′ − (q + 1)(tH + 2ltF) where tH and tF are the time needed to evaluate H and F, and
we have

ε ≤ εF? + εcr + 2q · εpr + (q + 1) · 2−n.

In the unbounded leakage model applied to DTE, the leakage function L returns the ephemeral key k0
computed during the encryption of some (r,m). Given k0 the adversary is able to derive all the ephemeral
keys (k0, k1, . . . , k`) used during encryption queries. For instance, the adversary is able to re-compute
(y0, y1, . . . , y`) as in the encryption algorithm using F and check whether it holds that (c0, c1, . . . , c`) =
(r,m1, . . . ,m`)⊕ (y0, y1, . . . , y`). Theorem 4 shows that whether F is pseudorandom or not has no impact on
the success probability Pr[CIMLDTE,A] = ε.

The proof of Theorem 4 is given in Appendix B.4.

6 On the impossibility of full misuse-resistance with leakage

The previous section showed that it is possible to combine some form of misuse-resistance and leakage-
resilience, as formalized by the (concretely achievable) notion of ciphertext integrity with misuse and leakage
(CIML). Yet, this security notion is admittedly weaker than a combination of (full) misuse-resistance (such
as discussed in Sections 3, 4.2, 5.2) and leakage-resilience.

CIML security is essentially an unpredictablity property: in order to win, the adversary must produce
a full ciphertext. Misuse-resistance, on the other hand, also includes an indistinguishability problem: the
adversary wins if he distinguishes between regular ciphertexts and random values.
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Focusing on the continuous leakage model, a adversary taking advantage of misuse can repeatedly ask
for the encryption of the same message with the same randomness to obtain more and more leakage about
the chosen message and secret state of the device which, through leakage accumulation (and assuming that
leakage is actually happening), will eventually lead to the possibility to distinguish it from a random behavior
that would be independent of this message and randomness.

From a more physical point of view, the misuse-resistance game essentially removes all the protections that
are traditionally part of leakage-resilient schemes based on re-keying, and opens the way for traditional SPAs:
any ephemeral state becomes as easy to observe as a long-term information, through repeated measurements.
As soon as there is a non trivial leakage, the adversary will become able to correlate its input message with
the leakage, and distinguish it from a random behavior.

As an example, and focusing on the second part of the previous authenticated encryption schemes, repre-
sented in Figure 4, we observe that by fixing the randomness r, we again have the problem that the ephemeral
key k0 will be fixed. So it is theoretically possible to recover this ephemeral key via SPA. And recovering
the ephemeral key k0 of our encryption schemes trivially allows the adversary to distinguish his ciphertexts
from random. At this point is is worth insisting that such an SPA would require to obtain noise-free mea-
surements of the encryptions of pA and pB under k0 and to perform some kind of algebraic/analytical attack
as mentioned in Footnote 3. So it is admittedly more challenging to perform than the DPA of Section 4.4
which takes advantage of the fact that the key k̃′0 can encrypt an arbitrary number of messages. Still, it is
quite difficult to argue why this attack should not be covered by our threat model.

More generally, this impossibility to obtain misuse-resistance can be viewed as one more illustration
of the separation between unpredictability-based and indistinguishability-based security in the presence of
leakage identified by Micali and Reyzin [31]. Yet, we insist that it is limited to our setting where we want
to exploit cheap (deterministic and not highly protected) symmetric primitives such as block ciphers and
hash functions. In theory, one possible way to mitigate this impossibility would be to rely only on leak-free
components, or on (randomized) asymmetric primitives such as proposed by [5] (which can be seen as one
possible instantiation of leak-free component). In the latter case, SPA attacks against intermediate results of
the protocol (such as ephemeral keys) would not be possible, and the only remaining attacks would directly
exploit the plaintext/ciphertext leakages, as discussed in Section 8.

7 Digest, Commit and Encrypt (DCE)

Motivated by the previous observation, we now present a construction that drops the requirement of misuse-
resistance without leakage, and focuses on ciphertext integrity with misuse and unbounded leakage on en-
cryption. This construction has the advantage of only requiring one execution of the leak-free function, but
at the expense of relying on the random oracle model to guarantee CIML (yet not for its leakage-resilient
CPA security, as will be shown in Section 8).

We note that the use of a random oracle assumption when analyzing implementation weaknesses is
admittedly questionable (since the random oracle abstraction excludes leakage). However, and as discussed
in [15,49,50], it sometimes comes in handy to argue about the security of natural constructions of which
the leakage-resilience seems hard to reach in the standard model. In view of the practical interest of the
next DCE construction, we therefore include a proof in this model in our treatment and suggest the further
investigation of DCE instances as an interesting scope for further research. We note that our proof does not
make use of the programmability of the random oracle, which is a common source of gaps in the soundness
of schemes that are proven to be secure in this model but are insecure for any instantiation of the random
oracle.

7.1 Specifications

The construction named DCE is based on Figure 6 below which is then plugged to Figure 4. The full
specifications are described in the box where H is a hash function and pA and pB are constants from {0, 1}n.
The key k is picked randomly from K, as usual.
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Fig. 6. DCE leakage-resilient AE (part I). Part II is identical to Fig. 4.

DCE

Enck(m) :
– parse m = (m1,m2, . . . ,ml)

– r
$← {0, 1}n

– h← H(r‖m)
– k0 ← F∗k(h)
– c0 ← Fk0(pB)⊕ r
– ki ← Fki−1(pA), ci ← Fki(pB)⊕mi (∀i = 1, . . . , `)
– return C = (h, c0, c1, c2, . . . , cl)

Deck(C):
– parse C = (h, c0, c1, c2, . . . , cl)
– k0 ← F∗k(h)
– r ← Fk0(pB)⊕ c0
– ki ← Fki−1(pA), mi ← Fki(pB)⊕ ci (∀i = 1, . . . , `)
– if h = H(r‖m) return m = (m1, ...,ml), else return ⊥.

7.2 Security analysis

Theorem 5. Let H : {0, 1}n × {0, 1}? 7−→ {0, 1}n be modeled as a random oracle. Let F∗ : {0, 1}n ×
{0, 1}n 7−→ {0, 1}n be (q + 1, t′, εF∗)-pseudorandom. Then, DCE provides (q, t′, ε)-ciphertext-integrity with
coin misuse and unbounded leakage during encryption for l-block messages, where t ≤ t′− (q+ 1)(tH + 2ltF),
where tH and tF are the time needed to evaluate H and F, and we have

ε ≤ εF∗ + 4(q + 1)2/2n + (q + 1)/2n.

The proof of Theorem 5 is given in Appendix B.5. The CPA security of DCE without leakage (nor misuse)
in the random oracle model is immediate.

8 Leakage-resilient CPA security

The ciphertext integrity properties discussed in the previous sections do not imply anything about the
confidentiality of the messages that are encrypted with the DTE and DCE schemes.

This section shows the leakage-resilient CPA security of these schemes, which is measured by the proba-
bility that an adversary distinguishes between playing the PrivKlmcpa,0

AL,AE
and PrivKlmcpa,1

AL,AE
games, defined below

and borrowed from PSV [35]. This is essentially the traditional CPA game, with the addition that the ad-
versary can access a leakage oracle L that can give him leakages from the attacked circuit on chosen inputs,
and that the challenger provides leakages for any computation it performs, including the test query at step
3. We recall that the lmcpa superscript in the notation PrivKlmcpa,0

AL,AE
stands for multiple messages and blocks

leakage-resilient CPA security, which relates to the remark in introduction that our following proofs only
guarantee that the security of our constructions for multiple messages and blocks reduces to their security
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for one block, independent of what can be guaranteed for this single block. As discussed in [35], this is the
best that can be achieved given the impossibility of leakage-resilient CPA security with negligible advantage
(due the the fact that even a single bit of plaintext leakage trivially breaks the semantic security game).

PrivKlmcpa,b

AL,AE
, with AE = (K,Enc,Dec), is the output of the following experiment:

1. Select k
$← K

2. AL gets access to a leaking encryption oracle that, when queried on a message m of arbitrary block
length, returns Enck(m) together with the leakage resulting from the encryption process.

3. AL submits two messages m0 and m1 of identical block length, to which he is replied with Enck(mb)
and the corresponding leakage.

4. AL can keep accessing the leaking encryption oracle.
5. AL outputs a bit b′.

The PrivKleav,b
AL,AE

game [35], modeling leakage-resilient eavesdropper security, is defined just in the same
way, except that the encryption oracles from steps 2 and 4 disappear.

Definition 13. An authenticated encryption scheme AE = (K,Enc,Dec) with leakage function L is (q, t, ε)

lmcpa-secure (resp. leav-secure) if, for every (q, t)-bounded adversary AL, the advantage |PrivKlmcpa,0
AL,AE

−
PrivKlmcpa,1

AL,AE
| (resp. |PrivKleav,0

AL,AE
− PrivKleav,1

AL,AE
|) is bounded by ε.

8.1 Background on the LMCPA security of the PSV-ENC scheme

Observing that the encryption part of all our schemes essentially follows the PSV-ENC scheme, we can hope
to import the results of the previous analyzes of that scheme.

The security of an implementation of the PSV-ENC scheme relies on the assumption that the block cipher
implementation that it uses has 2-simulatable leakages. (The unbounded leakage used in the previous sections
does not make sense here anymore, since an unbounded leakage would trivially allow the adversary to win
any confidentiality-related game.)

The notion of simulatable leakages is based on the q-sim-game below, from which q-simulatable leakages
are defined. This game essentially measures the capability of a simulator to produce leakages that look
consistent with given inputs and outputs of a block cipher, without knowing the key used in the computation.

Game q-sim(A,F, L,S, b) [46, Section 2.1].

The challenger selects two random keys k, k∗
$← K. The output of the game is

a bit b′ computed by AL based on the challenger responses to a total of at most
q adversarial queries of the following type:

Query Response if b = 0 Response if b = 1

Enc(x) Fk(x), L(k, x) Fk(x), SL(k∗, x,Fk(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1

Gen(z, x) SL(z, x, k) SL(z, x, k∗)

Definition 14. [q-simulatable leakages [46, Defn. 1]] Let F be a PRF having leakage function L. Then F
is said to have (qS , tS , qA, tA, εq-sim) q-simulatable leakages if there is a (qS , tS)-bounded simulator SL such
that, for every (qA, tA)-bounded adversary AL, we have:

|Pr[q-sim(A,F, L,SL, 1) = 1]− Pr[q-sim(A,F, L,SL, 0) = 1]| ≤ εq-sim.

Based on this definition, the eavesdropper security of PSV-ENC can be summarized as follows.

16



Theorem 6 ([35], Thm 3.). Let F be a (q, t, εF)-PRF whose implementation has running time tF and a
leakage function LF with (qS , tS , q, t, ε2-sim) 2-simulatable leakages.

The advantage of every (q − qr, t − tr)-bounded ALF playing the PrivKleav,b
PSV−ENC game is bounded by

εeavPSV−ENC = `(Advs+4(εF+ε2-sim)) where Advs is a bound on the eavesdropper advantage of a (q−qr′ , t−tr′)-
bounded adversary trying to distinguish the encryptions of two single-block messages encrypted with the PSV-
ENC scheme, qr, qr′ are O(`qS) and tr, tr′ are O(`(tS + tF)).

This result relates the eavesdropper security of the PSV-ENC scheme to the security that is offered in front
of an adversary who can only get a single encryption of a single block messages, which is expected to be
simpler to evaluate (see discussion in [35]). Note that, in our analysis below, we will not need to use any
result about the CPA security of PSV-ENC.

8.2 Bounding hash function leakages

The security of the PSV-ENC scheme is going to be helpful for the encryption part of the DTE and DCE
modes, but the first parts of our modes also include the evaluation of a hash function running on the message
to be encrypted, which may in turn leak information about the message and help win the PrivKlmcpa,b

AL,AE
game:

if the implementation of the hash function just leaks its input in full, we can obviously not hope for any
confidentiality. We therefore turn to the definition of our security assumption about the hash function
implementation, before analyzing DCE and DTE.

Concretely, we need a bound on the distinguishing probability of an adversary who would see the leakages
resulting from hashing something containing a message m0 and those resulting from hashing something
containing m1. Simply assuming the indistinguishability of leakages on adversarially chosen m0 and m1

would be way too strong from a physical point-of-view: if an adversary knows m0 and m1, he can obtain
leakages computed on these two values directly from the hash function implementation, and compare those
leakages with the leakage returned by the challenger. Recognizing if a leakage matches another leakage seen
before is typically an easy task.

Here, the adversary faces a more difficult problem, since he is not able to predict what message is hashed
when he gets leakages to distinguish. More precisely, the adversary may be able to choose 2 messages m0

and m1, but then must to decide the value of b when he gets H(r‖mb), LH(r‖mb) in return, where r is a fresh
unknown random value and LH(x) is the leakage resulting from evaluating the hash function on x. A simple
comparison is now impossible since the value r is unknown.

Definition 15. A hash function H : R×M → B with leakage function L is (q, t, ε)-leakage-resilient if, for
every (q, t)-bounded adversary AL, the advantage

∣∣Hash0AL,H − Hash1AL,H

∣∣ is bounded by ε, where HashbAL,H is

defined as the probability that AL outputs 1 when, after a query (m0,m1) ∈M2, he is returned with the pair

(H(r‖mb), L(r‖mb)) with r
$← R.

The observation that we made above about the ease of recognizing leakages has an important impact on
our designs. If we inspect modes that are related to the DCE and DTE modes, like the SIV mode [43] for
instance, we see that SIV can be expected to be very hard to implement securely in front of an adversary
with leakage access: SIV uses an IV that is computed only from a nonce made public and the message,
which offers a convenient oracle to the adversary for matching leakages. The DCE and DTE schemes address
this difficulty by making sure that, while playing the CPA game, the adversary never fully knows the inputs
of the hash function that is being evaluated: we always add secret randomness in the first place. As an
implementation note, we expect that the leakage-resilience of a hash function (in the sense defined above)
will be higher if, when hashing (r‖m), the block containing the randomness r is processed before the blocks
containing the message. It guarantees that the adversary only sees leakages about a state that he cannot
fully predict.

Remark 2. Admittedly, the following results should be understood similarly to the ones in [35], where it was
argued that semantic security is impossible to achieve even if the leakage of an encryption would be as low
as a single bit. So informally, what we show next is that the execution of our leakage-resilient authentication
scheme for many messages does not significantly degrade the security compared to the situation with a
single message. Concretely though, it always remains that manipulating the message leaks some information
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that can be exploited via SPA, because of the initial hashing of Figures 5 and 6 and the stream encryption
of Figure 4. In this respect, we note that further improvements should possible. For example, one could
replace the hash function of Figures 5 and 6 by the re-keying MAC of Figure 1, keep its intermediate PRF
computation results, and then use these intermediates (rather than the message blocks) when encrypting in
Figure 4 (so that the message is only manipulated once during the authenticated encryption). This would
also break some possible correlations between the message and ciphertext blocks (e.g., if the message has a
special structure) due to the fact that the ciphertext blocks are just obtained by XORing the key stream in
Figure 4.7 Again, such a construction would not change the impossibility result regarding semantic security,
but further minimize the amount of leakage available due to message manipulation. We leave its investigation
as an interesting scope for further research.

8.3 LMCPA Security of the DCE and DTE schemes

We start by focusing on the LMCPA security of the DCE scheme. The leakage function L(k, r,m) for DCE is
defined by the pair (LH(r,m), LPSV(k0, r‖m)), where k0 is naturally defined as Fk(H(r‖m)). The LH component
of this leakage contains the leakage occurring during the evaluation of the hash function in DCE encryption,
and the LPSV component contains the leakage of the encryption part of the DCE as depicted in Fig. 4, which
we refer to as the “PSV-encryption component” of DCE. The LPSV function itself returns leakages that are
made of individual leakages by each PRF and XOR operation, as defined in [35], but this is irrelevant for
our analysis.

Theorem 7. Let H : R×M→ B be a (0, t, εcr)-collision resistant and (q, t, εLH
)-leakage-resilient hash func-

tion. Let F be a (q, t, εF)-pseudorandom function. Let DCE be implemented with a PSV-encryption component
that is (q, t, εleavPSV−ENC)-leavsecure.

Then, DCE with the leakage function L described above is (q′, t′, εlmcpa)-secure. Here: q′ ≤ q− qe−1 where
qe is the number of encryption queries made by the (q′, t′)-bounded LMCPA adversary; t′ ≤ t1 − tc − tsc,
where tc is the running time needed to run the LMCPA challenger in front of a (q, t′)-bounded adversary,

tsc is the time needed to determine whether a list of qe hash values contains a collision; and εlmcpa ≤ 2
q2e
|R| +

2εcr + 4εF + εLH
+ εleavPSV−ENC.

The proof of Theorem 7 is given in Appendix B.6.

The leakage-resilient CPA security of the DTE scheme can be shown in an almost identical way.

Theorem 8. Let H : R × M → B be a (0, t, εcr)-collision resistant and (q, t, εLH
)-leakage-resilient hash

function. Let F be a (2q, t, εF)-pseudorandom function. Let DTE be implemented with a PSV-encryption
component that is (q, t, εleavPSV−ENC)-leavsecure.

Then, DTE with the leakage function L described above is (q′, t′, εlmcpa)-secure. Here: q′ ≤ q− qe−1 where
qe is the number of encryption queries made by the (q′, t′)-bounded LMCPA adversary; t′ ≤ t1 − tc − tsc,
where tc is the running time needed to run the LMCPA challenger in front of a (q′, t′)-bounded adversary,

tsc is the time needed to determine whether a list of qe hash values contains a collision; and εlmcpa ≤ 2
q2e
|R| +

4 (qe+1)2

|B| + 2εcr + 4εF + εLH
+ εleavPSV−ENC.

The proof shares almost all features of the one for the DCE scheme, and the handling of adversarial queries
is the same. The double use of Fk just loosens the bounds of Thm. 7 by constant factors, by increasing the
probability of collisions and doubling the number of queries that are needed when replacing the evaluation
of F with the selection of random values (which is included in the tc bound on the challenger running time).
It is given in Appendix B.7.

7 Note that the latter can also be avoided by replacing this XOR by a block cipher.
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9 Conclusion and open problems

To conclude this paper, we first observe that as in [35], our analyses focus on the leakages occurring during
authenticated encryption, so far excluding the possibility to target a decryption device. Interestingly, this
limitation is very strong in the CCS 2015 leakage-resilient MAC and encryption schemes because random
IVs are strictly needed for leakage security, and a decryption oracle allows the adversary to control the IV.
As discussed in Section 4.4, contradicting this requirement directly enables devastating forgery attacks based
on a standard DPA. By contrast, our notion of ciphertext integrity with misuse and leakage aims to mitigate
the impact of IV control. So it is natural to investigate whether it formally rules out any attack against the
decryption oracle.

Unfortunately, and despite ciphertext integrity with misuse and leakage indeed rules out many realistic
attacks against a decryption device, our schemes remain susceptible to strong attacks when the decryption
leaks. Taking the example of DTE, we can for example show that it is possible to forge valid ciphertexts
thanks to decryption leakages as follows: (1) Pick a random r and message m and compute h = H(r‖m). (2)
Ask decryption of ciphertext Ci = (τ, ci) with τ = h and a random ci and recover k0 thanks to leakage. (3)
Ask decryption of ciphertext Cj = (τ ′, cj) with τ ′ = k0 and a random cj and recover k′0 thanks to leakage.
(4) From k′0, compute the ciphertext c produced using the encryption part of DTE from the ephemeral key
k′0, the random r and the message m, so that C = (k0, c) is valid (and has decryption m). A completely
similar attack can be done for DCE. As in Section 6, this attack is admittedly more challenging than the
standard DPAs against the CCS 2015 building blocks. Yet, as in Section 6, it is also impossible to argue why
such attacks should not be covered by our threat model. So we conclude our work by observing that the DTE
and DCE authenticated and encryption schemes make a small step in making side-channel attacks targeting
their decryption leakages less devastating in practice. And we leave the design of authenticated encryption
modes that further minimize the attack surface against decryption devices as an interesting scope for further
research.

Eventually, and quite independently to the previous challenges regarding how to design good modes
of operation mitigating randomness misuse and leakage, the question of how to implement the leak-free
component F∗ is of course another important challenge. In this respect, we note that besides the protection of
standard block ciphers with countermeasures such as noise addition, masking and shuffling, some alternatives
are worth further investigation. One is simply to design block ciphers that are easier to protect against side-
channel analysis (see for example [17,18,38] and follow-up works). Another option is to consider specialized
constructions of leakage-resilient PRFs that overcome the hardness of protecting stateless primitives discussed
in [6], by relying on other (non-standard) assumptions. For example, a CHES 2012 proposal in this direction
assumes that the leakage of the different S-boxes in a block cipher are similar [29], and an ASIACRYPT 2016
paper investigates the use of unknown plaintexts for similar purposes [30]. A third possibility is to exploit
ideas from the fresh re-keying literature [28,27,10]. In particular, the recent construction from CRYPTO 2016
that mixes the efficiency advantages of a re-keying function enjoying (almost) key-homomorphism with the
formal security guarantees of a wPRF [13] appears as a natural candidate to combine with the leakage-resilient
authenticated encryption in this paper. Yet, exploiting such constructions would requires new ideas to deal
with the generation of their random challenges. Eventually, and as mentioned in introduction, exploiting
asymmetric primitives (e.g., the leakage-resilient PRF based on pairings in [5]) is yet another possible path
to analyze.

Acknowledgments. Thomas Peters is a postdoctoral researcher and François-Xavier Standaert is a research
associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in parts
by the FNRS, the INNOVIRIS projects SCAUT and C-Cure, the ARC project NANOSEC and the ERC
project 280141.

References

1. M. R. Albrecht and K. G. Paterson. Lucky microseconds: A timing attack on amazon’s s2n implementation of
TLS. In M. Fischlin and J. Coron, editors, EUROCRYPT, volume 9665 of LNCS, pages 622–643. Springer, 2016.

2. M. R. Albrecht, K. G. Paterson, and G. J. Watson. Plaintext recovery attacks against SSH. In S&P, pages 16–26.
IEEE Computer Society, 2009.

19



3. E. Andreeva and M. Stam. The symbiosis between collision and preimage resistance. In L. Chen, editor, IMACC,
volume 7089 of LNCS, pages 152–171. Springer, 2011.

4. J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede. DPA, bitslicing and masking at 1 GHz. In Güneysu
and Handschuh [21], pages 599–619.

5. G. Barwell, D. P. Martin, E. Oswald, and M. Stam. Authenticated encryption in the face of protocol and side
channel leakage. IACR Cryptology ePrint Archive, 2017:68, 2017.
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A Alternative PSV constructions

Pereira et al. also proposed the hash then MAC construction informally pictured in Figure 7, leading to the
authenticated encryption scheme outlined in Figure 8. It is easy to see that the attack of Section 4.4 applies
nearly identically to this construction. Namely, and first considering the a single-key variant, the adversary
will first recover k′0 via a DPA attack. Then, he will choose a message m′ and compute a tag τ . The only
difference is that this time, he cannot force the second ephemeral key k0 to be identical to k′0 since it would
require that τ = r which implies finding a preimage to the hash function. Yet, what he can easily do is
to use again the leakage of his leaking device, by setting the random coin r at τ , and to perform a second
DPA against the output of the first leak-free block cipher, which this time will leak k0 and allow forging
valid ciphertexts. As for the 2-key variant, an SPA attack against the second ephemeral key k0 is the easiest
option.

Fig. 7. PSV-MAC’ leakage-resilient MAC [35].

Fig. 8. PSV-AE’ leakage-resilient AE (part I).
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B Proofs

B.1 Proof of Lemma 1

Let OEnc†

real , ODec†

real and ODec†

fake denote the oracles defined in the definition of strong authenticity in the case

of AE†DIV. To see why A’s advantage against the strong authenticity is negligible let us recall how ODec†

real

and ODec†

fake differ from each other. In ODec†

real , a valid ciphertext (τ, c) is an encryption of some (IV,m) under

EnckE
and for which f(IV,m) = r, where f is a truly random function. In ODec†

fake , there is no valid ciphertext

not computed by OEnc†

real . Therefore, this advantage is bounded by the probability of being able to make a

decryption query on a fresh but valid ciphertext (τ?, c?) with respect to ODec†

real . Even though it could not
be efficiently computable from A’s perspective let (IV ?,m?) = DeckE

(τ?, c?). We claim that (IV ?,m?)

was never submitted to OEnc†

real otherwise (τ?, c?) would have been returned as an output of DIV.Enc†k which
is deterministic, where k = (kM , kE). Consequently, we are sure that (IV ?,m?) is also fresh and that
τ? = f(IV ?,m?) holds from the validity of the ciphertext. But that means that in a way or another, A is
able to predict a new output of f which is completely independent of A’s view, so that the probability for
that event to occur is qd/|T |, where qd corresponds to the number of queries to the decryption oracle. ut

B.2 Proof of Theorem 1

Let A be a (q, t)-bounded adversary against the misuse-resistance of AEDIV. By definition, if we set k =

(kM , kE) ← K2, the advantage Advmr
AEDIV,A is given by |Pr[AOEnc

real ,O
Dec
real ⇒ 1] − Pr[AOEnc

rand,O
Dec
fake ⇒ 1] |, where

OEnc
real runs DIV.Enck on inputs (IV,m) and ODec

real runs DIV.Deck on input ciphertexts (τ, c) for the left-hand
side probability, and where OEnc

rand returns random (τ, c)← CDIV on inputs (IV,m) and where ODec
fake returns ⊥

on input ciphertexts (τ, c) not generated from OEnc
rand and m if (τ, c) was the answer of an encryption query

(IV,m) for the right-hand side probability.
The first step of the proof is to rely on the chosen-IV pseudorandomness of ivM to replace the real MackM

in the computation of DIV.Enck(IV,m) and DIV.Deck(τ, c) by a truly random function f ← F where F is the
set of all functions from IV ×M to T . This modification results in replacing the real execution of AEDIV by

the real execution of AE†DIV. To avoid confusion with the oracles of AEDIV, OEnc†

real and ODec†

real stand for the real
oracles of AE†DIV. Therefore, Advmr

AEDIV,A is upper-bounded by

∣∣Pr[AO
Enc
real ,O

Dec
real ⇒ 1]− Pr[AO

Enc†
real ,O

Dec†
real ⇒ 1]

∣∣
+
∣∣Pr[AO

Enc†
real ,O

Dec†
real ⇒ 1]− Pr[AO

Enc†
rand ,O

Dec†
fake ⇒ 1]

∣∣
+
∣∣Pr[AO

Enc†
rand ,O

Dec†
fake ⇒ 1]− Pr[AO

Enc
rand,O

Dec
fake ⇒ 1]

∣∣ ,
where the last term vanishes since OEnc†

rand = OEnc
rand and ODec†

fake = ODec
fake are independent of the description of

AEDIV and AE†DIV. This development leads to

Advmr
AEDIV,A ≤ Advcip

ivM,B1(A) + Advmr
AE†DIV,B

′
2(A)

for some challenger B1 against the chosen-IV pseudorandomness of ivM and some challenger B′2 against the
misuse-resistance of AE†DIV which still need to be described. Given an oracle access to either MackM

or f,
algorithm B1 emulates encryption and decryption as follows: picks a key kE ← K of ivE = (K,Enc,Dec) such

that on an encryption query (IV,m), B1 sends (IV,m) to its own cip oracle which is either Ocip
real or Ocip

rand

and gets back some τ ∈ T from which it computes c = EnckE
(τ, (IV,m)) and returns (τ, c); on decryption

query (τ, c), B1 first computes (IV,m) = DeckE
(τ, c) and makes a deterministic-tag query on (IV,m), then

from the answer τ ′, B1 outputs m if there is a match with τ and outputs ⊥ otherwise. If q is the cumulated
number of encryption and decryption queries made by A, then B1 makes at most q queries to its cip oracle
and runs in time t2 ≤ t+ q · te, where te is the maximum running time of EnckE

and DeckE
. This shows that

we indeed have Advcip
ivM,B1(A) which is a negligible function by assumption. As a result, it remains to show
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that the second term of the above development is negligible. To do so, we now upper-bound Advmr
AE†DIV,A

by

∣∣Pr[AO
Enc†
real ,ODec†

real ⇒ 1]− Pr[AO
Enc†
real ,ODec†

fake ⇒ 1]
∣∣

+
∣∣Pr[AO

Enc†
real ,ODec†

fake ⇒ 1]− Pr[AO
Enc†
rand ,ODec†

fake ⇒ 1]
∣∣

and we argue that Advsa
AE†DIV,A

and AdvIV-sec
ivE,B2(A) upper-bound this expression term-by-term for some explicit

challenger B2 against the IV-sec security of ivE.
By definition, the first term is indeed the advantage of A against the strong authenticity of AE†DIV.

Lemma 1 shows that this advantage is smaller than q/|T | which is negligible since ivM and/or ivE are secure.
To conclude the proof we need to show the last term is bounded by the advantage of some B2(A) against
ivE.

Since ODec†

fake gives no information on whether A is exchanging with OEnc†

real or OEnc†

rand , and since answer (τ, c)
to encryption query (IV,m) has a value τ ∈ T independent of (IV,m), the only relevant part in both views
is whether c = EnckE

(τ, (IV,m)) or c = f ′(τ, IV,m) for another random function f ′ : T × IV ×M→ C. It is
now straightforward to build a challenger B2 against the security of ivE. In more details, when A makes an
encryption query (IV,m), B1 queries its own oracle on the message (IV,m) and gets back (τ, c), where τ is
a random IV of ivE. Then, B1 stores (IV,m, τ, c) in a new entry of an initially empty table. When A makes
a decryption query on some (τ, c), B2 first looks in the table for an entry of the form (IV,m, τ, c), for some
(IV,m). If such entry lies in the table B2 returns the corresponding m to A, and ⊥ otherwise. Obviously, B2
makes at most the same amount of queries as A since on A’s decryption query B2 does not make any query.
If B2’s running time is t2 and if t′ is the maximum time needed to store and look for an entry in a table of
size q, we find t2 ≤ t+ q · t′, which concludes the proof of the theorem. ut

B.3 Proof of Theorem 3

By the definition of misuse resistance and using the same notation as in the proof of Theorem 1, for any
efficient adversary A against DTE, we show that the following advantage is negligible:∣∣Pr[AO

Enc
real ,O

Dec
real ⇒ 1]− Pr[AO

Enc
rand,O

Dec
fake ⇒ 1]

∣∣.
Let A be a (q, t, ε)-adversary against the misuse resistance of DTE, meaning that the above distance is
bounded by ε when A runs in time t and makes at most q ≥ qe + qd queries, where qe is the number of
encryption queries made by A to OEnc

real or OEnc
rand, and where qd is the number of decryption queries made by

A to ODec
real or ODec

fake respectively. Without loss of generality, we assume that any answer to some encryption
query is not later sent as a decryption query and that any answer to some decryption query is not later sent
as an encryption query. Indeed, if it were not the case we could simply send back the input of the previous
query as the answer to the later query. Moreover, we also assume that a same query is never made twice for
encryption and decryption.

We will use a sequence of hybrid games, beginning with the real game, named game 0, where A interacts
with OEnc

real and ODec
real and ending with random-and-invalid game, named game 3, where A interacts with OEnc

rand

and ODec
fake. Then, using the adversary A we show that any transition can be reduced to either an efficient

distinguisher against the PRF F∗ or F, or to an efficient algorithm that either outputs a collision or a range-
oriented preimage of H. We name Ei the event whereby A outputs 1 at the end of the game i. We then start

from Pr[E0] = Pr[AOEnc
real ,O

Dec
real ⇒ 1] and we end with Pr[E3] = Pr[AOEnc

rand,O
Dec
fake ⇒ 1].

We define game 1 as game 0, except that, in the computation of the encryption and decryption, the
function F∗ is replaced by a random function f, namely we assume that f is chosen uniformly at random
within all the possible functions from {0, 1}n to {0, 1}n. In order to show that |Pr[E0]−Pr[E1]| is negligible we
build a challenger B1, which on input 1n and given an oracle access to either F∗k or f, has to distinguish which
functions the oracle evaluates. The challenger B1 picks pA, pB ← {0, 1}n and H at random and emulates the
encryption and decryption oracles interacting with A as follows. On each query made by A, the challenger
runs all the steps described by DTE, except for the computation of the tags τ and the ephemeral key k0: B1
calls its own oracle on h to get τ and then it calls it again on τ to get k0. When A outputs its guess bit B1
simply returns that bit as its own guess. Obviously, depending on whether B1 is given oracle access to either
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F∗ or f, A is playing game 0 or game 1. Therefore, any difference between Pr[E0] and Pr[E1] leads to the same
difference in distinguishing F∗ from f, making B1 a (2q, t+ q(tH + 2`tF))-adversary against the PRF F∗, since
two evaluations of the function are needed in each encryption and each decryption emulation, and where tH
and tF are the time needed to evaluate H and F. Moreover, by assumption we have t+ q(tH + 2`tF) ≤ t1 and
F∗ is (2q, t1, εF∗)-pseudorandom so that |Pr[E0]− Pr[E1]| ≤ εF∗ .

In game 1 we consider two events F1 and F2 depending on some efficiently checkable properties related
to the encryption and decryption queries. To each encryption query (ri,mi) for some mi = (mi

1, . . . ,m
i
`) we

associate the digest hi = H(ri‖mi) and the tag τi = f(hi). To each decryption query Cj = (τj , cj) for some

cj = (cj0, c
j
1, . . . , c

j
`) we associate the digest hj = H(rj‖mj) and the tag τj , where rj and mj = (mj

1, . . . ,m
j
`)

are computed during the (emulation of the) decryption, but we consider this association only if (τj , cj) is
considered valid in the game, namely if f(hj) = τj . First, we define F1 as the event that at least two associated
digests are equal. Second, we define F2 as the event that some associated digest is equal to some associated
tag. If we let F3 be the complement of F1 ∪ F2, we have Pr[E1] ≤ Pr[F1] + Pr[F2] + Pr[E1|F3].

We use the collision resistance of H to bound Pr[F1]. If F1 occurs it happens that H(r‖m) = H(r′‖m′)
whereas (r,m) and (r′,m′) come from (answer to) distinct queries. If some of this tuple, say (r,m), is the
answer to some decryption query, say (τ, c), it must be the case that a re-encryption of (r,m) gives back
(τ, c), since the random coin is fixed and τ = f(H(r‖m)). Actually, the (emulated) encryption algorithm is
deterministic given the coin and the message and we avoid that (τ, c) = (τ ′, c′) happens in our analysis.
Therefore, we must have (r,m) 6= (r′,m′) in all the cases. As a consequence, in F1, it is easy to build
an adversary having the same running time and answering queries in the same way as B1 and which is an
adversary against the (0, t1, εcr)-collision resistant hash function H. By assumption we have t+q(tH+2`tF) ≤
t1 and then Pr[F1] ≤ εcr.

We use the range-oriented preimage resistance of H to bound Pr[F2]. Actually, we have Pr[F2] = Pr[F ′2]
where F ′2 is the analogue of F2 in game 1’. The difference between game 1 and game 1’ is purely conceptual.
In game 1’, instead of picking a random function f that is directly evaluated, the outputs are now implicitly
computed by the challenger B′1 against the range-oriented preimage resistance of H. It means that each
time B′1 needs a new evaluation of the random function f to emulate encryption and decryption as B1 does,
B′1 simply requests a new random target in {0, 1}n. If F ′2 occurs, it happens that some associated digest
h = H(r‖m) is equal to some associated tag τ ′ which is among the at most 2q targets. Since H(r‖m) = τ ′,
B′1 is at most a (2q, t+q(tH +2`tF))-adversary against the multiple target range-oriented preimage resistance
which is (2q, t1, 2q × εpr)-secure if H is a (1, t1, εpr)-range-oriented preimage resistant hash function (with
one target) and we must have Pr[F ′2] ≤ 2qεpr. (Note that it is equivalent that B′1 receives all the targets at
the beginning of game 1’.)

We go on with bounding Pr[E1|F3]. We define game 2 as the conditional game “game 1 if F3”, except
that to each decryption query we return ⊥ (we do not modify the emulation of the encryption). Clearly,
|Pr[E1|F3]−Pr[E2] | = Pr[F4] where F4 occurs if some of the qd ciphertexts sent as decryption requests were
valid, as the new game will deem them invalid. If F4 occurs, it must hold that for some h = H(r,m) computed
from a decryption query (τ, c) we have f(h) = τ . However, since F3 also occurs, h was never an input of
f before the challenger checks the validity of the ciphertext and then f(h) remains completely independent
of the adversary’s view. Therefore, f(h) 6= τ except by pure chance and we thus get Pr[F4] ≤ qd/2

n.
To ensure freshness of the tags associated to encryption queries in the remaining part of the proof we
define game 2’ as game 2, except that we abort the game if a collision on these tags occurs. We then have
|Pr[E2]− Pr[E′2]| ≤ qe(qe + 1)/2n+1.

In game 2’ we reach a game where decryption gives no information to the adversary. We will show
in game 3 how all the qe (` + 2)-block ciphertexts of game 2’ can be indistinguishably replaced by qe
random ` + 2 blocks of {0, 1}n. Actually, all the tags τ are already distinct and random from game 2’.
Therefore, for each encryption query (ri,mi), where mi = (mi

1, . . . ,m
i
`), for 1 ≤ i ≤ qe, it is enough to

show that from the ephemeral keys (ki0, k
i
1 . . . , k

i
`) the tuple (yi0, y

i
1, . . . , y

i
`) computed in the emulation of the

encryption of game 2’ can be replaced by a uniformly random tuple. Indeed, we have ci = (ci0, c
i
1, . . . , c

i
`) =

(mi
1, . . . ,m

i
`)⊕ (yi0, y

i
1, . . . , y

i
`) and Ci = (τi, ci). For that purpose, we consider qe(` + 1) hybrid games Gi,j ,

for 1 ≤ i ≤ qe and 0 ≤ j ≤ `, such that each block pair (kuv+1, y
u
v ) with (u < i) or (u = i ∧ v ≤ j) are
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random8 and ki`+1 never appeared yet in the game9 whereas all the remaining pairs are computed as in game

2’ resuming from the random but fresh ephemeral key kij+1 if (j < `) or ki+1
0 if (j = ` ∧ i < qe). We move

from one hybrid to the other with respect to the lexicographic order of the indexes (i, j). At the end of these
transitions we reach game 3 since it is equal to game Gqe,`.

We rename game 2’ as game G0,` in order to show that each transition from game Gi,` to game Gi+1,0,
for 0 ≤ i < qe, can be reduced to the pseudorandomness of F. In game Gi,` and game Gi+1,0, the i first
encryption queries are answered with random ciphertexts and f(τi+1) = ki+1

0 is already random. But, in
game Gi,` we have Fki+1

0
(pA) = ki+1

1 and Fki+1
0

(pB) = yi+1
0 whereas in game Gi+1,0 the ephemeral key ki+1

1

and yi+1
0 are random. The remaining parts of the encryption from ki+1

1 are the same in both games and
as in game 2’ as well as the answers to all the next encryption queries. Let B′′i+1,0 be a challenger against
the (2, t2, εF)-pseudorandom F. To emulate ciphertexts, B′′i+1,0 answers with random outputs to the i first

encryption queries. Since τi+1 never appears until this time, ki+1
0 has never been generated yet. Therefore,

instead of computing ki+1
0 , B′′i+1,0 calls its PRF oracle on pA and pB to get ki+1

1 and yi+1
0 and aborts if

ki+1
1 matches a previous ephemeral key. From these outputs, B′′i+1,0 is efficiently able to end the emulation as

specified in game 2’. Obviously, we have |Pr[Ei,`]−Pr[Ei+1,0]| ≤ εF+[i(`+1)+1]/2n since B′′i+1,0 runs in time
at most t+ qe(tH + 2`tF) which is less than t2 by assumption and where [i(`+ 1) + 1]/2n is the probability
that that challenger aborts. (We stress that B′′i+1,0 actually computes at most qe − i hashes/digests and
2`(qe − i)− 2 evaluations of F).

We now move on to transition from game Gi,j to game Gi,j+1, for each 1 ≤ i ≤ qe and each 0 ≤ j < `,
whose indistinguishability is also implied by the pseudorandomness of F. In game Gi,j and game Gi,j+1 the
i−1 first encryption queries are answered with random ciphertexts and in the answer to the i−th encryption
query (ki0, . . . , k

i
j , k

i
j+1) and (yi0, . . . , y

i
j) are already random. However, in game Gi,j we have Fki

j+1
(pA) = kij+2

and Fki
j+1

(pB) = yij+1 whereas in game Gi,j+1 the ephemeral key kij+2 and yij+1 are random and kij+2 is

fresh. The remaining parts of the encryption are the same in both games and as in game 2’. Let B′′i,j+1

be a challenger against the (2, t2, εF)-pseudorandom F. To emulate ciphertexts, B′′i,j+1 answers with random

outputs to the i−1 first encryption queries. For the i− th encryption query, B′′i,j+1 picks yi0, . . . , y
i
j ← {0, 1}n

at random and, instead of picking a random kij+1, it calls its PRF oracle on pA and pB to get kij+2 and

yij+1 and aborts if kij+2 is not fresh. From these outputs, B′′i,j can end the emulation as specified in game
2’. Obviously, we have |Pr[Ei,j ] − Pr[Ei,j+1]| ≤ εF + [(i − 1)(` + 1) + (j + 2)]/2n since B′′i,j+1 runs in time
at most t + qe(tH + 2`tF) which is less than t2 by assumption and where [(i− 1)(` + 1) + (j + 2)]/2n is the
probability that the challenger aborts. (We stress that B′′i,j+1 actually computes at most qe− i hashes/digests
and (qe − i)2`+ 2(`− j)− 2 evaluations of F).

Putting all the probabilities together we find,

|Pr[E0]− Pr[E3]| ≤ |Pr[E0]− Pr[E1]|+ Pr[F1] + Pr[F ′2]

+ Pr[F4] + |Pr[E2]− Pr[E′2]|+ |Pr[E′2]− Pr[E3]|,

where the last term |Pr[E′2]− Pr[E3]| is bounded by

qe∑
i=1

(
|Pr[Ei−1,`]− Pr[Ei,0]|+

`−1∑
j=0

|Pr[Ei,j ]− Pr[Ei,j+1]|
)

≤ qe(`+ 1) · εF +
1

2n
·
qe−1∑
i=0

∑̀
j=0

i(`+ 1) + (j + 1)

so that ε = |Pr[E0]− Pr[E3]| is bounded by

εF∗ + εcr + 2q · εpr + qd · 2−n + qe(qe + 1) · 2−n−1

+ qe(`+ 1) · εF + qe(`+ 1)[qe(`+ 1) + 1] · 2−n−1 ,

which concludes the proof. ut
8 Note that we introduce a dummy ephemeral key ki`+1 which is not used in encryption.
9 Otherwise, the next yij+1 could not be indistinguishably replaced by an independent value since Fki

`+1
(pB) would

already be defined in the adversary’s view.
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B.4 Proof of Theorem 4

Let A be a (q, t)-CIML adversary against DTE making qe + qd ≤ q queries, where qe is the number of
encryption queries and qd the number of decryption queries. We say that the final output ciphertext (τ †, c†)
is the (q+1)-th query of the game. Without loss of generality we assume that any answer to some encryption
query is never sent as a decryption query and conversely. We also assume that the final output is not an
answer to some encryption query, otherwise the adversary looses anyway.

Since we are in the same condition as in the proof of misuse resistant, we name by Ēi the event where
the winning condition of CIML is satisfied which can be viewed as the analogue of Ei with an additional
decryption query: the (q + 1)-th query which is the last of the game. We thus have to focus on proving that
the (q+ 1)-th query is also invalid even when all the ephemeral key k0’s associated to the encryption queries
only are given in Ei.

Let see what happens in E1 where F∗ was replaced by a random function f if f(τ) = k0 was given to
the adversary, where τ = f(H(r‖m)) for the encryption query (r,m). Obviously, k0 gives nothing more since
in E1 the encryption algorithm from k0 is run honestly as in E0. We then get an adversary against F∗ in
Ē1 making at most 2(q + 1) queries since we must count the (q + 1)-th query and running in time bounded
by t + (q + 1)(tH + 2ltF) ≤ t′. Nevertheless, we assume F∗ to be (2q + 2, t′, εF∗)-pseudorandom and we find
|Pr[Ē0]− Pr[Ē1]| ≤ εF∗ .

Likewise with E1, we consider the partition Ē1 ∩ (F̄1 ∪ F̄2) and Ē1 ∩ F̄3, where F̄1 is the analogue of
F1 meaning that collision on associated digests occurs, where F̄2 is an extended version of F2 where some
associated digest H(r,m) = h is equal to some associated τ ′ or to some associated k′′0 (which simply has the
form f(τ ′′) for some associated τ ′′), and where F̄3 is the complement of F̄1 ∪ F̄2. We stress that the fact that
the k0’s associated to encryption queries leak does not affect the emulations made in F1, F2 and F3 since we
remain in the same game. It is now straightforwards that Pr[F̄1] ≤ εcr since we get an adversary against the
(0, t′, εcr)-collision resistance of H running in the time bounded by t′. Moreover, since in F ′2 we already put
targets of the range-oriented preimage resistance of H in place of all the associated tags and the associated
ephemeral key k0’s we also have an adversary here (built from A), for F̄2, asking/receiving at most (2q + 2)
targets and running in time bounded by t′. By assumption on H, we must have Pr[F̄2] ≤ εcr and we are thus
left with bounding Pr[Ē1|F̄3].

We are ready for the last transition from Ē1|F̄3 to Ē2 where we reach the game where all the decryption
queries including the (q + 1)-th one are answered by ⊥. It is straightforward to show that |Pr[Ē1|F̄3] −
Pr[Ē2]| ≤ (q + 1)/2n, which concludes the proof. ut

B.5 Proof of Theorem 5

LetA be a (q, t)-CIML adversary against DCE making qe+qd ≤ q queries, where qe is the number of encryption
queries and qd the number of decryption queries. We have to bound the probability Pr[CIMLDCE,A = 1].
Without loss of generality we assume that any answer to some encryption query is never sent as a decryption
query and conversely. We also assume that the final output is not an answer to some encryption query,
otherwise the adversary looses anyway.

The proof is in the spirit of the proof of Theorem 4 except that A cannot compute H itself: it must
query the random oracle to get h. However, since h is random here, the distribution of F∗k(H(r‖m)) in DCE
is similar to the distribution of F∗k ◦ F∗k(H(r‖m)) in DTE by relying on the pseudorandomness of F∗. Then,
all the ephemeral keys k0 associated to encryption queries are random (See the proof of Theorem 4).

Let us assume that the final output ciphertext (τ †, c†) is the (q+ 1)-th query of the game. Then we only
need to replace q + 1 outputs of F∗k by random values (instead of computing k0’s). By reusing the argument
detailed in the proof of Theorem 4, we obtain that the (q + 1, t′, εF∗)-pseudorandomness of F∗ is sufficient
to bound the gap resulting from this transition by εF∗ : we can easily build an adversary running in time
t+ (q + 1)2ltF ≤ t′, since all the h’s are already random.

The probability that some collision occurs among all the h’s and the k0’s is bounded by 4(q + 1)2/2n.
Therefore, assuming that no collision happens, if a decryption query (h, c) is valid it must be the case that
H(r‖m) returned by the random oracle where r and m are computed during decryption matches h which has
a probability bounded by 1/2n for each query. Thus all the ciphertexts of the encryption queries including
the (q + 1)-th one are invalid except with probability (q + 1)/2n. ut
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B.6 Proof of Theorem 7

We start by defining Game 0 as the PrivKlmcpa,0
AL,DCE

game.

Game 1 is equal to Game 0, except that we abort if, when processing the queries of AL, the same
randomness r is picked twice. The probability of this event is bounded by q2e/|R|.

Game 2 is equal to Game 1, except that we abort if, when processing the queries of AL, a collision happens
on the hash function, that is, it the adversary provides messages m and m′ such that, when performing their
encryption, it happens that H(r|m) = H(r′|m′) (note that r 6= r′, because of the failure condition of Game
1). The gap between Game 2 and Game 1 is bounded by εcr: a collision resistance adversary can run AL and
its LMCPA challenger (in time tc, and using qe + 1 leakage queries), and search for a collision (in time tsc),
placing us within the bounds of the hash function security.

Game 3 is equal to Game 2 except that, for all queries, the challenger replaces the computation of the
key k0 = Fk(h) with the selection of a random key k0

$← B (we assume that this does not increase its
running time). Since the previous failure conditions guarantee that h is always fresh, the gap between Game
3 from Game 2 is bounded by εF: a PRF adversary can run AL and its LMCPA challenger (within (qe +1, tc)
bounds), except that it queries the PRF challenger with all the h values that it computes.

Game 4 is equal to Game 3 except that, during the test query of the LMCPA game, the computation of
H(r‖m0) (and the corresponding leakage) is replaced by the computation of H(r‖m1). Here the probability
of distinguishing Game 4 from Game 3 is bounded by εLH: an adversary against the leakage resilience of H
can run AL and its LMCPA challenger (as tweaked in Game 3, and within (qe + 1, tc) bounds), except that
it hands the computation of h to the leakage resilient hash function challenger during the test query.

Game 5 is equal to Game 4 except that, during the test query of the LMCPA game, the selection of a
random k0 (from Game 3) is replaced by the selection of a random h∗ and the computation of k0 = Fk(h∗).
The gap between Game 5 from Game 4 is bounded by εF: a PRF adversary can run AL and its LMCPA
challenger (within (qe + 1, tc) bounds), except that it queries the PRF challenger with the h∗ value that it
computes.

To sum up, at this stage, AL sees:
– During an encryption query: the expected hash and leakage, and an encryption component encrypting

that hash and leakage, but with a randomly chosen k0 (hence independent of the long-term key k).
– During the test query: the hash and leakage of (r‖m1), followed by a PSV encryption of (r‖m0) with

key k.
The presence of this isolated PSV encryption makes it possible to use the leakage resilient eavesdropper
security of that scheme.

Game 6 is equal to Game 5 except that, during the test query of the LMCPA game, we encrypt (r‖m1)
instead of (r‖m0). The gap between Game 6 and Game 5 is bounded by εeavPSV−ENC, since we can build an

EAV adversary running AL and the LMCPA challenger (within (qe + 1, tc) bounds), except that it hands the
two messages (r‖m0) and (r‖m1) to the leavchallenger and returns the corresponding ciphertext to AL.

Game 7 now hops to the PrivKlmcpa,1
AL,DCE

game by undoing most of the hops that we made before, introducing
the same gaps again, but keeping m1 in place:
– We go back to a uniformly random k0 by undoing the Game 4-5 transform.
– We go back to the selection of random k0’s everywhere to the use of a PRF as in the Game 2-3 transform.
– We stop aborting if the same randomness r is picked twice or if a collision happens in the hash function,

as in the Game 0-2 transforms.
To sum-up we observe that the total gap introduced by our sequence of games is bounded by 2 qe

|R| +

2εcr +4εF +εLH
+εeavPSV−ENC. Besides, none of our reductions requires more leakage function queries than those

needed to run the LMCPA challenger, and time more than the one needed to run that challenger and look
for a collision in the outputs of the evaluation of the hash function that result from answering the adversary’s
queries in the LMCPA game (in Game 2). ut

B.7 Proof of Theorem 8

We only detail the steps that differ from the proof of Thm. 7.
We split Game 3 into two steps, in order to be able to replace the tag τ and key k0 values with random

values. In the first step, we replace Fk with a random function f , bringing an εF gap as before. In the second
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step, we replace the evaluation of f by the selection of random values, which is only equivalent if f is never
queried on the same value twice. This is actually the case, except with probability less than 4(qe + 1)2/|B|.
Indeed: a collision between two hashes is precluded by Games 1 and 2; a collision between two τ values can
only happen with probability bounded by (qe + 1)2/|B| (this upper-bounds the probability of a collision in
the range of f invoked on distinct values); and a collision between a hash and a τ value is also bounded by
by (qe + 1)2/|B| (the τ ’s a selected at random by f , and each of them will collide with one of the qe + 1
distinct hashes with probability (qe + 1)/B.

In a similar way, we add a step in Game 7, in order to revert the transform above, bringing a second
2(qe + 1)2/|B| gap. ut
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