XHX — A Framework for Optimally Secure
Tweakable Block Ciphers from Classical Block
Ciphers and Universal Hashing

Ashwin Jha!, Eik List?, Kazuhiko Minematsu?,
Sweta Mishra?, and Mridul Nandi!

! Indian Statistical Institute, Kolkata, India. {ashwin_r, mridul}@isical.ac.in
2 Bauhaus-Universitat Weimar, Weimar, Germany. eik.list@uni-weimar.de
3 NEC Corporation, Tokyo, Japan. k-minematsu@ah.jp.nec.com
4 IIIT, Delhi, India. swetam@iiitd.ac.in

Abstract. Tweakable block ciphers are important primitives for design-
ing cryptographic schemes with high security. In the absence of a stan-
dardized tweakable block cipher, constructions built from classical block
ciphers remain an interesting research topic in both theory and practice.
Motivated by Mennink’s F'[2] publication from 2015, Wang et al. pro-
posed 32 optimally secure constructions at ASTACRYPT’16, all of which
employ two calls to a classical block cipher each. Yet, those constructions
were still limited to n-bit keys and n-bit tweaks. Thus, applications with
more general key or tweak lengths still lack support. This work proposes
the XHX family of tweakable block ciphers from a classical block cipher
and a family of universal hash functions, which generalizes the construc-
tions by Wang et al. First, we detail the generic XHX construction with
three independently keyed calls to the hash function. Second, we show
that we can derive the hash keys in efficient manner from the block ci-
pher, where we generalize the constructions by Wang et al.; finally, we
propose efficient instantiations for the used hash functions.

Keywords: Provable security - ideal-cipher model - tweakable block cipher

1 Introduction

Tweakable Block Ciphers. In addition to the usual key and plaintext inputs
of classical block ciphers, tweakable block ciphers (TBCs, for short) are crypto-
graphic transform that adds an additional public parameter called tweak. So, a
tweakable block cipher F : Kx T x M — M is a permutation on the plaintext/ci-
phertext space M for every combination of key K € K and tweak T' € T, where
K, T, and M are assumed to be non-empty sets. Their first use in literature was
due to Schroeppel and Orman in the Hasty Pudding Cipher, where the tweak
still was called Spice [18]. Liskov, Rivest, and Wagner [I1] have formalized the
concept then in 2002.

In the recent past, the status of tweakable block ciphers has become more promi-
nent, last but not least due to the advent of efficient dedicated constructions,

2 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

such as Deoxys-BC or Joltik-BC that were proposed alongside the TWEAKEY
framework [6], or e.g., SKINNY [I]. However, in the absence of a standard, tweak-
able block ciphers based on classical ones remain a highly interesting topic.

Blockcipher-based Constructions. Liskov et al. [IT] had described two con-
structions, known as LRW1 and LRW2. Rogaway [17] proposed XE and XEX as
refinements of LRW2 for updating tweaks efficiently and reducing the number of
keys. These schemes are efficient in the sense that they need one call to the block
cipher plus one call to a universal hash function. Both XE and XEX are prov-
ably secure in the standard model, i.e., assuming the block cipher is a (strong)
pseudorandom permutation, they are secure up to 0(2”/ 2) queries, when using
an n-bit block cipher. Since this bound results from the birthday paradox on
input collisions, the security of those constructions is inherently limited by the
birthday bound (BB-secure).

Constructions with Stronger Security. Constructions with beyond-birthday-
bound (BBB) security have been an interesting research topic. In [I3], Mine-
matsu proposed introduced a rekeying-based construction. Landecker, Shrimp-
ton and Terashima [9] analyzed the cascade of two independent LRW2 instances,

called CLRW2. Both constructions are secure up to O(22"/3) queries, however,

at the price of requiring two block-cipher calls per block plus per-tweak rekeying

or plus two calls to a universal hash function, respectively.

For settings that demand stronger security, Lampe and Seurin [8] proved that

the chained cascade of more instances of LRW2 could asymptotically approach

a security of up to O(2") queries, i.e. full n-bit security. However, the disad-
vantage is drastically decreased performance. An alternative direction has been

initiated by Mennink [12], who also proposed TBC constructions from classical

block ciphers, but proved the security in the ideal-cipher model. Mennink’s con-
structions could achieve full n-bit security quite efficiently when both input and

key are n bits. In particular, his F[2] construction required only two block-cipher

calls.

Following Mennink’s work, Wang et al. [20] proposed 32 constructions of opti-
mally secure tweakable block ciphers from classical block ciphers. Their designs

share an n-bit key, n-bit tweak and n-bit plaintext, and linearly mix tweak, key,
and the result of a second offline call to the block cipher. Their constructions

have the desirable property of allowing to cache the result of the first block-
cipher call; moreover, given a-priori known tweaks, some of their constructions

allow further to precompute the result of the key schedule.

All constructions by Wang et al. were restricted to n-bit keys and tweaks. While

this limit was reasonable, it did not address tweakable block ciphers with tweaks

longer than n bit. Such constructions, however, are useful in applications with

increased security needs such as for authenticated encryption or variable-input-
length ciphers (e.g., [19]). Moreover, disk-encryption schemes are typically based

on wide-block tweakable ciphers, where the physical location on disk (e.g., the

sector ID) is used as tweak, which can be arbitrarily long.

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 3

In general, extending the key length in the ideal-cipher model is far from trivial
(see, e.g., |2I5/10]), and the key size in this model does not necessarily match
the required tweak length. Moreover, many ciphers, like the AES-192 or AES-
256, possess key and block lengths for which the constructions in [12]20] are
inapplicable. In general, the tweak represents additional data accompanying the
plaintext/ciphertext block, and no general reason exists why tweaks must be
limited to the block length.

Before proving the security of a construction, we have to specify the employed
model. The standard model is well-established in the cryptographic community
despite the fact that proofs base on few unproven assumptions, such as that a
block cipher is a PRP, or ignore practical side-channel attacks. In the standard
model, the adversary is given access only to either the real construction E or
an ideal construction 7. In contrast, the ideal-cipher model assumes an ideal
primitive—in our case the classical ideal block cipher E which is used in E—
which the adversary has also access to in both worlds. Although a proof in the
ideal-cipher model is not an unexceptional guarantee that no attacks may exist
when instantiated in practice [3], for us, it allows to capture away the details of
the primitive for the sake of focusing on the security of the construction.

A good example for TBCs proven in the standard model is XTX [14] by Mine-
matsu and Iwata. XTX extended the tweak domain of a given tweakable block
cipher E : {0,1}* x {0,1}* x {0,1}™ — {0,1}" by hashing the arbitrary-length
tweak to an (n + t)-bit value. The first ¢ bits serve as tweak and the latter n
bits are XORed to both input and output of E. Given an e-AXU family of hash
functions and an ideal tweakable cipher, XTX is secure for up to O(2("*1)/2)
queries in the standard model. However, no alternative to XTX exists in the
ideal-cipher model yet.

Contribution. This work proposes the XHX family of tweakable block ciphers
from a classical block cipher and a family of universal hash functions, which
generalizes the constructions by Wang et al. [20]. Like them, the present work
also uses the ideal-cipher model for its security analysis. As the major difference
to their work, our proposal allows arbitrary tweak lengths and works for any
block cipher of n-bit block and k-bit key. The security is guaranteed for up to
O(2("*%)/2) queries, which yields n-bit security when k > n.

Our contributions in the remainder of this work are threefold: First, we detail
the generic XHX construction with three independently keyed calls to the hash
function. Second, we show that we can derive the hash keys in an efficient manner
from the block cipher, generalizing the constructions by Wang et al.; finally, we
propose efficient instantiations for the employed hash functions for concreteness.

Remark 1. Recently, Naito [15] proposed the XKX framework of beyond-birthday-
secure tweakable block ciphers, which shares similarities to the proposal in the
present work. He proposed two instances, the birthday-secure XKX®) and the
beyond-birthday-secure XKX(2). More detailed, the nonce is processed by a
block-cipher-based PRF which yields the block-cipher key for the current mes-
sage; the counter is hashed with a universal hash function under a second, in-

4 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

Table 1: Comparison of XHX to earlier highly secure TBCs built upon classical block
ciphers. ICM(n, k) denotes the ideal-cipher model for a block cipher with n-bit block
and k-bit key; BC(n, k) and TBC(n, t, k) denote the standard-model (tweakable) block
cipher of n-bit block, ¢-bit tweak, and k-bit key. #Enc. = #calls to the (tweakable)
block cipher, and #Mult. = #multiplications over GF(2"). a(b) = b out of a calls
can be precomputed with the secret key; we define s = [k/n].

Scheme Model Tweak ‘ Key Security Efficiency Reference
length in bit in bit #Enc. |#Mult.
F[2] ICM(n, n) n n n|2 [12)
El, ..., E32|ICM(n,n) n n n|2 (1) [20]
XTX TBC(n,t, k)| any £|k+2n| (n+1t)/2|1 27¢/n] [14]
XKX® BC(n, k) | k+n|min{n, k/2}|1 1 [15]
XHX ICM(n, k) any £ E| (n+k)/2|s+1 (s)|s[¢/n] |This work
XHX ICM(n, k) 2n k nis+1(s)|s This work

FXKX® employs a counter as tweak.

dependent key to mask the input. In contrast to other proposals including ours,
Naito’s construction demands both a counter plus a nonce as parameters to
overcome the birthday bound; as a standalone construction, its security reduces
to m/2 bits if an adversary could use the same “nonce” value for all queries.
Hence, XKX () is tailored only to certain domains, e.g., modes of operation in
nonce-based authenticated encryption schemes. Our proposal differs from XKX
in four aspects: (1) we do not pose limitations on the reuse of input parameters;
moreover, (2) we do not require a minimum key length of n + & bits; (3) we do
not use several independent keys, but employ the block cipher to derive hashing
keys; (4) finally, Naito’s construction is proved in the standard model, whereas
we consider the ideal-cipher model.

The remainder is structured as follows: Section Bl briefly gives the preliminaries
necessary for the rest of this work. Section [B] then defines the general construc-
tion, that we call GXHX for simplicity, which hashes the tweak to three outputs.
Section [continues with the definition and analysis of XHX, which derives the
hashing keys from the block cipher. Section Bl describes and analyzes efficient in-
stantiations for our hash functions depending on the tweak length. In particular,
we propose instantiations for 2n-bit and arbitrary-length tweaks.

2 Preliminaries

General Notation. We use lowercase letters z for indices and integers, upper-
case letters X, Y for binary strings and functions, and calligraphic uppercase
letters X,) for sets. We denote the concatenation of binary strings X and Y
by X ||Y and the result of their bitwise XOR by X @ Y. For tuples of bit

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 5

strings (X1,...,X.), (Y1,...,Y,) of equal domain, we denote by (X1,...,X,)®
(Y1,...,Y,) the element-wise XOR, i.e., (X1 ®Y7,..., X, ®Y,). We indicate the
length of X in bits by |X| and write X; for the i-th block. Furthermore, we de-
note by X « X that X is chosen uniformly at random from the set X'. We define
three sets of particular interest: Func(X’,)) be the set of all functions F': X —),
Perm(X) the set of all permutations 7 : X — X, and TPerm(T, X)) for the set of
tweaked permutations over X' with associated tweak space T. (X1,..., X,) ¢ X
denotes that X is split into n-bit blocks i.e., X || ... || Xz = X, and | X;| = n for
1<i<z-1,and |X,;| < n. Moreover, we define (X),, to denote the encoding
of a non-negative integer X into its n-bit representation. Given a integer = € N,
we define the function TRUNG, : {0,1}* — {0,1}" to return the leftmost x bits
of the input if its length is > z, and returns the input otherwise. For two sets X
and), a uniform random function p : X —) maps inputs X € & independently
from other inputs and uniformly at random to outputs Y €). For an event E,
we denote by Pr[E] the probability of E. For positive integers n and k, we denote
the falling factorial as (n)y, := .

Adversaries. An adversary A is an efficient Turing machine that interacts
with a given set of oracles that appear as black boxes to A. We denote by A®
the output of A after interacting with some oracle O. We write Aa ((’)1; (92) =

|Pr[A®" = 1] — Pr[A®” = 1]| for the advantage of A to distinguish between
oracles O' and ©2. All probabilities are defined over the random coins of the
oracles and those of the adversary, if any. W.l.o.g., we assume that A never asks
queries to which it already knows the answer.

A block cipher F with associated key space K and message space M is a mapping
E: K x M — M such that for every key K € K, it holds that E(K,-) is a
permutation over M. We define Block(K, M) as the set of all block ciphers with
key space K and message space M. A tweakable block cipher E~With associated
key space IC, tweak space T, and message space M is a mapping E : KxT xM —
M such that for every key K € K and tweak T € T, it holds that E(K,T,-) is
a permutation over M. We also write EIT(() as short form in the remainder.
The STPRP security of E is defined via upper bounding the advantage of a dis-
tinguishing adversary A in a game, where we consider the ideal-cipher model
throughout this work. There, A has access to oracles (O, ET), where ET is
the usual notation for access to the encryption oracle F and to the decryp-
tion oracle_ E~!. O is called construction oracle, and is either the real con-
struction E£(-,-), or 7+ (-,-) for & « TPerm(T, M). E* « Perm(M) is an
ideal block cipher underneath E. The STPRP advantage of A is defined as
AA(FEE(,), EX(-);7T%(,-), E¥(-,-)), where the probabilities are taken over
random and independent choice of K, E, w, and the coins of A if any. For
the remainder, we say that A is a (g¢,gp)-distinguisher if it asks at most go
queries to its construction oracle and at most gp queries to its primitive oracle.

Definition 1 (Almost-Uniform Hash Function). Let H: K x X — Y be a
family of keyed hash functions. We call H e-almost-uniform (e-AUniform) if, for
K « Kandall X € X and Y €), it holds that Prrg. x [H(K,X) =Y] <e.

6 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

Definition 2 (Almost-XOR-Universal Hash Function). Let H : K x X —
Y be a family of keyed hash functions with) C {0,1}*. We say that H is -
almost-XOR-universal (e-AXU) if, for K « K, and for all distinct X, X' € X
and any A € Y, it holds that Prg. i [H(K,X) @ H(K, X') = A] <e.

Minematsu and Iwata [14] defined partial-almost-XOR-universality to capture
the probability of partial output collisions.

Definition 3 (Partial-AXU Hash Function). Let H : £ x X — {0,1}" x
{0,1}* be a family of hash functions. We say that # is (n, k, ¢)-partial-AXU
((n, k, €)-pAXU) if, for K « K, and for all distinct X, X’ € X and all A € {0,1}",
it holds that Prg.x [H(K,X) & H(K,X') = (A,0%)] <e.

The H-Coefficient Technique. The H-coefficients technique is a method due
to Patarin [4JT6]. It assumes the results of the interaction of an adversary A with
its oracles are collected in a transcript 7. The task of A is to distinguish the real
world O,ea from the ideal world Ojqea. A transcript 7 is called attainable if the
probability to obtain 7 in the ideal world is non-zero. One assumes that A does
not ask duplicate queries or queries prohibited by the game or to which it already
knows the answer. Denote by Oca and Ojqea the distribution of transcripts in
the real and the ideal world, respectively. Then, the fundamental Lemma of the
H-coefficients technique states:

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [16]).
Assume, the set of attainable transcripts is partitioned into two disjoint sets
GooDT and BADT. Further assume, there exist €;,e5 > 0 such that for any
transcript 7 € GooDT, it holds that

Pl“ [@real = T]

>1- d Pr[6Gigea € BADT]| < e.
Pr O = 7] = €1, an I [Oideal € BADT] < €9

Then, for all adversaries A, it holds that Aa (Orear; Oideal) < €1 + €2.

The proof is given in [4I16].

3 The Generic GXHX Construction

Let n,k,¢ > 1 be integers and K = {0,1}*, £ = {0,1}*, and T C {0, 1}*. Let
E:Kx{0,1}" — {0,1}" be a block cipher and H : LxT — {0,1}"xKx{0,1}"
be a family of hash functions. Then, we define by GXHX[E, H] : L x T x
{0,1}™ — {0,1}"™ the tweakable block cipher instantiated with E and H that,
for given key L € L, tweak T € T, and message M € {0,1}", computes the
ciphertext C, as shown on the left side of Algorithm [Likewise, given key
L e L, tweak T € T, and ciphertext C € {0,1}", the plaintext M is computed
by M + GXHX|[E,H] ' (T,C), as shown on the right side of Algorithm [
Clearly, GXHX[E, H] is a correct and tidy tweakable permutation, i.e., for all

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 7

[

B

EHl Ho Hs E

H — H
Crté— e &

‘ X Y ‘

Fig. 1: Schematic illustration of the encryption process of a message M and a tweak
T with the general GXHX|[E, H] tweakable block cipher. E : K x {0,1}" — {0,1}" is
a keyed permutation and H : £ x T — {0,1}" x K x {0,1}" a keyed universal hash
function.

Algorithm 1 Encryption and decryption algorithms of the general
GXHX]E, H] construction.

11: function GXHX|E, H] (T, M) 21: function GXHX[E,H]; (T, C)
12: (H17H27H3) <—’H(L7T) 22: (H17H27H3) <—’H(L7T)

13: C <+ Eg,(M @ H\) ® H; 23: M+ El(Ce Hs)® Hy

14: return C 24: return M

keys L € L, all tweak-plaintext inputs (T, M) € T x {0,1}", and all tweak-
ciphertext inputs (7, C') € T x {0,1}", it holds that

GXHX[E, H]|; (T, GXHX[E, H|(T, M)) = M and
GXHX[E, H] (T, GXHX[E, H]; (T, C)) = C.

Figure [illustrates the encryption process schematically.

4 XHX: Deriving the Hash Keys from the Block Cipher

In the following, we adapt the general GXHX construction to XHX. which
differs from the former in two aspects: first, XHX splits the hash function into
three functions Hi, Ho, and Hs; second, since we need at least n 4+ k bit of
key material for the hash functions, it derives the hash-function key from a key
K using the block cipher E. We denote by s > 0 the number of derived hash-
function keys L; and collect them together with the user-given key K € {0, 1}*
into a vector L := (K, Lq,...,Ls). Moreover, we define a set of variables I;
and K;, for 1 < ¢ < s, which denote input and key to the block cipher F for
computing: L; := Fk, (I;). We allow flexible, usecase-specific definitions for the
values I; and K; as long as they fulfill certain properties that will be listed in
Section @Il We redefine the key space of the hash functions to £ C {0,1}* x

8 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

X Y

i —o— & |~o—c] [& -]

—-]

‘1

[#:(L,7)] [#a(L,7)]

Fig. 2: Schematic illustration of the XHX[E, H] construction where we derive the hash-
function keys L; from the block cipher E.

Algorithm 2 Encryption and decryption algorithms of XHX where the keys
are derived from the block cipher. We define H := (H1, Ha, Hs). Note that the
exact definitions of I; and K; are usecase-specific.

11: function XHX[E, H]. KEYSETUP(K) 21: function H(L,T)

12: fori+ 1to s do 22: Hy <+ H1(L,T)

13: L; +— EKi (IZ) 23: Ho HQ(L, T)

14: L+ (K,Li,...,Ls) 24: Hs < H3(L,T)

15: return L 25: return (H1, Ho, Hg)

31: function XHX[E, H]x (T, M) 41: function XHX[E, H] (T, C)
32: L+ XHX[E,H].KEYSETUP(K) 42: L + XHX[E, H]. KEYSETUP(K)
33: (H17H27H3) <—’H(L7T) 43: (H17H27H3) <—’H(L7T)

34: C+«+ En,(M @ H,)® Hs; 44: M + Ezl(C & Hs) ® Hy

35: return C 45: return M

({0,1}™)*. Note, the values L, are equal for all encryptions and decryptions and
hence, can be precomputed and stored for all encryptions under the same key.

The Constructions by Wang et al. The 32 constructions I~E[2] by Wang et
al. are a special case of our construction with the parameters s = 1, key length
k = n, with the inputs I;, K; € {0™ K}, and the option (I;, K;) = (0™,0™)
excluded. Their constructions compute exactly one value Ly by L := Fxk, (I1).
One can easily describe their constructions in the terms of the XHX framework,
with three variables X1, Xo, X5 € {K, L1, K® L1} for which holds that X; # X,
and X3 # X5, and which are used in XHX as follows:

Hi(L,T) = X,
HQ(L, T) = X2 D T,
H3(L,T) := Xs.

4.1 Security Proof of XHX

This section concerns the security of the XHX construction in the ideal-cipher
model where the hash-function keys are derived by the (ideal) block cipher E.

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 9

Properties of H. For our security analysis, we list a set of properties that
we require for H. We assume that L is sampled uniformly at random from L.
To address parts of the output of H, we also use the notion H; : L x T —
{0,1}° to refer to the function that computes the i-th output of H(L,T), for
1 <4 <3, with 01 :=mn, 02 := k, and 03 := n. Moreover, we define H; 2(T) :=
(Hi(L,T),Ha(L,T)), and Hs o(T) := (H3(L, T), Ha(L, T)).

Property P1. For all distinct 7,7" € T and all A € {0,1}", it holds that

S [Hina(T) ® Hin(T') = (A,0M)] < e

Property P2. For all T € T and all (c1,c2) € {0,1}" x {0,1}*, it holds that

P i2(T) = (c1, < ea.
ig{léﬁ);}“_rﬁ[%,z() (c1,02)] < €2

Note that Property P1 is equivalent to saying H; 2 and Hs o are (n, k, €1)-pAXU;
Property P2 is equivalent to the statement that 71 2 and Hs3 o are ea-AUniform.
Clearly, it must hold that e, ey > 2~ ("F5),

Property P3. For all T € T, all chosen I;, K;, for 1 < i < s, and all A €
{0,1}™, it holds that

L}S—rﬁ [HLQ(T) D (Ii, Kz) = (A, Ok)} < €3.

Property P4. For all T € T, all chosen K;,L;, for 1 < i < s, and all A €
{0,1}™, it holds that

P [Hao(T) @ (Li Ki) = (4, 0")] < ea.

Properties P3 and P4 represent the probabilities that an adversary’s query hits
the inputs that have been chosen for computing a hash-function key. We list a
further property which gives the probability that a set of constants chosen by
the adversary can hit the values I; and K; from generating the keys Lj;:

Property P5. For 1 <i < s, and all (c1,c) € {0,1}" x {0, 1}*, it holds that

. g < ex.
Klj—r;c [(1i, K;) = (c1,¢2)] < €5

In other words, the tuples (I;, K;) contain a sufficient amount of close to n bit
entropy, and cannot be predicted by an adversary with greater probability, i.e.,
€5 should not be larger than a small multiple of 1/2". From Property 5 and the
fact that the values L; are computed from F, (I;) with an ideal permutation E,
it follows that for 1 <4 < s and all (c1,c2) € {0,1}" x {0,1}*

KIZ_YK [(Lz,Kz) (01,02)] S €5

10 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

BECo) [|E5C | | 76| | B

%%J

A

Fig. 3: Schematic illustration of the oracles available to A.

Theorem 1. Let E « Block(K,{0,1}"™) be an ideal cipher. Further, let H,; :
LxT — {0,1}°, for 1 <i < 3 be families of hash functions for which Properties
P1 through P4 hold, and let K « K. Moreover, let Property P5 hold for the
choice of all I; and K;. Let s denote the number of keys L;, 1 <i < s. Let A be
a (qc, gp)-distinguisher on XHX[FE, H]x. Then

2

- s
% (XHX[E, H], E* 7, Ei) <qge1+2qpqeeatqos(es+es)+2gpses+ onF-

Proof Idea. The proof of Theorem [I] follows from Lemmas [2} and Bl Those
can be found in Appendix[Al Let E denote the XHX[E, H] construction in the
remainder. Figure [Billustrates the oracles available to A. The queries by A are
collected in a transcript 7. We will define a series of bad events that can happen
during the interaction of A with its oracles:

Collisions between two construction queries,

— Collisions between a construction and a primitive query,

Collisions between two primitive queries,

The case that the adversary finds an input-key tuple in either a primitive or
construction query that was used to derive a key L;.

The proof will bound the probability of these events to occur in the transcript
in Lemma Pl We define a transcript as bad if it satisfies at least one such bad
event, and define BADT as the set of all attainable bad transcripts.

Lemma 2. It holds that
2
s
Pr[Giqeal € BADT] < €1 + 2qpqoes + qos(es + €a) + 2qpses + PIESE

The proof is given in Appendix [A1]
Good Transcripts. Above, we have considered bad events. In contrast, we

define GOODT as the set of all good transcripts, i.e., all attainable transcripts
that are not bad.

Lemma 3. Let 7 € GOoDT be a good transcript. Then

Pr [Qreal = T] >1
Pr [Oideal = 7] —

The full proof can be found in Appendix

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 11

Algorithm 3 The universal hash function H*.

11: function H7(T') 21: function Fx (T

12: (K,L1,...,Ls)«+ L 22: p<+ |T|modn

13: K’ + TRUNC,(K) 23: if p # 0 then

14 Hy « Fo(T) 24: T+ T|o0"

15: Haz <= TRUNCk (Fr, (T) || -+ | Fr,(T)) 25: Parse Ty, T & T
16: Hz « F/(T) 26: Tyi1 < (|T])n

17: return (H., H2, H3) 27 Y «— 0

28: fori<+ 1tom+1do
29: Y+« (Yo&oT) K
30: return (Y -K)® K

5 Efficient Instantiations

The hash function for XHX needs to satisfy multiple conditions for the construc-
tion to be secure. This section provides concrete instantiations of hash functions
which satisfy those conditions. While it is rather straight-forward to design hash
functions in the case of independent keys by using two independent n-bit AXU
and AUniform hash functions, the additional conditions for XHX require deeper
analysis. We present two instantiations depending on the maximum tweak length.
While the case of n-bit tweaks has already been covered by Wang et al., the gen-
eral important case of having a variable-length tweak remained still open and is
addressed here with the instantiation H*. Additionally, we also present a second
hash function 2 that is more efficient for 2n-bit tweaks. Both our proposals use
field multiplications over GIF(2") and need (k + n) bits of key material, where
the ideal cipher F is used for key derivation. We define K; := K and I; := (i),
for 1 <i < s, i.e., we compute the subkeys L; as L; < Ex({(i)).

H* — A Hash Function for Variable-Length Tweaks. We propose a first
instantiation H* for variable-length tweaks. H* uses two universal hash functions
keyed by K and L1, and takes T as input. Assume k > n be positive integers and
s < 2k~ More specifically, let F := {F| F : {0,1}" x {0,1}* — {0,1}"} denote
an €(m)-AXU and p(m)-AUniform family of hash functions. Here, e(m) and p(m)
denote the maximum AXU and AUniform biases for any input (pair) of at most
m > [|T|/n] n-bit blocks. H* : £Lx{0,1}* — {0, 1} x {0, 1}* x {0, 1}" is defined
in Algorithm Bl We suggest a polynomial hash for Fk (-) with a minimum degree
of one; this means, it holds that Fx (¢) = K for the empty string ¢ to avoid fixed
points. For simplicity, H* conducts all computations in the same field GF(2")
in all calls to F. In general, we have to consider three potential cases for the
relation of nstate size and key lengths:

— Case k = n. In this case, the hash values Hy, Hs, and Hj are the results of
polynomial hash functions F. In this case, H* employs K directly as hashing
key to generate Hy and Hs, and a derived key L; to compute Hs. Hence, it
holds that s =1 in this case.

12 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

— Case k < n. In this case, we could simply truncate Hs from n to k bits.
Theoretically, we could derive a longer key from K for the computation of
H, and Hjs; however, we disregard this case since ciphers with smaller key
size than state length are very uncommon.

— Case k > n. In the third case, we truncate the hash key K for the compu-
tation of Hy and Hjs to n bits. Moreover, we derive s hashing keys Ly, ...,
L from the block cipher E. For Hs and we concatenate the output of s
instances of F. This construction is well-known to be €®(m)-pAXU if F is
e(m)-pAXU. Finally, we truncate the result to & bits if necessary.

Lemma 4. H* is 2" Fest1(m)-pAXU and 25"~ Fp**T1(m)-Uniform. Moreover,
it satisfies Properties P3 and P4 with probability 25" =% p**1(m) each, and Prop-
erty P5 with e5 < 2/2’C for our choice of the values I; and K;.

Remark 2. The term 25" F results from the potential truncation of Hs if the key
length k of the block cipher is no multiple of the state size n. Hs is computed by
concatenating the results of multiple independent invocations of a polynomial
hash function F in GF(2") under assumed independent keys. Clearly, if F is
e-AXU, then their sn-bit concatenation is e*~-AXU. However, after truncating sn
to k bits, we may lose information, which results in the factor of 25"~*. For the
case k = n, it follows that s = 1, and the terms 2°"~*¢5+1(m) and 25" % p**1(m)
simplify to €2(m) and p?(m), respectively.

Our instantiation of F has ¢(m) = p(m) = (m+2)/2". Before we prove Lemmald]
we derive from it the following corollary for XHX when instantiated with H*.

Corollary 1. Let E and XHX[E,H*] be defined as in Theorem 1, where the
maximum length of any tweak is limited by at most m n-bit blocks. Moreover,
let K « K. Let A be a (g¢, gp)-distinguisher on XHX[E, H*]. Then

(@2 +2qcqp+2qcs)(m+2)"T 4gps s?
on+k 2k on+1-

A (XHX[B, H*], B+ 75 E*) <
A
The proof of the corollary stems from the combination of Lemma [] with Theo-
rem [I] and can be omitted.

Proof of Lemma[j} In the following, we assume that 7,7’ € {0,1}* are distinct
tweaks of at most m blocks each. Again, we consider the pAXU property first.

Partial Almost-XOR-Universality. This is the probability that for any A €
{0, 1}

Pr(Fr(T), Fra,o1.(T) @ (Fr(T), Fro,on, (7)) = (A,07)]
= Pr [Fx(T) ® Freo(T") = A Frooon(T) @ Fry, 1 (T7) = 0]

S 2sn—k . €S+1(m).

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 13

We assume independent hashing keys K’ L1,..., Ls here. When k = n, it holds
that s = 1, and this probability is upper bounded by €?(m) since F is e(m)-
AXU. In the case k > n, we compute s words of Hy that are concatenated and
truncated to k bits. Hence, Fr, . 1, is 2°"7%.¢*(m)-AXU. In combination with
the AXU bound for Fg/, we obtain the pAXU bound for H* above.

Almost- Uniformity. Here, for any (A, A) € {0,1}" x {0, 1}*, it shall hold
P AFrAT), Fron (1)) = (A1, A2)] = Pr [Fro(T)=Ar, Fiy o, (T) = A2
<2k ptt (m)

since F is p(m)-AUniform, and using a similar argumentation for the cases k = n
and k > n as for partial-almost-XOR universality.

Property P3. For all T € T and A € {0,1}", Property P3 is equivalent to
P P (1) = (A8 L), Fi,,...n.(T) = K]

for a fixed 1 < i < s. Here, this property is equivalent to almost uniformity; hence,
the probability for the latter equality is at most 25" ~%.p*(m). The probability for
the former equality is at most p(m) since the property considers a fixed i. Since
we assume independence of K and L1, ..., L, it holds that e5 < 257~ F. ps+1 (m).

Property Pj. For all T € T and A € {0,1}", Property P4 is equivalent to

PI‘ []:K/(T) = (A D Li)7~FL1

Pr [Fio(T) = (A& Li), Fi. 1.(T) = K]

for a fixed 1 < i < s. Using a similar argumentation as for Property P3, the
probability is upper bounded by e4 < 2577F . ps+1(m).

Property P5. We derive the hashing keys L; with the help of E and the secret
key K. So, in the simple case that s = 1, the probability that the adversary can
guess any tuple (I;, K;), for 1 < i < s, that is used to derive the hashing keys L;,
or guess any tuple (L;, K;) is at most 1/2%. Under the reasonable assumption
s < 2F=1 the probability becomes for fixed i in the general case:

1 2

AT (i, Ki) = (c1,¢2)] < 5 S ok

A similar argument holds that the adversary can guess any tuple (L;, K;), for
1 <4 < s. Hence, it holds for H* that e5 < 2/2’“.

e(m) and p(m). It remains to determine e(m) and p(m) for our instantiation
of Fi(-). It maps tweaks T' =T, ..., Ty, to the result of

(@E ~Km+3i> (T - K © K.
=1

14 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

Algorithm 4 The universal hash function H2.

11: function H3 (T) 21: function Fr,(T1 || T2)
12: (K, L1,...,Ls)«+ L 22: return (71 @0 L;) ® Ts
13: (T, T2) <& T

14: K’ + TRUNC,(K)

15: Hi+«TioK

16: Hz < TRUNCg (Fr, (T) | --- || Fr.(T))

17 H3+ TiBK'

18: return (Hi, H2, H3)

This is a polynomial of degree at most m+2, which is (m+2)/2™-AXU. Moreover,
over L € L, it lacks fixed points but for every A € {0,1}", and any fixed subset
of m blocks of T, ..., T,,, there are at most m + 2 out of 2™ values for the block
T+ that fulfill Fi(T) = A. Hence, F is also (m + 2)/2™-AUniform. O

H* is a general construction which supports arbitrary tweak lengths. Though, if
we used H* for 2n-bit tweaks, we would need four Galois-Field multiplications.
However, we can hash more efficiently, even optimal in terms of the number of
multiplications in this case. For this purpose, we define H2.

H? — A Hash Function for 2n-bit Tweaks. Naively, for two-block tweaks
|T| = 2n, an e-pAXU construction with e ~ 1/22" could be achieved by sim-
ply multiplying the tweak with some key L € GF(22") sampled uniformly over
GIF(22"). However, we can realize a similarly secure construction more efficiently
by using two multiplications over the smaller field GF(2"). Additional conditions,
such as uniformity, are satisfied by introducing squaring in the field to avoid fixed
points in multiplication-based universal hash function. Following the notations
from the previous sections, let L = (K, L) be the 2n-bit key of our hash function.
For X,Y € GF(2"), we define the operation [: GF(2") x GF(2") — GF(2") as

Xoy — XY 1fX7é'0
Y2 otherwise.

We assume a common encoding between the bit space and GIF(2"), i.e. a polyno-
mial in the field is represented as its coeflicient vector, e. g., the all-zero vector
denotes the zero element 0, and the bit string (0...01) denotes the identity el-
ement. Hereafter, we write X interchangeably as an element of GF(2") or of
{0,1}™. For £ = ({0,1}")2, X = ({0,1}™)2 and Y = {0,1}" x {0,1}* x {0,1}",
the construction H? : £ x X — Y is defined in Algorithm @l We note that the
usage of keys has been chosen carefully, e.g., a swap of K and L; in H? would
invalidate Property P4.

Lemma 5. H? is 25+ /2ntF_pAXU, 2¢/2"+F_ AUniform, satisfies Properties P3
and P4 with probability 2/2"** each, and Property P5 with e5 = s/2" for our
choices of I; and K;, for 1 <i < s.

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 15

Before proving Lemma [} we derive from it the following corollary for XHX
when instantiated with 2.

Corollary 2. Let E and XHX[E,#H?] be defined as in Theorem 1. Moreover,
let K « K. Let A be a (q¢, qp)-distinguisher on XHX[E, H?] k. Then

2s+2q2 + 2s+lch + 4gos 2q0p52 s2
2 + .~ + C P qc qap
% (XHX[E,H],E iy ,E) S 277,-{-]{} + 2n 277,-‘1-1'

Again, the proof of the corollary stems from the combination of Lemma [with
Theorem [Ml and can be omitted.

Proof of Lemmald. Since H; and Hs are computed identically, we can restrict
the analysis of the properties of H? to only the outputs (Hy, H2). Note that K
and L; are independent. In the following, we denote the hash-function results
for some tweak T as Hy, Ho, Hs, and those for some tweak T" # T as Hy, H),
H}. Moreover, we denote the n-bit words of Hy as (H3, ..., HS), and those of
Hj as (Hy', ..., H5®).

Partial Almost-XOR-Universality. First, let us consider the pAXU prop-
erty. It holds that Hy := Ty @ K’ and Hy := TRUNCk(Fr,(T),...,Fr,(T)).
Considering Hy, it must hold that H; = Hy @ A, with

A=(TIaK') e (I K').

For any X # 0", it is well-known that X @'Y is 1/2™-AXU. So, for any fixed T}
and fixed A € {0,1}", there is exactly one value T7 that fulfills the equation if
H{ # K' a1 K', and exactly two values if H] = K' @ K’, namely T} € {0", K'}.
So
P NEK)e (TinK')=A4<2/2"
LB MER) e (oK) =4 <2
The argumentation for H, is similar. The probability that any L; = 0™, for fixed
1 <i<s,is at most 1/(2" — s + 1), which will be smaller than the probability
of Hi = H'5. So, in the remainder, we can concentrate on the case that all
L; # 0. W.Lo.g., we focus for now on the first word of Hy, Hs, in the following.
For fixed (Ty,Ty), HL, and T}, there is exactly one value T} s.t. Hy' = H} if
Hy' # Ly @ (Ly & T3), namely T} := Ty & (To & T4) @ L7 *. There exist exactly
two values T} if Hy' = Ly @ Ly & T}, namely T} € {0", L1 }. Hence, it holds that
Pr [Hy=Hy'| <2/2"
L1«—r£ 2 2 - /

The same argumentation follows for H§ = Héi, for 2 < i < s since the keys L;
are pairwise independent. Since the sn bits of H3 and H,® are truncated if & is
not a multiple of n, the bound has to be multiplied with 25"~%. With the factor
of 2/2" for Hy, it follows for fixed A € {0,1}" that H? is e-pAXU for ¢ upper

bounded by
2 gsn—k 2\° _ PARE
on on - 2n+k :

16 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

Almost-Uniformity. Here, we concern the probability for any H; and Haj:
LP«)EL [Tl DK = Hiq, TRUNCk(JTLl(T), c. 7]:L5(T)) = HQ] .
If K/ = 0™ and H; = 0™, then the first equation may be fulfilled for any T3.
Though, the probability for K’ = 0™ is 1/2". So, we can assume K’ # 0™ in the
remainder. Next, we focus again on the first word of Ha, i.e., Hs. For fixed L;
and H3, there exist at most two values (T1,T») to fulfill (Ty @ L1)®Te = Hi. In
the case H, # K'@K', there is exactly one value T} := H; &K'~ that yields H;.
Then, T1, L1, and H} determine Ty := H3 @ (T} @ L1) uniquely. In the opposite
case that H; = K’ @ K', there exist exactly two values (T1,7TY) that yield Hi,
namely 0" and K’. Each of those determines T5 uniquely. The probability that
the so-fixed values Ty, Ty yield also H3, ..., Hj is at most (2/27)*" 1 if k is a
multiple of n since the keys L; are pairwise independent; if k is not a multiple
of n, we have again an additional factor of 2°"~* from the truncation. So, H? is

e-AUniform for € at most
2\° 2%
sn—k
2) (2_n) T o9ntk”

Property P3. Given I; = (i — 1) and K; = K, for 1 < i < s, €3 is equiva-
lent to the probability that a chosen (T7,T%) yields Pr[Th @ K' = A @ (i — 1),
TRUNCy (Fr,(T), ..., Fr.(T)) = K], for some 4. This can be rewritten to

Priim K =A® (i—1)]

- Pr[TRUNC(FL,(T),.... Fr.(T)=K|Th'm K'=A® (i — 1)].
For fixed A # K’ @ K’', there is exactly one value T that satisfies the first
part of the equation; otherwise, there are exactly two values Ty if A = K' @ K.
Moreover, K’ is secret; so, the values T} require that the adversary guesses K’
correctly. Given fixed T, A, and K’, there is exactly one value T5 that matches
the first n bits of K; T := (Th @ L1) @ K[k — 1..k — n]. The remaining bits of
K are matched with probability 257~%/ 2(s=1n assuming that the keys L; are
independent. Hence, it holds that e3 is at most

2 2sn7k B 2
on 92sn - 2n+k :

Property Pj. This argument follows from a similar argumentation as Prop-
erty P3. Hence, it holds that ¢4 < 2/2"+F. O

Acknowledgments. This work was initiated during the group sessions of the
6th Asian Workshop on Symmetric Cryptography (ASK 2016) held in Nagoya.
We thank the anonymous reviewers of the ToSC 2017 and Latincrypt 2017 for
their fruitful comments. We thank Ashwin Jha and Mridul Nandi for their remark
in [7] wherein they pointed us to a subtle error in our formulation of Fact [l that
has been corrected in this version of 08 March 2021. As they noted, our Proof
of Lemma B implicitly used a special case of compressing sequences, where the
fact already held. Therefore, our proof was only slightly augmented to point it
out, but does not change.

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 17

References

10.

11.

12.

13.

14.

Christof Beierle, Jérémy Jean, Stefan Kolbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO II, volume 9815 of Lecture Notes in
Computer Science, pages 123-153. Springer, 2016.

. Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a

Framework for Code-Based Game-Playing Proofs. In Serge Vaudenay, editor, EU-
ROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409-426.
Springer, 2006.

John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-
Based Hash Function. In Matthew J. B. Robshaw, editor, F'SE, volume 4047 of
Lecture Notes in Computer Science, pages 328-340. Springer, 2006.

Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating Ci-
phers. In Phong Q. Nguyen and Elisabeth Oswald, editors, FUROCRYPT, volume
8441 of Lecture Notes in Computer Science, pages 327-350. Springer, 2014.

Peter Gazi and Ueli M. Maurer. Cascade Encryption Revisited. In Mitsuru Matsui,
editor, ASTACRYPT, volume 5912 of Lecture Notes in Computer Science, pages
37-51. Springer, 2009.

Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block Ci-
phers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT (2), volume 8874 of Lecture Notes in Computer Science, pages 274—
288, 2014.

Ashwin Jha and Mridul Nandi. Tight security of cascaded LRW2. J. Cryptol.,
33(3):1272-1317, 2020.

Rodolphe Lampe and Yannick Seurin. Tweakable Blockciphers with Asymptotically
Optimal Security. In Shiho Moriai, editor, FSE, volume 8424 of Lecture Notes in
Computer Science, pages 133-151. Springer, 2013.

Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable blockci-
phers with beyond birthday-bound security. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 14-30. Springer, 2012.

Jooyoung Lee. Towards Key-Length Extension with Optimal Security: Cascade
Encryption and Xor-cascade Encryption. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Sci-
ence, pages 405-425. Springer, 2013.

Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. In
Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science,
pages 31-46. Springer, 2002.

Bart Mennink. Optimally Secure Tweakable Blockciphers. In Gregor Leander,
editor, F'SE, volume 9054 of Lecture Notes in Computer Science, pages 428-448.
Springer, 2015.

Kazuhiko Minematsu. Beyond-Birthday-Bound Security Based on Tweakable Block
Cipher. In Orr Dunkelman, editor, F'SE, volume 5665 of Lecture Notes in Computer
Science, pages 308-326. Springer, 2009.

Kazuhiko Minematsu and Tetsu Iwata. Tweak-Length Extension for Tweakable
Blockciphers. In Jens Groth, editor, IMA Int. Conf., volume 9496 of Lecture Notes
in Computer Science, pages 77-93. Springer, 2015.

18 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

15. Yusuke Naito. Tweakable Blockciphers for Efficient Authenticated Encryptions
with Beyond the Birthday-Bound Security. IACR Transactions on Symmetric
Cryptology, 2017(2):1-26, 2017.

16. Jacques Patarin. The "Coefficients H" Technique. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC, volume 5381 of Lecture Notes in Com-
puter Science, pages 328-345. Springer, 2008.

17. Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refine-
ments to Modes OCB and PMAC. In ASIACRYPT, volume 3329 of Lecture Notes
in Computer Science, pages 16-31. Springer, 2004.

18. Richard Schroeppel and Hilarie Orman. The Hasty Pudding Cipher. AES candidate
submitted to NIST, 1998.

19. Thomas Shrimpton and R. Seth Terashima. A Modular Framework for Building
Variable-Input-Length Tweakable Ciphers. In Kazue Sako and Palash Sarkar, edi-
tors, ASTACRYPT (1), volume 8269 of Lecture Notes in Computer Science, pages
405—423. Springer, 2013.

20. Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How to Build
Fully Secure Tweakable Blockciphers from Classical Blockciphers. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASTACRYPT (1), volume 10031 of Lecture
Notes in Computer Science, pages 455-483, 2016.

A Proof Details

The proof of Theorem [follows from Lemmas [2 and Bl Let E denote the
XHX[E, H] construction in the remainder. W.l.o.g., we assume, A does not ask
duplicated queries nor trivial queries to which it already knows the answer, e.g.,
feeds the result of an encryption query to the corresponding decryption oracle
or vice versa. The queries by A are collected in a transcript 7. We define that 7
is composed of two disjoint sets of queries 7 and 7p and L, 7 = 7 UTp U {L},
where 7 = {(M?, Ct, T*, H{, H, Hi, X', Y*, d")}1<i<4. denotes the queries
by A to the construction oracle plus internal variables H{, HS, H (i.e., the
outputs of H1, Ha, and Hg, respectively), X* and Y (where X* < H{ @& M and
Y« Hi@ O, respectively); and 7p := {(K*, X? Y, d")}1<i<qp the queries to
the primitive oracle; both sets store also binary variables d’ that indicate the
direction of the i-th query, where d’ = 1 represents the fact that the i-th query
is an encryption query, and d* = 0 that it is a decryption query. The internal
variables for one call to XHX are as given in Algorithm 2] and Figure

We apply a common strategy for handling bad events from both worlds: in the
real world, all secrets (i.e., the hash-function key L) are revealed to the A after
it finished its interaction with the available oracles, but before it has output
its decision bit regarding which world it interacted with. Similarly, in the ideal
world, the oracle samples the hash-function key independently from the choice
of £ and 7 uniformly at random, L « L, and also reveals L to A after the
adversary finished its interaction and before has output its decision bit. The
internal variables in construction queries — Hi, H, Hi X% Y? — can then be
computed and added to the transcript also in the ideal world using the oracle
inputs and outputs T, M, C*, H{, HS, and HS.

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 19

Let 1 < i # j < q. We define that an attainable transcript 7 is bad, i.e., 7 €
BADT, if one of the following conditions is met:

— bady: There exist i # j s.t. (Hg,Xj).
— badz: There exist i # j s.t. (H5,Y?) = (Hg,Yj).
— bads: There exist i # j s.t. H2, i) = (K7, X9).

(H3, X*)
(
(X
— bady: There exist i # j s.t. (H} Yl) = KJ,YJ).
(
(

><

— bads: There exist i # j s.t.
— badg: There exist i # j s.t.
— bady: There exist ¢ € {1,...,s} an
and d7 = 1. .
— bads: There exist i € {1,...,s} and j € {1,...,qc} s.t. (Y7, H)) = (L;, K;)
and d? = 0. R
— badg: There exist i € {1,...,s} and j € {1,...,qp} s.t. (X7, K7) = (I;, K;).
— badyg: There exist i € {1,...,s}andj € {1,...,qp} s.t. (Y7, K9) = (L;, K;).
— badyq: There exist 4,5 € {1,...,s} and ¢ # j s.t. (K, L;) = (K;,L;) but
L #1;.

i
K

je {1,...,qc} s.t. (X7, H)) = (I;, K;)

The events

— bad; and bads consider collisions between two construction queries,

— bads and bad4 consider collisions between primitive and construction queries,

— bads and badg consider collisions between two primitive queries, and

— bad; through bad;y address the case that the adversary may could find an
input-key tuple in either a primitive or construction query that has been
used to derive some of the subkeys L;.

— bady; addresses the event that the ideal oracle produces a collision while
sampling the hash-function keys independently uniformly at random.

Note that the events bads and badg are listed here only for the sake of complete-
ness. We will show briefly that these events can never occur.

A.1 Proof of Lemma

Proof. In the following, we upper bound the probabilities of each bad event.

bad, and bad,. Events bad; and bads represent the cases that two distinct
construction queries would feed the same tuple of key and input to the underlying
primitive E if the construction would be the real E; bad; considers the case
when the values Hi = H3 and X’ = X7 collide. In the real world, it follows that
Y? = Y7, while this holds only with small probability in the ideal world. The
event bady concerns the case when the values Hi = H3 and Y = Y7 collide.
Again, in the real world, it follows then that X? = X7, whereas this holds only
with small probability in the ideal world. So, both events would allow A to
distinguish both worlds. Let us consider bad; first, and let us start in the real

20 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

world. Since A asks no duplicate queries, it must hold that two distinct queries
(M?,T%) and (M7, T7) yielded

X'=(M'eH]) = (Mj @H{) =X’ and H=H).

We define A := M*@® M7 and consider two subcases: in the subcase that T =T7,
it automatically holds that Hi = Hj and H?{ = Hj. However, this also implies
that M? = M7, i.e., A would have asked a duplicate query, which is prohibited.
So, it must hold that T¢ # T7 in the real world.

If T = T7 in the ideal world, it must hold that the plaintexts are disjoint,
M? £ MY, since we assumed that A does not make duplicate queries. Since
7(T?,) is a permutation, the resulting plaintexts are also disjoint: M £ M7,
From T = T7 follows that Hi = H{ 7 and thus, X’ and X7 cannot be equal:

X'=M' e H! +#+M & Hl = X7,

which contradicts with our definition of bad;. So, it must hold that T? # T7 also
in the ideal world. From Property P1 and over L « L, it holds then

Prlbad;] = Pr [32' £ ji1<i, j<qo: (X', Hi) = (Xj,Hg)}

=Pr[3i#j;1<i,j<qc:Hiz (T%) @ Hio (T7) = (4,0%)] < (qg)q.
Using a similar argumentation, it follows also from Property P1 that for 7% # T
Pr[bads] = Pr [Ei £j;1<i,j<qo: (Y7, Hi) = (Yj,Hg)}

=Pr[3i# j;1<i,j<qc:Hsz (T') @ Hs 2 (T9) = (4,0%)] < (qzc)q.
bad; and bad,. Events badz and bad, represent the cases that a construction
query to the real construction E would feed the same key and input (HQ, X l) to
the underlying primitive F in the real construction as a primitive query (K i, X9).
This is equivalent to guessing the hash-function 1 output for the i-th query. Let

us consider bads first. Over L « £ and for all (K7, X7), the probability of bads
is upper bounded by

Prlbads] = Pr [ai,j;l <i<qo1<j<qp: (X', Hi)= (f(j,f{j)}
=Pr[30,5i1<i <go, 1<) <qp: (H} = M'& X9) A (H} = K9]
=Pr[3i,ji1<i<ae,1<j <ap: Haa(T) = (M' @ X7, R)]

<qc-qp- €2

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 21

due to Property P2. Using a similar argumentation, it holds that
Pr[bads] = Pr [ai,j;l <i<qo,1<j<qp: (X' Hi)= (?J‘,f{j)}
—Pr [Eli,j;lgigqc,lgqup : (ngci@?ﬂ')A(H;:ffﬂ')}
—Pr [ai,j;l <i<ge,1<j<qp:Hso(T) =(C'® fﬂ',f{j)}
<qc-qp €.

bads; and bad;. Events bad; and badg represent the cases that two distinct
primitive queries feed the same key and the same input to the primitive F.
Clearly, in both worlds, this implies that A either has asked a duplicate primitive
query or has fed the result of an earlier primitive query to the primitive’s inverse
oracle. Both types of queries are forbidden; so, they will not occur.

bad; and bads. Let us consider bad; first, which considers the case that the
j-th construction query in encryption direction matches the inputs to E used
for generating a hash function subkeys L;, for some j € [l..q] and i € [1..s].
badg considers the equivalent case in decryption direction. We define A := M7 @
H1(L,T7). For this bad event, it must hold that M7 & H;(L,T’) = I; and
H2(L,T7) = K;. Concerning the tuples I;, K;, we cannot exclude in general that
all values K1(K) = ... = K4(K) are equal and therefore, L; are outputs of the
same permutation. From Property P3 and the fact that there have been j queries
and the adversary can hit one out of s values, and over L « L, it follows that
the probability for this event can be upper bounded by

Prlbad;] = Pr [Ei,j; 1<i<s,1<j<gqc: (X', H)) oI, K;) = (A,Ok)}
=Pr(3i,j;1<i<s,1<j<qc:Hio(T7) @ (I, K;) = (4A,07)]
< qc-s-e€s.

Using a similar argument, it follows from Property P4 that

Pr[badg] = Pr [Ei,j; 1<i<s,1<j<gqc: (Y, H)) @ (L, K;) = (A,Ok)}
=Pr[Ji,j;1<i<s,1<j<qo:Hso(T7) @ (Li, K;) = (A,0)]

< qc-s- €.

bady and bad;,. The event badg models the case that a primitive query in
encryption direction matches key and input used for generating L;, for some
i € [l..s]: (X7,K7) = (I;, K;). The event badio considers the equivalent case in
decryption direction. From our assumption that Property P5 holds and the fact
that the adversary can hit one out of s values, and over K « K, the probability
for this event can be upper bounded by

Pr[badg] = Pr [Ei,j;l <i<s,1<j<gp: ()?j,f(j) = (Ii,Ki)] <qp-s-€75

22 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

We can use a similar argument and Property P5 to upper bound the probability
that the j-th query of A hits L;, K; by

Prfbadio] = Pr [3i,5;1 < i < s,1<j < ap: (VI K) = (Li,)| <ap s e5.

bad,;. It is possible that a number of key inputs K; = Kj, for some 4,j €
{1,...,s}, i # j, are equal. The event bad;; models the case that the ideal
oracle produces a collision (K;,L;) = (Kj, L;), although it holds that I; # I;,
which indicates that the hash-function keys cannot be result of computing them
from the block cipher E. In the worst case, all keys K, for 1 < i < s, are equal.
So, the probability for this event can be upper bounded by

s2

Pr[badll] =Pr EZ,] S {1,...,8},i 75_] : (Kl,LZ) = (Kj,Lj) 1 75 IJ] < W

Our claim in Lemma [follows from summing up the probabilities of all bad
events. o

Before proceeding with the proof of good transcripts, we formulate a short fact
that will serve useful later on. In the remainder, we denote the falling factorial
as (n) := Z—,’ Prior, we recall a definition from [7].

Definition 4 (Compressing Sequences [7]). For integers r < s, let U = (uq,
ur)and V= (b, ..., bs) be two sequences over N. We say that V' compresses

to U if there exists a partition P of {1,...,7} such that P contains exactly s

entries, say Pi, ..., Ps and Vi € {1, ..., s}, it holds that u; = Zje?’i vj.

The following Fact has been updated to match Proposition 1 of [7], where we
changed r > s. The proof is given there.

Fact 1 (A Variant of Proposition 1 in [7]). For integers r < s, let U—(uq,

, ur) and V = (v, ..., vs) be two sequences of positive integers such that V'
compresses to U. Then, it holds for any positive integer n such that 2™ > E:Zl Us;
that

T T S

s 1 .
[, < 1;[1), ndtnos T2 [g

i=1 i=1 ui =1 i

A.2 Proof of Lemma [3]

Proof. Fix a good transcript 7. In the ideal world, the probability to obtain 7 is

Pr{ien = 7] = Pr [F(I", M) = €] - B {E(f{j, X7) = Yj] PriL,]
-Pr[K « K: K].
In the real world, the probability to obtain a transcript 7 is given by
Pr{Oren =7] = Pr (BT, M) = ' B(RY, X7) = Y7, B(K,y, 1) = Ly |
-Pr[K « K: KJ.

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 23

First, we consider the distribution of keys. In the ideal world, all components of
L = (K,Ly,...,L) are sampled uniformly and independently at random; the
real world employs the block cipher E for generating L, ..., Ls. Let us focus on
K, which is sampled uniformly in both worlds:

1
PriK « K:K]=—.
K|
The remaining hash-function key L1, ..., Ls will be considered in turn. To prove

the remainder of our claim in Lemma [, we have to show that

Pr {EL(TZ', My =Ct, B(R?, X7) = Y9, B(K,,I,) = Lq} (1)
Vi,Vj,Vg)))

> Pr[#(T", M) = O'] - Px [E(f{j,f(j) - w} -gl;[lPr (L, « {0,1}": L,].

We reindex the keys used in primitive queries to Rl, ey K’ to eliminate du-
plicates. Given those indices, we group all primitive queries into sets K7, for
1 < j <4 st all sets are distinct and each set K7 contains exactly only the
primitive queries with key KJ:

R { (kLX) K= R)

We denote by k4 = |K7| the number of queries with key KJ. Clearly, it holds that

¢ < gp and Z§:1 k7 = gp.

Moreover, we also re-index the tweaks of the construction queries to T, ..., T
for the purpose of eliminating duplicates. Given these new indices, we group all
construction queries into sets T3, for1 < 7 <, s.t. all sets are distinct and each
set 77 contains exactly only all construction queries with the tweak T7:

T ={(T,M",C") : T =T7}

T

We denote by #/ = |T7| the number of queries with tweak T7. It holds that
r<qcand Y7t/ = qc.

First, we consider the probability of an obtained good transcript in the ideal
world. Therein, all components L1, ..., Ls are sampled independently uniformly
at random from {0, 1}". So, in the ideal world, it holds that

f[Pr L, « {0,1)": L, = ﬁ

Recall that every 7(T7,-) and 7~ 1(T7,-) is a permutation, and the assumption
that A does not ask duplicate queries or such to which it already knows the
answer. S0, all queries are pairwise distinct. The probability to obtain the outputs
of our transcript for some fixed tweak T7 is given by

1 1

. (2n—1)- - (20—t + 1) (27),,

g=1

24 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

The same applies for the outputs of the primitive queries in our transcript for
some fixed key KJ:

1
(2n)’151 '
The outputs of construction and primitive queries are independent from each

other in the ideal world. Over all disjoint key and tweak sets, the probability for
obtaining 7 in the ideal world is given by

U £ 11
Pr[@idcal—T]—<H(2n—)tj>' HW @ K (2)

i=1

It remains to upper bound the probability 7 in the real world. We observe that
for every pair of queries i and j with 7% = TY, it holds that HS = Hj, i.e.,
both queries always target the same underlying permutation. Moreover, in the
real world, two distinct tweaks T? = TJ can still collide in their hash-function
outputs Hi = Hj. In this case, the queries with tweaks 7% and 77 also use the
same permutation. Furthermore, there may be hash-function outputs H4 from
construction queries that are identical to keys K that were used in primitive
queries. In this case, both queries also employ the same permutation and so, the
outputs from primitive and from construction queries are not independent as
in the ideal world. Moreover, the derived keys L; are also constructed from the
same block cipher F; hence, the inputs K; may also use the same permutation
as primitive and construction queries.

For our purpose, we also reindex the keys in all primitive queries into sets to
K!, ..., K% and also reindex the tweaks in construction queries to T!, ... T"
to eliminate duplicates. We define key sets K7, for 1 < j < ¢, and tweak sets
T7, for 1 < j < r, analogously as we did for the ideal world. Moreover, for
every so-indexed tweak Ti_, we compute its corresponding value Hi. We also
reindex the hash values H3 to Hi, ..., HY for duplicate elimination, and group
the construction queries into sets

M1 = {(Ti,Mi,ci) Mo (L, TV = H;}.

We denote by h% = |’H,%| the number of queries whose tweak maps to Hé. Clearly,
it still holds that > | h% = gc. We can define an ordering s.t. for all 1 <i < u,
T* is mapped to H. Since for all 1 <4 < r, all queries of tweak T/ are contained
in exactly one set HJ, there exists some j € {1,...,u}, s.t. it holds

u T
Zhg:Zti:qc, uw<r, and hh>t' foralll<i<r.
j=1 i=1

Note that the sequence that contains the number of occurrences of tweak values
T compresses to the sequences that contains the number of occurrences of hash
values Hsy. Equal tweaks T* and T7 will map to the same hash value Hs. If the

XHX — A Framework for Optimally Secure Tweakable Block Ciphers 25

hashes of T? and T7 are identical, than, Hy will be the sum of (at least) their
numbers of occurrences. Thus, they are compressing, and it follows from Fact [
that

T

o1 1
jI;Il (2" - H (2")y

i=1

In addition, we reindex the key inputs K; that are used for generating the keys
Ly,...,Ls to Kq,...,K, to eliminate duplicates, and group all tuples (I;, K;)
into sets K7, for 1 < 7 < w, s.t. all sets are distinct and each set contains exactly
those key-generating tuples with the key K;:

ICj = {(IzaKz) : Kz = K]} .

On this base, we unify and reindex the values H%, K , and K7 to values P!, ...,
Pv (using P for permutation). We group all queries into sets P7, for 1 < j < v,
s.t. all sets are distinct and each set P’ consists of exactly the union of all
construction queries with the hash value Hy = PJ, all primitive queries with
K = PJ, and all key-generating tuples with K = PJ:

PIi= {Hy Hy =PI U{RT R =P/ LU {K' K = P7}.

We denote by p/ = |P7| the number of queries that use the same permutation.
Clearly, it holds that Z;Zl p’ = qp + qc + 5. Recall that Block(k,n) denotes the
set of all k-bit key, n-bit block ciphers. In the following, we call a block cipher
E compatible with 7 iff

1. For all 1 <4 < g¢, it holds that Ct = EHé (Mi @H{) @b Hg;, where H{ =
Hi(L,TY), Hy = Ho(L, T?), and Hi = H3(L, T?), and
2. for all 1 < j < gp, it holds that Y7 = Eg; (X7),
3. and for all 1 < g < s, it holds that L; = Fg, (I;).
Let Comp(7) denote the set of all block ciphers E compatible with 7. Then,
Pr [Breal = 7] = Pr[E « Block (k,n) : E € Comp(7)] - Pr[K|Oeal = 7]. (3)

We focus on the first factor on the right-hand side. Since we assume that no bad
events have occurred, the fraction of compatible block ciphers is given by

v

Pr[E « Block (k,n) : E € Comp(7)] = H ﬁ

It holds that

v 4 T w 14 u w
Shi=aptacts=> F+D 43 H= D F+> M+ K.
i=1 j=1 j=1 j=1 j=1 j=1 j=1

26 A. Jha, E. List, K. Minematsu, S. Mishra, and M. Nandi

We can substitute the variables k7, h), and k7 on the right-hand side by auxiliary
variables 27

v Itutw kI if j <4,

Zpi: Z 27 where 2/ ={h) ifl<j<l+u,
j=1

i=1 k7 otherwise.
It holds that v </ +u+w <L +7r+ w. §ince each permutation set P? consists
of all queries in 7 that use a certain key K7, and/or all queries in 7 that use one
hash HJ, and/or all tuples (I;, K;) that use one value K7, it further holds that
for all 1 < i < v, there exists some j € {1,...,0+u+ w} s.t.

P>z

Again, the sequences are compressing, and we can directly apply Fact[l It follows
that

<

Y

e (M) (T) (1
@), @ CON

=1

vV
—
~—~
2
_/)_l
)
S
—~
[\
S| =
S~—
o~
— e
~—~
[\
\3 =
>

vV
—~
—
&
N
)
—
[\
3
~—
o~
S
—~
[\
3
~—
»

Using the combined knowledge from Equations ([{l) through (), we can derive
that the probability for obtaining the construction and primitive outputs in the
transcript is at least as high as the probability in the ideal world:

Pr [Qreal = T] > Pr [Qideal = T] .

So, we obtain our claim in Lemma [3] O

	XHX – A Framework for Optimally Secure Tweakable Block Ciphers from Classical Block Ciphers and Universal Hashing

