
A Novel Pre-Computation Scheme of Window
τNAF for Koblitz Curves

Wei Yu1, Saud Al Musa2, Guangwu Xu2, and Bao Li1

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

yuwei 1 yw@163.com, libao@iie.ac.cn
2 Department of EE & CS, University of Wisconsin-Milwaukee, USA

{salmusa,gxu4uwm}@uwm.edu

Abstract. Let Ea : y2 + xy = x3 + ax2 + 1/F2m be a Koblitz curve.
The window τ -adic nonadjacent-form (window τNAF) is currently the
standard representation system to perform scalar multiplications on Ea

by utilizing the Frobenius map τ . Pre-computation is an important part
for the window τNAF. In this paper, we first introduce µτ̄ -operations
in lambda coordinates (µ = (−1)1−a and τ̄ is the complex conjugate
of the complex representation of τ). Efficient formulas of µτ̄ -operations
are then derived and used in a novel pre-computation scheme to im-
prove the efficiency of scalar multiplications using window τNAF. Our
pre-computation scheme costs 7M+5S, 26M+16S, and 66M+36S for
window τNAF with width 4, 5, and 6 respectively whereas the pre-
computation with the state-of-the-art technique costs 11M+8S, 43M+18S,
and 107M+36S. Experimental results show that our pre-computation is
about 60% faster, compared to the best pre-computation in the litera-
ture. It also shows that we can save from 2.5% to 4.9% on the scalar
multiplications using window τNAF with our pre-computation.

Keywords: Elliptic curve cryptography, Koblitz curve, Window τNAF,
Pre-computation, Lambda coordinate.

1 Introduction

The family of Koblitz curves, proposed by Koblitz in [1], are non-supersingular
curves defined over F2. This family of curves has a computational advantage
that a faster scalar multiplication can be achieved by replacing point doubling
with the Frobenius map. For each bit a ∈ {0, 1}, the Koblitz curves are given as

Ea : y2 + xy = x3 + ax2 + 1.

These curves can be considered over the binary extension F2m as m varies. Since
Ea(F2) is a subgroup of Ea(F2m), one sees that |Ea(F2m)| = |Ea(F2)| · p for
some positive integer p. It is of cryptographic interest to choose suitable m that
makes p a prime. In the rest of our discussion, we just consider cases that p

is a prime. In the range of 160 < m < 600, it is known that |E0(F2m)|
|E0(F2)| is a

2 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

prime when m = 233, 239, 277, 283, 349, 409, 571, and |E1(F2m)|
|E1(F2)| is a prime when

m = 163, 283, 311, 331, 347, 359. Five Koblitz curves have been recommended by
NIST [2] : K-163(a=1), K-233(a=0), K-283(a=0), K-409(a=0), and K-571(a=0).

The Frobenius map τ is an endomorphism of Ea(F2m) defined by τ(x, y) =
(x2, y2) and τ(O) = O where O is the point at infinity. Let µ = (−1)1−a, then
for each point P in Ea(F2m),

τ2(P) + 2P = µτ(P).

This means that τ can be interpreted as a complex number τ = µ+
√
−7

2 satisfying
τ2 −µτ +2 = 0. The Euclidean domain Z[τ] = Z+ τZ can be identified as a set
of endomorphisms of Ea in the sense that (g + hτ)P = gP + hτ(P).

Let M be the main subgroup of Ea(F2m), namely the subgroup of order p.
M is an annihilating subgroup of δ = τm−1

τ−1 in the sense that δ(P) = O for every
P ∈ M . We also note that N(δ) = p where N is the norm function on Z[τ]
defined as N(g + hτ) = |g + hτ |2 = g2 + µgh+ 2h2. It is easy to see that for an
integer n and an element ρ ∈ Z[τ], if ρ ≡ n (mod δ), then ρP = nP holds.

Koblitz [1] proposed a method of computing scalar multiplication nP with P

from the main subgroup of a Koblitz curve by representing n =
∑l−1

i=0 ϵiτ
i with

ϵi ∈ {0, 1} and evaluating
∑l−1

i=0 ϵiτ
i(P). In [3], Solinas further developed an

extremely efficient window τNAF to compute nP . Refinements and extensions
of Solinas’ method were obtained by Blake, Murty and Xu [4, 5].

The procedure of window τNAF can be described as four steps [6].

1. Reduction. Find a suitable ρ ∈ Z[τ] satisfying ρ ≡ n (mod δ).
2. Window τNAF with width w. We shall just consider the nontrivial case of

w ≥ 3. Let Iw = {1, 3, . . . , 2w−1 − 1}. For each i ∈ Iw, we choose an element
ci from the set Ri = {g + hτ |g + hτ ≡ i (mod τw), N(g + hτ) < 2w}, and
construct the coefficient set C = {c1, c3, . . . , c2w−1−1}. The window τNAF of
n is the following sparse τ expansion of its reduction ρ:

ρ =
l−1∑
i=0

ϵiuiτ
i,

where ϵi ∈ {−1, 1} and ui ∈ C ∪ {0} with the property that any set
{uk, uk+1, . . . , uk+w−1} contains at most one nonzero element.

3. Pre-computation. Compute Qi = ciP for each i ∈ Iw.
4. Computing nP . Employ Horner’s algorithm to calculate nP using window

τNAF and pre-computation.

Pre-computation plays a significant role in improving the efficiency of scalar
multiplications using window τNAF. Several ways of designing pre-computations
have been proposed by Solinas [3]; Blake, Murty and Xu [5]; and Hankerson,
Menezes, and Vanstone [7]. Recently, Trost and Xu [6] introduced an optimal
pre-computation of window τNAF that improves previous results. However, the
main objective of the pre-computation in [6] are its mathematically natural and

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 3

clean forms. The optimality is only based on the fact that it requires 2w−2 − 1
point additions and two evaluations of the Frobenius map τ . It achieves an
improvement on performance and provides a convenient structure for further
work. Even though the use of λ-projective coordinate system was touched upon
in [6], it did not get into the arithmetic detail to save field operations (such as
field multiplication and squaring).

The λ-coordinates (lambda representation) system is a very efficient coor-
dinate system for binary elliptic curves proposed by Oliveira, López, Aranha,
and Rodŕıguez-Henŕıquez in [8]. These authors demonstrated that more savings
can be achieved using λ-projective coordinates for point addition and doubling
compared to other coordinates. For example, a full point addition requires 11
multiplications and 2 squarings (see [8]). For Koblitz curves, application of λ-
projective coordinates in pre-computation for window τNAF has been briefly
discussed in [6], together with efficient formulas for P − µτ(P), P + µτ(P) and
P − µτ2(P).

Because of its promising computational advantage, it is of great interest to
consider the use of λ-projective coordinates in the window τNAF for Koblitz
curves, especially for the pre-computation part with a new design. Now let us
summarize the cost of existing pre-computation schemes in λ-projective coor-
dinates for window width w = 4, 5, and 6 (for w = 3, P − µτP is the only
pre-computation). We write I, M, and S for the costs of an inversion, a multipli-
cation, and a squaring in F2m respectively. The pre-computation scheme in [3]
covers w = 4, 5 only and their corresponding costs are 15M+12S and 44M+31S.
In [7], w = 4, 5, and 6 are considered and the corresponding costs are 15M+12S,
50M+29S, and 117M+63S. By efficient formulas for P −µτ(P), P +µτ(P) and
P − µτ2(P), the pre-computation scheme constructed in [6] has improved costs
of 11M+8S, 43M+18S, and 107M+36S for w = 4, 5, and 6.

Our contributions The main purpose of this work is to develop a more
efficient way of calculating pre-computation for the window τNAF on Koblitz
curves. By using λ-projective coordinates, our results show a great improvement
over previous results. The main contributions are described as follows.

1. Let τ̄ = µ − τ be the complex conjugate of τ and P = (XP , ΛP , ZP). Both
Avanzi, Dimitrov, Doche, and Sica [9] and Doche, Kohel, and Sica [10] use τ̄
in double-base representation to speeding up scalar multiplication. Inspired
by their elegant results, we introduce a new radix µτ̄ . Under this radix and
λ-projective coordinates, our new formulas of µτ̄P (µτ̄ -operation) require
5M+3S, formulas of (µτ̄)2P (re-µτ̄ operation) and (µτ̄)iP, i ≥ 3 (re-re-µτ̄
operation) both require 3M+2S, formulas of µτ̄P and (µτ̄)2P (µτ̄&(µτ̄)2-
affine operation) require 4M+3S. It is noted that one point addition is nec-
essary for computing each pre-computation point Qi, i ∈ {3, 5, . . . , 2w−1−1}
as it has been proved in [6]. We use µτ̄ -operations to replace point additions
or mixed additions in pre-computation scheme. As one full addition requires
11M+2S and one mixed addition requires 8M+2S, these point operations
proposed in this work all save quite a few field operations.

4 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

2. Trost and Xu’s pre-computation is unified (without treating a = 0 and a =
1 separately). For example, consider w = 4, we have Q5 = −P + µτP ,
Q7 = P + µτP , Q3 = −P + τ2P . Also cases w = 5, 6 can be unified. We
propose a plane search to generate Ri whose elements are with the form of
g + hµτ . Since Qi = ciP, ci ∈ Ri for each i ∈ Iw, {Qi, i ∈ Iw} is a unified
pre-computation.

3. To take full advantage of our µτ̄ -operations, we choose one suitable ci ∈ Ri

for each i ∈ Iw which is generated by the plane search. A novel unified
pre-computation scheme is developed to save more field operations, e.g., it
requires 7M+5S, 26M+16S, and 66M+36S for the cases of w = 4, 5, and
6 respectively.

4. The costs of Solinas’ pre-computation scheme; Hankerson, Menezes, and
Vanstone’s pre-computation scheme; Trost and Xu’s pre-computation scheme;
and our pre-computation scheme are shown in Table 1. Theoretical analysis
shows that our pre-computation scheme is about 110% faster than Solinas’
pre-computation scheme for w = 4 and 70% for w = 5. It is about 110%
faster than Hankerson, Menezes, and Vanstone’s pre-computation scheme
for w = 4, 90% for w = 5, and 77% for w = 6. It is about 60% faster than
Trost and Xu’s pre-computation scheme for w = 4, 5, and 6. The practical
implementations are consistent with its theoretical analysis.

5. To get a higher efficiency of scalar multiplication, we perform it using the
pre-computation in λ-coordinates in which mixed addition is fully utilized.
We employ Montgomery trick [7] to translate the points in λ-projective co-
ordinates to that in λ-coordinates. Both theoretical analysis and experi-
mental results show that scalar multiplications using our scheme are faster
than those using previous schemes. On K-163, K-233, K-283, K-409, and
K-571, scalar multiplications using our pre-computation scheme are 2.8%,
4.2%, 3.1%, 2.5%, and 4.9% faster than those using Trost and Xu’s pre-
computation scheme respectively.

Table 1. Cost of pre-computations using λ-coordinates
Window size 4 5 6

Solinas 15M+12S 44M+31S -
Hankerson, Menezes, Vanstone 15M+12S 50M+29S 117M+63S

Trost, Xu 11M+8S 43M+18S 107M+36S
Ours 7M+5S 26M+16S 66M+36S

This paper is organized as follows. In Section 2, we present previous pre-
computation schemes of window τNAF for Koblitz curves. In Section 3, we
propose new formulas of P ± Q and µτ̄ -operations. In Section 4, we design
a novel pre-computation. In Section 5, scalar multiplications using differen-
t pre-computation schemes are analyzed. In Section 6, we compare our pre-
computation scheme to other pre-computation schemes in experimental imple-
mentations. Finally, we conclude this paper.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 5

2 Preliminary

We shall include some technical preparation and existing designs of pre-computations
in this section.

2.1 Montgomery Trick

Montgomery trick [7] computes simultaneously the inversions of n elements. It
requires one inversion and 3(n − 1) multiplications, and is usually useful when
I/M>3. This trick is powerful to translate points in projective coordinates to

Algorithm 1 Montgomery trick

Input: a1, a2, . . . , an

Output: b1 = a1
−1, b2 = a2

−1, . . . , bn = an
−1

Computation

1. c1 ← a1

2. for i← 2 to n
ci ← ci−1 · ai

3. d← c−1
n

4. for i← n to 2
bi ← ci−1 · d
d← ai · d

5. b1 ← d
6. output bi

points in affine coordinates. In this work, we use Montgomery trick to trans-
late points in λ-projective coordinates to points in λ-coordinates. For n points
(Xi, Λi, Zi), 1 ≤ i ≤ l, we use Montgomery trick to compute Z−1

i , and then
compute (xi = Xi

Zi
, λi = Λi

Zi
). This Montgomery trick translating n points in

λ-projective coordinates to these in λ-coordinates requires I+(5n− 3)M. When
points in λ-projective coordinates are converted to points in λ-coordinates, we
replace full point addition with mixed point addition to get a higher efficiency
of scalar multiplication.

2.2 Hensel’s Lifting Algorithm

In the later discussion, we need a convenient criterion to determine whether
τw|g+hτ holds in Z[τ]. This can be done by using Lucas sequence as in [3]. But
we shall take the approach suggested in [5] based on Hensel’s lifting procedure
[11].

Let f(x) = x2−µx+2 and sn = b12+b22
2+. . .+bn−12

n−1, 0 ≤ bj ≤ 1 be the
n-th 2-adic approximation of a zero of f(x). From f(si) ≡ 0 (mod 2i), we have
s1 = 0, s2 = s1 + b1 · 2, . . . , sn+1 = sn + bn2

n. Thus we only need to calculate

6 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

sn−1 and bn to get sn. Since f(sn+1) = f(sn) + 2bn2
nsn + b2n2

2n − ubn2
n, i.e.,

f(sn) + bn2
n+1sn + b2n2

2n − µbn2
n ≡ 0 (mod 2n+1), bn ≡ µf(sn)

2n (mod 2) holds
true. The precise Hensel’s lifting algorithm is shown as Algorithm 2 [6].

Algorithm 2 The nth 2-adic approximation

Computation

1. s1 ←<>
2. for i← 1 to n− 1

bi ← f(si)

2i
µ (mod 2) //since 2i|f(si)

si+1 ← si + bi2
i

3. output si

From Algorithm 2, we calculate s2 = 2µ, s3 = 6µ, s4 = 6µ, s5 = 6µ, s6 = 38µ,
s7 = 38µ, s8 = 166µ, s9 = 422µ, s10 = 934µ, When n ≥ 2, sn ≡ 0 (mod 2).

It has been proved in [5] that for each positive integer w,

τw|g + hτ ⇔ 2w|g + hsw. (1)

2.3 Previous Pre-Computation Schemes

We will consider efficacy of pre-computation schemes in the context of λ-projective
coordinates. This type of coordinate system was proposed by Oliveira, López,
Aranha, and Rodŕıguez-Henŕıquez in [8] for elliptic curves over binary fields.
Given an affine point P = (x, y) on an elliptic curve E/F2m , its lambda rep-
resentation is (x, λ) with λ = x + y

x . This can be converted to the projective
coordinates in the usual manner.

It has been demonstrated that the computation of point addition, mixed
point addition3, and τ(P) using λ-projective coordinates [8] are usually faster
than these using LD coordinates [12]. In the rest of our discussion, point oper-
ations using λ-projective coordinates are considered. We neglect the cost of a
field addition since it involves only bitwise XORs. We will use the following cost
calculations: one mixed point addition costs 8M+2S (the cost of mixed point
addition is 5M+2S when Z-components of both two summands can be set to 1,
denoted by mixed addition with Z = 1), one full point addition costs 11M+2S.
Furthermore, evaluation of τ(P) costs 3S in general (τ -operation) and 2S when
the Z-coordinate of P is 1 (τ -affine operation). When the Z-coordinate of P is
1, Trost and Xu introduced formulas for P −µτP , P +µτP (utilizing some come
values for computing P−µτP) which require 2M+2S, 4M+3S respectively, and
also provided efficient formulas for P −µτ2P only requiring 5M+3S if P +µτP
had been calculated.

3 In this case, the Z-component of one of the summand can be set to 1.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 7

Solinas’ pre-computation Solinas [3] suggested an efficient design of the pre-
computation and gave an example as shown in Table 2. It requires 3 mixed point
additions (include 3 mixed additions with Z = 1) and 3 τ -affine operations for
the case of w = 4; 7 mixed point additions (include 4 mixed additions with
Z = 1), 4 τ -affine operations, and 3 τ -operations for the case of w = 5. The
costs are 15M+12S and 44M+31S respectively.

Table 2. Pre-computation scheme for w = 4, 5 in [3] (a=1)

w=4

Q3 = −P + τ2P Q5 = P + τ2P Q7 = −P − τ3P
w=5

Q3 = −P + τ2P Q5 = P + τ2P Q7 = −P − τ3P

Q9 = P − τ3Q5 Q11 = −τ2Q5 − P Q13 = −τ2Q5 + P

Q15 = −P + τ4P

Hankerson, Menezes, and Vanstone’s pre-computation Hankerson, Menezes,
and Vanstone [7] presented an improved design of pre-computation as shown in
Table 3. For w = 4, this pre-computation scheme requires 3 mixed point ad-
ditions (include 3 mixed additions with Z = 1) and 3 τ -affine operations. It
takes 1 full point addition, 6 mixed point additions (include 3 mixed additions
with Z = 1), 3 τ -affine operations, and 3 τ -operations for the case of w = 5; 3
full point additions, 12 mixed point additions (include 4 mixed additions with
Z = 1), 3 τ -affine operations, and 9 τ -operations for the case of w = 6. So the
costs for the three cases are 15M+12S, 50M+29S, and 117M+63S respectively.

Table 3. Pre-computation scheme for w = 4, 5, 6 in [7] (a=1)
w=4

Q3 = −P + τ2P Q5 = P + τ2P Q7 = −P − τ3P
w=5

Q3 = −P + τ2P Q5 = P + τ2P Q7 = −P − τ3P

Q9 = P − τ3Q5 Q11 = −τ2Q5 − P Q13 = −τ2Q5 + P

Q15 = −Q5 + τ2Q5

w=6

Q23 = −P − τ3P Q25 = P − τ3P Q27 = −P − τ2P

Q29 = P − τ2P Q3 = τ2Q25 − P Q5 = τ2Q25 + P

Q7 = −τ3Q27 − P Q9 = −τ3Q27 + P Q11 = τ2Q27 − P

Q13 = τ2Q27 + P Q15 = −τ2Q27 + Q27 Q17 = −τ2Q27 + Q29

Q19 = −τ2Q3 − P Q21 = τ2Q29 + P Q31 = τ2Q25 + Q27

Trost and Xu’s pre-computation Trost and Xu [6] proposed a mathemat-
ically natural and clean form of pre-computation, it requires the least number
of point additions and τ evaluations. We include here their pre-computation
scheme and adjust the calculation order to achieve its best computing speed for
w = 4, 5, and 6 in Table 4. Specifically, their pre-computation scheme requires
1 (P − τP)-operation, 1 (P + τP)-operation, and 1 (P − τ2P)-operation for

8 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

w = 4; 1 (P − τP)-operation, 1 (P + τP)-operation, 1 (P − τ2P)-operation, 4
mixed point additions and 1 τ -affine operation for w = 5; 1 (P − τP)-operation,
1 (P + τP)-operation, 1 (P − τ2P)-operation, 12 mixed point additions and 2 τ -
affine operations for w = 6. The costs are 11M+8S, 43M+18S, and 107M+36S
respectively.

Table 4. Pre-computation scheme for w = 4, 5, 6 in [6] (a=1)

w=4

Q5 = −P + τP Q7 = P + τP Q3 = −P + τ2P
w=5

Q5 = −P + τP Q7 = P + τP Q3 = −P + τ2P
Q9 = Q3 + τP Q11 = Q5 + τP Q13 = Q7 + τP
Q15 = −Q11 − τP
w=6

Q27 = P − τP Q25 = −P − τP Q29 = P − τ2P

Q3 = Q29 + τP Q9 = −Q29 + τP Q31 = Q3 − τ2P
Q5 = Q31 + τP Q7 = −Q31 + τP Q11 = −Q27 + τP
Q13 = −Q25 + τP Q15 = −Q11 − τP Q17 = −Q9 − τP
Q19 = −Q7 − τP Q21 = −Q17 + τP Q23 = −Q3 − τP

It is remarked that [6] only discussed the use of λ-projective coordinates in a
brief manner. The authors did not get into field arithmetic details to speed up the
pre-computation. Our main objective of this paper is to further explore the use
of λ-projective coordinates through some novel arrangement of pre-computation
and efficient formulas to achieve a great saving in terms of the number of field
multiplications and squarings. In the next section, we will propose new efficient
formulas using λ-coordinates to design an efficient pre-computation scheme.

3 New Formulas using λ-coordinates

Let P = (xP , λP), λP = xP + yP

xP
. The λ-coordinates of −P are (xP , λP +1). The

λ-projective coordinates of P are (XP , ΛP , ZP) where xP = XP

ZP
and λP = ΛP

ZP
.

We have τ(xP , λP) = (x2
P , λ

2
p) and τ(XP , ΛP , ZP) = (X2

P , Λ
2
P , Z

2
P). Let P =

(xP , λP) and Q = (xQ, λQ). Point addition P +Q = (xP+Q, λP+Q) was given in
[8] as {

xP+Q =
xP xQ

(xP+xQ)2 (λP + λQ),

λP+Q =
xQ(xP+Q+xP)2

xP+QxP
+ λP + 1.

(2)

3.1 New Formulas for P ± Q

P ±Q are first proposed to improve the efficiency of pre-computation on elliptic
curves over a prime field [13]. We will show its formulas over a binary field in
λ-projective coordinates by Theorem 1.

Theorem 1 Let P = (xP , λP), Q = (XQ, ΛQ, ZQ), P ̸= ±Q. P ±Q ((P ±Q)-
operation) can be computed as Algorithm 3 at the cost of 12M+5S.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 9

Algorithm 3 (P ±Q)-operation

Input: P = (xP , λP), Q = (XQ, ΛQ, ZQ)
Output: P +Q = (XP+Q, ΛP+Q, ZP+Q), P −Q = (XP−Q, ΛP−Q, ZP−Q)
Computation
1. A = λPZQ + ΛQ M
2. B = (xPZQ +XQ)

2 M+S
3. C = XQZQ M
4. D = xPC M
5. XP+Q = A2D M+S
6. ZP+Q = BAZQ 2M
7. ΛP+Q = (AXQ +B)2 + ZP+Q(λP + 1) 2M+S
8. XP−Q = XP+Q +DZ2

Q M+S
9. ZP−Q = ZP+Q +BZ2

Q M
10. ΛP−Q = ΛP+Q + C2 +BZ2

Q(λP + 1) M+S

Proof. By Equation (2), mixed addition P + Q = (XP+Q, ΛP+Q, ZP+Q) was
given in [8] as

A =λPZQ + ΛQ,

B =(xPZQ +XQ)
2,

XP+Q =xPAXQAZQ,

ZP+Q =BAZQ,

ΛP+Q =(AXQ +B)2 + ZP+Q(λP + 1).

These formulas of mixed addition require 8M+2S. If ZQ = 1, the cost of
mixed addition is 5M+2S.

Notice that −Q = (XQ, ΛQ + ZQ, ZQ). The formulas of P ±Q can be com-
puted as follows.

A =λPZQ + ΛQ,

B =(xPZQ +XQ)
2,

C =XQZQ,

D =xPC,

XP+Q =A2D,

ZP+Q =BAZQ,

ΛP+Q =(AXQ +B)2 + ZP+Q(λP + 1),

XP−Q =XP+Q +DZ2
Q,

ZP−Q =ZP+Q +BZ2
Q,

ΛP−Q =ΛP+Q + C2 +BZ2
Q(λP + 1).

These formulas of computing P±Q are shown as Algorithm 3 requiring 12M+5S.

10 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

Since individually computing P+Q and P−Q requires 16M+4S, our formu-
las of P ±Q save 4M−S. When τP = (x2

P , λ
2
P) is given, the cost of computing

P ± µτQ are 12M+5S.
Using new formulas of P ±Q, Solinas’ pre-computation scheme saves 4M−S

for w = 4 and 8M−2S for w = 5; Hankerson, Menezes, and Vanstone’s pre-
computation scheme saves 4M−S for w = 4, 8M−2S for w = 5, and 20M−5S
for w = 6; Trost and Xu’s pre-computation scheme saves 8M−2S for w = 6.
These formulas of computing P ± Q are also used in the design of our pre-
computation scheme.

3.2 Formulas for µτ̄ -operations

Avanzi, Dimitrov, Doche, and Sica [9] first introduce τ̄ to improve the efficiency
of scalar multiplication. They noticed that 2 = τ τ̄ and compute τ̄P requiring a
point doubling and three square roots. Doche, Kohel, and Sica [10] propose a new
efficient way to compute τ̄P which induces a speedup on the scalar multiplication
using double-base representation over 15% in LD coordinates. Motivated by their
work, we introduce a new radix µτ̄ to speed up pre-computation stage of scalar
multiplication using window τNAF. To present some new efficient formulas for
µτ̄ -operations, we propose formulas of µτ̄P in λ-coordinates shown by Lemma
1.

Lemma 1 Let P = (xP , λP). µτ̄P can be computed as

µτ̄P =

(
x2
P + 1

xP
,

x2
P

x2
P + 1

+ λP

)
.

Proof. Notice that −µτP = (x2
P , λ

2
P + a) and µτ̄ = 1−µτ . In λ-coordinates, Ea

can be represented as λ2 +λ+ a = x4+1
x2 . By Equation (2) and µτ̄P = P −µτP ,

we have

xµτ̄P =
xPx−µτP

(xP + x−µτP)2
(λP + λ−µτP)

=
xP

1 + x2
P

(λ2
P + λP + a)

=
x2
P + 1

xP
,

λµτ̄P =
x−µτP (xµτ̄P + xP)

2

xµτ̄PxP
+ λP + 1

=
x2
P

1 + x2
P

+ λP .

Theorem 2 Let P = (XP , ΛP , ZP). µτ̄P (µτ̄ -operation), (µτ̄)2P (re-µτ̄ oper-
ation), and (µτ̄)iP, i ≥ 3 (re-re-µτ̄ operation) can be computed as Algorithms 4,
5, and 6 at the cost of 5M+3S, 3M+2S, and 3M+2S respectively.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 11

Algorithm 4 µτ̄ -operation

Input: P = (XP , ΛP , ZP)
Output: µτ̄P = (Xµτ̄P , Λµτ̄P , Zµτ̄P), α = XPZP

Computation
1. α = XPZP M
2. A1 = X2

P + Z2
P 2S

3. Xµτ̄P = A2
1 S

4. Λµτ̄P = αX2
P +XPΛPA1 3M

5. Zµτ̄P = A1α M

Algorithm 5 Re-µτ̄ operation

Input: α = XPZP , µτ̄P = (Xµτ̄P , Λµτ̄P , Zµτ̄P) computed as Algorithm 4
Output: (µτ̄)2P = (X(µτ̄)2P , Λ(µτ̄)2P , Z(µτ̄)2P)
Computation
1) A2 = Xµτ̄P + α2 S
2) X(µτ̄)2P = A2

2 S
3) Λ(µτ̄)2P = Xµτ̄PZµτ̄P + Λµτ̄PA2 2M
4) Z(µτ̄)2P = Zµτ̄PA2 M

Algorithm 6 Re-re-µτ̄ operation

Input: A given i (i ≥ 3), (µτ̄)i−1P = (X(µτ̄)i−1P , Λ(µτ̄)i−1P , Z(µτ̄)i−1P) (computed as
Algorithm 5 if i = 3, as Algorithm 6 if i > 3), Z(µτ̄)i−2P (computed as Algorithm 4 if
i = 3, as Algorithm 5 if i = 4, as Algorithm 6 if i > 4)
Output: (µτ̄)iP = (X(µτ̄)iP , Λ(µτ̄)iP , Z(µτ̄)iP)
Computation
1) Ai = Z2

(µτ̄)i−2P +X(µτ̄)i−1P S

2) X(µτ̄)iP = A2
i S

3) Λ(µτ̄)iP = X(µτ̄)i−1PZ(µτ̄)i−1P + Λ(µτ̄)i−1PAi 2M
4) Z(µτ̄)iP = Z(µτ̄)i−1PAi M

12 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

Proof. 1. By µτ̄P =
(

x2
P+1
xP

,
x2
P

x2
P+1

+ λP

)
in Lemma 1, we have

µτ̄P =

(
(XP

ZP
)2 + 1
XP

ZP

,
(XP

ZP
)2

(XP

ZP
)2 + 1

+
ΛP

ZP

)
.

Then

α =XPZP ,

A1 =X2
P + Z2

P ,

Xµτ̄P =A2
1,

Λµτ̄P =αX2
P +XPΛPA1,

Zµτ̄P =A1α.

This is described as Algorithm 4.
2. Notice that (µτ̄)2P = µτ̄(µτ̄P),

(µτ̄)2P =

(
x2
µτ̄P + 1

xµτ̄P
,

x2
µτ̄P

x2
µτ̄P + 1

+ λµτ̄P

)
.

Motivated by that some values for computing P − µτP are utilized to com-
pute P − µτP in [6], some values for computing µτ̄P are used to compute
(µτ̄)2P . Let µτ̄P = (Xµτ̄P , Λµτ̄P , Zµτ̄P) be computed as Algorithm 4 where
xµτ̄P = A1

α . We have

(µτ̄)2P =

(
(A1

α)2 + 1
A1

α

,
(A1

α)2

(A1

α)2 + 1
+

Λµτ̄P

Zµτ̄P

)

=

(
A2

1 + α2

A1α
,

A2
1

A2
1 + α2

+
Λµτ̄P

Zµτ̄P

)
=

(
Xµτ̄P + α2

Zµτ̄P
,

Xµτ̄P

Xµτ̄P + α2
+

Λµτ̄P

Zµτ̄P

)
.

Then (µτ̄)2(P) can be computed as

A2 =Xµτ̄P + α2,

X(µτ̄)2P =A2
2,

Λ(µτ̄)2P =Xµτ̄PZµτ̄P + Λµτ̄PA2,

Z(µτ̄)2P =Zµτ̄PA2.

It is shown as Algorithm 5.
3. When i ≥ 3, (µτ̄)i(P) = µτ̄((µτ̄)i−1(P)).

(µτ̄)iP =

(
x2
(µτ̄)i−1P + 1

x(µτ̄)i−1P

,

x2
(µτ̄)i−1P

x2
(µτ̄)i−1P + 1

+ λ(µτ̄)i−1P

)
.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 13

Some values of calculating (µτ̄)i−1P are used to calculate (µτ̄)iP . When

i = 3, we compute x(µτ̄)i−1P = Ai−1

Z(µτ̄)i−2P
, X(µτ̄)i−1P = A2

i−1 by Algorithm

5; when i > 3, x(µτ̄)i−1P = Ai−1

Z(µτ̄)i−2P
, X(µτ̄)i−1P = A2

i−1 by Algorithm 6. We

have

(µτ̄)iP

=

 (Ai−1

Z(µτ̄)i−2P
)2 + 1

Ai−1

Z(µτ̄)i−2P

,
(Ai−1

Z(µτ̄)i−2P
)2

(Ai−1

Z(µτ̄)i−2P
)2 + 1

+
Λ(µτ̄)i−1P

Z(µτ̄)i−1P


=

(
A2

i−1 + Z2
(µτ̄)i−2P

Ai−1Z(µτ̄)i−2P

,
A2

i−1

A2
i−1 + Z2

(µτ̄)i−2P

+
Λ(µτ̄)i−1P

Z(µτ̄)i−1P

)

=

(
X(µτ̄)i−1P + Z2

(µτ̄)i−2P

Z(µτ̄)i−1P
,

X(µτ̄)i−1P

X(µτ̄)i−1P + Z2
(µτ̄)i−2P

+
Λ(µτ̄)i−1P

Z(µτ̄)i−1P

)
.

Then (µτ̄)iP , i ≥ 3 can be computed as

Ai =Z2
(µτ̄)i−2P +X(µτ̄)i−1P ,

X(µτ̄)iP =A2
i ,

Λ(µτ̄)iP =X(µτ̄)i−1PZ(µτ̄)i−1P + Λ(µτ̄)i−1PAi,

Z(µτ̄)iP =Z(µτ̄)i−1PAi.

It is described as Algorithm 6.

µτ̄ -operation can be used to speed up scalar multiplications directly and used
in double-base representation to improve the efficiency of scalar multiplications
which are not the key concerns of this work. When Z-coordinate of P is 1, by
Λ(µτ̄)2P = Xµτ̄PZµτ̄P +Λµτ̄PA2 = A2Zµτ̄PλP +xP in Algorithm 5 and Theorem
2, one directly gets the formulas of µτ̄&(µτ̄)2-affine operation.

Theorem 3 Let P = (xP , λP). µτ̄P and (µτ̄)2P (µτ̄&(µτ̄)2-affine operation)
can be computed as Algorithm 7 at the cost of 4M+3S. The values of µτ̄P and
(µτ̄)2P in Algorithm 7 are the same as those in Algorithm 4 with ZP = 1. Then
the conditions of calculating (µτ̄)iP , i ≥ 3 using Algorithm 7 are still satisfied.

The costs of point operations including mixed addition, (P ± Q)-operation,
µτ̄ -operation, re-µτ̄ operation, re-re-µτ̄ operation, and µτ̄&(µτ̄)2-affine opera-
tion are summarized in Table 5. From Table 5, µτ̄ -operation requires 5M+3S,
re-µτ̄ operation and re-re-µτ̄ operation both require 3M+2S, µτ̄&(µτ̄)2-affine
operation requires 4M+3S. As a mixed point addition requires 8M+2S, these
point operations are all very efficient.

14 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

Algorithm 7 µτ̄&(µτ̄)2-affine operation

Input: P = (xP , λP)
Output: µτ̄P = (Xµτ̄P , Λµτ̄P , Zµτ̄P), (µτ̄)

2P = (X(µτ̄)2P , Λ(µτ̄)2P , Z(µτ̄)2P)
Computation
1) β = x2

P S
2) Xµτ̄P = β2 + 1 S
3) Zµτ̄P = xPβ + xP M
4) Λµτ̄P = (λP + 1)Zµτ̄P + xP M
5) A2 = Xµτ̄P + β
6) X(µτ̄)2P = A2

2 S
7) Z(µτ̄)2P = A2Zµτ̄P M
8) Λ(µτ̄)2P = Z(µτ̄)2PλP + xP M

Table 5. Costs of point operations
Point operation cost algorithm
mixed addition 8M+2S
(P ± Q)-operation (this work) 12M+5S Algorithm 3
µτ̄ -operation (this work) 5M+3S Algorithm 4
re-µτ̄ operation (this work) 3M+2S Algorithm 5
re-re-µτ̄ operation (this work) 3M+3S Algorithm 6

µτ̄&(µτ̄)2-affine operation (this work) 4M+3S Algorithm 7

Based on the efficient formulas of (P ± Q)-operation, µτ̄ -operation, re-µτ̄
operation, re-re-µτ̄ operation, and µτ̄&(µτ̄)2-affine operation, we will introduce
a novel scheme to improve the efficiency of pre-computation stage of window
τNAF on Koblitz curves.

4 A Novel Pre-Computation Scheme

Solinas’ pre-computation; Hankerson, Menezes, and Vanstone’s pre-computation;
and Trost and Xu’s pre-computation all have a pre-computation scheme on E0

and another pre-computation scheme on E1. For convenience, we define a unified
pre-computation.

Definition 1 (Unified pre-computation) If a pre-computation scheme com-
puting all Qi for i ∈ Iw works on both E0 and E1, we call it a unified pre-
computation.

To design an efficient unified pre-computation, some properties of Ri, i ∈ Iw are
demanded.

4.1 Basic Lemmas

Recall that for w ≥ 3, Iw = {1, 3, · · · , 2w−1 − 1} and Ri consists of the elements
of the class i modulo τw whose norms are smaller than 2w, for each i ∈ Iw. Since
elements of Iw are odd integers, we will mainly work on the subset (2Z+1)+Zτ ⊂
Z[τ] as Ri ⊂ (2Z+ 1) + Zτ .

Lemma 2 We have the following facts:

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 15

1. If g + hτ ∈ Ri for some i ∈ Iw, then g − hτ /∈ Ri.
2. If g + hτ ∈ Ri for some i ∈ Iw, then g′ + hτ /∈ Ri for any g′ ∈ Z \ {g}.
3. For any g + hτ ∈ (2Z+ 1) + Zτ , there exists an i ∈ Iw such that i ≡ g + hτ

(mod τw) or −i ≡ g + hτ (mod τw).

Proof. From [6], we know that if g + hτ ∈ Ri, then |g| < 2
w+2

2√
3

, |h| < 2
w
2 where

|g| denotes its absolute value.
(1) Assume both g+hτ and g−hτ are in Ri, then τw|2hτ . By Equation (1),

this implies that 2w|2hsw and hence 2w−2|h as sw
2 is odd. On the other hand,

since N(g ± hτ) < 2w, we see that h2 < 2w−1. This reaches a contradiction.
(2) Assume both g+hτ and g′+hτ are in Ri for some g′ ̸= g, then τw|(g−g′).

We get 2w|(g − g′) by Equation (1). Since |g|, |g′| < 2
w+2

2√
3

, we get |g − g′| <

2 2
w+2

2√
3

≤ 2w. We get a contradiction again.

(3) Since g + hsw is odd, it must be in one of the congruence classes of
−2w−1 + 1,−2w−1 + 3, . . . ,−3,−1, , 1, 3, . . . , 2w−1 − 3, 2w−1 − 1 modulo 2w.

We can show that the number of elements of Ri is well bounded.

Lemma 3 Let i ∈ Iw, then

|Ri| ≤ ⌊2
w+2

2 ⌋.

Proof. If g + hτ ∈ Ri, we know that |h| < 2
w
2 . So T = {h ∈ Z|g + hτ ∈

Ri for some odd number g} has less than 2 ·2w
2 number of elements. By Lemma

2, for each h ∈ T , there is only one g available such that g + hτ ∈ Ri. Thus

|Ri| = |T | ≤ ⌊2
w+2

2 ⌋.

If g + h1τ ≡ g + h2τ (mod τw), sw(h2 − h1) ≡ 0 (mod 2w). sw is even, and
sw/2 is odd, then h2 = h1+c·2w−1. Thus g+hτ, g+(h+1)τ, . . . , g+(h+2w−1−1)τ
cover all congruence classes Ri and R−i, i ∈ Iw where g is odd. For each i, there

is
⌊ 2

w+2
2√
3

⌋·⌊2
w
2 ⌋

2w−2 < 4.62 solutions of g + hτ satisfying i ≡ g + hτ (mod τw) on
average. We have calculated out that |Ri| 6 3 for i ∈ Iw when 3 ≤ w ≤ 10.

4.2 A Unified Pre-Computation

Let ci ∈ Ri and ci = g + hµτ . Then N(g + hµτ) = g2 + gh + 2h2 < 2w.
This fact that the norm of g + hµτ has no concern with µ is the premise of
our unified pre-computation. We propose a plane search to generate Ri, i ∈ Iw
shown as Algorithm 8. For each (g + hµτ) ∈ (2Z+ 1) + Zτ with N(g + hµτ) =
g2+gh+2h2 < 2w, we dot it on a plane with g as horizontal axis and h as vertical
axis. To determine whether g+hµτ is in Ri for some i satisfying 2w|g−i+hµsw,

16 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

we search all points (g, h) where −⌊2
w+2√

3 ⌋ ≤ g ≤ ⌊2
w+2√

3 ⌋, −⌊2w
2 ⌋ ≤ h ≤ ⌊2w

2 ⌋ and
g is odd. We call this method plane search. For sw has a unified representation
and by Algorithm 2, µsw is an integer associated with w but no connection
with µ or a. Then one can figure out each element of Ri associated with u by
Algorithm 8. Qi = ciP works on both E0 and E1 for ci = g + hµτ ∈ Ri.

Algorithm 8 Plane search to generate Ri, i ∈ Iw

Computation

1. Ri ←<>
2. for h← −⌊2

w
2 ⌋ to ⌊2

w
2 ⌋

for g ← −⌊2
w+2√

3 ⌋ to ⌊2
w+2√

3 ⌋ and g is odd
if(2w|g − i+ hµsw) and (g2 + gh+ 2h2 < 2w)
then append (g + hµτ) to Ri

3. output Ri

We collect all such elements and form a set

C = {ci|i ∈ Iw}.

Then Qi = ciP, ci ∈ C suits for both E0 and E1. These Qi = ciP, ci ∈ C, i ∈ Iw
form a unified pre-computation. We always set the trivial case c1 = 1. Then C
can be briefly denoted as C = {ci|i ∈ Iw, i ̸= 1}.

4.3 Our Novel Pre-Computation

At present, we design a novel pre-computation for window τNAF with width 4,
5, and 6.

Theorem 4 Let P = (xP , λP), Qi = (Xi, Λi, Zi), i ∈ Iw. There exist unified
pre-computation schemes shown as Algorithm 9, Algorithm 10, and Algorithm
11 requiring 7M+5S, 26M+16S, and 66M+36S for window τNAF with width
w = 4, 5, and 6 respectively. In Algorithm 9, “(−Q5,−Q7)=µτ̄&(µτ̄)2-affine(P)
by Algorithm 7” means that (−Q5,−Q7) is the output of Algorithm 7 with input
P . The same representation suits for other sentences in Algorithms 9, 10, and
11. The explicit design is shown as Table 6.

Proof. An algorithm for calculating pre-computations for window τNAF with
width 4, 5, and 6 is shown in Table 6. Let ci = g + hµτ for each i ∈ Iw in Table
6. Since ci = g+ hµτ for each i ∈ Iw with w = 4, 5, and 6, the pre-computation
in Table 6 is a unified pre-computation. It is obvious to verify that g+hµsw ≡ i
(mod 2w) and N(ci) < 2w for each i ∈ Iw. This ensures the correctness of our
unified pre-computation.

At present, we count the field operations of our unified pre-computation.
The calculation process is as follows.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 17

Algorithm 9 Pre-computation for w = 4

Input: P = (xP , λP)
Output: Qi, i ∈ Iw
Computation

1. (−Q5,−Q7)=µτ̄&(µτ̄)2-affine(P) by Algorithm 7
2. Q3=re-re-µτ̄(−Q7, Z5) by Algorithm 6

Algorithm 10 Pre-computation for w = 5

Input: P = (xP , λP)
Output: Qi, i ∈ Iw
Computation

1. µτP = (x2
P , λ

2
P + a+ 1)

2. (−Q5,−Q7)=µτ̄&(µτ̄)2-affine(P) by Algorithm 7
3. Q3=re-re-µτ̄(−Q7, Z5) by Algorithm 6
4. −Q15=re-re-µτ̄(Q3, Z7) by Algorithm 6
5. Q11 = µτP +Q5

6. (Q9, α) = µτ̄(Q11) by Algorithm 4
7. Q3=re-µτ̄(Q9, α) by Algorithm 5

Algorithm 11 Pre-computation for w = 6

Input: P = (xP , λP)
Output: Qi, i ∈ Iw
Computation

1. µτP = (x2
P , λ

2
P + a+ 1)

2. (Q27, Q25)=µτ̄&(µτ̄)2-affine(P) by Algorithm 7
3. −Q29=re-re-µτ̄(Q25, Z27) by Algorithm 6
4. Q15=re-re-µτ̄(Q29, Z25) by Algorithm 6
5. Q21=re-re-µτ̄(Q15, Z29) by Algorithm 6
6. (Q9, Q3)=(P ±Q)-operation(µτP , Q29) by Algorithm 3
7. (−Q13, α) = µτ̄(Q9) by Algorithm 4
8. Q31=re-µτ̄(Q13, α) by Algorithm 5
9. (Q17, α) = µτ̄(Q11) by Algorithm 4

10. Q11=re-µτ̄(Q17, α) by Algorithm 5
11. Q23 = −Q15 + µτP .
12. (−Q19, α) = µτ̄(Q11) by Algorithm 4
13. Q5, Q7=(P ±Q)-operation(µτP , Q31) by Algorithm 3

18 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

Table 6. Novel pre-computation for w = 4, 5, 6

w=4 7M+5S
c5 = −1 + µτ Q5 = −µτ̄P 2M+2S

c7 = 1 + µτ c7 = µτ̄c5 Q7 = −(µτ̄)2P 2M+S

c3 = −3 + µτ c3 = −µτ̄c7 Q3 = (µτ̄)3P 3M+2S

w=5 26M+16S
c5 = −1 + µτ Q5 = −µτ̄P 2M+2S

c7 = 1 + µτ c7 = µτ̄c5 Q7 = −(µτ̄)2P 2M+S

c3 = −3 + µτ c3 = −µτ̄c7 Q3 = (µτ̄)3P 3M+2S

c15 = 1 − 3µτ c15 = −µτ̄c3 Q15 = −(µτ̄)4P 3M+2S
c11 = −1 + 2µτ c11 = µτ + c5 Q11 = µτP + Q5 8M+4S
c9 = 3 + µτ c9 = µτ̄c11 Q9 = µτ̄Q11 5M+3S

c13 = −5 + 3µτ c13 = −µτ̄c9 Q13 = −(µτ̄)2Q11 3M+2S

w=6 66M+36S
c27 = 1 − µτ Q27 = µτ̄P 2M+2S

c25 = −1 − µτ c25 = µτ̄c27 Q25 = (µτ̄)2P 2M+S

c29 = 3 − µτ c29 = −µτ̄c25 Q29 = −(µτ̄)3P 3M+2S

c15 = 1 − 3µτ c15 = µτ̄c29 Q15 = −(µτ̄)4P 3M+2S

c21 = −5 − µτ c21 = µτ̄c15 Q21 = −(µτ̄)5P 3M+2S
c3 = 3 c3 = µτ + c29 Q3 = µτP + Q29

c9 = −3 + 2µτ c9 = µτ − c29 Q9 = µτP − Q29 12M+7S
c13 = −1 − 3µτ c13 = −µτ̄c9 Q13 = −(µτ̄)Q9 5M+3S

c31 = −7 + µτ c31 = µτ̄c13 Q31 = −(µτ̄)2Q9 3M+2S
c17 = 3 − 3µτ c17 = µτ̄c3 Q17 = µτ̄Q3 5M+3S

c11 = −3 − 3µτ c11 = µτ̄c17 Q11 = (µτ̄)2Q3 3M+2S
c23 = −1 + 4µτ c23 = µτ − c15 Q23 = µτP − Q15 8M+2S
c19 = −7 − µτ c19 = −µτ̄c23 Q19 = −µτ̄Q23 5M+3S
c5 = −7 + 2µτ c5 = µτ + c31 Q5 = µτP + Q31

c7 = 7 c7 = µτ − c31 Q7 = µτP − Q31 12M+5S

1. w = 4. Q5 = −(µτ̄P), Q7 = −(µτ̄)2P , Q3 = (µτ̄)3P are shown as Algo-
rithm 9 and Table 6. It requires 1 µτ̄&(µτ̄)2-affine operation and 1 re-re-µτ̄
operation which costs 7M+5S.

2. w = 5. Let τP = (xτP , λτP) = (x2
P , λ

2
P). Q5 = −(µτ̄P), Q7 = −(µτ̄)2P ,

Q3 = (µτ̄)3P , Q15 = −(µτ̄)4P , Q11 = µτP + Q5, Q9 = µτ̄Q11, Q13 =
−(µτ̄)2Q11 are shown as Algorithm 10 and Table 6. It requires 1 µτ̄&(µτ̄)2-
affine operation, 1 µτ̄ -operation, 2 re-µτ̄ operations, 1 re-re-µτ̄ operation, 1
τ -affine operation, and 1 mixed addition which costs 26M+16S.

3. w = 6. Let τP = (xτP , λτP) = (x2
P , λ

2
P).

Q27 = µτ̄P , Q25 = (µτ̄)2P , Q29 = −(µτ̄)3P , Q15 = −(µτ̄)4P , Q21 =
−(µτ̄)5P , (Q3, Q9) = µτP ± Q29 (Q3 = µτP + Q29, Q9 = µτP − Q29),
Q13 = −(µτ̄)Q9, Q31 = −(µτ̄)2Q9, Q17 = µτ̄Q3, Q11 = (µτ̄)2Q3, Q23 =
µτP − Q15, Q19 = −µτ̄Q23, (Q5, Q7) = µτP ± Q31 (Q5 = µτP + Q31,
Q7 = µτP −Q31) are shown as Algorithm 11 and Table 6.
It requires 1 µτ̄&(µτ̄)2-affine operation, 3 µτ̄ -operations, 2 re-µτ̄ operations,
3 re-re-µτ̄ operations, 1 τ -affine operation, 1 mixed addition, and 2 (P ±Q)-
operations which costs 66M+36S.

The explicit computing process and the value of ci are shown as Table 6.

The design of this unified pre-computation is shown in the Appendix A. As
shown in [6], for each Qi (i = 3, 5, . . . , 2w−1−1), one point addition is necessary.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 19

In this work, we employ more efficient µτ̄ -operations to replace point addition.
These operations contain µτ̄ -operation, re-µτ̄ operation, re-re-µτ̄ operation, and
µτ̄&(µτ̄)2-affine operation which lead to the speedup of our pre-computation
algorithm. Next, we will compare these pre-computation schemes.

4.4 Comparison of Pre-Computation Schemes in M and S

It is standard to compare these schemes by counting field multiplications and
field squarings. Suppose that I/M =10 and S/M =0 or 0.2 which is suggested
by Bernstein and Lange in their explicit formulas database [14]. These ratios
are reasonable in the experiments of our environments shown as Section 6 where
I/M =10 and 0< S/M< 0.2. The costs of Solinas’ pre-computation scheme;
Hankerson, Menezes, and Vanstone’s pre-computation scheme; Trost and Xu’s
pre-computation scheme; and our pre-computation scheme are summarized in
Table 1. From Table 1, our pre-computation scheme is the fastest one among
these 4 pre-computation schemes.

From Table 1, our novel pre-computation scheme is about 110% faster than
Solinas’ pre-computation scheme for w = 4 and 70% for w = 5 in both cases
of S=0M and S=0.2M. It is about 110% faster than Hankerson, Menezes, and
Vanstone’s pre-computation scheme for w = 4, 90% for w = 5, and 77% for
w = 6. Our unified pre-computation is about 60% faster than Trost and Xu’s
pre-computation scheme for w = 4, 5, and 6.

5 Scalar Multiplications

Let the costs of pre-computation schemes for window τNAF with width w in
Table 1 be denoted by Prew. Scalar multiplication using window τNAF has two
situations.

1. Scalar multiplication uses pre-computations in λ-projective coordinates. It

requires m τ -operations, m
w+1

2w−2−1
2w−2 point additions, m

w+1
1

2w−2 mixed addi-
tions, and the pre-computation. Scalar multiplication in this case costs

3mS+
m

w + 1
(11M+ 2S− 3

2w−2
M) + Prew. (3)

2. Scalar multiplication uses pre-computations in λ-coordinates. This method
can fully use mixed additions and requires Montgomery trick to translate
the pre-computation points in λ-coordinates to points in λ-coordinates. It
requires m τ -projective operations, m

w+1 mixed additions, Montgomery trick,
and the pre-computation. Scalar multiplication in this case costs

3mS+
m

w + 1
(8M+ 2S) + I+ (5 · 2w−2 − 8)M+ Prew. (4)

The costs of scalar multiplications for both cases are shown in Table 7.
For w = 4, we choose Case 1 to compute scalar multiplications when I ≥

(9m20 − 12)M, i.e., m ≤ 48. For w = 5, we choose Case 1 to compute scalar

20 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

Table 7. The costs of scalar multiplications using window τNAF
case case 1 case 2
w = 4 41m

20 M + 17m
5 S + Pre4 I+(8m

5 + 12)M + 17m
5 S + Pre4

w = 5 85m
48 M + 10m

3 S + Pre5 I+(4m
3 + 32)M + 10m

3 S + Pre5
w = 6 173m

112 M + 23m
7 S + Pre6 I+(8m

7 + 72)M + 23m
7 S + Pre6

multiplications when I ≥ (7m17 −32)M, i.e., m ≤ 102. For w = 6, we choose Case
1 to compute scalar multiplications when I ≥ (45m112 − 72)M, i.e., m ≤ 204. It is
obvious that we should perform scalar multiplications on K-163, K-233, K-283,
K-409, and K-571 using Case 2 to get a higher performance.

We summarized the lowest costs of scalar multiplications on each curve using
our pre-computation scheme and the costs of scalar multiplications using Trost
and Xu’s pre-computation scheme by Equations (3) and (4) in Table 8. On K-
163, scalar multiplications using our pre-computation scheme utilize w = 5 and
those using Trost and Xu’s scheme utilize w = 4. On K-233, K-283, and K-409,
w = 5 is the best choice. On K-571, w = 6 is the best choice. When S/M =0,
scalar multiplications using our scheme are 3.0%, 4.5%, 3.8%, 2.8%, and 5.1%
faster than those using Trost and Xu’s scheme on K-163, K-233, K-283, K-409,
and K-571 respectively. When S/M =0.2, the ratios are 2.3%, 3.2%, 2.7%, 2.0%,
and 3.5% respectively.

Table 8. The costs of scalar multiplications on K-163, K-233, K-283, K-409, and K-571
in M

Curve K-163(w) K-233(w) K-283(w) K-409(w) K-571(w)
S=0M
Trost, Xu 293.8(4) 395.7(5) 462.3(5) 630.3(5) 841.5(6)

our 285.3(5) 378.7(5) 445.3(5) 613.3(5) 800.5(6)
S=0.2M
Trost, Xu 406.2(4) 554.6(5) 654.6(5) 906.6(5) 1224(6)

our 397.2(5) 537.2(5) 637.2(5) 889.2(5) 1183(6)

6 Experiments

Miracl lib [15] is used to implement field arithmetics over F2m . Our experiments
are tested by using C++ programs which are compiled by Microsoft visual stu-
dio 2008 on an Intel Core 2. The processor speed is 2.66 GHz processor and the
operating system is 32-bit Windows XP. This section will present some experi-
mental results of different pre-computation schemes, scalar multiplications using
our scheme and those using scheme in [6].

6.1 Pre-Computation Schemes

We ran each pre-computation scheme 1000 times on five Koblitz curves including
K-163, K-233, K-283, K-409, and K-571. The time costs of our experiments for
w from 4 to 6 are shown in Table 9.

On K-163, K-233, K-283, K-409, and K-571, Table 9 shows that our pre-
computation scheme is about 110%, 110%, 60% faster than Solinas’ scheme;

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 21

Table 9. Time cost of pre-computations on K-163, K-233, K-283, K-409, and K-571
in µs

Curve K-163 K-233 K-283 K-409 K-571
w = 4

Solinas 80 101 119 210 295
Hankerson, Menezes, Vanstone 80 101 119 210 295

Trost, Xu 63 80 92 161 224
Ours 39 49 57 100 141

w = 5
Solinas 210 270 328 591 845

Hankerson, Menezes, Vanstone 228 298 358 659 950
Trost, Xu 203 271 304 554 810

Ours 125 163 189 341 502
w = 6
Hankerson, Menezes, Vanstone 542 709 846 1502 2179

Trost, Xu 473 617 737 1323 1977
Ours 303 393 458 820 1176

Hankerson, Menezes, and Vanstone’s scheme; and Trost and Xu’s scheme respec-
tively for w = 4; about 70%, 90%, 60% faster than these three pre-computation
schemes respectively for w = 5; about 80%, 60% faster than Hankerson, Menezes,
and Vanstone’s scheme; and Trost and Xu’s pre-computation scheme respectively
for w = 6 .

Within the bounds of the error, the practical implementations are consistent
with the theoretical analysis. The reason of some differences is that some field
additions are ignorant and that the ratio of M and S is different.

6.2 Scalar multiplications

The experimental results of scalar multiplications using window τNAF on the
standardized curves NIST K-163, K-233, K-283, K-409, and K-571 are shown in
Table 10. On K-163, scalar multiplications using our pre-computation scheme
are 2.8% faster than those using Trost and Xu’s pre-computation scheme. On K-
233, K-283, and K-409, scalar multiplications using our scheme are 4.2%, 3.1%,
and 2.5% faster than those using Trost and Xu’s scheme respectively. Scalar
multiplications use window τNAF with w = 5 on K-233, K-283, and K-409. Since
our pre-computation scheme saves 18M+2S, the cost of scalar multiplications
increase as m increases and the ratio of improvement is reduced. For example,
the improvement of scalar multiplication on K-233 is larger than that on K-283.
On K-571, scalar multiplications using our pre-computation scheme are 4.9%
faster than those using Trost and Xu’s pre-computation scheme. Both scalar
multiplications use window τNAF with w = 6 on K-571. In this case, our pre-
computation scheme saves 42M which is more than 18M+2S in the case of w =
5. This is the reason that the ratio of improvement of scalar multiplication is 4.9%
on K-571, and 4.2%, 3.1%, 2.5% on K-233, K-283, and K-409. These experimental
results confirm that our improvement of pre-computation can actually speed up
the efficiency of scalar multiplications.

22 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

Table 10. Time cost of scalar multiplications in µs
Curve K-163 K-233 K-283 K-409 K-571

Trost, Xu 1559 2686 3739 9175 16889
our 1516 2578 3625 8953 16103

7 Conclusion

We introduce the notion of µτ̄ -operation and design a novel pre-computation
scheme on Koblitz curves. Results show that our pre-computation scheme is the
most efficient one among all existing schemes. Scalar multiplications using our
pre-computation scheme is about from 2.5% to 4.9% faster than those using
Trost and Xu’s scheme on the five Koblitz curves.

A The Design of Our Novel Pre-Computation Scheme

Let Q = (g + hµτ)P . µτ̄Q = (g + 2h − µgτ)P . By Algorithm 8, we have |g| ≤
7, |h| ≤ 6 for the cases of w = 4, 5, and 6. All possible cases of µτ̄Q for w = 4,
5, and 6 are shown in Table 11.

Table 11. The values of µτ̄Q
Q µτ̄Q
Q = P (1 − µτ)P
Q = (1 − µτ)P (−1 − µτ)P
Q = (1 + µτ)P (3 − µτ)P
Q = (1 + 2µτ)P (5 − µτ)P
Q = (1 − 2µτ)P (−3 − µτ)P
Q = (1 + 3µτ)P (7 − µτ)P
Q = (1 − 3µτ)P (−5 − µτ)P
Q = (1 − 4µτ)P (−7 − µτ)P
Q = 3P (3 − 3µτ)P
Q = (3 + µτ)P (5 − 3µτ)P
Q = (3 − µτ)P (1 − 3µτ)P
Q = (3 + 2µτ)P (7 − 3µτ)P
Q = (3 − 2µτ)P (−1 − 3µτ)P
Q = (3 − 3µτ)P (−3 − 3µτ)P
Q = (3 − 4µτ)P (−5 − 3µτ)P
Q = (3 − 5µτ)P (−7 − 3µτ)P
Q = 5P (5 − 5µτ)P
Q = (5 + µτ)P (7 − 5µτ)P
Q = (5 − µτ)P (3 − 5µτ)P
Q = (5 − 2µτ)P (1 − 5µτ)P
Q = (5 − 3µτ)P (−1 − 5µτ)P
Q = (5 − 4µτ)P (−3 − 5µτ)P
Q = (5 − 5µτ)P (−5 − 5µτ)P
Q = (5 − 6µτ)P (−7 − 5µτ)P

The key technique is to choose suitable ci ∈ Ri to get a high efficiency of
pre-computation scheme.

1. For the case of w = 4, by our plane search of Algorithm 8, R1 = {1},
R3 = {−1−2µτ, 3,−3+µτ}, R5 = {−1+µτ, 1−2µτ}, R7 = {1+µτ, −3−
µτ, 3− 2µτ}.

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 23

For the trivial case c1=1, Q1 = c1P = P . µτ̄&(µτ̄)2-affine operation only
requires 4M+3S. By Lemma 2, µτ̄ ∈ Ri or −µτ̄ ∈ Ri for some i ∈ Iw. The
same for (µτ̄)2 where (µτ̄)2 ∈ Rj or −(µτ̄)2 ∈ Rj for some j ∈ Iw. Without
loss of generality, suppose that µτ̄ ∈ Ri and (µτ̄)2 ∈ Rj . If any one or two
of µτ̄P=ciP , (µτ̄)2P=cjP is calculated as others (ci, cj are other elements
in Ri, Rj), the total cost will be more. Then ci = µτ̄ and cj = (µτ̄)2 is
first determined for the nontrivial case. We first set c5 = −1 + µτ = −µτ̄ ,
c7 = 1 + µτ = −(µτ̄)2.

If c3 = −1 − 2µτ , computing Q3 requires 8M+4S; if c3 = 3, more than
8M+4S; if c3 = −3+ µτ = (µτ̄)3, 3M+2S. Thus we choose that C = {c5 =
−1 + µτ, c7 = 1 + µτ, c3 = −3 + µτ} shown as Table 6.

2. For the case of w = 5, R1 = {1, −5 + µτ}, R3 = {3, −3 + µτ}, R5 =
{−1+µτ, 5}, R7 = {1+µτ, −5+2µτ}, R9 = {1− 4µτ, 3+µτ, −3+2µτ},
R11 = {−1 + 2µτ, 3 − 4µτ}, R13 = {1 + 2µτ, −1 − 3µτ, −5 + 3µτ},
R15 = {1− 3µτ, 3 + 2µτ, −3 + 3µτ}.
Set c5 = −1 + µτ = −µτ̄ , c7 = 1 + µτ = −(µτ̄)2. c3 = −3 + µτ = (µτ̄)3,
c15 = 1−3µτ = −(µτ̄)4. ComputingQ3 = c3P,Q15 = c15P requires 6M+4S.
If c3, c15 are valued as others, the total cost will be more. c9, c11, c13 are still
not determined. Let ci ≻ cj denote cj = µτ̄ci or cj = −µτ̄ci, i.e., Qi ≻ Qj

denotes Qj = µτ̄Qi or Qj = −µτ̄Qi. Recall that R9 = {1−4µτ, 3+µτ, −3+
2µτ}, R11 = {−1 + 2µτ, 3− 4µτ}, R13 = {1 + 2µτ, −1− 3µτ, −5 + 3µτ}.
List all ≻ relations for c9, c11, c13 as follows.

(a) c11 = −1 + 2µτ≻c9 = 3 + µτ≻ c13 = −5 + 3µτ ,

(b) c9 = −3 + 2µτ≻ c13 = −1− 3µτ .

Choose c9 = 3 + µτ , c11 = −1 + 2µτ = µτ̄(c11), and c13 = −(µτ̄)2c11. It is
the best choice to compute Q9, Q11, Q13. Then C = {c5 = −1+µτ, c7 = 1+
µτ, c3 = −3+µτ, c15 = 1−3µτ, c11 = −1+2µτ, c9 = 3+µτ, c13 = −5+3µτ}.
Thus our pre-computation scheme for the case of w = 5 as shown in Table
6 is determined.

3. For the case of w = 6, R1 = {1, −1 − 5µτ}, R3 = {1 − 5µτ, 3}, R5 =
{3 − 5µτ, 5, −7 + 2µτ}, R7 = {−5 + 2µτ, 5 − 5µτ, 7}, R9 = {−3 +
2µτ, −5− 3µτ}, R11 = {−1+2µτ, −3− 3µτ}, R13 = {1+2µτ, −1− 3µτ},
R15 = {1 − 3µτ, 3 + 2µτ}, R17 = {3 − 3µτ, 5 + 2µτ, −7 + 4µτ}, R19 =
{5− 3µτ, −5+4µτ, −7−µτ}, R21 = {−3+4µτ, −5−µτ, 7− 3µτ}, R23 =
{−1+ 4µτ, −3−µτ}, R25 = {−1−µτ, 1+ 4µτ}, R27 = {1−µτ, 3+ 4µτ},
R29 = {3− µτ}, R31 = {3− 6µτ, 5− µτ, −7 + µτ}.
Notice that

µτ̄ =1− µτ,

(µτ̄)2 =− 1− µτ,

(µτ̄)3 =− 3 + µτ,

(µτ̄)4 =− 1 + 3µτ,

(µτ̄)5 =5 + µτ.

24 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

First set c27 = 1−µτ = µτ̄ , c25 = −1−µτ = (µτ̄)2, c29 = 3−µτ = −(µτ̄)3,
c15 = 1− 3µτ = −(µτ̄)4, and c21 = −5− µτ = −(µτ̄)5. It is the best choice
for calculating Q15, Q25, Q27, Q29, and Q21 requiring 13M+9S.
c3, c5, c7, c9, c11, c13, c17, c19, c23, c31 are still not to be determined. List all
≻ relations for c3, c5, c7, c9, c11, c13, c17, c19, c23, c31 as follows.
(a) c3 =3 ≻c17 =3− 3µτ ≻c11 =−3− 3µτ ,
(b) c9 = −3 + 2µτ ≻c13 = −1− 3µτ ≻c31 = −7 + µτ ,
(c) c11 = −1 + 2µτ ≻c23 = −3− µτ ≻c19 = 5− 3µτ ,
(d) c13 = 1 + 2µτ ≻c31 = 5− µτ ≻c5 = 3− 5µτ ,
(e) c23 =−1 + 4µτ ≻ c19 =−7− µτ ,
(f) c5 = 5 ≻ c7 = 5− 5µτ ,
(g) c31 = 5− µτ ≻ c5 = 3− 5µτ ,
(h) c7 = −5 + 2µτ ≻ c3 = 1− 5µτ .
There are four cases using 2 re-µτ̄ operations for computing Q3, Q5, Q7, Q9,
Q11, Q13, Q17, Q19, Q23, Q31.

(a) c3 =3 ≻c17 =3− 3µτ ≻c11 =−3− 3µτ ,
c9 = −3 + 2µτ ≻c13 = −1 − 3µτ ≻c31 = −7 + µτ . Computing Q3,
Q9, Q11, Q13, Q17, Q31 requires 2 µτ̄ operations, 2 re-µτ̄ operations, 1
(P ±Q)-operation, and 1 τ -affine operation which costs 28M+17S.
c5, c7, c19, c23 are still not determined. Notice thatR5 = {3−5µτ, 5, −7+
2µτ},
R7 = {−5 + 2µτ, 5− 5µτ, 7},
R19 = {5− 3µτ, −5 + 4µτ, −7− µτ},
R23 = {−1 + 4µτ, −3− µτ}.
The best choice is to choose c23 = −1 + 4µτ , c19 = −7− µτ = −µτ̄c23,
c5 = −7+2µτ , c7 = 7, where Q5, Q7, Q19, and Q23 can be computed as
Q23 = µτP −Q15, Q19 = −µτ̄Q23, Q5 = µτP +Q31, Q7 = µτP −Q31.
It requires 1 (P ± Q)-operation, 1 µτ̄ -operation, and 1 mixed addition
which costs 25M+10S.
This pre-computation scheme totally requires 66M+36S.

(b) c3 =3 ≻c17 =3− 3µτ ≻c11 =−3− 3µτ ,
c13 = 1 + 2µτ ≻c31 = 5− µτ ≻c5 = 3− 5µτ .
It requires 32M+16S to compute Q3, Q5, Q11, Q13, Q17, Q31. Q7, Q9,
Q19, Q23 are not computed.
c23 = −3− µτ , c19 = 5− 3µτ = −µτ̄c23, c7 = −5 + 2µτ , c9 = −3 + 2µτ
(c3P, c9P are computed together) is one of the best choices which requires
25M+10S. It costs 70M+35S totally.

(c) c11 = −1 + 2µτ ≻c23 = −3− µτ ≻c19 = 5− 3µτ ,
c13 = 1 + 2µτ ≻c31 = 5− µτ ≻c5 = 3− 5µτ .
It requires 32M+16S to compute Q5, Q11, Q13, Q19, Q23, Q31.
c3 =3, c17 =3− 3µτ = µτ̄c3, c9 = −3 + 2µτ , c7 = −5 + 2µτ is the best
choice. It requires 1 (P±Q)-operation (c3P, c9P are computed together),
1 µτ̄ -operation, and 1 mixed addition which costs 25M+10S. It totally
requires 70M+35S.

(d) c9 = −3 + 2µτ ≻c13 = −1− 3µτ ≻c31 = −7 + µτ .
c11 = −1 + 2µτ ≻c23 = −3− µτ ≻c19 = 5− 3µτ ,

A Novel Pre-Computation Scheme of Window τNAF for Koblitz Curves 25

It requires 32M+16S to compute Q9, Q11, Q13, Q19, Q23, Q31. Q3, Q5,
Q7, Q17 are not computed.
c3 = 3, c17 = 3 − 3µτ = µτ̄c3, c5 = −7 + 2µτ , c7 = 7 is the best choice
which requires 25M+10S.
It totally costs 70M+35S.

If we use only one re-µτ̄ operation or do not use re-µτ̄ operation for com-
puting Q3, Q5, Q7, Q9, Q11, Q13, Q17, Q19, Q21, Q23, Q31, total costs will
not be less than the Case a).
Choosing c9 = −3+2µτ , c3 = 3, c13 = −1−3µτ , c31 = −7+µτ , c17 = 3−3µτ ,
c11 = −3 − 3µτ , c23 = −1 + 4µτ , c19 = −7 − µτ , c5 = 5, c7 = 5 − 5µτ , we
have C = {c27 = 1 − µτ, c25 = −1 − µτ, c29 = 3 − µτ, c15 = 1 − 3µτ, c21 =
−5−µτ, c11 = −1+2µτ, c23 = −1+4µτ, c19 = −7−µτ, c9 = −3+2µτ, c3 =
3, c13 = −1− 3µτ, c31 = −7 + µτ, c17 = 5 + 2µτ, c5 = 5, c7 = 5− 5µτ}. The
pre-computation scheme for the case of w = 6 shown as Table 6 is our best
choice.

Acknowledgments

This work is supported in part by the National Nature Science Foundation of
China under No. 61502487 and No. 61772515, and the National 973 Project of
China under No. 2013CB834205.

References

1. Koblitz N.: CM-curves with good cryptographic properties, in Proc. 11th Annu. Int.
Cryptol. Conf. Adv. Cryptol., pp. 279-287, 1992.

2. National Institute of Standards and Technology(NIST). Digital signature stan-
dard(DSS). FIPS PUB 186-4. 2013.

3. Solinas J.: Efficient arithmetic on Koblitz curves, Des., Codes Cryptography, vol.
19, pp. 195-249, 2000.

4. Blake I., Murty V., and Xu G.: A note on window τ -NAF algorithm, Inf. Process.
Lett., vol. 95, no. 5, pp. 496-502, 2005.

5. Blake I., Murty V., and Xu G.: Nonadjacent radix-τ expansions of integers in Eu-
clidean imaginary quadratic number fields, Canadian J. Math., vol. 60, pp. 1267-
1282, 2008.

6. Trost W.R. and Xu G.: On the optimal pre-computation of window τNAF for
Koblitz curves. IEEE transactions on computers. VOl. 65, No. 9. pp. 2918-2924,
september 2016.

7. Hankerson D., Menezes A., and Vanstone S.: Guide to elliptic curve cryptography.
New York, NY, USA: Springer-Verlag, 2004.

8. Oliveira T., López J., Aranha D.F., and Rodŕıguez-Henŕıquez F.: Two is the fastest
prime: Lambda coordinates for binary elliptic curves, J. Cryptography Eng. vol. 4,
no. 1, pp. 3-7, 2014.

9. Avanzi R.M., Dimitrov V.S., Doche C., and Sica F.: Extending scalar multiplication
using double bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 130-144. Springer, Heidelberg, 2006.

26 Wei Yu, Saud Al Musa, Guangwu Xu, and Bao Li

10. Doche C., Kohel D.R., and Sica F.: Double Base Number System for multi scalar
multiplications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 502-
517. Springer, Heidelberg, 2009.

11. Koblitz N.: p-adic numbers, p-adic analysis, and zeta-functions. New York, NY,
USA: Springer, 1996.

12. López J., Dahab R.: Improved algorithms for elliptic curve arithmetic in GF (2n),
in Proc. Selected Areas Cryptography, pp. 201-212, 1998.

13. Longa P., Gebotys C.: Novel precomputation schemes for elliptic curve cryptosys-
tems, ACNS 2009, LNCS, vol. 5536, pp. 71-88, 2009.

14. Bernstein D. J., and Lange T.: Explicit-formulas database, http:

//hyperelliptic.org/EFD/

15. Scott, M.:: MIRACL-Multiprecision integer and rational arithmetic cryptographic
library, C/C++ Library, ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

