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Abstract

Security architectures such as Intel SGX need protec-
tion against rollback attacks, where the adversary vio-
lates the integrity of a protected application state by re-
playing old persistently stored data or by starting mul-
tiple application instances. Successful rollback attacks
have serious consequences on applications such as finan-
cial services. In this paper, we propose a new approach
for rollback protection on SGX. The intuition behind
our approach is simple. A single platform cannot effi-
ciently prevent rollback, but in many practical scenarios,
multiple processors can be enrolled to assist each other.
We design and implement a rollback protection system
called ROTE that realizes integrity protection as a dis-
tributed system. We construct a model that captures ad-
versarial ability to schedule enclave execution and show
that our solution achieves a strong security property: the
only way to violate integrity is to reset all participat-
ing platforms to their initial state. We implement ROTE
and demonstrate that distributed rollback protection can
provide significantly better performance than previously
known solutions based on local non-volatile memory.

1 Introduction

Intel Software Guard Extensions (SGX) enables ex-
ecution of security-critical application code, called en-
claves, in isolation from the untrusted system software
[1]. Protections in the processor ensure that a malicious
OS cannot read or modify enclave memory at runtime.
To protect enclave data across executions, SGX provides
a security mechanism called sealing that allows each en-
clave to encrypt and authenticate data for persistent stor-
age. SGX-enabled processors are equipped with certified
cryptographic keys that can issue remotely verifiable az-
testation statements on the software configuration of en-
claves. Through these security mechanisms (isolation,
sealing, attestation) SGX enables development of various
applications and online services with hardened security.

The architecture has also its limitations. While sealing
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prevents a malicious OS from reading or arbitrarily mod-
ifying persistently stored enclave data, rollback attacks
[2, 3, 4, 1] remain a threat. In a rollback attack a mali-
cious OS replaces the latest sealed data with an older en-
crypted and authenticated version. Enclaves cannot eas-
ily detect this replay, because the processor is unable to
maintain persistent state across enclave executions that
may include platform reboots. Another way to violate
state integrity is to create two instances of the same en-
clave and route update requests to one instance and read
requests to the other. To remote clients that perform at-
testation, the instances are indistinguishable.

Data integrity violation through rollback attacks can
have severe implications. Consider, for example, a fi-
nancial application implemented as an enclave. The en-
clave repeatedly processes incoming transactions at high
speed and maintains an account balance for each user or
a history of all transactions in the system. If the adver-
sary manages to revert the enclave to its previous state,
the maintained account balance or the queried transac-
tion history does not match the executed transactions.

To address rollback attacks, two basic approaches are
known. The first is to store the persistent state of enclaves
in a non-volatile memory element on the same platform.
The SGX architecture was recently updated to support
monotonic counters that leverage non-volatile memory
[5S]. However, the security guarantees and the perfor-
mance limits of this mechanism are not precisely doc-
umented. Our experiments show that writes of counter
values to this memory are slow (80-250 ms), which lim-
its its use in high-throughput applications. More impor-
tantly, this memory allows only a limited number of write
operations. We show that this limit is reached within just
few days of continuous system use after which the mem-
ory becomes unusable. Similar limitations also apply to
rollback protection techniques that leverage Trusted Plat-
form Modules (TPMs) [2, 4, 3].

The second common approach is to maintain in-
tegrity information for protected applications in a sep-



arate trusted server [6, 7, 8]. The drawback of such
solutions is that the server becomes an obvious target
for attacks. Server replication using standard Byzantine
consensus protocols [9] avoids a single point of failure,
but requires high communication overhead and multiple
replicas for each faulty node.

In this paper we propose a new approach to protect
SGX enclaves from rollback attacks. The intuition be-
hind our solution is simple. A single SGX platform
cannot prevent rollback attacks efficiently, but in many
practical scenarios the owner or the owners of proces-
sors can assign multiple processors to assist each other.
Our approach realizes rollback protection as a distributed
system. When an enclave updates its state, it stores a
counter to a set of enclaves running on assisting proces-
sors. Later, when the enclave needs to recover its state, it
obtains counter values from assisting enclaves to verify
that the recovered state data is of the latest version.

We consider a powerful adversary that controls the OS
on the target platform and on any of the assisting plat-
forms. Additionally, we even assume that the adversary
can break SGX protections on some of the assisting pro-
cessors and control all network communication between
the platforms. Our adversary model combines commonly
considered network control based on the standard Dolev-
Yao model [10] and Byzantine faults [11, 12], but addi-
tionally captures the the ability of the adversary to restart
trusted processes from a previously saved state and to run
multiple instances of the same trusted process. Such ad-
versarial capabilities are crucial for the security analysis
of our system, and we believe that the model is of gen-
eral interest. In fact, using our model we found potential
vulnerabilities in recent SGX systems [3, 13, 14].

Secure and practical realization of distributed roll-
back protection under such a strong adversarial model
involves several challenges. One of the main challenges
is that when an assisting enclave receives a counter, its
own state changes, which implies a set of new state up-
dates that would in turn propagate. To prevent endless
update propagation, the counter value must be stored in
the volatile runtime memory of enclaves. However, the
assisting enclaves may be restarted at any time. More-
over, the adversary can also create multiple instances
of the same enclave on all assisting platforms and route
counter writes and reads to separate instances.

We design and implement a rollback protection sys-
tem called ROTE (Rollback Protection for Trusted Ex-
ecution). The main components of our solution are a
state update mechanism that is an optimized version of
consistent broadcast protocols [15, 16], and a recovery
mechanism that obtains lost counters from the rest of the
protection group upon enclave restart. We also design a
session key update mechanism to address attacks based
on multiple enclave instances.

Our solution achieves a strong security property that
we call all-or-nothing rollback. Although the attacker
can restart enclaves freely, and thus implement subtle at-
tacks where enclave state updates and recovery are inter-
leaved, the adversary cannot roll back any single enclave
to its previous state. The only way to violate data in-
tegrity is to reset the entire group to its initial state. If
desired, similar to [4, 2], our approach can also provide
crash resilience, assuming deterministic enclaves and a
slightly weaker notion of rollback prevention (the latest
input can be executed twice).

We implemented ROTE on SGX and evaluated its
performance on four SGX machines. We tested larger
groups of up to 20 platforms using a simulated imple-
mentation over a local network and geographically dis-
tributed enclaves. Our evaluation shows that state up-
dates in ROTE can be very fast (1-2 ms). The number
of counter increments is unlimited. This is in contrast
to solutions based on SGX counters and TPMs, where
state updates are approximately 100 times slower and
limited. Compared to Byzantine consensus protocols,
our approach requires significantly fewer replicas (f + 1
instead of the standard 3 f + 1). Enclave developers can
use our system through a simple API. The ROTE TCB
increment is moderate (1100 LoC).

Contributions. We make the following contributions.

e New security model. We introduce a new security
model for reasoning about the integrity and freshness of
SGX applications. Using the model we identified poten-
tial security weaknesses in existing SGX systems.

o SGX counter experiments. We show that SGX coun-
ters have severe performance limitations.

e Novel approach. We propose a novel way to pro-
tect SGX enclaves. Our main idea is to realize roll-
back protection by storing enclave-specific counters in
a distributed system of collaborative enclaves on distinct
nodes.

e ROTE. We propose and implement a system called
ROTE that effectively protects against rollback attacks.
ROTE ensures integrity and freshness of application data
in a powerful adversarial model.

o Experimental evaluation. We demonstrate that dis-
tributed rollback protection incurs only a small perfor-
mance overhead. When deployed over a low-latency net-
work, the state update overhead is only 1-2 ms.

The rest of this paper is organized as follows. Sec-
tion 2 explains models and rollbacks attacks. Section 3
describes our approach. Section 4 describes the ROTE
system and Section 5 provides security analysis. Sec-
tion 6 provides performance evaluation and Section 7
further discussion. We review related work in Section 8.
Section 9 concludes the paper.
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Figure 1: Modeled SGX operations.
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2 Problem Statement

In this section we define models for the SGX architec-
ture and the adversary. After that, we explain rollback
attacks, limitations of known solutions, and our require-
ments. Appendix A provides a summary of the SGX ar-
chitecture for readers that are not familiar with it.

2.1 SGX Model

Figure 1 illustrates our SGX model. We model en-
claves and the operating system, their main functional-
ity, and the operations through which they interact. Our
model captures the main SGX functionalities that are
available on all SGX platforms.

Scheduling operations. Enclave execution is sched-
uled by the OS.

e ¢ < Create(code). The system software running on
the OS can create an enclave by providing its code. The
SGX architecture creates a unique enclave identifier e
that is defined by the code measurement.

e |+ Start(e). The system software can start a cre-
ated enclave using its enclave identifier e. The enclave
generates a random and unique instance identifier i for
the enclave instance that executes the code that was as-
signed to it during creation. While an enclave instance
is running, the OS and other enclaves are isolated from
its runtime memory. Each enclave instance has its own
program counter and runtime memory.

e Suspend(i) and Resume(i). The OS can suspend the
execution of an enclave. When an enclave is suspended,
its program counter and runtime memory retain their val-
ues. The OS can resume suspended enclave execution.

e Terminate(i). The OS can terminate the enclave ex-
ecution. At termination, the enclave runtime memory is
erased by the SGX architecture and the enclave instance
i is rendered unusable.

Storage operations. The second set of operations is
related to sealing data for local persistent storage.

e 5 Seal(data). An enclave can save data for local
persistent storage. This operation creates an encrypted,
authenticated data structure s that is passed to the OS.

e OfferSeal(i,s). The OS can offer sealed data s. The
enclave can verify that it previously created the seal,

but the enclave cannot distinguish which seal is the lat-
est. Every enclave instance i can unseal data previously
sealed by an instance of the same enclave identity e.

Communication operations. Due to attestation, a
client can write data such that only a particular enclave
can read it. The client can read data from an enclave and
verify which enclave wrote it. We model these primi-
tives as single operations that can be called from the same
or remote platform, although attestation is an interactive
protocol between the enclave and client.

e Write(m,i). The OS can write message m, to an en-
clave instance i. Only an enclave with enclave identity e
can read the written message m1,.

e m, < Read(i). The OS can read message m, from an
enclave instance i. The read message m, identifies the
enclave identity e that wrote the data.

Note that remote attestation identifies the enclave
identity, but not the platform identity, because the at-
testation protocol is either anonymous or returns client-
specific pseudonyms (see Appendix A for details). In
local attestation the platform is implicitly known.

We do not model platform reboots, as those have the
same effect as enclave restarts. Our model assumes that
the runtime memory of each enclave instance is perfectly
isolated from the untrusted OS and other enclaves. We
consider information leakage from side-channel attacks
a realistic threat [17, 18, 19], but an orthogonal problem
to rollback attacks, and thus outside of our model.

2.2 Local Adversary Model

We consider a powerful adversary who, after an ini-
tial trusted setup phase, controls all system software on
the target platform, including the OS. Based on the SGX
model, the adversary can schedule enclaves and start
multiple instances of the same enclave, offer the latest
and previous versions of sealed data, and block, delay,
read and modify all messages sent by the enclaves.

The adversary cannot read or modify the enclave run-
time memory or learn any information about the se-
crets held in enclave data. The adversary has no ac-
cess to processor-specific keys, such as the sealing key
or the attestation key, and the adversary cannot break
cryptographic primitives provided by the SGX architec-
ture. The enclaves may also implement additional cryp-
tographic operations that the adversary cannot break.

The adversarial capabilities that we identified as part
of the model can be critical for many SGX systems. The
ability to schedule, restart and create multiple enclave
instances, enables subtle attacks that we address in this
paper. We analyzed SGX systems using this model and
found vulnerabilities that can be addressed through the
techniques developed in this paper. These findings are
reported in Appendix D.



2.3 Rollback Attacks

The goal of the adversary is to violate the integrity of
the enclave’s state. This is possible with a simple roll-
back attack. After an enclave has sealed at least two
data elements s1 < Seal(d;) and s < Seal(ds), the ad-
versary performs Terminate () and Start() to erase the
runtime memory of the enclave. When the enclave re-
quests for the latest sealed data d;, the adversary per-
forms 0fferSeal(i,s;) and the enclave accepts d; as d».
When the sealed data captures the state of the enclave at
the time of sealing, we say that the rollback attack reverts
the enclave back to its previous state.

Another approach is a forking attack, where the
adversary leverages two concurrently running enclave
instances. The adversary starts two instances ij <—
Start(e) and iy « Start(e) of the same enclave e. The
OS receives a request from a remote client to write data
m, to enclave e. The OS writes the data to the first en-
clave instance Write(m,, ;) which causes a state change.
Another remote client sends a request to read data from
the enclave e. The OS reads data from the second in-
stance m, < Read(iy) which has an outdated state and
returns m, to the client. The SGX architecture does not
enable one enclave instance to check if another instance
of the same enclave code is already running [20].

Such attacks can have severe implications, especially
for applications that maintain financial data, such as ac-
count balances or transaction histories.

2.4 Limitations of Known Solutions

SGX counters. Intel has recently added support for
monotonic counters [5] as an optional SGX feature that
an enclave developer may use for rollback attack pro-
tection, when available. However, the security and per-
formance properties of this mechanism are not precisely
documented. We performed a detailed analysis of SGX
counters and report our findings in Appendix B.

To summarize, we found out that counter updates take
80-250 ms and reads 60-140 ms. The non-volatile mem-
ory used to implement the counter wears out after ap-
proximately one million writes, making the counter func-
tionality unusable after a couple of days of continuous
use. Thus, SGX counters are unsuitable for systems
where state updates are frequent and continuous. Ad-
ditionally, since the non-volatile memory used to store
the counters resides outside the processor package, the
mechanism is likely vulnerable to bus tapping and flash
mirroring attacks [21] (see Appendix B for details).

TPM solutions. TPMs provide monotonic counters
and NVRAM that can be used to prevent rollback attacks
[4, 3, 2]. The TPM counter interface is rate-limited (typ-
ically one increment every 5 seconds) to prevent mem-
ory wear out.! Writing to NVRAM takes approximately

I"The TPM 2.0 specifications introduce high-endurance non-volatile

100 ms and the memory becomes unusable after 300K to
1.4M writes (few days of continuous use) [2]. Thus, also
TPM based solutions are unsuitable for applications that
require fast and continuous updates.

Integrity servers. Another approach is to leverage a
trusted server to maintain state for protected applications
[6, 7, 8]. The drawback of this approach is that the cen-
tralized integrity server becomes an obvious target for
attacks. To eliminate a single point of failure, the in-
tegrity server could be replicated using a Byzantine con-
sensus mechanism. However, standard consensus proto-
cols, such as PBFT [9], require several rounds of com-
munication, have high message complexity, and require
at least three replicas for each faulty node.

Architecture modifications. Finally, the SGX archi-
tecture could be modified such that the untrusted OS can-
not erase the enclave runtime memory. However, this ap-
proach would prevent the OS from performing resource
management and would not scale to many enclaves. Ad-
ditionally, rollback attacks through forced reboots and
multiple enclave instances would remain possible. An-
other approach would be to enhance the processor with
a non-volatile memory element. Such changes are costly
and current NVRAM technologies have the performance
limitations we discussed above.

2.5 Rollback Protection Requirements

The goal of our work is to design a rollback protection
mechanism that overcomes the performance and security
limitations of SGX counters and other known solutions.
In particular, our solution should support unlimited and
fast state updates, considering a strong adversary model
without a single point of failure. When there is a trade-
off between security and robustness, we favor security.

3 Our Approach

The intuition behind our approach is that a single SGX
platform cannot efficiently prevent rollback attacks, but
the owner or the owners of SGX platforms can enroll
multiple processors to assist each other. Thus, our goal
is to design rollback protection for SGX as a distributed
system between multiple enclaves running on separate
processors. Our distributed system is customized for the
task of rollback protection to reduce the number of re-
quired replicas and communication.

To realize rollback protection, the distributed system
should provide, for each participating platform, an ab-

memory that enables rapidly incremented counters [22]. The counter
value is maintained in RAM and the value is flushed to non-volatile
memory periodically (e.g., mod 100) and at controlled system shut-
down. However, if the system is rebooted without calling TPM Shut-
down, the counter value is lost and at start-up the TPM assumes the
next periodic value. Therefore, such counters do not prevent attacks
where the adversary reboots the system.



straction of a secure counter storage that consists of two
operations:

e WriteCounter(value). An enclave can use this opera-
tion to write a counter value to the secure storage.”

e value/empty < ReadCounter (). An enclave can use
this operation to read a counter value from the secure
storage. The operation returns the last written value or
an empty value if no counter was previously written.

When an enclave performs a security-critical state up-
date operation (e.g., modifies an account balance or ex-
tends a transaction history), it distributes a monotonically
increasing counter value over the network to a set of en-
claves running on assisting processors (WriteCounter),
stores the counter value to its runtime memory and seals
its state together with the counter value for local persis-
tent storage. When the enclave is restarted, it can recover
its latest state by unsealing the saved data, obtaining the
counter values from enclaves on the assisting processors
(ReadCounter) and verifying that the sealed state is of
the latest version. The same technique allows potentially
concurrently running instances of the same enclave iden-
tity to determine that they have the latest state. When
an enclave needs to verify its state freshness (e.g., upon
receiving a request to return the current account balance
or transaction history to a remote client), it obtains the
counter value from the network (ReadCounter) and com-
pares it to the one in its runtime memory. By using en-
claves on the assisting platforms, we reduce the required
trust assumptions on the assisting platforms.

3.1 Distributed Model

We use the term rarget platform to refer to the node
which performs state updates that require rollback pro-
tection. We assume n SGX platforms that assist the tar-
get platform in rollback protection The platforms can be-
long to a single administrative domain or they could be
owned by private individuals who all benefit from col-
laborative rollback protection. We model each platform
using the SGX model described in Section 2.1. The dis-
tributed system can be seen as a composition of n+ 1
SGX instances (target platform included) that are con-
nected over a network. We make no assumptions about
the reliability of the communication network, messages
may be delayed or lost completely. We assume that while
participating in collaborative rollback protection, some
platforms may be temporarily down or unreachable.

Distributed adversary model. On each platform, the
adversary has the capabilities listed in Section 2.2. Ad-
ditionally, we assume that the adversary can compromise

2We use counter write abstraction instead of counter increment, be-
cause our distributed secure storage implementation allows writing of
any counter value to the storage. However, the ROTE system only per-
forms monotonic counter increments using this functionality.

the SGX protections on f < n participating nodes, ex-
cluding the target platform. Such compromise is possi-
ble, e.g., through physical attacks. On the compromised
SGX nodes the adversary can freely modify the runtime
memory (code and data) of any enclave, and read all en-
clave secrets and the SGX processor keys.

This adversarial model combines a standard Dolev-
Yao network adversary [10] with adversarial behaviour
(Byzantine faults) on a subset of participating platforms
[11, 12]. In addition, the adversary can schedule the ex-
ecution of trusted processes, replay old versions of per-
sistently stored data, and start multiple instances of the
same trusted process on the same platform. In Section 5
we explain subtle attacks enabled by such additional ad-
versarial capabilities.

3.2 Challenges

Secure and practical realization of our approach under
a strong adversarial model involves challenges.

Network partitioning. A simple solution would be
to store a counter with all the assisting enclaves, and at
the time of unsealing require that the counter value is ob-
tained from all assisting enclaves. However, if one of the
platforms is unreachable at the time of unsealing (e.g.,
due to network error, maintenance or reboot), the opera-
tion would fail. Our goal is to design a system that can
proceed even if some of the participating enclaves are
unreachable. In such a system, some of the assisting en-
claves may have outdated counter values, and the system
must ensure that only the latest counter value is ever re-
covered, assuming an adversary that can block messages,
and partition the network by choosing which nodes are
reachable at any given time.

Coordinated enclave restarts. When an enclave seals
data, it sends a counter value to a set of enclaves running
on assisting platforms and each enclave must store the
received counter. However, sealing the received counter
for persistent storage would cause a new state update that
would propagate endlessly. Therefore, the enclaves must
maintain the received counters in their runtime memory.
The participating enclaves may be restarted at any time,
which causes them to lose their runtime memory. Thus,
the rollback protection system must provide a recovery
mechanism that allows the assisting enclaves to restore
the lost counters from the other assisting enclaves. Such
a recovery mechanism opens up a new attack vector.
The adversary can launch coordinated attacks where he
restarts assisting enclaves to trigger recovery while the
target platform is distributing its current counter value.

Multiple enclave instances. Simple approaches that
store a counter to a number of assisting enclaves and later
read the counter from sufficiently many of the same en-
claves are vulnerable to attacks where the adversary cre-
ates multiple instances of the same enclave. Assume that



a counter is saved to the runtime memory of all assist-
ing enclaves. The adversary that controls the OS on all
assisting platforms starts second instances of the same
enclave on all platforms. The target enclave updates its
state and sends an incremented counter to the second in-
stances. Later, the target enclave obtains an old counter
value from the first instances and recovers a previous
state from the persistent storage.

4 ROTE System

In this section we describe ROTE (Rollback Protec-
tion for Trusted Execution), a distributed system for state
integrity and rollback protection on SGX. We explain
the counter increment technique, our system architec-
ture, group assignment and system initialization. After
that, we describe the rollback protection protocols.

4.1 Counter Increment Technique

Two common techniques for counter-based rollback
protection exist. The first technique is inc-then-store,
where the enclave first increments the trusted counter and
after that updates its internal state and stores the sealed
state together with the counter value on disk. This ap-
proach provides a strong security property (no rollback
to any previous state), but if the enclave crashes between
the increment and store operations, the system cannot re-
cover from the crash.

The second technique is store-then-inc, where the en-
clave first saves its state on the disk together with the lat-
est input value, after that increments the trusted counter,
and finally performs the state update [4, 2]. If the sys-
tem crashes, it can recover from the previous state using
the saved input. This technique requires a deterministic
enclave and provides a slightly weaker security property:
arbitrary rollback is not possible, but the last input may
be executed twice on the same enclave state [2].

The stronger security guarantee is needed, for exam-
ple, in enclaves that generate random numbers, commu-
nicate with external parties or create timestamps. Con-
sider a financial enclave that receives a request message
from an external party and for each request it should
create only one signed response that is randomized or
includes a timestamp (sgx-get_trusted_time [23]). If
store-then-inc is used, the adversary can create multiple
different signed responses for the same request.’

The weaker security guarantee is sufficient in applica-
tions where the execution of the same input on the same
state provides no advantage for the adversary.

3While some enclaves that require random numbers can be made
deterministic by using a stateful PRNG and including its state to the
saved enclave state, this may be difficult for enclaves that reuse code
from existing libraries not designed for this. Similarly, some replay
issues can be addressed on the protocol level, but enclave developers
do not always have the freedom to change (standardized) protocols.
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3™ Party Development

ASE,; ASE,;
R Platform B

ROTE lib ROTE lib

os ml

Figure 2: The ROTE system architecture.

In this paper we instantiate ROTE using inc-then-store,
because of its strong security guarantee for any enclave.
Our goal is to build a generic platform service that can
protect various applications. We emphasize that if crash
tolerance is required, then store-then-inc should be used.
A rollback protection system could even support both
counter increment techniques and allow developers to
choose the protection style based on their application.

4.2 System Architecture

Figure 2 shows our system architecture. Each platform
may run multiple user applications that have a matching
Application-Specific Enclave (ASE). The ROTE system
consists of a system service that we call the Rollback
Enclave (RE) and a ROTE library that ASEs can use for
rollback protection.

When an ASE needs to update its state, it calls a
counter increment function from the ROTE library. Once
the RE returns a counter value, the ASE can safely up-
date its state, save the counter value to its memory and
seal any data together with the counter value. When an
ASE needs to verify the freshness of its state, it can again
call a function from the ROTE library to obtain the latest
counter value to verify the freshness of unsealed seal data
(or state in its runtime memory).

The RE maintains a Monotonic Counter (MC), in-
creases it for every ASE update, distributes it to REs
running on assisting platforms, and includes the counter
value to its own sealed data. When the RE needs to
verify the freshness of its own state, it obtains the latest
counter value from the assisting nodes. The RE realizes
the secure counter storage functionality (WriteCounter
and ReadCounter) described in Section 3.

The design choice of introducing a dedicated system
service (RE) hides the distributed counter maintenance
from the applications. Having a separate RE increases
the TCB of our system slightly, but we consider easier
application development more important.

The ROTE system has three configurable parameters:
e 7 is the number of assisting platforms,

e fis the number of compromised processors, and

e y is the maximum number of assisting platforms that
can be unreachable or non-responsive at time of state up-
date or read for the system to proceed. Platform restarts

are typically less frequent events and during them we re-
quire all the assisting platforms to be responsive.
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Figure 3: The ROTE system state structures.

These parameters have a dependency n = f+2u+ 1
(see Section 5). As an example, a system administrator
can select the desired level of security f and robustness
u which together determine the required number of as-
sisting platforms n. Alternatively, given n assisting plat-
forms, the administrator can pick f and u. Recall that
standard Byzantine consensus protocols require always
at least 3/ + 1 replicas.

To avoid shared-fate scenarios due to power outages
or communication blockades, the participating platforms
would ideally have independent or redundant power sup-
ply, battery backup, networking and OS maintenance.

4.3 System Initialization

Our system is agnostic to the way the n assisting SGX
platforms are chosen. Here we explain an example ap-
proach based on a trusted offline authority. Such group
assignment is practical when all assisting platforms be-
long to a single administrative domain (e.g., multiple
servers in the same data center). We call the trusted au-
thority that selects the assisting nodes the group owner.
The group owner can be a fully offline entity to reduce its
attack surface. To establish a protection group, the group
owner selects n platforms.

In this section, we assume that the operating systems
on these platforms are trusted at the time of system ini-
tialization (e.g., freshly installed OS). Note that although
SGX supports remote attestation, this assumption is re-
quired, if the group needs to be established among pre-
defined platforms. The SGX attestation is anonymous
(or pseudonymous) and therefore it does not identify the
attested platform. If the application scenario allows that
the protection group can be established among any SGX
platforms, then system initialization is possible without
initially trusted operating systems using remote attesta-
tion. We discuss such group setup alternatives in Sec-
tion 4.7.

During its first execution, the RE on each platform
generates an asymmetric key pair SKgg /PKgg, and ex-
ports the public key. The public keys are delivered to the
group owner securely, and the owner issues a certificate
by signing all group member keys. The group certificate
can be verified by the RE on each selected platform by
hard-coding the public key of the group owner to the RE
implementation.
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Figure 4: The ASE state update protocol.

The RE is started a second time with the certified list
of public keys and a secret initialization key as input pa-
rameters. The purpose of this secret key for initialization
is to indicate a legitimate group establishment operation
and to prevent a later, parallel group creation by compro-
mised operating systems on the same certified platforms
(see Section 5). The initialization key is hard coded to
the RE implementation in hashed format and the RE ver-
ifies the correctness of the provided key by hashing it.
Without the correct key, the RE aborts initialization. The
RE saves the list of certified public keys PKgg; to a group
configuration table and runs an authenticated key agree-
ment protocol to establish pair-wise session keys kgrg;
with all REs, and adds them to the group configuration
table. Finally, the RE creates a monotonic counter (MC),
sets it to zero, and seals its state.

When an ASE wants to use the ROTE system for the
first time, it performs local attestation on the RE. The
code measurement of the RE can be hard-coded to the
ASE implementation or provisioned by the ASE devel-
oper. The ASE runs an authenticated key establishment
protocol with the RE. The RE adds the established shared
key kasgi to a local ASE counter table together with a lo-
cally unique enclave identifier idssr; and adds the same
key to its own state. The used state structures are shown
in Figure 3.

4.4 ASE State Update Protocol

When an ASE is ready to update its state (e.g., a fi-
nancial application has received a new transaction and
is ready to process it and update the maintained account
balances), it starts the state update protocol shown in Fig-
ure 4. This protocol can be seen as a customized version
of the Echo broadcast [15], as discussed in Section 8.
The communication between the enclaves is encrypted
and authenticated using the shared session keys in all of
our protocols. We add nonces and end point identifiers



to each message to prevent message replay. The protocol
proceeds as follows:

(1) The ASE triggers a counter increment using the RE.

(2) The RE increments a counter for the ASE, increases
its own MC, and signs the MC using SKrg. The counter
is signed to preserve its integrity in the case of compro-
mised assisting REs.

(3) The RE sends the signed counter to all REs in the
protection group.

(4) Upon receiving the signed MC, each RE updates its
group counter table. The table is kept in the runtime
memory, and not sealed after every update, to avoid end-
less propagation.

(5) The REs that received the counter send an echo mes-
sage that contains the received signed MC. The REs also
save the echo in runtime memory for later comparison.

(6) After receiving a quorum g =u+ f+1 = #
echos, the RE returns the echos to their senders.* The
second round of communication is needed to prevent at-
tacks based on RE restarts during the update protocol.

(7) Upon receiving back the echo, each RE finds the
self-sent echo in its memory and checks if the MC value
from it matches the one in the group counter table and
the one received from the target RE. If this is the case,
the RE replies with a final ACK message.

(8) After receiving ¢ final ACKs, the RE seals its own
state together with the MC value to the disk.

(9) The RE returns the incremented ASE counter value.
The ASE can now safely perform the state update (e.g.,
update account balance), save the counter value to its
runtime memory for later comparison, and seal its state
with the counter.

4.5 RE Restart Protocol

Figure 5 shows the protocol that the RE runs after a
restart. The goal of the protocol is to allow the RE to join
the existing protection group, retrieve its counter value
and the MC values of the other nodes.

At restart the RE loses all previously established ses-
sion keys and has to establish new session keys. In order
to preserve our security guarantees, the target RE waits
until it establishes new session keys with all other REs re-
siding in the protection group. All assisting REs update
their group configuration tables accordingly. The session
key refresh mechanism prevents nodes from communi-
cating with multiple RE instances on one platform (see
Section 5). Another condition for successfully joining

“It might seem that waiting for more than g responses, and therefore
allowing more than ¢ nodes to complete the protocol, would increase
system robustness. However, the quorum is designed such that writing
the latest counter to more than ¢ nodes does not help the system to
proceed in case of node unavailability or restarts (see Section 5).
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Figure 5: The RE restart protocol.

the protection group is that sufficiently many nodes re-
turn non-zero counter values (step 6 below). This check
prevents simultaneously restarted REs from establishing
a second, parallel protection group. This guarantee can
be maintained when at most u nodes restart simultane-
ously. The protocol proceeds as follows:

(1) Session key establishment with other nodes and up-
date of the group configuration table.

(2) The RE queries the OS for the sealed state.

(3) The RE unseals the state (if received) and extracts
the MC.

(4) The RE sends a request to all other REs in the pro-
tection group to retrieve its MC.

(5) The assisting REs check their group counter table. If
the MC is found, the enclaves reply with the signed MC.
Additionally, the complete table of other signed MCs that
the responding node has in its memory is sent to the tar-
get RE.

(6) When the RE receives g responses from the group
(recall that ¢ = u+ f+ 1 and ¢ > n/2), it selects the
maximum value and verifies the signature. We select the
maximum value because some REs might have an old
counter value or they may have purposefully sent one.
The target RE verifies signatures and compares all the
group counter table entries with received values for other
nodes. For each assisting RE, the target RE picks the
highest MC and updates its own group counter table with
the value. The RE also verifies that at least f + 1 of the
received counter values are not zero to prevent creation
of the parallel network. If the obtained counter value
matches the one in the unsealed data, the unsealed state
can be accepted.

(7) The RE stores and seals the updated state. The RE
will also save the counter value to its runtime memory.

The RE now has an updated group counter table that
reflects the latest counters for each node in the group.
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4.6 ASE Start/Read Protocol

When an ASE needs to verify the freshness of its
state, it performs the protocol shown in Figure 6. This
is needed to verify the freshness of unsealed state after
an ASE restart or when an ASE replies to a client request
asking its current state (e.g., account balance). The ASE
must verify that another ASE instance does not have a
newer state. The protocol proceeds as follows:

(1) The ASE queries the OS for the sealed data.

(2) The ASE unseals the state (if received) and obtains
a counter value from it.

(3) The ASE issues a request to the local RE to retrieve
its latest ASE counter value.

(4) To verify the freshness of its runtime state, the RE
performs the steps 4-6 from the RE Restart protocol, to
obtain the latest MC from the network. This is needed
to prevent forking attacks with multiple RE instances. If
the obtained MC does not match the MC residing in the
memory, the state of the RE is not the latest, so, the RE
must abort and be restarted. This is an indication that an-
other instance of the same RE was running and updated
the state in the meantime. If the values match, the current
data is fresh and the RE can continue normal operation.

(5) If all verification checks are successful, the RE re-
turns a value from the local ASE counter table.

(6) The ASE compares the received counter value to the
one obtained from the sealed data.

If the counters match, ASE loads the previously sealed
state or completes a security-critical client request.

4.7 Group Management

Group updates. The group owner issues a signed
list of public parts of the public-private key pairs gener-
ated by each Rollback Enclave that define the protection
group. Assume that later one or more processors in the
group are found compromised or need replacement. The
group owner should be able to update the previously es-
tablished group (i.e., exclude or add new nodes) without
interrupting the system operation.

During system initialization, the RE verifies the signed
list of group member keys and seals the group configu-

ration. When a group update is needed, the group owner
issues an updated list that will be processed and sealed
by the RE. This approach does not require the entry of
the secret initialization key such as in first group estab-
lishment. However, the adversary should not be able to
revert the group to its previous configuration (e.g., one
including compromised nodes) by re-playing the previ-
ous group configuration. Since group updates are typ-
ically infrequent, they can be protected using SGX or
TPM counters.

At system initialization, the RE creates a monotonic
counter using SGX counter service or on a local TPM.
If this is done using TPM, establishing a shared secret
with the TPM (see session authorization in [22]) is nec-
essary. The group owner includes a version number to
every issued group configuration. When the RE pro-
cesses the signed list, it increments the SGX or TPM
counter to match the group version, and includes the ver-
sion number in the sealed data. For every group update,
the RE increments either of these counters. When the
RE is restarted, it verifies that the version number in the
unsealed group configuration matches the counter. The
NVRAM memory in TPMs is expected to support ap-
proximately 100K write cycles, while with SGX coun-
ters support approximately 1M cycles, sufficient for most
group management needs. For example, if group updates
are issued once a week, the NVRAM would last 2000
years using TPMs and 20000 year using SGX counters.

Group setup with attestation. In Section 4.3 we de-
scribed group setup for pre-defined platforms. The draw-
back of this approach is that it requires trusted operat-
ing systems at initialization. If the application scenario
allows group establishment among any SGX platforms,
similar trust assumption is not needed. The group owner
can attest n 4+ 1 group members using the attestation
mode that returns a pseudonym for each attested plat-
form, establish secure channels to all group members,
and distribute keys that group members use to authenti-
cate each other. Because each platform reports a different
pseudonym, this process guarantees that the protection
group consists of n+ 1 separate platforms in contrast to
multiple instances on one compromised CPU.

5 Security Analysis

Our system is designed to provide the following secu-
rity property: an ASE cannot be rolled back to a previ-
ous state. In Section 5.1 we first show that given a se-
cure storage functionality, as defined in Section 3, an RE
can verify that its state is the latest. After that, in Sec-
tion 5.2, we show that the participating REs realize the
secure counter storage as a distributed system. Finally,
by putting these two together, we show that ASEs cannot
be rolled back if the RE cannot be rolled back.

Our system achieves a security guarantee that we call
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Figure 7: Transition diagram showing enclave execution
states using an ideal secure counter storage functionality.

all-or-nothing rollback. The only way to violate enclave
data integrity is to reset all nodes which brings the entire
group to its initial state. In many application scenarios
such integrity violation is easy to detect, and we do not
consider it an attack on ROTE.

In the event of crashes, restarts or node unavailabil-
ity, the system may fail to proceed temporarily or perma-
nently. We distinguish three such cases: Halt-1 where
the system may be able to proceed automatically by sim-
ply trying again later (e.g., temporary network issue);
Halt-2 where manual intervention from the system ad-
ministrator is needed (e.g., faulty node that needs to be
fixed); and Halt-X where the complete system has to be
re-initialized and the latest state of enclaves will be lost
(e.g., simultaneous crash of all nodes). Recall that as the
adversary controls the OS on all nodes, denial of service
is always possible.

5.1 Protection with Secure Storage

Given the secure counter storage functionality (see
Section 3) rollback can be prevented using the inc-then-
store technique. In Figure 7 we illustrate a state tran-
sition diagram that represents RE states during sealing,
unsealing and memory reading using the secure storage
functionality. The notion of state in this section is an ex-
ecution state, in contrast to enclave data states created
and stored using sealing. We show that any combination
of adversary operations, in any of the enclave execution
states, cannot force the RE to accept a previous version
of sealed data. We also show that in spite of multiple
local RE instances, the read enclave state is always the
latest. Note that this state transition diagram does not
capture system initialization.

First start. After creating and starting the enclave us-
ing e < Create(code) and i < Start(e), the RE exe-
cution begins from State 1. The MC is set to zero in
the runtime memory and RE proceeds to State 2. The
RE reads the counter value from the secure storage using
ReadCounter(). If the ReadCounter() operation fails,
the RE halts (Halt-1). On the first execution the oper-
ation returns empty and the RE continues to State 7 to
continue normal operation. From State 7 the execution

moves to State 2 for verifying freshness if a Read () re-
quest is received, while the Write () request moves exe-
cution to State 8.

Sealing. When the RE needs to seal data for local per-
sistent storage, it proceeds to State 8. The RE increments
the MC, and performs the WriteCounter () operation to
the secure storage in State 9. The RE continues to State
10 if the operation succeeds, otherwise it halts (Halt-1).
In State 10, the RE seals data (s < Seal(data)) of its
current state along with the counter value. OS confirma-
tion moves the enclave to normal operation in State 7.
If sealing fails, the node can try again (Halt-1). If that
does not help, the node loses its latest state and becomes
unavailable, and a group update is needed (Halt-2).

Unsealing. When the RE needs to unseal data (re-
cover its state), the RE proceeds from State 7 to State
3. The adversary can offer the correct sealed data
(0fferSeal (latest = 5)) which moves the execution to
State 4. Unsealing is successful and the counter value
in the seal matches the MC value in the runtime mem-
ory, bringing the RE back to State 7. The adversary
can offer a previously sealed state (0fferSeal (previous))
which moves the execution to State 6. Unsealing is suc-
cessful, but counter values do not match and the RE halts
(Halt-1 or Halt-2).> Finally, the adversary can offer any
other data (0fferSeal (arbitrary)) which moves the RE
to State 5 where unsealing fails and RE halts (Halt-1 or
Halt-2).

Forking. If a new instance of the RE is started, the
execution for it moves to State 1 following First start.
Other instances remain in their original states. If for
every Write() and Read() operation a counter is incre-
mented or respectively retrieved from the secure counter
storage to verify freshness, no rollback is possible. When
the RE needs to read its runtime state (e.g., to complete a
client request), the RE proceeds from State 7 to State 2.
The RE reads the MC from the secure counter storage (if
this fails, Halt-1) and compares the value to the one re-
siding in its memory. This check is needed to guarantee
that another instance of the same enclave does not have
a newer state. If comparison succeeds, RE has the lat-
est internal memory state and proceeds back to State 7.
If the comparison fails (retrieved MC is higher), the RE
moves to State 3 to obtain the latest seal (see above).

Restart. After an RE restart, the execution proceeds
to State 2. If the ReadCounter () operation returns a non-
empty value, the RE proceeds to State 3, otherwise to
State 7, from where we follow the same steps as above.
If the counter read operation fails, RE enters Halt-1.

If in any of these states the RE is terminated or
restarted, its execution continues from State 1. Deleting

3Tf the OS provides an incorrect sealed data, most likely it is faulty
an needs to be fixed. From some OS errors it may be possible to recover
by simply trying again.
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Figure 8: Network partitioning example where the ad-
versary intentionally blocks a part of the nodes.

and creating the same enclave again has the same effect.
Suspend () and Resume () have no effect, i.e., the enclave
remains in the same execution state. We conclude that,
assuming the secure storage functionality, the adversary
cannot rollback the state of the RE.

5.2 Distributed Secure Storage Realization

Next, we show how ROTE realizes the secure counter
storage functionality as a distributed system. When ob-
taining a counter from the distributed protection group
(ReadCounter), RE receives the latest value that was sent
to the protection group (WriteCounter). We divide the
analysis into four parts: quorum size, platform resets,
two-phase counter writing, and forking attacks.

Quorum size. The ROTE system has three parameters:
the number of assisting nodes n, compromised nodes f,
and unresponsive nodes u. The required quorum for re-
sponses at the time of counter writing and reading is
g=f+u+l= % Figure 8 illustrates that this is
an optimal quorum size. We consider an example where
the adversary performs network partitioning by blocking
messages during writing and reading.

On the first write, the attacker allows the counter value
1 to reach the right side of the group by blocking the
messages sent to the left side. On the second write, the
adversary allows the counter value 2 to reach the left
side of the group by blocking the right side. Finally, on
counter read, the adversary blocks the left side again. If
the counter is successfully written to g = f +u -+ 1 nodes,
there always exists at least u+ 1 honest platforms in the
group that have the latest counter value in the memory.
Because counter reading requires the same number of re-
sponses, at least one correct counter value is obtained
upon reading. The maximum number of tolerated com-
promised platformsis f =n—1,if u =0 and g = n. If the
quorum cannot be satisfied in either the state update pro-
tocol or any counter retrieval, the system enters Halt-1
and can try to perform the same operation again.

Platform restarts. If an assisting RE is restarted, it
needs to first establish session keys and then recover the
lost MC values from the protection group. Session key
establishment procedure is explained below under Fork-
ing attacks; the main take-away is that up to u# nodes
may restart simultaneously and after the nodes are online
again the RE needs to establish session keys with every

node in the group before proceeding with MC recovery.
Once the keys are established, some assisting nodes can
be inactive or restarted. Three distinct cases are possible.
First, the number of inactive/restarted REs is at most u.
Since the number of running nodes is u+ f + 1 = g there
are sufficient available platforms with the correct MC for
the counter retrieval. Second, more than u platforms, but
not the entire protection group, are restarted. The num-
ber of remaining platforms is insufficient for RE recovery
and the distributed system no longer provides success-
ful MC access, but no rollback is possible (Halt-X, since
there is no guarantee that the non-restarted nodes have
the latest counter, thereby risking a rollback. However,
before re-initializing the system, the latest states from the
non-restarted nodes can be manually saved.) Third, all
n+ 1 nodes are restarted at the same time, in which case
a new system configuration has to be deployed again by
the group owner to re-initialize the system (Halt-X).

Two-round counter writing. Additionally, it remains
to be shown how our update protocol successfully writes
the counter to g nodes, despite possible RE restarts dur-
ing the protocol. We illustrate the challenges of counter
writing through an example attack on a single-round
variant of the update protocol that completes after the
RE has received g echoes. During state update the adver-
sary blocks all communication and performs sequential
message passing. First, the attacker allows message de-
livery to only one node that saves the counter and returns
an echo. After that, the attacker restarts the RE on that
node, which initiates the recovery procedure from the
rest of the protection group. The adversary blocks the
communication to the target platform, and the restarted
RE recovers the previous counter value, because other
reachable REs have not yet received the new value. The
adversary repeats the same process for all platforms. As
a result, the target node has received g echos and accepts
the state update, but all the assisting nodes have the pre-
vious counter value. Rollback is possible.

The second communication round in our protocol pre-
vents such attacks. No combination of RE restarts during
the state update protocol allows the target RE to complete
it, unless the counter was written to g nodes. There are
four distinct cases to consider. Below, we assume that the
adversary restarts at most u platforms simultaneously. If
more are restarted, recovery is not possible (Halt-X).

e Case 1: Echo blocking. If the attacker blocks commu-
nication or restarts assisting REs so that ¢ nodes cannot
send the echo, the protocol does not complete (Halt-1).

6Consider an example, where two nodes are restarted at the same
time. The first node wakes up and attempts to establish new session
keys with all assisting nodes. This node has to wait, until the second
restarted node wakes up and can communicate. After this point, both
of the restarted nodes can establish session keys (with all nodes) and
proceed with the RE Restart protocol.



e Case 2: No echo blocking. If the attacker allows at
least g echoes to pass, RE starts returning them and we
have two cases to observe:

e Case 2a: No restarts during first round. If none of
the assisting REs were restarted during the first protocol
round, then at least u 4 1 nodes have the updated MC. If
the adversary restarts assisting REs before they sent the
final ACK and after they received the self-sent echo back
from the target RE, the protocol will not complete (Halt-
1), because fewer than ¢ final ACKs will be received.
The protocol run may be repeated again. The adversary
can also restart assisting REs after they have sent the fi-
nal ACK which will result in successful state update, and
successful state recovery of the restarted REs since a suf-
ficient number of the assisting nodes already have the up-
dated counter value.

o Case 2b: Restarts during first round. If the adversary
restarts assisting REs during the first round, the update
protocol will either successfully complete (g final ACKs
received) or halt execution (Halt-1) depending on the
number of simultaneously restarted nodes. Sequential
node restarts, as discussed in the example attack above,
are detected. Upon receiving g echoes, the RE sends each
of the received echoes to the original sender. Because of
sequential RE restarts, all assisting nodes have the pre-
vious MC value in their runtime memory, and thus the
protocol will fail upon comparison of the echoes and the
MC values. None of the assisting REs will deliver the
final ACK, and the protocol will not complete (Halt-1).

We conclude that the successful completion of the
two-phase state update protocol guarantees that at least
g nodes received and at least u 4 1 honest nodes have
(i.e., correctly stored) the correct MC.

Forking attacks. Our system prevents attacks based
on multiple enclave instances by requiring that the ASE
start/read and RE restart protocols contact the assisting
nodes and verify the latest counter from the protection
group. If the latest counter is correct, RE can be certain
that it made the last update. If the session’s keys are out-
dated, communication with other nodes is disabled and
RE knows another instance has run in parallel.

The session key refresh mechanism allows us to
uniquely identify the latest running instance and prevents
parallel communication with two instances running on
one platform. After every RE start, keys have to be es-
tablished with all nodes from the protection group to pre-
vent the attacker from instantiating new REs on different
platforms in a one-by-one manner while keeping some
of the nodes disconnected. Other nodes delete the old
session key that they shared with the previous instance
residing on the same platform, rendering its communica-
tion unusable. The protection group only allows keys for
one running instance on each platform. Also, by forcing

state retrieval and freshness verification after each instan-
tiation and for all ASE requests, the running instance on
each platform will always have the latest state and high-
est MC, thus preventing rollback.

Our system also ensures that the adversary cannot es-
tablish a parallel protection group on the same platforms
and re-direct ASEs to the rogue system causing a roll-
back. If no initialization key is provided and the RE re-
ceives all zero MC values from others in the group during
setup, it will abort execution. A new network may only
be created under the supervision of the group owner with
the correct initialization key.

Summary. If the target RE has the latest MC that it
sent, it is able to distinguish its latest sealed state, and if
the latest sealed state is loaded, all the ASEs state coun-
ters kept within are fresh. Upon retrieval, the ASE al-
ways receives the latest counter, and thus each ASEs can
verify that it has the latest state data. If the target RE is
not able to recover the latest MC, the system end ups in
either Halt-1, Halt-2 or Halt-X.

6 Performance Evaluation

In this section we describe our performance evalua-
tion. First, we describe our implementation that con-
sists of the following components. We implemented the
RE (950 LoC), an accompanying rollback relay appli-
cation (1600 LoC), ROTE library (150 LoC), a simple
test ASE (100 LoC), and a matching fest relay applica-
tion (100 LoC). The purpose of the relays is to mediate
enclave-to-enclave communication. We implemented all
components in C++, the relays were implemented for the
Windows platform. The local communication between
the relay applications was implemented using Windows
named pipes. The total TCB accounts for 1100 LoC.

The enclaves use asymmetric cryptography for signing
(ECDSA) and encryption (256-bit ECC). Our implemen-
tation establishes shared keys using authenticated Diffie-
Hellman key exchange. For symmetric message encryp-
tion and authentication we use 128-bit AES-GCM in
encrypt-then-MAC mode. All used cryptographic primi-
tives are provided by the standard Intel SGX libraries.

6.1 State Update and Read Delay

The main performance metrics that we measure are the
ASE state update and state read delays that include the
counter writing to and reading from the protection group.
The delays depends on the network characteristics and
the size of the protection group (n+ 1). The RE restart
operation is typically performed once per platform boot,
and thus the operation is not similarly time-critical so we
do not measure it. In all test cases we set u = f =0, as
their values do not affect state update and read delays.’

"The state update protocol proceeds immediately after receiving ¢
responses, and therefore node unavailability does not affect update de-
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Figure 9: Experimental results, state update/read delay. The first figure shows ROTE performance for protection groups
that are connected over a local network, the second figure shows the simulated performance for a larger group also
over a local network, while the third figure is for geographically distributed protection groups.

Experimental setup. Our first experimental setup
consisted of four SGX laptops and our second exper-
imental setup consisted of 20 identical desktop com-
puters, both connected via local network (1Gbps, ping
< lms). Our third experimental setup was a geograph-
ically distributed (in order, US (West), Europe, Asia, S.
America, Australia, US (East)) protection group of sizes
from two to six nodes that we tested on Amazon AWS
EC2. For the first setup we used the real ROTE imple-
mentation while the latter two we used a simulated im-
plementation (the same protocol, but no enclaves).

Results. The state update delay consists of two com-
ponents: networking and processing overhead. Context
switching to enclave execution is fast (few microsec-
onds). Symmetric encryption used in the protocol is also
fast (less than a microsecond). The only computationally
expensive operation that we use is asymmetric signatures
(0.46 ms per signing operation). We provide more per-
formance benchmarks in Appendix C.

The ASE state update protocol has one signature cre-
ation which is verified later in the RE and ASE start/read
protocols. The required processing time of the state up-
date protocol is less than 0.6 ms, where the creation of
the first protocol message takes 0.51 ms (signing). The
state read protocol requires one round trip, while the state
update protocol needs two. All messages passed between
the nodes are 224 bytes (200 payload + 24 header).

Figure 9 shows the results from our three experimen-
tal setups. Figure 9a shows that the state update delay
was approximately 2 ms, while the state read delay was
approximately 1.3 ms for group sizes from two to four
nodes using the ROTE implementation. Figure 9b illus-
trates an increase in the delay as the group size grows.
This is as expected, since the target platform needs to
communicate with more platforms. For group size of 20
nodes, the delay is 2.98 ms and 2.13 ms, respectively.
Lastly, Figure 9c illustrates a less systematic increase in

lay. Similarly, up to f compromised nodes can discard counter values
or return fake values, but that does not affect the protocol delay.

Request  State no rollback ROTE SGX counter
type size protection system protection
(KB) (ms) (ms) (ms)
Write 1T 385(£006) 5.17(£003) 160.7(£0.7)
state 10 4.65(£0.05) 6.03(£0.03) 162.7(+1.6)
100 6.49(£0.04) 7.83(£0.05) 169.1(£2.1)
Read 1 0.06(£0.00) 1.41(£0.02) 61.04(+3.1)
state 10 0.19(£0.00) 1.53(+0.01) 61.17 (£3.1)
100 1.76 (£0.05)  3.1(£0.02) 62.74 (£ 3.2)

Table 1: Example application throughput without roll-
back protection, using ROTE and using SGX counters.

delay, due to the dependency on network connections
between various geographic locations in the protection
group. The update time between two locations takes 654
ms while between five the update time is 1.37 seconds.
The read delay is respectively 342 ms and 810 ms.

We draw two conclusions from these experiments.
First, the performance overhead imposed by ROTE is
defined largely by the network connections between the
nodes. Second, if the nodes are connected over a low-
delay network, ROTE supports applications requiring
very fast state updates (1-2 ms). For applications toler-
ating larger delays (e.g., more than 600 ms per state up-
date), ROTE can be run on geographically distant groups.

6.2 Example Application Throughput

Additionally, we measured the throughput of an ex-
ample financial enclave that processes incoming transac-
tions repeatedly (the transaction buffer is never empty).
We tested the enclave using (a) no rollback protection,
(b) the ROTE implementation, and (c) SGX counter
based rollback protection. The experimental setup was
a protection group of four nodes. For every update trans-
action, the enclave updates its state, creates a new seal,
and writes it to the disk, while the read transaction in-
cludes reading from the disk, unsealing and retrieving
the counter for comparison. In case of ROTE and SGX
counter variants, the enclave also performs a counter in-
crement. We tested three different enclave state sizes (1
KB, 10 KB, 100 KB) since the state size for transactions
can differ based on the exact use case.



Results. Table 1 shows our results. In all three cases
the ROTE system provides significantly better state up-
date performance than using SGX counters (e.g., 190
over 6 tx/s for 1KB) while suffering a 20-25% perfor-
mance drop in comparison to systems which have no
rollback protection (e.g., 260 over 190 tx/s for 1KB).
We conclude that our system provides significantly faster
rollback protection than methods based on local non-
volatile memory. Compared to systems with no rollback
protection, our solution imposes a moderate overhead.

7 Discussion

Data migration. Although sealing binds encrypted
enclave data to a specific processor, our solution enables
data migration within the protection group. Migration is
especially useful before planned hardware replacements
and group updates (e.g., node removal). In a migra-
tion operation, an ASE first unseals its persistent data
and passes it to the RE. The RE sends the enclave data
to another Rollback Enclave within the same protection
group together with the measurement of the ASE. The
communication channel between the REs is encrypted
and authenticated. On the receiving processor, the RE
passes the enclave data to an instance of the same ASE
(based on attestation using the received measurement)
which can seal it. Note that the RE is agnostic to the in-
ternal state of ASEs and just re-encrypts data it receives
from an ASE without the need to understand its seman-
tics. Combined with group updates (Section 4.7), such
enclave data migration enables flexible management of
available computing resources. Similar data migration is
discussed in [24].

Information leakage. Our model excludes execution
side-channels. Here we briefly discuss additional infor-
mation leakage that our solution may add. Each enclave
state update and read causes network communication.
An adversary that can observe the network, but does not
have access to the local persistent storage, can use the in-
formation leakage to determine the timing of sealing and
unsealing events. Also the reboot of the target platform
causes an observable network pattern. We consider such
information leakage a practical concern but developing
countermeasures is outside the scope of this paper.

Performance. The main performance characteristic
of our solution, the state update delay, is dominated by
the networking and the asymmetric signature operation
required for the first message of the state update proto-
col. In case of a local, 1Gpbs, network and an average
laptop, the networking takes approximately 1 ms and the
signature operation 0.5 ms. A possible optimization is to
pre-compute the asymmetric signatures. Since the signed
data is predictable MC values, we can pre-compute and
store them. This pre-computation may be done at times
when the expected load is low or at system initialization

depending on the specific scenario.

For communication between the enclaves we use sym-
metric keys derived from the key agreement protocol for
performance reasons, since it is computationally much
less expensive. However, depending on the application
scenario we could use asymmetric keys which would en-
able, for example, post-incident forensics. This design
choice is dependent on the use case and performance re-
quirements. ROTE can accommodate both approaches.

Consensus applications. In the specific case where
all participating enclaves implement a distributed appli-
cation with the purpose to maintain a consensus (e.g.,
permissioned blockchain), our rollback protection can be
optimized further. In such an application, all participat-
ing enclaves have a shared, global state and the state up-
date protocol can be replaced with a suitable Byzantine
agreement protocol. When an enclave is restarted (or de-
termines its latest state), it queries its latest state from the
participating enclaves similar to our RE restart protocol.
We leave a detailed design as future work.

Forking prevention. The current SGX architecture
does not provide the ability for one enclave instance to
check if another instance of the same enclave is already
running. The implementation of this feature would sim-
plify rollback protection significantly.

Forking prevention could be implemented using a
TPM. After system boot, the RE instance could extend
a PCR that has a known value at boot. If a second RE
instance is started, it can check if the PCR value differs
from its known initial value [2]. The drawback of this
approach is the increase of the system security perimeter
outside of the processor.

Periodic check-pointing. For increased robustness,
our rollback protection can be complemented with peri-
odic check-pointing. An example approach would be to
increment a counter on local NVRAM on selected up-
dates (e.g., mod 100). If all nodes crash at the same time,
the administrator has an option to recover from the latest
saved checkpoint with the risk of possible rollback.

8 Related work

SGX-counter and TPM solutions. Ariadne [2] uses
TPM NVRAM or SGX counters for enclave rollback
protection. The counter is incremented using store-then-
inc that provides crash resilience, but allows two execu-
tions of the latest input. Ariadne minimizes the TPM
NVRAM wear using counter increments that flip only a
single bit. Compared to our solution, SGX counters are
an optional feature, increments are slow and make the
non-volatile memory unusable after few days of contin-
uous use. Similar performance limitations apply to TPM
NVRAM. SGX counters are also likely vulnerable to bus
tapping and flash mirroring attacks [21], while in our so-
lution the trust perimeter is the processor package.



Memoir [4] also leverages TPM NVRAM for rollback
protection, and therefore has similar performance limi-
tations. An optimized variant of Memoir assumes the
availability of an Uninterrupted Power Supply (UPS).
This variant stores the state updates to volatile Platform
Configuration Registers (PCRs) and at system shutdown
writes the recorded update history to the NVRAM. ICE
[3] enhances the CPU with protected volatile memory, a
power supply and a capacitor that at system shutdown the
flushes the latest state to non-volatile memory. Both the
optimized Memoir and ICE require hardware changes.
Additionally, reliably flushing data upon a crash or power
outage can be challenging in practice.

Client-side detection. Brandenburger [25] proposes
client-side rollback detection for SGX in the context of
cloud computing. The main difference to our work is
that this approach does not prevent a rollback directly on
the server. Instead, it allows mutually trusting clients to
remain synchronized, and given that certain connectivity
requirements are met, detect consistency and integrity vi-
olations (including rollback) after the incident.

Integrity servers. Verena [6] maintains authenti-
cated data structures for web applications and stores in-
tegrity information on a separate, trusted server. Another
use case is to prevent the usage of disabled credentials
on mobile devices by storing counters on an integrity-
protected server [8]. In such solutions the integrity server
becomes a single point of failure.

Byzantine broadcast and agreement. Our state up-
date protocol follows the approach of Echo broadcast
[15] with an additional confirmation message in the
end. Like other byzantine broadcast primitives, our
state update protocol requires O(n) messages. Byzantine
agreement typically require O(n?) messages. Byzantine
broadcast and agreement protocol operate on arbitrary
values and assume a potentially malicious sender. Thus,
such protocols require 3f + 1 replicas. In our system
the target enclave is trusted and the distributed data is a
signed counter value. Thus, f + 1 replicas are sufficient.

Secure audit logs. Secure audit log systems [26, 27,
28, 29] provide accountability and in particular prevent
manipulation of previous log entries after the target plat-
form becomes compromised. Most such audit log sys-
tems assume a trusted but infrequently accessible stor-
age. Our goal is to design a system that has no single
point of failure, and therefore in ROTE the trusted stor-
age is realized as a distributed system amongst a set of
assisting nodes (some of which can be compromised).

Accountability for distributed systems. PeerReview
[30] provides accountability for distributed systems and
in particular detect nodes that violate from expected be-
haviour. Instead of fault detection, our goal is to realize
distributed secure storage, customized for rollback pro-
tection, in the presence of faulty nodes.

Adversary models. Agreement has been considered
under models where the faulty nodes have some trusted
functionality (e.g., an unmodifiable hardware primitive).
Such approaches reduce the number of required replicas
to 2f + 1 [31, 32, 33, 34] or f+ 1 [35]. We have no
trust assumptions on the compromised nodes. Byzan-
tine agreement has also been considered with dual failure
models [36, 37, 38] where the adversary can fully con-
trol the faulty processes and can read the secrets of other
processes. In our case, the adversary cannot read secrets
from trusted enclaves, but it can extract keys from f com-
promised nodes, and additionally schedule enclaves’ ex-
ecution on all nodes.

Several recently proposed SGX systems [39, 40, 41,
13, 42, 43, 44, 45] consider an adversary model with an
untrusted OS. To the best of our knowledge, our work is
the first to define a model with explicit adversarial capa-
bilities that cover enclave restarts and multiple instances.
These capabilities are critical for the security of our sys-
tem and also other SGX systems (see Appendix D).

9 Conclusion

In this paper we have proposed a new approach for
rollback protection on Intel SGX. Our main idea is to
implement integrity protection as a distributed system
across collaborative enclaves running on separate pro-
cessors. We consider a powerful adversary that controls
the OS on all participating platforms and has even com-
promised a subset of the assisting processors. We show
that our system provides a strong security guarantee that
we call all-or-nothing rollback. Our experiments demon-
strate that distributed rollback protection provides signif-
icantly better performance compared to solutions based
on local non-volatile memory.
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SGX Background

Here we briefly describe the main protection mecha-
nisms of SGX. For a more elaborate explanation of the
architecture, we refer interested readers to [1].

Enclave creation. An enclave is created by the sys-
tem software. During enclave creation, the system soft-
ware specifies the enclave code. Security mechanisms
in the processors create a data structure called SGX En-
clave Control Structure (SECS) that is stored in a pro-
tected memory area (see below). Because enclaves are
created by the system software running on the OS, their
code cannot contain sensitive data. The start of the en-
clave is recorded by the processor, reflecting the content
of the enclave code as well as the loading procedure (se-
quence of instructions). The recording of an enclave start
is called measurement and it can be used for later attes-
tation. Once an enclave is no longer needed, the OS can



terminate it and thus erase its memory structure from the
protected memory.

Runtime isolation. The SGX security architecture
guarantees that enclaves are isolated from all software
running outside of the enclave, including the OS, other
enclaves, and peripherals. By isolation we mean that
the control-flow integrity of the enclave is preserved and
other software cannot observe its state. The isolation
is achieved via protection mechanisms that are enforced
by the processor. The code and data of an enclave are
stored in a protected memory area called Enclave Page
Cache (EPC) that resides in Processor Reserved Mem-
ory (PRM) [46]. PRM is a subset of DRAM that can-
not be accessed by the OS, applications or direct mem-
ory accesses. The PRM protection is based on a series
of memory access checks in the processor. Non-enclave
software is only allowed to access memory regions out-
side the PRM range, while enclave code can access both
non-PRM memory and the EPC pages owned by the en-
clave [1].

The untrusted OS can evict EPC pages into the un-
trusted DRAM and load these back at a later stage.
While the evicted EPC pages are stored in the untrusted
memory, SGX assures their confidentiality, integrity and
freshness via cryptographic protections. The architecture
includes the Memory Encryption Engine (MEE) which is
a part of the processor uncore (microprocessor function
close to but not integrated into the core [1]). The MEE
encrypts and authenticates the enclave data that is evicted
to the non-protected memory, and ensures enclave data
freshness at runtime using counters and a Merkle-tree
structure. The root of the tree structure is stored on the
processor die. Additionally, the MEE is used to protect
SGX’s Enclave Page Cache against physical attacks and
is connected to the Memory Controller [47, 1].

Attestation. Attestation is the process of verifying
that certain enclave code has been properly initialized. In
local attestation a prover enclave can request a statement
that contains measurements of its initialization sequence,
enclave code and the issuer key. Another enclave on the
same platform can verify this statement using a shared
key created by the processor. In remote attestation the
verifier may reside on another platform. A system ser-
vice called Quoting Enclave signs the local attestation
statement for remote verification. The verifier checks the
attestation signature with the help of an online attestation
service that is run by Intel. Each verifier must obtain a
key from Intel to authenticate to the attestation service.
The signing key used by the Quoting Enclave is based on
a group signature scheme called EPID (Enhanced Pri-
vacy ID) which supports two modes of attestation: fully
anonymous and linkable attestation using pseudonyms
[48, 1]. The pseudonyms remain invariant across reboot
cycles (for the same verifier). Once an enclave has been

attested, the verifier can establish a secure channel to it
using an authenticated key exchange mechanism.
Sealing. Enclaves can save confidential data across
executions. Sealing is the process to encrypt and authen-
ticate enclave data for persistent storage [49]. All lo-
cal persistent storage (e.g. disk) is controlled by the un-
trusted OS. For each enclave, the SGX architecture pro-
vides a sealing key that is private to the executing plat-
form and the enclave. The sealing key is derived from a
Fuse Key (unique to the platform, not known to Intel) and
an Identity Key that can be either the Enclave Identity or
Signing Identity. The Enclave Identity is a cryptographic
hash of the enclave measurement and uniquely identifies
the enclave. If data is sealed with Enclave Identity, it
is only available to this particular enclave version. The
Signing Identity is provided by an authority that signs the
enclave prior to its distribution. Data sealed with Sign-
ing Identity can be shared among all enclave versions
that have been signed with the same Signing Identity.

B SGX Counter Analysis

Intel has recently added support for monotonic coun-
ters [5] as an optional SGX feature that an enclave devel-
oper may use for rollback attack protection. However,
the security and performance properties of this mecha-
nism are not well documented. Furthermore, they are not
available on all platforms. In this Appendix we outline
all executed experiments and evaluate the SGX counter
and trusted time service.

SGX counter service. An enclave can query avail-
ability of counters from the Platform Service Enclave
(PSE). If supported, the enclave can create up to 256
counters. The default owner policy encompasses that
only enclaves with the same signing key may access the
counter. Counter creation operation returns an identifier
that is a combination of the Counter ID and a nonce to
distinguish counters created by different entities. The en-
clave must store the counter identifier to access it later, as
there is no API call to list existing counters. After a suc-
cessful counter creation, an enclave can increment, read,
and delete the counter.

According to the SGX API documentation [5], counter
operations involve writing to a non-volatile memory. Re-
peated write operations can cause the memory to wear
out, and thus the counter increment operations may be
rate limited. Based on Intel developer forums [50], the
counter service is provided by the Management Engine
on the Platform Control Hub (PCH).

Experiments. We tested SGX counters on five dif-
ferent platforms: Dell Inspiron 13-7359, Dell Latitude
E5470, Lenovo P50, Intel NUC and Dell Optiplex 7040.
The counter service was not available on Intel NUC. On
Dell laptops a counter increment operation took approx-
imately 250 ms, while on the Lenovo laptop and Dell



Optiplex increment operations took approximately 140
ms and 80 ms, respectively. Strackx et al. [2] report 100
ms for counter updates. Counter read operations took
60-140 ms, depending on the platform. As expected,
the counter values remained unchanged across enclave
restarts and platform reboots. We tested the wear-out
characteristics of the counters and found out that on both
Dell laptops, after approximately 1.05 million writes, the
tested counter became unusable and other counters on the
same platform could not be created, incremented or read
(all SGX counter operations return SGX ERROR BUSY).

Additionally, we observed that reinstalling the SGX
Platform Software (PSW) or removing the BIOS battery
deletes all counters. Finally, to our surprise, we noticed
that after reinstalling the PSW, first usage of counter
service triggered the platform software to connect to a
server whose domain is registered to Intel. If Internet
connection is not available, the counters are unavailable.

Performance limitations. An enclave developer
could attempt to use SGX counters as a rollback pro-
tection mechanism. When an enclave needs to persis-
tently store an updated state, it can increment a counter,
include the counter value and identifier to the sealed data,
and verify integrity of the stored data based on counter
value at the time of unsealing. However, such approach
may wear out the used non-volatile memory. Assuming
a system that updates one of the enclaves on the same
platform once every 250 ms, counters would become un-
usable in few days. Even with a modest update rate of
one increment per minute, the counters are exhausted in
two years. Services that need to process tens or hundreds
of transactions per second are not possible.

Weaker security model. According to Intel developer
forums [50], counter service is provided by the Manage-
ment Engine on the PCH (known as “south bridge” in
older architectures). However, to the best of our knowl-
edge, actual location of the non-volatile memory used to
store the counters is not publicly stated. Based on Intel
specifications [51, 52], the PCH typically does not host
non-volatile memory, but it is connected over an SPI bus
to a flash memory that is also used by the BIOS. Since
Management Engine is an active component, communi-
cation between the processor and the Management En-
gine can be replay protected. However, the SPI flash is
a passive component, and therefore any counter stored
there is likely to be vulnerable to bus tapping and flash
mirroring attacks, as recently demonstrated in the case
of mobile devices (inspired by FBI iPhone unlocking de-
bate) [21]. Although the precise storage location of SGX
counters remains unknown at the time of writing, it is
clear that if the integrity of enclave data relies on the
SGX counter feature, then additional hardware compo-
nents besides the processor must be considered trusted.
This is a significant shift from the enclave execution pro-

tection model, where the security perimeter is the pro-
cessor package [47, p. 30].

Other concerns. The current design of SGX counter
APIs makes safe programming difficult. To demonstrate
this we outline a subtle rollback attack. Assume an en-
clave that at the beginning of its execution checks for the
existence of sealed state, and if one is not provided by
the OS, it creates a new state and counter, and stores the
state sealed together with the counter value and identi-
fier. The enclave increments the counter after every state
update. Later, the OS no longer provides a sealed state
to the restarted enclave. The enclave assumes that this
is its first execution and creates a new (second) counter
and new state. Recall that the SGX APIs do not allow
checking existence of previous counter. The enclave up-
dates its state again. Finally, the OS replays a previous
sealed state associated with the first counter. A careful
developer can detect such attacks by creating and delet-
ing 256 counters (an operation that takes two minutes)
to check if a previous counter, and thus sealed state, ex-
ists. A crash before counter deletion would render that
particular enclave permanently unusable.

We have no good explanation why a connection to an
Intel server is needed after the PSW reinstall. Similarly,
we do not know why the SGX counters become unavail-
able after BIOS battery removal or PSW reinstall.

The above attack and availability issues probably
could be fixed with better design of SGX APIs and sys-
tem services, but the performance limitations and the
weaker security model are hard to avoid in future ver-
sions of the SGX architecture.

SGX trusted time. Another recently introduced and
optional SGX feature is the trusted time service [23]. As
in the case of SGX counters, also the time service is pro-
vided by the Management Engine. The trusted time ser-
vice allows an enclave developer to query a time stamp
that is relative to a reference point. The function returns
a nonce in addition to the timestamp, and according to
the Intel documentation, the timestamp can be trusted as
long as the nonce does not change [23].

We tested the time service and noticed that the
provided nonce remained same across platform reboots.
Reinstalling PSW resulted in a different nonce, but the
provided time was still correct. The reference point
is the standard Unix time. As a rollback protection
mechanism the trusted time service is of limited use.
Including a timestamp to each sealed data version allows
an enclave to distinguish which out of two seals is more
recent. However, the enclave cannot know if the sealed
data provided by the OS is fresh and latest.



Operation Time

enclave switching time 2.6 (£0.0) us
SHA256 2.4 (£ 0.0) us
Opening and closing ECC context 24 (£0.0) us
ECDSA signing (0.5KB) 457.5 (£ 0.3) us
ECDSA verfication (0.5KB) 843.6 (£ 0.9) us
Sealing (1KB) 9.6 (£ 0.1) us
Unsealing (1KB) 4.5(£0.1) us
AES-CTR7g encryption (0.5KB) 0.63 (£ 0.0) us
AES-CTR 3 decryption (0.5KB) 0.62 (£ 0.0) us
AES-GCM encryption + MAC (1KB) 1.05 (£ 0.0) us

AES-GCM decryption + verification (1KB) 1.07 (£ 0.0) us

Table 2: Cryptographic operations on SGX.

C Performance Measurements

Table 2 provides measurements of cryptographic oper-
ations on SGX. We report average time over 1M repeti-
tions. All enclave operations are reported switching time
excluded. The test platform was running Windows 10 on
Intel i7-6500U, 8GB RAM and 256GB SSD.

D Identified Vulnerabilites

We analyzed several recent SGX systems through our
model and found out that many of them have security
issues if the adversarial capabilities that we identified are
considered. Below we summarize our findings.

S-NFV [13] tries to preserve the internal state of the
Network Function Virtualization (NFV) applications by
utilizing the isolation guarantees of SGX. The enclave
state could be, e.g., data in a Content Delivery Network
(CDN) or routing policies for the internal network.

If the adversary creates multiple instances, he can di-
rect all update requests from the external client to one in-
stance and upon client requests, feed stale data from the
other one, resulting in a rollback. The system could be
protected by using TPM PCR, as outlined in Section 7,
or by instantiating an SGX monotonic counter and ac-
cepting only the first index (counter ID) upon creation.

ICE [3] aims to achieve state continuity for protected
applications such as SGX enclaves. ICE enhances the
CPU with protected volatile memory (called guard), a

power supply and a capacitor that at system shutdown
flushes the latest state to non-volatile memory. The
adversary model assumes a compromised OS through
which the clients communicate with the protected ap-
plications. [libiceO and libicen, which are similar to the
ASEs in our system, rely on a single state-continuous
module ice0. As an optimization, libiceO and libicen
store a cached copy of their state and return this to the
client without calling ice0 if they have not been restarted.

The adversary can create a libicen instance and let it
retrieve its state. Once the retrieval is complete, it can
create another instance which will prompt another state
retrieval. Now, the attacker can direct all the writes to the
second instance and when a read request comes in, it can
direct it to the first instance that reports a stale state to
the client. The ice0 module needs to be a single, unique
instance for the state continuity guarantees to hold. If the
adversary forks the ice0 module, it is able to compromise
all the libicen modules’ state continuity.

A possible countermeasure to the first attack is to not
cache the states at all and request it from ice0 at every
read. This obviously has performance drawbacks given
the TPM chip’s rate limiting. Another possible defense is
to assign specific SGX monotonic counter IDs to specific
libicen modules. Since the counter IDs share a global
namespace, it is possible to see how many counters al-
ready exist on the system. This approach has the draw-
back of losing crash resilience. If a module crashes be-
fore deleting its counter, it cannot recover.

VC3 [14] creates a distributed system of nodes that
perform MapReduce computation with integrity and con-
fidentiality guarantees. The system leverages SGX for
protected execution and remote attestation. The paper
acknowledges that the in-band variant of VC3 is vul-
nerable to replays and suggests using ICE for rollback
protection. Thus, the above discussed issues apply also
VC3. In the online variant users could typically detect or
prevent replays.



