Zero-Knowledge Proofs of Proximity*

Itay Berman Ron D. Rothblum Vinod Vaikuntanathan
MIT MIT MIT
February 11, 2017
Abstract

Interactive proofs of proximity (Ergiin, Kumar and Rubinfeld, Information & Computa-
tion, 2004 and Rothblum, Vadhan and Wigderson, STOC 2013), or IPPs, are interactive proofs
in which the verifier runs in time sub-linear in the input’s length. Since the verifier cannot even
read the entire input, following the property testing literature, the requirement is that she ac-
cepts inputs that are in the language and rejects ones that are far from the language. However,
these proofs could (and in many cases, do) betray considerable global information about the
input to the verifier.

In this work, we initiate the study of zero-knowledge proofs of proximity (ZKPP). A ZKPP
convinces a sub-linear time verifier while ensuring that she learns nothing more than a few
locations of the input (and the fact that the input is “close” to the language).

Our main focus is the setting of statistical zero-knowledge where we show that the following
hold unconditionally (where N denotes the input size):

o Statistical ZKPPs can be sub-exponentially more efficient than property testers (or even
non-interactive IPPs): We show a natural property which has a statistical ZKPP with a
polylog(N) time verifier, but requires 2(v/N) queries (and hence also runtime) for every
property tester.

o Statistical ZKPPs can be sub-exponentially less efficient than IPPs: We show a property
which has an IPP with a polylog(N) time verifier, but cannot have a statistical ZKPP with
even an N°1) time verifier.

o Statistical ZKPPs for some graph-based properties such as promise versions of expansion
and bipartiteness.

Lastly, we also consider the computational setting where we show that:

e Assuming the existence of one-way functions, every language computable either in (logspace
uniform) NC or in SC, has a computational ZKPP with a (roughly) V/N time verifier.

o Assuming the existence of collision-resistant hash functions, every language in NP has a
statistical zero-knowledge argument of proximity with a polylog(N) verifier.

*Email: {itayberm, ronr, vinodv}@mit .edu

Contents

Introduction
1.1 OurResults e e e
1.2 Additional Related Works e

Preliminaries
21 Hashingand Entropy
2.2 Statistical Zero-Knowledge o L

ZKPP — Model and Definitions

The Power of ZKPP: The Statistical Case

41 ZKPP forPermutations e e
4.2 Promise Expansionisin HV-SZKPP
43 Promise Bipartitenessisin HV-SZKPP

Limitations of SZKPP
51 IPPZESZKPP e
52 MAP Q ESZKPP, assuming Circuit Lower Bounds

Computational ZK Proofs and Statistical ZK Arguments of Proximity
Reducing HV-SZKPP to Entropy Difference

Missing Proofs

B.1 ProvingLemmab3 e
B2 ProvingClaim5.16
B.3 Proof Sketch of Lemma5.11 e
B.4 ProofSketchof Lemma 6.4 e e

12
12
21
25

25
26
28

32

41

1 Introduction

Interactive proofs, introduced by Goldwasser, Micali and Rackoff [GMR89] are protocols that al-
low for a polynomial-time verifier to check the correctness of a computational statement, typically
formulated as membership of an input = in a language £, using an interactive protocol.

Interactive proofs have had an incredible impact on theoretical computer science in general,
and especially on cryptography and complexity theory. However, given the vast amounts of
data that are available nowadays, in some applications even polynomial running time may be
too much.

Ergiin, Kumar and Rubinfeld [EKR04] asked whether we can obtain proof-systems in which
the verifier runs in sub-linear time. In particular, this means that the verifier does not even have
time to read the entire input. Since it is impossible to obtain sub-linear verification in general,
to obtain a meaningful notion we settle for a suitable notion of approximation. Inspired by the
property testing literature [RS96, GGR98] (see also [Gol16]) a recent line of works, initiated by
Rothblum, Vadhan and Wigderson [RVW13], focuses on interactive proofs in which soundness is
relaxed and the verifier is only required to reject inputs that are far (say, in Hamming distance)
from being in the language. Thus, the verifier is only assured that the input z is close to the
language £ and so these proof-systems are called interactive proofs of proximity, or IPPs for short.
Recent results ([RVW13, GR16, FGL14, KR15, GGR15, RRR16, GG16, GR17]) have demonstrated
that many languages admit very efficient IPPs.

One of the main advantages of classical interactive proofs is that they allow for proving state-
ments in zero-knowledge [GMR89, GMW91]: amazingly, it is possible to prove that z € £ without
revealing anything other than that. Beyond being of intrinsic interest, zero-knowledge proofs have
a multitude of applications.

In this work we initiate the study of zero-knowledge proofs of proximity, or ZKPP for short.
Specifically we ask:

Is it possible to prove correctness of a computation to a sub-linear time verifier, so that the verifier does
not learn more than it could have learned by reading a few bits from the input?

Loosely speaking, we say that an IPP with prover P and verifier V is a ZKPP, if for any possible

cheating verifier V that runs in time ¢ = o(/N), where here and below N denotes the input length,
there exists a simulator S that runs in time roughly ¢ and outputs a view that is indistinguishable

from the view of V when interacting with P. Note that the bound on the running times for the
verifier and the simulator also bounds their query complexity (i.e., the number of bits read from
the input).

Interestingly, the notion of ZKPP has already implicitly appeared in the cryptographic litera-
ture 20 years ago. Bellare and Yung [BY96] noticed that the soundness of the [FLS99] construction
of non-interactive zero-knowledge proof-system (NIZK) from trapdoor permutations breaks, if
the cheating prover sends a description of a function that is not a permutation. [BY96] observed
that to regain soundness in the [FLS99] protocol, it suffices to verify that the given function is close
to being a permutation.

Focusing on the case that the domain of the permutation' is {0,1}", [BY96] suggested the

!We remark that the general case (i.e., when the domain is not {0, 1}") introduces significant difficulties. See [GR13]
and [CL17] for details.

following natural non-interactive zero-knowledge proof for certifying that a function is close to a
permutation: the many random elements y1, ..., y; in {0,1}" are specified as part of a common
random string” (CRS), and the prover is required to provide inverses 1, ...,z to all of these
elements. Soundness follows from the fact that if the function is far from a permutation then,
with high probability, one of these elements will simply not have an inverse. Zero-knowledge is
demonstrated by having the simulator sample the z’s at random and obtain the y’s by evaluating
the permutation.

Since the verifier in the [BY96] protocol is only assured that the function is close to a permu-
tation, in our terminology, the [BY96] protocol is a non-interactive ZKPP. Notice that the verifier
runs in time poly(n), which is poly-logarithmic in the input (i.e., the truth table of f).

Knowledge Tightness. When we consider ZKPP with a poly-logarithmic verifier (as in the fore-
going example), it will suffice for us to allow the simulator to run in time that is polynomial in
that of the verifier (i.e., also poly-logarithmic time). However, when considering protocols were
the verifier runs in time, say V/N, we cannot afford such a polynomial simulation overhead.’ Thus,
following Goldreich [Gol01, Section 4.4.4.2], we will sometimes want to more precisely quantify
the simulator’s overhead.

1.1 Ouwur Results

As is the case for standard zero-knowledge, the results that we can obtain depend heavily on the
specific notion of zero-knowledge. These notions depend on what exactly it means that the output
of the simulator is indistinguishable from a real interaction.

The main notion that we consider in this work is that of statistical zero knowledge proofs of prox-
imity. Here, the requirement is that the distribution of the output of the simulator is statistically
close to that of the real interaction.

1.1.1 Statistical ZKPP

Clearly not every IPP must necessarily be zero-knowledge.* Thus, the first natural question to ask
is whether this notion is meaningful - do there exist languages with non-trivial statistical ZKPPs?
We answer this question affirmatively. Moreover, we show that same natural problem considered
by [BY96] (i.e., verifying that a function is a permutation) has a very efficient zero-knowledge
proof of proximity.®

Theorem 1.1 (ZKPP for permutations, Informally Stated). Let PERMUTATION = {f : {0,1}" —
{0,1}"™ such that f is a permutation}. Then:

Recall that NIZKs inherently require the use of a CRS.

3Note that in such a case, if the simulator has a quadratic overhead, than in particular the simulator can read the
entire input whereas the verifier cannot.

“Consider the following example, due to Fischer et-al. [FGL14]. Suppose that we want to check whether a given
input consists of two consecutive palindromes (of possibly different lengths) or is far from such. Alon et-al. [AKNS00]
showed that every property tester must make Q(\/ﬁ) queries. However, if a prover provides the index that separates
the two palindromes, the property becomes extremely easy to verify. Needless to say, this proof-system is blatantly not
zero-knowledge.

>Note that protocol of [BY96] immediately yields an honest-verifier zero-knowledge proof of proximity. In contrast,
our protocol is zero-knowledge against arbitrary cheating verifiers.

e Property Testing Lower Bound: Every tester for PERMUTATION must make at least Q(2"/?)
queries to the input (and in particular must run in time Q(2"/?)),

e ZKPP Upper Bound: PERMUTATION has a 4-round statistical ZKPP in which the verifier runs
in poly(n) time.

We remark that in this result, and similarly to other results in the literature on (constant-round)
statistical zero-knowledge (SZK), we can only bound the expected running time of our simulator.
We also remark that Gur and Rothblum [GR15] give a lower bound on the complexity of non-
interactive IPPs (i.e., IPP in which the entire interaction consists of a single message from the prover
to the verifier, also known as MAPs) for PERMUTATION, and using that result we obtain a sub-
exponential separation between the power of statistical ZKPP vs. MAPs.

Beyond the property of permutation we also consider two additional problems, both of which
are graph problems and show that they admit efficient honest-verifier ZKPP protocols.® Both prob-
lems that we consider are in the bounded degree graph model, which has been widely studied in
the property testing literature [GGR98, GR02].

Theorem 1.2 (Honest Verifier ZKPP for Expansion and Bipartiteness, Informally Stated). There
exist honest-verifier statistical ZKPP in which the verifier’s running time is polylog(IN), for input graphs
of size N, for the following two promise problems:

1. Promise Expansion: Distinguish graphs with (vertex) expansion « from graphs that are far from
even having expansion roughly 8 = o2 /log(N).

2. Promise Bipartiteness: Distinguish bipartite graphs from graphs that are rapidly mixing and far
from being bipartite.

A few remarks are in order. We first note that the property testing complexity of both promise
problems is (:)(\/N) [GRO2, GR11, CS10, NS10, KS11]. Second, the IPP for promise-biparititeness
that we use to prove Theorem 1.2 is due to [RVW13] and we merely point out that it is honest-
verifier ZKPP. In contrast, the promise-expansion property above was not previously known to
admit an (efficient) IPP (let alone an honest-verifier zero-knowledge one). We also remark that
both of the problems in Theorem 1.2 refer to promise problems. In particular, we leave open the
possibility of a ZKPP for bipartiteness that also handles graphs that are not rapidly mixing, and
a ZKPP for expansion that accepts graphs that are a-expanding and rejects graphs that are far
from a-expanding (rather than just those that are far from being %/ log(V)-expanding as in The-
orem 1.2). Lastly, we also leave open the possibility of extending these protocols to be statistical
ZKPP against arbitrary cheating verifiers (rather than just honest verifiers).”

Limitations of Statistical ZKPP. Given these feasibility results, one may wonder whether sta-
tistical ZKPP are as powerful as IPPs. That is, can every IPP be converted to be statistically zero-
knowledge with small overhead? We show that this is not the case:

®In such protocols, the simulator needs only to output an interaction that is indistinguishable from the interaction
of the honest (original) verifier and the prover.

"Since honest-verifier SZK protocols can be converted to be zero-knowledge against arbitrary malicious verifiers
([GSV98], see also [Vad99)), it is reasonable to wonder whether the same holds for statistical ZKPP. We conjecture that
this is the case but leave the question of verifying this conjecture to future work.

Theorem 1.3 (IPP ¢ SZKPP, Informally Stated). There exists a property 11 that has an |PP in which
the verifier runs in polylog(N) time, where N is the input length, but I1 does not have a statistical ZKPP
in which the verifier runs even in time N°(1),

We note that Theorem 1.3 is unconditional. Interestingly, if we do allow for assumptions, then
we can even separate MAP from SZKPP:

Theorem 1.4 (MAP ¢ SZKPP, Informally Stated). Assuming certain circuit lower bounds, there exists
a property 11 that has an MAP in which the verifier runs in polylog(IN) time, where N is the input length,
but TI does not have a statistical ZPP in which the verifier runs even in time N°U).

The circuit lower bound that we use follows from the (highly plausible) assumption that the
Arthur-Merlin communication complexity of disjointness is n°, where n is the input length and
€ > 0 is some constant.

1.1.2 The Computational Setting

As is the case in the classical setting, we can obtain much stronger results if we either (1) only
require that the simulated view be computationally indistinguishable from the real interaction (i.e.,
computational zero-knowledge), or (2) only require soundness against efficient cheating provers
(i.e., computational soundness or argument).

The following results show that under these relaxations, and assuming reasonable crypto-
graphic assumptions, we can transform many of the known results from the literature of IPPs to
be zero-knowledge. Focusing on computational zero-knowledge, we can derive such protocols
for any language computable in bounded-depth or in bounded-space, where the verifier runs in
roughly VN time.

Theorem 1.5 (Computational ZKPP for Bounded Depth, Informally Stated). Assume that there exist
one-way functions. Then, every language in logspace-uniform NC, has a computational ZKPP, where the

verifier (and the simulator) run in time N 3+ and the number of rounds is polylog(IV).

Theorem 1.6 (Computational ZKPP for Bounded Space, Informally Stated). Assume that there exist

one-way functions. Then, every language computable in poly(N)-time and O(N?)-space, for some suffi-

ciently small constant o > 0, has a computational ZKPP, where the verifier (and the simulator) run in time
1

N§+O(a').

Interestingly, if we only require computational soundness, we can do even better. The following
result gives statistical zero-knowledge arguments of proximity for every language in NP, and with
a verifier that runs in poly-logarithmic time.

Theorem 1.7 (Statistical Zero-Knowledge Arguments for NP, Informally Stated). Assume that there
exist collision-resistant hash functions. Then, every language in NP, has a constant-round statistical zero-
knowledge argument of proximity, where the verifier runs in time polylog(N).

We note that Theorems 1.5 to 1.7 strongly rely on (1) results from the literature on IPPs [RVW13,
RRR16] and interactive arguments of proximity [Kil92, BGH" 06, DR06], (2) a method introduced
by [BGG88] for transforming interactive proofs (and arguments) into zero-knowledge ones (while
taking some additional care that is not required in the classical setting), and (3) the observation
that the verifiers in many of the underlying protocols all make queries that do not depend on
messages sent by the prover. See Section 6 for details.

4

1.2 Additional Related Works

A related notion of zero-knowledge PCPs of proximity was recently considered by Ishai and Weiss [IW14].
These are PCP systems in which, the verifier gets oracle access to both the input and to an alleged
proof. Similarly to our notion of ZKPP, the verifier runs in sublinear and is assured (with high
probability) that the input is close to the language. Here, zero-knowledge means that the verifier
learns nothing more than what it could simulate by making few queries to the input. We empha-
size that the difference between our model and that of [[W14] is that we consider interactice proofs,
whereas [[W14] focus on PCP-style proofs: namely soundness is guaranteed only if the PCP proof
string is written in advance.

A recent work by Ben-Sasson et-al. [BCF16] studies zero-knowledge interactive oracle proofs
- in a model in which the verifier receives oracle access to the communication tape, but full access
to the input.® Our model of ZKPP is reversed - the verifier has oracle access to the input but full
access to the communication tape.

Organization. General notations and definitions used throughout the paper are given in Sec-
tion 2. The model of zero-knowledge proofs of proximity (ZKPP) is defined in Section 3. Our
statistical ZKPP protocols for Permutations, Expansion and Bipartiteness, are presented and ana-
lyzed in Section 4, while our lower bounds for statistical ZKPP are in Section 5. Finally, in Section 6
we present our results on computational ZK proofs of proximity and the statistical ZK arguments
of proximity.

2 Preliminaries

We use calligraphic letters to denote sets, uppercase for random variables, lowercase for values
and functions, boldface for vectors, and uppercase sans-serif (e.g., A) for algorithms (i.e., Turing
Machines). All logarithms considered here are in base two. Given a random variable X, we write
x < X to indicate that z is selected according to X. Similarly, given a finite set S, we let s <— S
denote that s is selected according to the uniform distribution on §. For an interactive protocol
(A,B), let out(A, B) denote a random variable induced by B’s output in a random execution of
(A, B) (usually, A will be some prover and B will be an honest verifier).

The relative distance, over alphabet 3, between two strings € X" and y € X" is defined by
Ax,y) == w If A(z,y) < e, we say that z is e-close to y, and otherwise we say that
x is e-far from y. Similarly, we define the relative distance of = from a non-empty set S C X" by
Az, S) := minges Az, y). If A(z,y) < ¢, we say that z is e-close to S, and otherwise we say that
x is e-far from S. The bitwise exclusive-or between two binary strings =,y € {0, 1}" is denoted by
x @ y. The statistical distance between two distributions P and @ over a finite set U, is defined
as SD(P, Q) := maxscy |P(S) — Q(S)| = 33, |P(v) — Q(u)| and their product distribution is
denoted by P ® B.

The image of a function f: X —) is defined as Im(f) = {y € Y:Ixr € X, f(x) =y}. An
additional notation that we will use is that if S = (Sy),cy and T' = (T}),,c are ensembles of sets,
we denote by S C T the fact that S, C T}, for every k € N.

$Interactive proofs in which the verifier is not charged for reading the entire communication tape are called either
probabilistically checkable interactive proofs [RRR16] or interactive oracle proofs [BCS16] in the literature.

2.1 Hashing and Entropy
2.1.1 Entropy
Definition 2.1 (Entropy). The entropy of a discrete random variable X is defined as

00 =)

The binary entropy function h: [0,1] — [0, 1] is defined to be the entropy of X ~ Bernoulli(p), that is,
h(p) = —plog(p) — (1 — p) log(1 — p), where we use the convention that h(0) = h(1) = 0.

Another notion of entropy that we shall use is that that of (conditional) average min-entropy.

Definition 2.2 (average min-entropy [DORSO08]). Let X, Y be jointly distributed random variables. The
average min-entropy of X given Y is defined by

Ho(X[Y) = — 1og<E%y [mgxpr[x —z|Y = y]D

The following fact follows immediately from the above definition.

Fact2.3. Let X", Y™ be n-tuples of independent copies of the random variables X and Y respectively. Then
Hoo (X™Y™) =n-Hoo(X|Y).

Proof. We prove for the case that n = 2. The general case follows by induction.

HOO(X2|Y2) = —log (E(yhyz)eyz maxPr[X2 = (z1,22) | Y? = (yl,yg)]]>

T1,T2

—log <E(y17y2)<;y2 maxPr[X =z, |Y =y - Pr[iX =22 | Y = yﬂ])

1,22

108 (Bl gy [max PILX =1 [¥ =] max X =2 | =]).

where the second inequality follows since the first sample from (X,Y") is independent from the
second one, and thre third inequality follows since for non-negative functions f, g, it holds that
maxg, », f(z1) - g(x2) = max,, f(x1) - maxy,, g(rz). Letting h(y) = max, Pr(X =2 |Y =y|, we
write

(X2|Y2 —log(B(y, yo)v2lh(y1) - h(y2)])
—log(Ey, v [h(y1)] - Ey, v [R(y2)])
—log(Ey, v [h(y1)]) — log(Ey, ey [h(y2)])
Hoo (X]Y) + Hoo(XY),

where the second inequality follows since the first sample of Y is independent of the second one.
a

2.1.2 Hashing

Definition 2.4 (pairwise independent hash functions). A family of functions H = {h : [N] — [M]}
is pairwise independent if for every x1 # xo € [N] and every yi,y2 € [M], it holds that

1
hil;[[h(xl) =y1 A h(z2) = yo] = ek

The existence of efficient pairwise independent hash functions is well known.

Fact 2.5 (c.f. [Vad12, Theorem 3.26]). For every n,m € N, there exists a family of pairwise independent
hash functions Hy, y, = {h: {0,1}" — {0, 1}""} where a random function from H,, ,, can be selected using
max(m, n)+m bits, and given a description of h € H, . and x € {0,1}", the value h(x) can be evaluated
in time poly(n, m).

Dodis et-al. [DORS08], showed the following generalization of the leftover hash lemma, for
sources having high conditional min-entropy.

Lemma 2.6 (generalized leftover hash lemma [DORS08, Lemma 2.4]). Let H = {h: {0,1}" — {0,1}"}
be a family of pairwise independent hash functions. Then, for any random variables X and Y and the ran-
dom variable H < H, it holds that

SD((H(X),H, Y), (Un, H, Y)) < % : \/z—ﬁoo(xm om
where Uy, is distributed uniformly over {0,1}™.

2.2 Statistical Zero-Knowledge

We use standard definitions and results from the literature of statistical zero-knowledge proofs,
based mainly on [Vad99].

2.2.1 Statistical Zero-Knowledge Interactive Proofs

In this section we give the (almost) standard definitions for interactive proofs and honest-verifier
zero-knowledge proofs.

Definition 2.7 (interactive proofs). Let IT = (Ilygs, IIno) be a promise problem. An interactive proof
system for 11 is an interactive protocol (P, V) with completness error ¢: N — [0, 1] and soundness
error s: N — [0, 1] if the following holds for every security parameter k € N:

e Completeness: If v € Ilygs, then, when V(z, k) interacts with P(z, k), with probability 1 — c(k)
it accepts.

e Soundness: If x € IlNo, then for every prover strategy P, when V(z, k) interacts with P, with
probability 1 — s(k) it rejects.
If ¢(+) and s(-) are negligible functions, we say that (P, V) is an interactive proof system.
The above definition does not deal with the efficiency of the verifier or the prover, unlike the
standard definition that requires the verifier to run in time poly(|z|, k). Jumping ahead, this is

because in our settings the verifier (and also the simulator) will have only oracle-access to their
inputs. We will refer to the efficiency of those algorithms within theorem statements.

Definition 2.8 (view of interactive protocol). Let (P, V) be an r-message interactive protocol. The view
of V on a common input x (given as standard input or by oracle access to either of the parties) is defined
by viewp y () := (mi,ma,...,my;p), where my, ma,...,m, are the messages sent by the parties in a
random execution of the protocol, and p contains of all the random coins V used during this execution.

We allow probabilistic algorithms to fail by outputting L. An algorithm Ais usefulif Pr[A(z) =1] <
1/2 for every z, and let A(z) denote the output distribution of A(z), conditioning on A(z) #.L.

Definition 2.9 (honest-verifier zero-knowledge proofs). Let IT = (Ilygg, IIno) be a promise problem.
An interactive proof (P, V) for 11 is said to be honest-verifier statistical zero-knowledge, if there exists
an algorithm S, and a negligible function p: N — [0, 1] such that for every k € N and x € Ilygg,

SD (g(x, k), viewp y(z, k:)) < u(k).

2.2.2 Statistical Distance, Entropy Difference and Sample-Access Proofs

Central in the study of statistical zero-knowledge are problems dealing with properties of distri-
butions encoded by circuits.

Definition 2.10 (distributions encoded by circuits). Let X be a Boolean circuit with m input gates and
n output gates. The distribution encoded by X is the distribution induced on {0,1}" by evaluating X on
a uniformly selected string from {0, 1}™. By abuse of notation, we also write X for the distribution defined
by the circuit X.

Two particularly interesting problems are statistical distance and entropy difference.
Definition 2.11 (Statistical Distance). For any constants 0 < § < « < 1, the promise problem SDP =
(SDYis, SDR5Y is given by
SDyLg = {(X,Y): SD(X,Y) > a}
SDpS = {(X,Y): SD(X,Y) < f}.
Above, X,Y are distributions encoded by circuits according to Definition 2.10.

Definition 2.12 (Entropy Difference). Entropy Difference is the promise problem ED = (EDvygs, EDno),
where
EDyes = {(X,Y): H(X)
EDno = {(X,Y): H(Y)

> H(Y) +1},
> H(X) + 1}.

Above, X,Y are distributions encoded by circuits according to Definition 2.10.

Both SD and ED are known to be complete for the class of problems that have statistical zero-
knowledge proofs (see [Vad99, Theorem 3.5.1]). A fact that we will rely on heavily, is that the zero-
knowledge proof-systems for SD and ED only require sample access to the distributions induced
by the input circuits. That is, neither the verifier not the simulator in these proof-systems need to
actually look at the circuits themselves. Rather, all that they need is the ability to generate random
samples from the circuits.

Definition 2.13 (sample-access honest-verifier zero-knowledge proof). Let II be a promise problem
whose instances are pairs of distributions encoded by circuits. An honest-verifier zero-knowledge proof
system for 11 is sample-access if both the verifier and the simulator only require oracle access to random
samples from the distributions encoded by the input circuits (in addition to explicitly getting the security
parameter k).

We can now state the results regarding the zero-knowledge proof systems of SD and ED. In
fact, we will not care about SD but rather about statistical closeness, the complement of SD in which

the YES and NO instances are switched, namely SDYA .= (S Dﬁg , SD@‘E’BS).

Lemma 2.14. Let 0 < 8 < a < 1 be constants such that’ h((1 + «)/2) < 1 — B. Then, there exists a 2-

message sample-access honest-verifier statistical zero-knowledge proof for SD*P. Moreover, the running
times of the verifier and the simulator in the above protocol given sample access to (X,Y) and security
parameter k are poly(m, n, k), where m is the number of random coins needed to sample from X or Y (i.e.,
their input size) and n is the output size of X and Y.

The protocol establishing Lemma 2.14 reduces, in a black-box way, an instance of SD%* to ED
(see [Vad99, Section 4.4]) and then uses the next lemma.

Lemma 2.15. There exists 2-message sample-access honest-verifier statistical zero-knowledge proof for
ED. Moreover, the running times of the verifier and the simulator in the above protocol given sample access
to (X,Y) and security parameter k are poly(m,n, k), where m is the number of random coins needed to
sample from X or Y (i.e., their input size) and n is the output size of X and Y.

3 ZKPP — Model and Definitions

In this section we formally define the model of statistical zero-knowledge proofs of proximity. We
follow definition choices from the literature of classical statistical zero-knowledge proofs, mainly
based on [Vad99] (see Section 2.2.2). For a discussion about the computational setting, see Re-
mark 3.7 below.

Properties will be identified as sets of functions. A propery is an ensemble I = (II,,, D,,, Ry)nen,
where II,, C Fp, g, for every n € N, letting Fp_,z denote the set of all functions from domain D
to range R. Equivalently, we sometimes view II,, as a string of length |D,,| over the alphabet R,
and write I1,, C le "l Fora property Il and n € N, let Nii(n) := |Dy| - log(|R,|) denote the input-
size of II,,. Throughout this paper we remove II and n from the above notation, and simply let N
denote the input-size of the relevant property (this will be convenient when defining complexity
classes; see ahead). We note that, depending on the context, we will sometimes refer to properties
as languages. Lastly, similar to [Vad99], we use a security parameter to control our soundness and
zero-knowledge guarantees (see Remark 3.6 for additional details).

Definition 3.1 (interactive proofs of proximity (IPP)). An r-message interactive proof of proximity
(IPP), with respect to proximity parameter € > 0, (in short, e-IPP) for the property I1 = (I,,, Dy, Ry)neN
is an interactive protocol (P, V) between a prover P, which gets free access to an input f: D,, — R, as
well as to €, |Dy,|, |Ry| and k, and a verifier V, which gets oracle access to f as well as free access to €, n,
|Dy|, |Rn| and k. The following conditions are satisfied at the end of the protocol for every k € N and large
enough n € N:

9Recall that we use h to denote the binary entropy function h(p) = —plog(p) — (1 — p)log(1 — p).

e Completeness: If f € II,,, then, when V interacts with P, with probability 1 — negl(k) it accepts.

e Soundness: If f is e-far from I1,,, then for every prover strategy P, when V interacts with P, with
probability 1 — negl(k) it rejects.

Fort = t(n,|Dyl, |Rnl, k. €), IPP[t] denotes the class of properties possessing e-IPP in which the veri-
fier’s running time is at most O(t). Finally, for a class of functions C, we denote by IPP[C(n, | Dy|, |Ry|, k, €)]
the class of properties 11 for which there exists t € C such that II € IPP]t].

The probabilities that the verifier rejects in the completeness condition and accepts in the
soundness condition are called the completeness error and soundness error, respectively. If the
completeness condition holds with probability 1, then we say that the IPP has perfect complete-
ness. A public-coin IPP is an IPP in which every message from the verifier to the prover consists
only of fresh random coin tosses.

An IPP is said to have query complexity ¢g: N x N x N x N x (0,1] — N if for every n,k € N,
e >0,z € Fp,Rr,, and any prover strategy ﬁ, the verifier V makes at most ¢(n, |Dy,|, |Rx|, k, €)
queries to z when interacting with P. The IPP is said to have communication complexity c¢: N x
N x N x N x (0,1] = Nif forevery n,k € N, e > 0, and « € Fp, R, the communication between
V and P consists of at most ¢(n, |D,|, |Rx|, k, €) bits.

Our main (but not exclusive) focus in this work is on properties that have IPPs in which the ver-
ifier’s running time (and thus also the communication and query complexities) is poly-logarithmic
in the input size and polynomial in the security parameter k£ and in the reciprocal of the proximity
parameter 1/¢, that is, the class IPP[poly(log(N), k, 1/¢)].

An IPP that consists of a single message sent from the prover (Merlin) to the verifier (Arthur) is
called Merlin-Arthur proof of proximity (MAP). We extend all the above notations to Merlin-Arthur
proofs of proximity in the natural way.

Before defining general ZKPPs, we first consider zero-knowledge with respect to honest veri-

fiers.

Definition 3.2 (honest-verifier zero-knowledge proof of proximity (HV-SZKPP, HV-PZKPP)). Let
(P, V) be an interactive proof of proximity for a property I1 = (II,,, Dy,, Ry)nen. The protocol (P, V) is
said to be honest-verifier statistical zero-knowledge with simulation overhead s, for some function
s: Nx NxNxNxN x (0,1] — N if there exists a useful'" probabilistic algorithm S, which (like V) gets
oracle access to f: Dy, — Ry, as well as free access to €, n, |Dy,|, |Ry| and k, and whose running time is
at most O(s(ty,n, |Dy|, |Rnl, k, €)), where ty(n, |Dy|, |Rnyl, k, €) is V's running time, such that for every
k € N, every large enoughn € Nand f: D,, — R, if f € 11, then

SD<§f(5a 7’L, |Dn|7 |Rn|a k)aVieWP,V(87na ’Dn|’ ’Rn|’ ka f)) S negl(k)

If the negl(k) can be replaced with 0 in the above equation, (P,V) is said to be honest-verifier perfect
zero-knowledge with simulation overhead s.

For t = t(n,|Dyl,|Rnl, k,e), HV-SZKPP[t, s] (resp., HV-PZKPP]t, s]) denotes the class of proper-
ties possessing honest-verifier statistical (vesp., perfect) zero-knowledge proof of proximity with simulation
overhead s in which the verifier’s running time is at most O(t).

!0Recall that an algorithm A is useful if Pr[A(z) =L] < 1/2 for every z, and that Z\(m) denote the output distribution
of A(z), conditioning on A(x) #.L.

10

We say that the query complexity of a simulator Sis ¢': N x N x N x (0,1] — N if for every
nkeN,e>0,f e Fp,r,,S! makes at most ¢'(n, | Dy, |Rn|, k.) queries to f.

A typical setting (that we will focus on) is when the verifier’s running time is poly (log(N), k,1/¢),
namely poly-logarithmic in the input length IV and polynomial in the security parameter k£ and
in the proximity parameter 1/¢. In this setting we often allow for polynomial simulation over-
head, that is the simulator’s running time is also poly(log(IN), k,1/¢). Specifically, we denote by
HV-SZKPP [poly(log(N), k, 1/¢)] the class of properties IT € HV-SZKPP[t, s] for t = poly(log(N), k, 1/)
and s = poly(t,log(N), k, 1/¢). The class HV-PZKPP [poly(log(N), k, 1/¢)] is similarly defined.

Another setting of interest is when the verifier’s running time is N - poly(k, 1/¢), for some
constant 6 € (0,1). In this setting, unlike the previous one, allowing the simulation overhead to
be polynomial will give the simulator much greater computational power than the verifier (e.g., if
0 = 1/2 and s is quadratic in the verifier’s running time, then the simulator can run in time O (V)
and in particular may read the entire input). In this setting we aim for the simulation overhead to
be linear in the verifier’s running time (but it can be polynomial in k and 1/¢).!!

When the simulation overhead is clear from context (as it will almost always be the case) we
omit it from the notation.

Cheating Verifier ZKPP. We will allow cheating verifiers to be non-uniform by giving them an
auxiliary input. For an algorithm A and a string z € {0,1}* (all auxiliary inputs will be binary
strings, regardless of the properties” alphabet), let A, be A when 2z was given as auxiliary input.
Since we care about algorithms whose running time is insufficient to read the entire input, we
would not want to allow the running time to depend on the auxiliary input (otherwise, we could
artificially inflate z so that A would be able to read the entire input). Thus, following [Vad99], we
adopt the convention that the running time of A is independent of z, so if z is too long, A will not
be able to access it in its entirety.

Definition 3.3 (cheating-verifier zero-knowledge proof of proximity (SZKPP, PZKPP)). Let (P, V)
be an interactive proof of proximity for a property Il = (II,,, Dy, Ry)nen. (P, V) is said to be cheating-
verifier statistical zero-knowledge with simulation overhead s, for some function s: N x N x N x N x
N x (0,1] — N, if for every algorithm V whose running time is O(tg(n, |Dnl, |Rnl, k, €)), there exists a
useful probabilistic algorithm S, which (like V) gets oracle access to f: D, — Ry, as well as free access to
g, M, | Dy, |Ry| and k, and whose running time is at most O(s(tg, n, |Dnl, |Rnl, k, €)), such that for every
k € N, large enoughn € N, z € {0,1}* and f: D,, — Ry, if f € 11,,, then

SD (S (2. [Duls [Ral, k), viewp g (2., Dl [Rul: b, f)) < negl(k).

If the negl(k) can be replaced with 0 in the above equation, (P,V) is said to be resp., cheating-verifier
perfect zero-knowledge with simulation overhead s.

Fort = t(n, |Dyl,|Rnl, k,€), SZKPPIt, s] (resp., PZKPP]t, s]) denotes the class of properties possess-
ing cheating-verifier statistical (resp., perfect) zero-knowledge proof of proximity with simulation overhead
s in which the verifier’s running time is at most O(t).

Expected Simulation Overhead. Definition 3.3 requires that the running time of the simulator
always be bounded. Similarly to many results in the ZK literature, in some cases we can only
bound the simulator’s expected running time.

"'This requirement is in the spirit of constant knowledge tightness, see [Gol01, Section 4.4.4.2].

11

Definition 3.4 (cheating-verifier ZKPP with expected simulation (ESZKPP, EPZKPP)). Let (P,V)
be an interactive proof of proximity for a property II = (Il,, Dy, Ry)nen. The protocol (P, V) is said
to be cheating-verifier statistical zero-knowledge with expected simulation overhead s if it satisfies
the same requirement as in Definition 3.3 except that we only bound the expected running time of the
simulator.

The classes ESZKPPIt, s| and EPZKPPt, s| are defined analogous to SZKPPIt, s] and PZKPPt, s]
from Definition 3.3.

Unless explicitly saying otherwise, all zero-knowledge protocols we discuss are cheating-
verifier ones.

As in the honest-verifier case, a typical setting is that in which the verifier’s running time is
poly-logarithmic in the input size N and polynomial in the security parameter k£ and in 1/¢, and
the simulator’s (possibly only expected and not strict) running time is polynomial in the running
time of the cheating-verifier that it simulates, poly-logarithmic in N and polynomial in £ and
1/e. Specifically, if we allow the cheating-verifier the same computational powers as the honest-
verifier, then both the honest-verifier and every simulator run in time poly(log(N), k, 1/¢). We let
ESZKPP [poly(log(N), k, 1/¢)] be the class of properties IT € ESZKPP[t, s] for t = poly(log(N), k,1/¢)
and s = poly(tg,log(N), k,1/¢). The class PZKPP [poly(log(N), k, 1/¢), poly] is similarly defined.

We conclude this section with a few remarks on the model and the above definitions.

Remark 3.5 (Promise Problems). Some of the protocols that we construct do not refer to a property but
rather to a promise problem. More specifically, rather than distinguishing between inputs that are in
the property 11 for those that are e-far from 11, we will consider a promise problem (Ilygs,IIno) and the
requirement is that the verifier accepts inputs that are in Ilygg and rejects inputs that are both in IIyo and
are e-far from Ilygs. We extend the definitions above to handle such promise problems in the natural way.

Remark 3.6 (The Security Parameter). One of the original motivations to include security parameter in
the classical definitions of statistical zero-knowledge proofs was to control the error parameters (complete-
ness, soundness and simulation deviation) independently from the input’s length. Specifically, one may
want to provide a high-quality proof (i.e., very small errors) for short inputs (see [Vad99, Section 2.4]). In
our setting, the situation is somehow reversed. We think of very large inputs that the verifier and simula-
tors cannot even entirely read. Hence, it is infeasible to ask them for errors that are negligible in the input’s
length. Instead, we control the quality of the proof with the security parameter, independent of the input’s
length.

Remark 3.7 (Computational ZKPP). Since our focus is on the statistical case, we do not provide explicit
definitions of computational zero-knowledge proofs of proximity. Indeed, these definitions can be easily
interpolated from the statistical ones in a standard way (see for example Vadhan’s [Vad99, Section 2] defi-
nition of computational zero-knowledge). Specifically, in the computational definitions one simply replaces
the requirement that the simulator’s output and the protocol’s view are statistically-close with one in which
they are computationally indistinguishable.

4 The Power of ZKPP: The Statistical Case

4.1 /KPP for Permutations

In this section, we look at functions f : {0,1}" — {0,1}" and consider the property of being a
permutation. That is, we would like to distinguish between functions that are a permutation from

12

those that are far from being a permutation.

Definition 4.1 (The permutation property). For every n € N let

PERMUTATION,, = {f: (0,13 - {0,1}" | fis apermutation}.

We define the permutation property as PERMUTATION = (PERMUTATIONn7 {0,1}", {0, 1}”) N
ne

It is not difficult to see that any property tester for PERMUTATION must make at least Q(v/N)
queries, where N = 2". To see this, consider the following two distributions: (1) a random per-
mutation over {0,1}"; and (2) a random function from {0,1}" to {0,1}". The first distribution
is supported exclusively on YES instances whereas it can be shown that the second is, with high
probability, far from a permutation. However, if a tester makes ¢ < VN queries, then in both
cases, with high probability, its view will be the same: ¢ distinct random elements. The property
testing lower bound follows.

As a matter of fact, Gur and Rothblum [GR15] have shown that the verifier in every MAP (i.e.,
non-interactive proof of proximity, see [GR16]) for PERMUTATION must make either Q(N'/4)
queries or use a proof of length Q(N1/4).

In this section, we show that the PERMUTATION property has a 4-message (statistical) zero-
knowledge proof of proximity with respect to cheating verifiers. We note that we only bound the
expected number of queries and running time of the simulator of our protocol. We leave it as an
open problem to obtain a protocol (possibly with more rounds of interaction) in which one can
show a high probability bound on the query complexity and running times of the simulator.

Before stating the theorem a word on notation. In Section 3 we gave the prover and the verifier,
as explicit inputs, the domain and range sizes — both, in the case of the permutation property, are
2", In this section, for convenience, instead of giving 2" as an explicit input, we will simply give
n. Relevant complexity measures (e.g., running time, query and communication complexity) will
similarly be functions of n.

Theorem 4.2 (EPZKPP for Permutation). PERMUTATION € EPZKPP [poly(log(N, k,1/¢))]. Specif-
ically, PERMUTATION has a cheating-verifier perfect zero-knowledge proof of proximity (Pperm, Vperm)
with expected simulator Sperm with respect to proximity parameter ¢ > 0 such that the following properties
hold for every n € N, every input f: {0,1}" — {0, 1}" and security parameter k € N:

1. The interaction consists of four messages and the total communication is O (n*k/e?) bits.
2. Vperm's running time is poly(n, k,1/¢) and Vperm's query complexity is O(nk/e?).
3. If f € PERMUTATION,,, then for every auxiliary input z, Sperm[z]

query complexity, given access to a (possibly cheating) verifier V, are O (tg(e,n, k, z))+poly(n, k,1/e)
and O(qg(e,n, k, z) + nk/e?) respectively, where ty(e,n, k, z) and qg(e,n, k, z) are the running

's expected running time and

time and query complexity of \7{2] (e,n, k).

(Note that the input of PERMUTATION,, has size n-2", so a polynomial dependence on n translates
into a poly-logarithmic dependence on the input-size.)

Combined with the aforementioned MAP lower bound for PERMUTATION, we obtain that the
complexity of ZKPP (with expected simulation bounds) can be sub-exponentially smaller than
those of MAPs (and therefore also of property testers).

13

Remark 4.3. We mention that in Item 3 in the theorem statement, when the simulator simulates the view
of an interaction with the honest verifier Vperm, its strict (rather than expected) query complexity is exactly
equal to the query complexity of the verifier.

The rest of this section is dedicated to proving Theorem 4.2.

4.1.1 Proof of Theorem 4.2

Consider the following simple IPP for PERMUTATION (based on the [BY96] protocol). Given
oracle access to a function f : {0,1}" — {0,1}", the verifier chooses a random r € {0,1}" and
sends r to the prover. The prover computes z = f~!(r) and sends it to the verifier. The verifier
checks that indeed f(z) = r and if so accepts.

Clearly if f is a permutation then the verifier in this protocol accepts with probability 1,
whereas if f is far from a permutation, then with some non-negligible probability the verifier
chooses r which does not have a pre-image under f. In such a case the prover cannot make the
verifier accept and so the protocol is sound.

It is also not hard to see that this protocol is honest-verifier zero-knowledge.'> However, it is
not cheating-verifier zero-knowledge: a cheating verifier could learn the inverse of some arbitrary
r of its choice.

In order to make the protocol zero-knowledge, intuitively, we would like to have a way for the
prover and verifier to jointly sample the element r such that both are assured that it is uniform.
For simplicity let us focus on the task of just sampling a single bit 0. The specific properties that
we need are

1. If f is a permutation then the prover is assured that the ¢ is random.
2. If f is far from being a permutation then the verifier is assured that o is random.

In fact, the transformation of general honest-verifier statistical zero-knowledge proofs to cheating-
verifier ones (see [Vad99, Chapter 6]) implements a sub-routine achieving a generalization of the
above task, assuming full access to the input. We give a simple solution for our specific case. That
is, using only oracle access to a function that is either a permutation or far from any permutation.

We proceed to describe a simple procedure for sampling such a random bit o. First, the verifier
chooses at random z € {0,1}" and a pairwise independent hash function : {0,1}" — {0,1} and
sends y = f(z) and h to the prover. The prover now chooses a random bit » € {0, 1} and sends
r to the verifier. The verifier now sends z to the prover who checks that indeed f(z) = y. The
random bit that they agree onis o = r ® h(x).

From the prover’s perspective, if f is a permutation then y fully determines = and so r (which
is chosen uniformly at random after y is specified) is independent of h(x). Hence, o = r @ h(x)
is uniformly random bit. On the other hand, from the verifier’s perspective, if f is far from being
a permutation, then, intuitively, even conditioned on the value y there still remains some entropy
in z (indeed, 7 is essentially uniform among all the pre-images of y).!> Now, using a variant of
the leftover hash lemma, we can argue that h(z) is close to random. Actually, since the leftover

2As a matter of fact, this protocol can be viewed as a non-interactive statistical zero-knowledge protocol for
PERMUTATION (and is used as such in [BY96]).

B Actually, the amount of entropy is fairly small (and depends on how far f is from being a permutation). To obtain
a sufficient amount of entropy, in our actual protocol we generate many such y’s.

14

The Permutation Protocol (Pperm, Vperm)

Pperm’s Input: A function f: {0,1}" — {0, 1}", proximity parameter ¢ > 0 and security parameter k.
Vperm’s Input: ¢, n, k and oracle access to f.

1. Both parties sett = [(n+1)/ec] and s = [k/¢].

2. Vperm samples X = (21, @2, ..., 24.5) « ({0, 1}”)” and h + Hpposns”

Vperm computes y; = f(x;) for every i € [t - s] (by querying f), and sends ¥ = (y1,¥2, ..., ¥:.s) and h
to Pperm-

perm Samples F = (r1,7,...,75) + ({0,1}")" and send them to Vperm.

perm Sends X t0 Pperm.

perm S€Nds Z = (z1, 22, .. ., 25) t0 Vperm, Where 2; = ft (n- @ h(i)i), for every i € [s].0

N o o ®

P
\
Pperm checks that f(z;) = y;, for every i € [t - s]. If any check fails then Pperm sends L and aborts.
P
Vv

perm accepts if f(z;) = r; © h(X); for every i € [s], and otherwise it rejects.

"Recall that Hn,m = {h: {0,1}" — {0,1}™} is a family of pairwise independent hash functions. See Fact 2.5.
’Recall that @ stands for the bitwise exclusive-or. Also, we view h(X) € {0,1}"* as h(X) =
(h(X)1, h(X)2,. .., h(X)s) such that h(X); € {0,1}".

Figure 1: The Permutation Protocol

hash lemma implies that pairwise independent hash functions are strong extractors, we have that
h(z) is close to random even conditioned on h and therefore also conditioned on r (which is a
randomized function of). Thus, we obtain that o = & h(x) is close to uniformly random bit and
so our procedure satisfies the desired properties.

We proceed to the description of our actual protocol, which is based on the foregoing ideas.
The protocol (Pperm, Vperm) is given in Fig. 1.

It is easy to verify that (Pperm, Vperm) has the desired round complexity, query complexity and
verifier’s running time, where we use the fact that O(n?k /<) bits suffice for describing the pairwise
independent hash function in the protocol (see Fact 2.5).

To see that completeness holds observe that if f : {0,1}" — {0,1}" is a permutation, and the
two parties follow the protocol, then indeed f(z;) = y; and f(2;) = f(f 1 (r; ® h(X);)) = r: ® h(X);
for every i € [t - 5], and therefore the parties complete the interaction and the verifier accepts.

It remains to show that the soundness and zero-knowledge conditions hold. Soundness fol-
lows from the following lemma, which is proved in Section 4.1.2.

Lemma4.4. Let n, k € N, lete > 0and suppose that f: {0,1}" — {0,1}" is e-far from PERMUTATION,,.
Then, for every prover strategy P, when Vperm (e,n, k) interacts with P it rejects with probability 1 —
negl(k).

Finally, to show that this protocol is perfect zero-knowledge, consider the simulator Sperm
given in Fig. 2. The following lemma, which we prove in Section 4.1.3, shows that this simulator
perfectly samples from the view of any (possible cheating) verifier.

15

The Simulator S,erm for The Permutation Protocol (Pperm; Vperm)

Simulator’s Input: ¢, n, k, auxiliary input z, oracle access to f: {0,1}" — {0,1}" and access to (possibly
cheating) verifier V.

1. Run \A/{Z] (e,n, k) using random coins p to gety = (y1, Y2, . .., yts) and h.
2. Sample T = (r1,7r2,...,75) < ({0,1}")° and give them to V[z] as the answers from Pperm.

3. Continue to run \7[,;] (e,n,k) to get X = (1,22, .., 2s), the values \7{2] (€,n,k) sends to Pperm in the
third message of the protocol.

4. If there exists i € [t - s] such that f(z;) # y;, output (¥, h,T,X, L, p).
5. Otherwise, repeat the following:
(@) Sampler’ = (11,75, ...,7) < ({0,1}")% and for every i € [s], set !/ = f(r}) @ h(X);.

. oaof R " .
(b) Rewind V/,(e, n, k) to the point it is waiting for the second message of the protocol using p
again as the random coins (i.e., step 3 of the protocol).
Giver” = (r{,ry,...,rf,) as the answers from Pperm.

(c) Continue to run \7{2] (e,n,k) to get x’ = (2},), ...,,,), the values \7{2] (¢,n,k) sends to Pperm

in the third message of the protocol.

(d) If f(xz;) = y; for every i € [ts], output (¥, h,r”,x’ v/, p) and halt.
y p
Otherwise, go back to 5a.

Figure 2: The Simulator for The Permutation Protocol

Lemma 4.5. Let n,k € N, let z € {0,1}*, let f € PERMUTATION,,, let V be some verifier strategy
and let S{Z l (6,1, k, V) be the output of Sperm when running on input €, n, k, auxiliary input z, with oracle

access to f and access to V. Then:

SD (S{Z] (e,n, k, \7),View (e,n, k, f)) =0.

Pperm 7V[z]

Moreover, the expected running time and query complexity of S{Z | (e,n, k, \7) are as in Item 3 of the theorem
statement.

This concludes the proof of Theorem 4.2 (modulo the proofs of Lemma 4.4 and Lemma 4.5
which are proved next).
4.1.2 Analyzing Soundness — Proof of Lemma 4.4

Before proving Lemma 4.4 we show two basic, but useful, properties of functions that are e-far
from permutations. The first property is that the image size of such functions cannot be too large.

Fact 4.6. If f is e-far from PERMUTATION,,, then |Im(f)| < (1 —¢) - 2™,

Proof. We prove the contrapositive. Let f : {0,1}" — {0,1}" and suppose that |Im(f)| > (1—¢)-2".
We show that f is e-close to a permutation f’ : {0,1}" — {0,1}".

16

Start by setting f/(z) = f(x) for every z. Repeat the followmg process until Im(f’) = {0,1}™
take y ¢ Im(f); find x # 2’ such that f'(z) = f'(2’) (such z, 2’ must exist since at this point f’ is
not a permutation); set f'(z) = y.

In every iteration [Im(f)| increases by one. The above process started with [Im(f")| > (1—¢)-2",
and thus takes less than ¢ - 2" iterations. It follows that f” and f disagree on at most ¢ - 2" inputs,
or in other words f’ is e-close to f. Moreover, f’ is a permutation, since Im(f’) = {0,1}". O

Next we show that even after seeing a random element in the image of a function that is e-far
from permutation, its preimage still has some entropy. The specific notion of entropy we use is
average min-entropy.'*

Claim 4.7. Suppose that f: {0,1}" — {0,1}" is e-far from PERMUTATION,,. Let X be a random
variable uniformly distributed over {0,1}", and let Y = f(X). Then, Hoo(X|Y") > log(1/(1 — ¢)).

Proof. Fory € {0,1}", let f‘l(y) = {:z € {0,1}": f(x) = y}. Fixy € Im(f). For z € f~1(y), it holds
that Pr[X = z|Y =y] =1/|f(y L(y), itholds thatPr[= x\Y =y] = 0. Thus,
max, Pr(X = z|Y =y] =1/|f7! ‘ Moreover, it holds that Pr[Y’ = |f~'(y)|/2". Finally, for
every y ¢ Im(f), it holds that Pr[= y] = 0. Hence,

Ho(X|Y) = —log(yeY [maXPr =z|Y y

log(Z ‘f2)
y€lm(f)

()
>log<1_€>,

where the inequality follows from Fact 4.6. O

We are now ready to prove Lemma 4.4.

Proof of Lemma 4.4. Let P be a (cheating) prover strategy. We assume without loss of generality
that P is deterministic (by fixing the best choice of random coin tosses).

Let X, H, Y, R and Z be the (jointly distributed) random variables induced by the values
of X, h, ¥, T and z respectively, in a random execution of (|3, Vperm) and let out(ﬁ, Vperm) be the
random variable induced by Vperm’s output in the same random execution (i.e., out(ls, Vperm) €

{accept,reject}).
By the definition of the permutation protocol, it holds that
Pr [Out(ﬁ,vperm) = accept] < Pr[Vi € [s]: f(X]) = Ry & H(X),] (1)
< Pr|Vi € [s]: R; ® H(X); € Im(f)].

!4Recall that average min-entropy of X given Y is defined as Hoo (X|Y) := — log(Ey«y [max, Pr[X =z | Y = y]])
(see Definition 2.2).

17

Note that R = (Ry, ..., R;) is a function of Y and H, determined by P. It follows that
Pr|Vi € [s]: Ri(Y,H) ® H(X); € Im(f)] <Pr[Vi € [s]: Ri(Y,H) ®U; € Im(f)] (2)
+SD((H(X),H,Y),(U,H,Y)),

where U = (Uy,Us, ..., Us) is uniform over ({0,1}")*. We bound both terms in the right-hand
side of Equation (2). For the first term, note that U; is independent of U; for ¢ # j, and thus

Pr[Vi € [s]: Ry(Y,H)®U; € Im(f HPr (Y, H) ® U; € Im(f)] 3)
= HPY[Ui € Im(f)]
=1
S (]- - 8)87

where the second equality follows from the fact that for every r € {0,1}", r & Uj; is uniform over
{0,1}" and the last inequality follows from Fact 4.6.
As for the second term of Equation (2), by Fact 2.3 it holds that

Ho(X|Y) =15 Hoo(X1|V1) > t-5-log(1/(1 —¢)), (4)

where the inequality follows from Claim 4.7. Applying the generalized leftover hash lemma
(Lemma 2.6) we now obtain that:

SD((H(X) Y), (U, H, Y \/Qtslog (1—&) . 9ns — % . (2n (11— E)t)s/Q. 5)
Plugging Equations (2), (3) and (5) into Equation (1), we have
D s 1 n t\s/2
Pr [out(F’,Vperm) = accept} <(l1-¢)+ 3 (2" (1—¢)") (6)

k/(2
<(1—e)¥e 4 % : (2” (1- s)‘”“)/e) [

1 k/(2¢)
<ok L (o0 9-(nt1)
<277+ 5 (2 2)

— 2—k _|_2—I€/(26)—17

where the second inequality follows from our setting of t = [(n+1)/c] and s = [k/e] and the
third inequality follows from the fact that 1 — 2 < 27 for any = > 0. Thus, the verifier accepts
with probability that is exponentially vanishing in &, and in particular negligible.

O

4.1.3 Analyzing Zero-Knowledge — Proof of Lemma 4.5

Let V be a cheating verifier strategy and fix an input f € PERMUTATION. For simplicity, and
without loss of generality, we assume that V is deterministic.®

Recall that if the cheating verifier is randomized, we can fix its random coins as part of the auxiliary input to both
parties.

18

Throughout this proof we fix an auxiliary input 2 to Sperm and remove it from the notation of
both the simulator and the (possibly cheating) verifier (since all Sperm does with its auxiliary input
is to provide it to V, both algorithms get the same auxiliary inputs).

Recall that we let S/ (e,n, k V) denote the algorithm defined by running Sperm on input €, n, k,
with oracle access to f and access to V. Note that S/ (c,n, k, V) halts almost surely, namely the
probability that it never halts is zero.

The following claim shows show that the output distribution of Sperm is identical to the view
of V. Later, in Claim 4.9, we will bound the (expected) running time and query complexity of

Sperm-
Claim 4.8. The output distribution of Sperm is identical to the view of V.

Proof. Let X, H, Y, R and Z be the (jointly distributed) random variables induced by the values
of X, h, ¥, T and z respectively, in a random execution of (Pperm, \7)

First observe that since V is deterministic, its first message (¥, h) is fixed and so Y = y and
H = h. Also, since the verifier is deterministic, there exists a function v such that X = v(R).
Lastly, observe that there also exists a function u such that Z = u(R).

The view of the verifier is therefore:

viewpyv(s,n,k,f) = (?, H,R, X,Z) = (y,h,ﬁ,v(ﬁ),u(R)) (7)

Similarly, let Xg, Hs, Ys, Rsg, Zs be the (jointly distributed) random variables induced by the
output of a random execution of s/ (e,n,k,V). We need to show that:

(Y,H,R,X,Z) = (Ys, Hs,Rs, X5, Zg). ®)

First observe that by construction Yg = ¥ and Hg = h. Also observe that no matter what value
R obtains, in all steps in which the simulator might generate an output, it holds that Xg = v(Rs),
where the function v is as defined above. Similarly it holds that Zg = u(Rg), where u was defined
above.

Thus, Equation (8) reduces to showing that R and Rg are identically distributed. Since R is
uniform all we need to show is that Rg is also uniformly distributed.

Let

A= {f € ({0,1Y")° . Jielt-s]st y £ fla;) where X = v(f)},)

where ¥ = (y1,...,ys) (and recall that ¥ was fixed). Namely, A contains those elements in
({0,1}™)*, that had they been sent by Pperm as its second message, the verifier V would have
sent X that are not the preimages of y. Finally, let p = Pr,._(0,13»)s[r & A] and fix r* € ({0, 1}")".
We show that Pr[Rg = r*] = 1/(2")*. The proof now splits according to r*.

r* € A: The only way S’ (¢, 7, k, \7) would output 7* is by choosing it in Step 2. Since S/ (¢, n, k, \7)

chooses the values in this step uniformly at random from ({0, 1}")?, it follows that Pr[Rg =

P =1/(2m)".

19

r* ¢ A: The only way S’ (e,n, k,V) would output r* is by choosing " = r* in Step 5a. The prob-
ability that S (e, n, k V) reaches Step 5 at all is p. Having reached Step 5, and since f is
a permutation, every time that S/ (¢, n, k, V) runs Step 5a, it samples r” uniformly at ran-
dom from ({0,1}")%, independent of all previous messages it received from V. In Step 5

S/(e,n, k V) is performing rejection sampling until it gets 7 ¢ A and then sets Rg = r”. All
in all, it holds that

Pr[ﬁs = 7’*} =p- Pr [7”” — p* | ’I”” ¢ A]

«—({0,1}m)s
PI‘T.//<_({0 1}n)s [TH = 7"*]
= Pr r¢ Al- ’
re({o,lms[#A Proi (foynys[r” & Al
1
= Pr r=r%= .
re({o,lw[| (2m)s

(Note that we can condition on the event " ¢ A since r* ¢ A and so Pr[r” ¢ A] > 0.)
Hence, Rg is uniform over ({0, 1}")*. This completes the proof of Claim 4.8. O

Claim 4.9. If the cheating verifier V runs in time tg and makes qy queries, then the expected running
time of the simulator Sperm is O(ty) + poly(n, k, 1/¢) and its query complexity is O(qy + nk/e?).

Proof. We prove this part by first showing the expected number of calls it makes to V is constant.

Let T be the number of times S/ (e,n, k, \A/) executes Steps 3 and 5¢ when V uses the coins
p. Note that T is equal to the number of times the simulator invokes V. Let A be as defined in
Equation (9) (recall that A was defined as the set of vectors r for which the verifier Y responds
with X that do not all correspond to the respective preimages of y). Let p = Pr,.._(f0,1}n)s[r & AJ.

Let E denote the event that S/ (¢, n, k, \7) reaches Step 5. By construction, Pr[T" = 1] = Pr[-E] =
1—p. Moreover, it holds that the random variable T'| E is drawn from a geometric distribution with
parameter p. Since the latter has expectation 1/p we have that:

E[T] = Pr[-E] - E[T | =E] + Pr[E] - E[T | E] (10)
1
=(1—p)~1+p~5
=2-p,

Thus, in expectation, the simulator invokes V at most twice.

Every time S/ (g, n, k, \7) calls V, it samples a random string in {0,1}", evaluates some h €
Hn-t-s,n-s, and makes O(t - s) calls to f. Recall that ty and qay denote the running time and query

complexity of v, respectively. The expected running time of S/ (¢, n, k, V) is thus at most O(ty) +
poly(t,s,n) = O(ty) + poly(n, k,1/¢) (note that by Fact 2.5, evaluation of h can be done in time

poly(t, s,n)). The expected query complexity of S’ (¢, n, k, \A/) is thus at most O(gy +t-s) = O(qg +
nk/e?). O

20

4.2 Promise Expansion is in HV-SZKPP

In this section we consider the property of a graph being a “good” expander, in the bounded
degree graph model (see [GGR98, GR02]). Recall that in bounded degree graph model, the input
graph is represented by an adjacency list and so, using a single query, the verifier can find the ith
neighbor of a vertex v.

The property of being a good expander was first considered by Goldreich and Ron [GR11].
They showed that any tester for the (spectral) expansion of a graph on n vertices must make at least
Q(y/n) queries. [GR11] also suggested a testing algorithm that matches this bound and conjectured
its correctness. Czumaj and Sohler [CS10] focused on vertex expansion and proved that the [GR11]
tester accepts graphs that are good expanders and rejects graphs that are far from having even
much worst expansion. More specifically, [CS10] showed that the [GR11] tester accepts graphs
with (vertex) expansion o and rejects graphs that are far from having even (vertex) expansion

] (log @)) Lastly, Nachmias and Shapira [NS10] and Kale and Seshadhri[KS11] improved [CS10]’s

result and showed that the tester in fact rejects graphs that are far from having expansion ©(a?).
We show how to apply [CS10]’s approach to get an honest-verifier statistical zero-knowledge proof
of proximity with only a poly-logarithmic dependence on n, as long as we have a similar type of
gap between YES and NO instances as in [CS10].

Formally, a vertex expander is defined as follows.

Definition 4.10 (Vertex expander). Let o > 0. A graph G = (V, £) is an a-expander if for every subset
U C Vofsize |U| < |V|/2, it holds that [N (U)| > o-|U|, where N (U)

Throughout this section we fix a bound d on the degree of all graphs (which we think of as
constant). We identify graphs on n vertices as functions G': [n] x [d] — [n]U{L} such that G(u,i) =
v if v is the i’th neighbor of a vertex u and G(u,) =L if u has less than ¢ neighbors.

Definition 4.11. Let d € N. Forn € Nand a = a(n) > 0, let
EXPANDER%® = {G:] x [d] — [n] | Gisa a(n)—expander}.
Let B = (n) € (0,a(n)]. We define the expander promise problem (see Remark 3.5) as

EXPANDER%:®# — (EXPANDERigéﬁ JEXPANDER{S?, [n] x [d], [n]),

where EXPANDER{EY’, = EXPANDER®® and EXPANDER{S” = EXPANDER?”.

That is, YES instances of the promise problem are graphs that are a-expanders and NO in-
stances are graphs that are far from even being $-expanders, for 8 < a.
Theorem 4.12 (SZKPP for Expansion). Let d € Nand a € (0, 1/3] be constants. Then, EXPANDER®*# ¢

HV-SZKPP[poly(log(n), k,1/¢)] for f = @<d2 log(n)> where n is the number of vertices in the graph, k
is the security parameter and ¢ is the proximity parameter.

Proof of Theorem 4.12. We prove Theorem 4.12 by reducing graph expansion to the problem of test-
ing whether two distributions are statistically close. The reduction is such that we can sample
from each distribution using few queries to our original input graph. Given this reduction, we

21

={v e V\U: Ju el suchthat (v,u) € £}.

can now use Lemma 2.14 which gives an honest-verifier statistical zero-knowledge proof for ver-
ifying whether the distribution induced by two circuits on a random input is statistically close.
A crucial observation is that neither the verifier nor the simulator in the latter protocol need to
actually look at their input circuits. Rather, they only need to be able to draw relatively few
random samples from the distribution induced by the circuit on a random input. Intuitively, by
applying our reduction we therefore obtain an honest-verifier statistical zero-knowledge proof for
EXPANDER®®#.

We proceed to give an overview of our reduction from EXPANDER®“* to statistical closeness.
The reduction, which is randomized, chooses uniformly at random a vertex u and considers two
distributions: the first, denoted by P!, outputs the last vertex in a random walk of length ¢ =

2
) (%%(”)) starting at u; the second, denoted by U [n]s 18 uniform over all vertices. Observe that

both distributions can be sampled using relatively few queries to the input graph.
We observe that if the graph is an a-expander (i.e., a YES instance) then for any choice of u, it
holds that SD(Pf , U[n]) ~ 0 (and so the two distributions are close). On the other hand, [CS10]

showed that if the graph is far from being a © (#;m) -expander (i.e., a NO instance), then there

exists a set of vertices i with [U/| = Q(n) such that for every u € U, it holds that SD (P, U[n]) > 0.
Thus, in the NO case, with constant probability (over the choice of u), our reduction generates
distributions that are statistically far. We proceed to the actual proof.

Our protocol uses the following lazy random walk on the graph G.

Definition 4.13 (Random walk). Let G = (V,) be a (simple) bounded degree d graph. For u € V), define
pu(v) = 1/2dif (u,v) € & (ie., (u,v) is an edge), and p,(u) = 1 —deg(u)/2d. For £ € N, a random walk
of length ¢ starting at w is a random process that chooses ¢ vertices u, . . ., u, such that u; := w and every
vertex w1 is sampled from the distribution p,,. The distribution P.(v) is the probability that u, = v.

Assume without loss of generality that ¢ < 0.1, where ¢ is the proximity parameter.'® Let
h:[0,1] — [0, 1] be the binary entropy function (recall that A(p) := —plog(p) — (1 — p) log(1 — p)).
By a routine calculation, it holds that

1
h<2 (14 0.2)) < h(0.6) < 0.98 < 1—10.01. (11)
Thus, we can apply Lemma 2.14, with respect to the constants « = 0.2 and 8 = 0.01 to ob-

tain an honest verifier statistical zero knowledge protocol (P("') (k),VvC) (k:)) for SD%29-01 Thus,

<P("')(k:), V("')(k)) is a statistical zero-knowledge protocol for distinguishing between YES in-
stances, which are pairs of circuits that have statistical distance at most 0.01, from NO instances,
which are pairs of circuits whose statistical distance is at least 0.2.!” Using the latter, we construct
a protocol (Pexpan, Vexpan) for verifying expansion, which is given in Fig. 3.

The next two lemmas show the completeness and soundness of the expander protocol.

Lemma 4.14. Let n,k € N, let ¢ > 0 and let G: [n] x [d] — [n]. Assume that G is in EXPANDER%
(i.e., G is an a-expander), then Vexpang d(s, n, k), when interacting with Pexpan,, d(s, G, k) according to
the expander protocol (Fig. 3), accepts with probability 1 — negl(k).

1Otherwise, we can just “reset” € to 0.1.
7The constant 0.2 that we use here stems from the analysis of [CS10]. On the other hand, the constant 0.01 is arbitrary
(but was chosen so that Equation (11) holds).

22

The Expander Protocol (Pexpan, Vexpan)

Prover’s Input: A graph G: [n] x [d] — [n], expansion parameter «« > 0, proximity parameter ¢ > 0 and
security parameter k.
Verifier’s Input: ¢, ¢, n, d, k and oracle access to G.

1. Vexpan samples u <— [n] and sends u to Pexpan.

2. The parties construct two oracle circuits: one encodes the distribution P for £ = P%z In(y/n/ 0.01)—‘ ;
the other encodes Uj;,}, the uniform distribution on the graph’s vertices.

3. The parties run the protocol (PPi’U["](k),VPf’U["] (k)), where (P("'),V("')) is the protocol for

SDY2901 from Lemma 2.14.

Figure 3: The Expander Protocol

Lemma 4.14 is proven in Section 4.2.1 via a standard analysis of random walks on expanders.

Lemma 4.15. Let n,k € N, let 0 < ¢ < 0.1 and let G: [n] x [d] — [n]. Assume that G is e-far from

EXPANDER®? for B = © (ﬁ;n)) then for every prover strategy P, when Vexpang (&, n, k) interacts

with P according to the expander protocol (Fig. 3), with probability at least € /24 — negl(k) it rejects.

Lemma 4.15 is proven in Section 4.2.2 via a combinatorial property of graphs that are e-far

from S-expanders, shown by [CS10].

As for honest-verifier zero-knowledge, let S() denote the simulator of the protocol for SDY%0-01

from Lemma 2.14. Note that if G is an a-expander, the same mixing argument used to establish
completeness implies that SD (P, Up) < 0.01, for every vertex u (see Section 4.2.1). Hence, for

every vertex u it holds that S* o Uln) (k) simulates (PP o Uln) (k), VP o Utn) (k)) with simulation devi-
ation at most x(k), for some negligible function p. Our simulator for the expansion protocol,
denoted by Sexpan Will choose a vertex u uniformly at random, and output (u, S (k:)) Now
observe that Sexpan’s deviation from Vexpan’s view in (Pexpan; Vexpan) is precisely equal to the ex-
pected deviation, over the choice of a random vertex u, of Spf’U["] (k) from the view of VEuUn in
the protocol (PP uUln) (k), VE uUln) (k:)) Since the latter is bounded by p for every choice of u, the

expected deviation is bounded by (k) as well.

So far we have shown that the expander protocol (Fig. 3) has negl(k) completeness error,
1 — (¢/24 — negl(k)) soundness error and is honest-verifier statistical zero-knowledge. To reduce
the soundness error the parties will repeat the above protocol in parallel for poly(k)/e times. Since
honest-verifier statistical zero-knowledge is preserved under parallel repetition, and parallel rep-
etition reduces the soundness errors of IPPs at an exponential rate (see, e.g., [GGR15, Appendix
Al]), the resulting protocol is an honest-verifier statistical zero-knowledge proof of proximity.

Finally, we argue about the efficiency of Vexpan (the analysis of the simulator’s efficiency is

similar). The verifier Vexpan needs to provide VP (k) samples from Pf and Up,,). Generating
a random sample from Uy, is easy and requires O(logn) random coins. Generating a random
sample from P/ is standard as well, requires poly(¢, d) = poly(log n) random coins and oracle calls

23

to the input graph. By Lemma 2.14, it follows the Vexpan's running time (accounting for the parallel
repetition as well) is at most poly(log(n), 1/¢, k). O
4.2.1 Analyzing Completeness — Proving Lemma 4.14

Lemma 4.14 is an easy implication of the following standard result regarding random walks on
expanders.

Lemma 4.16 (Expanders are Rapidly Mixing (c.f. [NS10, proof of Theorem 2.1])). Suppose that G is
an a-expander graph on n vertices with bounded degree d. Then for every vertex w and ¢ € N it holds that

o2
SD(PL.Uy) < V- e
Proof of Lemma 4.14. From the choice of £ and Lemma 4.16, it holds that

SD (P, Upy) < 0.01,

for every vertex u. Let W be the random variable induced by the values of u chosen in step 1 of a
random execution of the protocol It follows that

Pr Vexpangd(s, n, k) accepts} =Pr [VP‘fV’U["] (k) accepts] > 1 — negl(k),
where the last inequlity follows from the completeness property of (P, V)(Lemma 2.14). O

4.2.2 Analyzing Soundness — Proving Lemma 4.15

The soundness of the expander protocol follows from the following combinatoral property of
graphs that are far from expanders.

Lemma 4.17 ([CS10, Corollary 4.6 and Lemma 4.7]). Let G be a graph on n vertices with bounded degree
d. There exists a constant ¢ = ¢(d) > 0 such that the following holds. If G is e-far from any [S-expander
with B < 1/10, then there exists U C [n] with |U| > e - n/24 such that for every uw € U, it holds that
SD(P{, Upy) > 152, where ¢ < 1/(10cB).

Recall that Vexpan’s first steps is to choose uniformly at random a vertex . This u will belong to
the set U from the Lemma 4.17 with probability at least £/24. Conditioned on the latter, we claim

that the input to (PP uUtn (k), VP iUl (k)) is a NO input and so soundness follows immediately

from the soundness of the protocol for SD (Lemma 2.14).
2

(0%
20-¢-d2-log(y/n/0.01)

We argue soundness with respect to 5 = L J , where ¢ = ¢(d) > 0is the constant

guaranteed to exist by Lemma 4.17.

Proof of Lemima 4.15. Let P be any prover strategy. Let W be the random variable induced by the
values of u chosen in step 1 of a random execution of the protocol and let ¢/ be the set guaranteed
to exist by Lemma 4.17. It holds that

Pr [Vexpanaad(s, n, k) accepts] < Pr[W ¢ U] + Pr Vexpanfd(é‘, n, k) accepts ‘ W e Z/l}. (12)

24

We bound both terms in the right-hand side of Equation (12). Lemma 4.17 yields that Pr[WW ¢ U] <
1—¢/24. As for the second term, Lemma 4.17 yields that SD (P}, U,)) > 15% > 0.2 forevery w € U
(note that 5 was chosen so that ¢ < 1/(10¢3) and that we assumed above that ¢ < 0.1). It follows
that

Pr Vexpanfd(s,n, k) accepts ‘ W e L{} < Eucu [Pr [fo’Ulnl(k) accepts” < negl(k), (13)
where the last inequality follows from the soundness properties of V (Lemma 2.14). O

4.3 Promise Bipartiteness is in HV-SZKPP

In this section we consider the property of a graph being bipartite in the bounded degree model
(we introduced this model in Section 4.2). The property of being a bipartite graph was first consid-
ered by Goldrich and Ron [GR02, GR99]. They showed a tester for bipartiteness of graphs with n
vertices which makes at most O(+/n) queries. They also showed a matching lower bound, namely
that any such tester must make at least Q(y/n) queries.

Rothblum et al. [RVW13] gave an interactive proof of proximity for the following promise ver-
sion of this property in which the verifier’s running time is ©(log n). In this version, YES instances
are bipartite graphs. NO instances, in addition to being far from bipartite, are also well-mixing,
namely that a random walk of ©(log n) steps ends at each vertex with probability atleast 1/2n (e.g.,
expanders). We denote this property by BIPARTITE. In [RVW13]’s protocol, the verifier takes a
random walk of length O(logn) starting at a randomly chosen vertex (in each step it performs
a self-loop with probability at least 1/2; see Definition 4.13). The verifier then sends the prover
the start and end vertices of the walk and asks the prover to tell him the parity of the number of
non-self-loop steps it took during the walk.

If the graph is bipartite, then the parity of the number of non-self-loops is equal to the parity of
the shortest simple path from the start vertex to the end vertex. [RVW13] showed that if the graph
is far from being bipartite and well-mixing, then the chance of taking a path of even non-self-loop
steps is close to that of taking a path of odd non-self-loop steps. Hence, any cheating prover will
tail to convince the verifier.

In fact, it is easy to see that the above protocol is also an honest-verifier perfect zero-knowledge
proof of proximity. The simulator will simply act as the verifier: take a random walk and output
the parity of the non-self-loop steps in this walk (which the simulator knows since it performs the
walk). Since this result follows immediately from [RVW13]’s protocol, we only state an informal
version of the it here, and refer the reader to [RVW13] for formal definitions and description of the
protocol.

Theorem 4.18 ([RVW13, Section 5.1], informal). BIPARTITE € HV-PZKPP[poly(log(N), k,1/¢)].

It is an interesting open question to show a cheating-verifier zero-knowledge proof of proximity
for BIPARTITE.

5 Limitations of SZKPP

In light of the positive results in Section 4 an important questions rises:

Does every property that has a sub-linear |PP also have a sub-linear statistical zero-knowledge IPP?

25

We give a negative answer to the above question.'® Actually we show two incomparable lower
bounds:

1. There exists a property II that has an IPP in which the verifier runs in poly-logarithmic
time, but the verifier in any zero-knowledge proof of proximity for II cannot run in poly-
logarithmic time. (Actually we can even show that such a verifier cannot run in time N o(1),
see Remark 5.6).Thus, this lower bound can be viewed as a separation between the class
IPP [poly(log(N), k,1/¢)] and HV-ESZKPP [poly(log(N), k, 1/¢)].

2. We show an additional lower bound which separates HV-ESZKPP [poly(log(N), k, 1/¢) even
from a weaker class - namely the class of languages admitting non-interactive proofs of prox-
imity, also known as Merlin-Arthur proofs of proximity or MAPs [GR16]. However, in con-
trast to the previous separation from IPPs, this result is conditional: we can only prove it
assuming a (very plausible) circuit lower bound. Specifically, we assume that (randomized)
DNFg, namely DNF formulas composed with one layer of parity gates (see [CS16, ABG ' 14]
and references therein), cannot compute the disjointness function. This circuit lower bound
is implied by the assumption that the Arthur-Merlin communication complexity of disjoint-
ness is n°, for inputs of length n and some constant € > 0.

5.1 IPP ¢ ESZKPP

We show that there exists a property II € IPP[poly(log(N), k,1/¢)] butII ¢ HV-ESZKPP|[poly(log(N), k,1/¢)].
Namely, II that has an efficient IPP, which unconditionally cannot have such a statistical zero-
knowledge IPP."?

Theorem 5.1. IPP [poly(log(N), k,1/¢)] ¢ HV-ESZKPP [poly(log(N), k,1/¢)].

The proof of Theorem 5.1 is done in two steps. The first step is to argue the existence of
a property II which has an interactive proof of proximity with a large number of rounds and
polylog(IN)-time verifier , but such that in every 2-message interactive proof of proximity for II, the
verifier’s running time must be N?, for some constant § > 0. Actually, such a result was recently
established by Gur and Rothblum [GR17]:

Lemma 5.2 ([GR17, Theorem 1]). The exists II € IPP[poly(log(N), k,1/e)] such that the verifier in
every 2-message |PP for I1, with respect to proximity parameter € = 1/10 and completeness and soundness
error 1/3, must run in time Q(N5),for some universal constant § > 0.

The second step in proving Theorem 5.1 is a general round reduction transformation for any
honest-verifier statistical zero-knowledge proof of proximity. Namely, we would like a procedure
that takes any many-messages honest-verifier zero-knowledge proof of proximity and turns it into
a 2-message honest-verifier zero-knowledge proof of proximity while only slightly deteriorating
the verifier’s and simulator’s running times. Specifically, we show the following lemma.

Lemma 5.3 (Efficient Round Reduction for SZKPP). Suppose that the property 11 has an honest-verifier
statistical zero-knowledge e-IPP such that for every input length N € N and security parameter k € N the

"8 We emphasize that here we refer to statistical zero-knowledge. Indeed, in Section 6 below we show that for compu-
tational zero-knowledge such a transformation is possible, for a large class of IPPs (see Theorem 6.2).

YOur actualy result refers to statistical zero-knowledge with expected simulation bounds, but this only makes our
result stronger.

26

simulator’s expected running time is bounded by ts(e, N, k) = tg(e, N) - poly(k) and for every value of ¢,
the function tg(e, -) is monotone non-decreasing.

Then, 11 has a 2-message honest verifier statistical zero-knowledge e-IPP such that for every input length
N and security parameter k the running time of the verifier is poly(ts(e, N, k'), k), for k" = poly(tg(e, N)).

For the setting of poly-logarithmic zero-knowledge proof of proximity, Lemma 5.3 can be
stated as follows.

Corollary 5.4. Every I1 € HV-ESZKPP[poly(log(N), k,1/¢)] has a 2-message honest-verifier statistical
zero-knowledge e-IPP with expected simulation, such that the verifier’s running time is poly (log(N), k, 1/¢).

Remark 5.5 (Comparison with the Babai-Moran [BM88] Round). Lemima 5.3 and Corollary 5.4 should
be contrasted with the classical round reduction of interactive proofs, due to Babai and Moran [BMS88] (and
shown in [RVW13] to hold also for IPPs). In contrast to Lemma 5.3, the Babai-Moran round reduction
increases the complexity of the verifier exponentially in the round complexity of the original protocol. In
contrast, the overhead in Lemma 5.3 is only polynomial, which is crucial for our lower bound.

The proof of Lemma 5.3 is a direct application of the proof that the promise problem Entropy
Difference (ED, see Definition 2.12) is complete for the class SZK (see [Vad99]). That proof takes
an instance x of any promise problem II = (Ilygs,IIno) € SZK and efficiently constructs two
distributions X and Y such that if z € IIygg then H(X) > H(Y) + 1, and if = € IIyp then H(Y) >
H(X) + 1. That proof goes on to show a zero-knowledge protocol to distinguish between the case
that H(X) > H(Y) + 1 and the case that H(Y) > H(X) + 1. Two important points regarding
that proof: (1) sampling from X and Y can be done by running (many times) the simulator for
the original problem II; (2) the protocol for ED consists of only two messages and requires only
sample access to X and Y (we stated this fact in Lemma 2.15).

In our settings, we can view a property 1I as a promise problem where functions possessing
the property are in Ilygs and functions that are e-far from possessing the property are in Ilyo.
Then, we can have the verifier “run” the reduction to ED and apply the sample-access protocol for
ED. The unbounded prover will behave as in the protocol for ED. Recall that the original simu-
lator (i.e., the one for the property’s IPP) required only oracle access to the input function. Since
sampling from the distributions only requires running the original simulator, the new verifier can
implement this step with only oracle access to the input function and with only polynomial over-
head to the running time of the original simulator. We defer the actual proof of Lemma 5.3 to
Appendix B.1.

Using Lemmas 5.2 and 5.3 we can now prove Theorem 5.1.

Proof of Theorem 5.1. Let II be the property guaranteed to exist by Lemma 5.2. Assume towards a
contradiction that IT € HV-ESZKPP[poly(log(N), k, 1/¢)]. Namely, IT has an honest-verifier statis-
tical zero-knowledge interactive proof of proximity with the simulator’s expected running time
being (log(N))® - k” - (1/e)" for constants o, 3,7 > 0. Applying Lemma 5.3 with respect to II
yields that IT has a 2-message ¢-IPP (P, V), with V’s running time being (log(N))® - k% - (1/¢)% for
constants §; = d1(«, 3), 62,03 = d3(8,7) > 0.

Set ¢ = 1/10 and k such that the soundness error of (P, V) is at most 1/3. Note that in this
setting, V’s running time is O(log(IV)) = poly(log(N)). This is a contradiction to Lemma 5.2. [

Remark 5.6. We remark that the proof of Theorem 5.1 actually establishes the stronger result that 11 cannot
even have an HV-ESZKPP protocol in which the verifier runs in time N°1)-poly(k, 1/¢). Indeed, assuming

27

a simulator with expected running time N°) . .k8 . (1/)7, Lemma 5.3 yields that T1 has a 2 e-IPP in
which the verifier runs in N o(1) time, in contradiction to Lemma 5.2.

5.2 MAP ¢ ESZKPP, assuming Circuit Lower Bounds

We show that there exists a property IT € MAP [poly(log(N), k, 1/£)] but, assuming certain circuit
lower bounds, it holds that IT ¢ HV-ESZKPP [poly(log(N), k, 1/¢)]

Let t-DNFg refer to depth 3 circuits, whose output gate is an bounded fan-in OR gate, inter-
mediate level are composed of fan-in ¢ AND gates and third layer is composed of (unbounded
fan-in) parity gates. The size of a t-DNFg gate is the fan-in of its top gate. A randomized ¢-DNFg
simply refers to a distribution over ¢t-DNFg circuits. We say that a randomized ¢-DNFg circuit C' :
{0,1}* — {0, 1} computes a function f if for every = € {0, 1}* it holds that Pr[C(z) = f(x)] > 2/3.

For any k € N and strings z,y € {0, 1}*, we define DISJ;(z,y) = 1 if for every i € [k] it holds
that either z; = 0 or y; = 0 and DISJi(z,y) = 0 otherwise. The following conjecture states that
small randomized DNFg; circuits cannot compute DISJ.?’

Conjecture 5.7. There exists a constant § > 0 such that every randomized t-DNF g, of size S that computes
DISJy, it holds that min(t,log(S)) = Q(k%).

We remark that a randomized ¢-DNFg circuit of size S yields an Arthur-Merlin communica-
tion complexity with complexity log(S) + t.2! To the best of our knowledge, it is believed that
the Arthur-Merlin communication complexity of disjointness is believed to be Q(k) (which would
imply Conjecture 5.7 with § = 1). We mention that proving any non-trivial Arthur-Merlin com-
munication complexity lower bound is a notorious open problem.

Theorem 5.8. If Conjecture 5.7 holds, then MAP [poly(log(N), k, 1/¢)] € HV-ESZKPP [poly(log(N), k, 1/¢)].

We begin by an outline of the proof. Our main tool will be a binary linear error-correcting
C : {0,1}* — {0,1}", with constant relative distance and almost-linear’”> blocklength, which is
also locally testable and locally decodable. A code C : {0,1}* — {0,1}" is locally testable if there
exists a procedure that makes only few queries to a word w € {0,1}", and determines with high
probability if it is a codeword (i.e., if w = C(z) for some message x € {0, 1}*) or far from the code
(see Definition 5.9 for the formal definition). A code is locally decodable if there exists a procedure
that takes as input an index ¢ € [k] and a word w € {0,1}" close to some codeword C(x), makes
only few queries to w, and outputs x; with high probability (see Definition 5.10 for the formal
definition).

The property that we consider is the Code Intersection (Cl) property. This property consists of
pairs of codewords (C(x),C(y)), coded under the foregoing code, such that DISJ(z,y) = 0 (i.e.,
x and y intersect). This problem was previously considered by Gur and Rothblum [GR16] who
showed that it has a very efficient MAP (we re-prove this fact since we use a slightly different
code).

2In contrast, note that there is a very simple CNF formula for computing DISJ.

!First, Alice and Bob choose a DNFg, circuit from the distribution and specify it to Merlin. Merlin then sends an
index of which term in the circuit is satisfied. A single term is an fan-in ¢ AND gate composed with parity gates. Alice
and Bob can compute this term’s value using 2t communication, by having them send to each other their respective
contributions to each of the ¢ parities.

ZNote that we are using the term “linear” in two different ways. First, the code is a linear function of the message.
Second, the length of the codeword is almost linear in the length of messages.

28

Indeed, it is easy to see that Cl has a very efficient MAP. Merlin simply sends to Arthur the
index ¢ on which x and y intersect. Arthur, using the local testability, will verify that the input is
close to a pair of codewords, and then locally decodes z; and y;. Arthur accepts iff x; = y; = 1.
This proof of proximity, however, reveals a lot to Arthur (and in particular is not zero-knowledge).
Specifically, Arthur learns the index of the intersection. As a matter of fact, this is not a coincidence.
We show that, assuming that Conjecture 5.7 holds, the property Cl does not have any honest-
verifier zero-knowledge IPP with poly-logarithmic complexity.

To see how we prove the lower bound, consider the promise problem Code Disjointness (CD),
in which the YES instances are pairs of codewords (C(z), C(y)) such that DISJ(z,y) = 1, and NO
instances are pairs of codewords (C(x), C(y)) such that DISJ(z,y) = 0. Note that NO instances of
CD are in the property Cl. Moreover, YES instances of CD are §(C)/2-far from Cl, where §(C) is
the relative distance of the code C.

Assume, toward a contradiction, that Cl has an honest-verifier statistical zero-knowledge IPP
with poly-logarithmic complexity. We argue that this implies that the complement promise prob-
lem of CD has a constant-round IPP. The latter fact basically follows from the fact that entropy
difference (ED) is complete for the class of promise problems having a statistical zero-knowledge
proof, and is itself closed under complement.

Thus, we have constructed an IPP which accepts inputs from CD and rejects inputs from CI.
Using a result of Rothblum et-al. [RVW13], we can derive from this IPP a quasi-polynomial size
randomized DNF for the same promise problem. We further observe that since the code C'is a
linear code, we have obtained a circuit that computes the disjointness function on input (x,y) by
tirst applying a linear transformation and then the aforementioned randomized DNF. Or in other
words, a quasi-polynomial sized DNFg, circuit. This contradicts Conjecture 5.7.

We proceed to the formal proof of Theorem 5.8. We begin with definitions and notations.
An error-correcting code is an injective function C : {0, 1}* — {0, 1}". The code C is said to have
relative distance 6(C) if for any = # 2’ € {0, 1}* it holds that A(C(x), C(z')) > 6(C).” Throughout
this work we deal with (uniform) algorithms, and so we will need (families of) error-correcting
codes. Formally, for a parameters k = k(¢) > 1 and = n(¢) > k(¢) we define an ensemble of error
correcting code as an ensemble C' = (Cy : {0, 1} — {0, 1}7(9) ¢en Of error-correcting codes. An
ensemble of error correcting codes C' = (Cj)een is said to have relative distance §(C) if for all
sufficiently large ¢, each code C; in the ensemble has relative distance 6(C).

We next formally define locally testable and decodable codes.

Definition 5.9 ((strong) locally testable codes (c.f. [GS06])). Let t: N — N. A ensemble of error-
correcting code C = (Cy : {0, 11RO — {0, I}TL(Z))ZEN is t-locally-testable if there exists a probabilistic
algorithm (tester) T that, given explicit input £ and oracle access to w € {0,1}™) | runs in time t(¢), and
satisfies the following.

e Completeness: For every x € {0, 1}¥() it holds that Pr[T®)(¢) = 1] = 1.

e Soundness: For every w € {0,1}™©) it holds that Pr[T%(¢) = 0] > Q(A(w,Im(Cy))), where
A(w,Im(Cy)) is the relative distance of w from the code.”*

PRecall that the relative distance between y € {0,1}" and y’ € {0,1}" is defined as A(y,y') = M

#Recall that the relative distance of x € {0,1}™ from a non-empty set S C {0,1} is defined as A(z,S) =
minyes A(z,y).

29

Definition 5.10 (locally decodable codes (c.f. [KTO00])). Let t: N — N. A ensemble of error-correcting
code C = (Cy:{0,1}*9 — {0,1}"9),_ is t-locally-decodable if there exists a constant Sragius €
(0,6(C)/2) and a probabilistic algorithm (decoder) D that, given oracle access to w € {0, 1}" and explicit
inputs i € [k] and { € N, runs in time t(¢) and satisfies the following.

e Completeness: For every i € [k(¢)] and z € {0,1}*®), it holds that Pr[DC@) (i) = ;] = 1.

e Soundness: For every i € [k({)] and every w € {0,1}™9) with A(w, C(z)) < bragius, it holds that
Pr[D¥(i) = x;] > 2/3.%

We use the following well-known fact.

Lemma 5.11. There exists an ensemble of binary linear codes C = (Cy : {0, 1160 - {0, 1}”(6))£€N,for

k(0) = O(¢) and n(¢) < k(£)*1, whose relative distance is some constant § > 0 and that is polylog(¢)-
locally-testable and polylog(¢)-locally-decodable.

See Appendix B.3 for a sketch of the construction (which is basically the concatenation of the
low degree extension code, over a field of poly-logarithmic size, with a good binary code).
Using Lemma 5.11, we can now define the property Code Intersection.

Definition 5.12 (Code Intersection). Let C' = (Cy)sen be the code guaranteed to exist by Lemma 5.11.
For ¢ € N, let

Cl, = {(Cg(ib), Co(y)): 2,y € {0,139 such that DISIy) (2, y) = o}.

We define the Code Intersection property as Cl = (Cly, [2n(¢)], {0,1}) je-

The proof of Theorem 5.8 follows immediately from the next two lemmas, proven in Sec-
tions 5.2.1 and 5.2.2.

Lemma 5.13. Cl € MAP [poly(log(N), k, 1/¢)].
Lemma 5.14. If Conjecture 5.7 holds, then Cl ¢ HV-ESZKPP [poly(log(N), k,1/¢)].

5.2.1 Proving Lemma 5.13
Consider the protocol (Pcy, V¢|) from Fig. 4. Perfect completeness follows from the perfect com-

pleteness in the local testing and decoding procedures. We proceed to argue that soundness holds.

Fix ¢ > 0, sufficiently large £ € N and w = (wy,ws) € {0,1}>™® such that w is e-far from Cl,.
We assume without loss of generality that ¢ < daqgiys (otherwise “reset” ¢ to dragiys). We consider
two cases:

A(wr,Im(Cy)) > €/2 or A(ws,Im(Cy)) > /2: Let j € {1,2} such that A(w;,Im(Cy)) > €/2. By the
soundness condition of the tester T, it holds that

Pr[Ver™ (e, n(l)) rejects] > Pr[T% (€) = 0] > Q(A(w;, Im(Cy))) > Q(e/2).

BSince Sragivs < 0¢ /2 the message x is unique.

30

The Code Intersection Protocol (Pcy, V¢)

Prover’s Input: A pair of strings (w;,ws) € {0,1}?™%) and proximity parameter & > 0.
Verifier’s Input: ¢, n(¢), € and oracle access to (w1, ws).

Let C be the code ensemble from Lemma 5.11.

Let T be the tester from Definition 5.9 with respect to C.

Let dragius (C) and D be the decoding radius and decoder, respectively, from Definition 5.10 with respect to
C.

1. Pq finds i € [k(£)] such that w = (Cy(z), Cy(y)) for some z,y € {0,1}*®) and z; = y;.
Sends i to VC|.

2. V¢ acts as follows:
(a) Sete = min{e, 20ragius(C)}-
(b) Run T*"(¢) and T*?(¢) and reject if any of them rejects.
(c) Acceptif D**(i,¢) = D"?(4,¢) = 1, and otherwise reject.

Figure 4: The Code Intersection Protocol

A(wi,Im(Cy)) < /2 and A(wz,Im(Cy)) < £/2: Fix a cheating prover P. Assume without loss of
generality that P is deterministic and let i* be the index it sends to V¢; in step 1. Let z,y €
{0,1}*® such that A(wy, Cy(z)) < /2 and A(ws, Co(y)) < /2 (such 2 and y are unique
since £ < Oragius(C)). Moreover, as w is e-far from Cl;, it must be that either z; = 0 or
yi~ = 0. Observe that if z;+ = 0, then by the soundness of the decoding procedure, with
probability 2/3, the decoder will output 0 in which case our verifier rejects. The case that

Y = 0 is analyzed similarly.

Combining both conditions, it holds that Pr[V¢“ (e, n(¢)) rejects] > min{Q(e/2),1/3} = Q(e).

So far we have shown that the code intersection protocol (Fig. 4) has prefect completeness and
soundness error 1 — O(¢). To reduce the soundness error it suffices to have the verifier repeat its
check poly(k) /e times.”® As shown in [GR16] this reduces the soundness error to 2% and so the
resulting protocol is an e-MAP.

Finally, it is easy to verify that the ultimate verifier run in time poly(log(¥), k, 1/¢) which, since
the input length (i.e., 2 - n(¢)) is poly(¢), is poly(log(N), k,1/¢).

5.2.2 Proof of Lemma 5.14

We prove the contrapositive. Assume that CI € HV-ESZKPP [poly(log(N), k,1/¢)] and consider
the promise problem of Code Disjointness.

Definition 5.15 (Code Disjointness). For ¢ € N, let

CDYES,E = {(Ce(m), Cg(y)) s x,y € {0, 1}k(8) such that D|SJk(5) (z,y) = 1}
CDnoe = {(Celw), Cely): @,y € {0,111 such that DIS Yy (x,y) = 0.

%Note that here k refers to the security parameter and not the message length k(¥).

31

Let CD = (CDYES!, CDNO,é)geN'

Note that the input length here is N = 2 - n(f) = O(¢"'). Hence, the query complexity and
communication complexity of the IPP are poly(log(?¢), k,1/¢).

We will use the zero-knowledge proof of proximity for Cl to design a randomized DNFg circuit
that solves disjointness. Note that by definition CDng ¢ = Cly.

Observe that every string w € CDygg ¢ is 6(C)/2-far from Cl,. Thus, an (honest-verifier) statis-
tical zero-knowledge IPP for Cl immediately yields an (honest-verifier) statistical zero-knowledge
proof for the complement of CD. Recall that in Section 5.1 we used that entropy difference (ED) is
complete for the class SZK. Here, we will use this fact again, plus that there is an easy reduction
from ED to its complement, to show the following claim, proven in Appendix B.2.

Claim 5.16. The promise problem CD has an interactive proof system with the following properties.
1. The verifier gets { as explicit input and oracle access to w € CDygg o U CDyo 4.
2. The completeness and soundness errors are both 1/3.
3. The verifier’s running time is poly(log(¢)).
4. The parties exchange a constant number of messages.

Using the Goldwasser-Sipser [GS89] transformation from private-coin to public-coin interac-
tive proofs and the Babai-Moran [BM88] round reduction (see [RVW13, Section 4] for more de-
tails). We obtain a 2-message Arthur Merlin interactive proof, where the verifier runs in time
polylog(¢). Applying an additional transformation from such proof-systems to randomized DNFs
due to [RVW13] (see also [GR17]), we can obtain the following:

Claim 5.17 (Based on [RVW13, Section 4]). There exists a randomized polylog(¢)-DNF of size 2P°¥'o8(¢)
that computes (the promise problem) CD for inputs of size 2 - n(¥).

By observing that all w € CDygg¢ U CDnoy are composed of two codewords, and the the
code is a binary linear error correcting code, Claim 5.17 implies that there exists a randomized
polylog(¢)-DNFg, circuit of size gpolylog(£) that computes DISJy . This contradicts Conjecture 5.7.
This concludes the proof of Section 5.2.1.

Remark 5.18 (Relaxed Local Decoders and the [GGK15] Code). We remark that for our result, as in
[GR16] it suffices for us to use relaxed local decoders (as put forth in [BGH " 06]). Loosely speaking, relaxed
local decoding allows the decoder to refuse to decode if it notices that the word is corrupt.

Given that, it is tempting to ask why we did not use the locally testable and (relaxed) decodable codes
of Golderich et-al. [GGK15]. Indeed, their codes have constant-query whereas the code that we used re-
quires poly-logarithmic query complexity. The only reason that we do not use the [GGK15] code is that the
computational complexity of this code was not analyzed in [GGK15].

6 Computational ZK Proofs and Statistical ZK Arguments of Proximity

In this section we show that, assuming reasonable cryptographic assumptions (specifically, the
existence of one-way or collision-resistant hash functions), a large class of IPPs and arguments

32

of proximity?’ can be transformed to be zero-knowledge. As a consequence, using the results
of [RVW13, RRR16, Kil92, BGH 06, DR06] we obtain computational ZK proofs of proximity for
small-depth and for small-space computations, and statistical ZK arguments of proximity for all
of NP.

Our transformation should be contrasted with an analogous transformation of Ben-Or et-
al. [BGGT88] for classical public-coin interactive proofs (and arguments). Indeed, our transfor-
mation is based on the main idea of [BGG88]. However, in contrast to their result, our transfor-
mation does not apply to arbitrary public-coin IPPs. Rather, it only applies to such IPPs in which
the queries that the verifier makes do not depend on messages sent by the prover. We say that
such IPPs make prover-oblivious queries.

Definition 6.1. We say that an IPP makes prover-oblivious queries if the input locations that the verifier
queries are fully determined by its random coin tosses and the answers to previous queries that it made.
That is, the queries do not depend on messages sent by the prover.

Thus, an IPP with prover-oblivious queries can be thought of as a two steps process. In the
first step the verifier can make queries to its input but it is not allowed to interact with the prover.
In the second step, the parties are allowed to interact but the verifier is no longer allowed to query
the input.”®

Interestingly (and crucially for our purpose), the general purpose IPPs and arguments of prox-
imity in the literature are indeed public-coin and make only prover-oblivious queries. Using this
fact, together with our transformation, we obtain general purpose ZK proofs of proximity.

Our main transformation is summarized in the following two theorems.

Theorem 6.2 (IPPs — Computational ZK). Assume that one-way functions exist. Suppose that the
language L has an (-message public-coin IPP with prover oblivious queries where the verifier runs in
time ty = ty(N, k, €) and the (honest) prover runs in time tp = tp(N, k,). Then, L has an (¢ + poly(k))-
message computational ZKPP in which the prover runs in time tp (N, k, €) := (tp(N, k,e) + poly(ty(n, k,€)))-
poly(k) and the verifier runs in time t,(N, k,€) := ty(N, k,€) - poly(k). The simulation overhead (see dis-
cussion in Section 3) is s(tg, N, k, €) = tg-poly(k), for cheating verifiers that run in time tG = t5(N, k, €).

Theorem 6.3 (Arguments of Proximity — Statistical ZK Arguments). Assume that one-way functions
exist. Suppose that the language L has an (-message public-coin interactive argument of proximity with
prover oblivious queries where the verifier runs in time ty = ty(N, k,e) and the (honest) prover runs
in time tp = (N, k,e). Then, L has an (¢ - poly(k))-message statistical zero-knowledge arqument of
proximity in which the prover runs in time tp(N, k,€) := (tp(N, k,e) + poly(ty(N, k,€))) - poly(k) and
the verifier runs in time t,(N, k,e) := ty(N, k, <) - poly(k).

Furthermore, if there exist collision-resistant hash functions, then the round complexity of the foregoing
argument-system can be reduced to (¢ + O(1)).

Our proof of Theorems 6.2 and 6.3 is based on the idea, which originates in the work of Ben-
Or et-al. [BGG88], of having the prover commit to its messages rather than sending them in the
clear. Since the protocol is public-coin the verifier can continue the interaction even though it does

% An argument of proximity is similar to an IPP except that the soundness condition is further relaxed and required
to hold only for polynomial-time cheating provers. See [KR15] for details and a formal definition.

*Qur notion of prover-oblivious queries extends the notion of proof-oblivious queries studied by Gur and Roth-
blum [GR16] in the context of MAPs (i.e., non-interactive proofs of proximity).

33

not see the actual contents of the prover’s messages. After all commitments have been sent, the
verifier only needs to check that there exist suitable decommitments that would have made the
underlying IPP verifier accept. Since the commitment hides the contents of the messages, it cannot
do so by itself and we would like to use the prover. At this point, one could try to naively argue
that the residual statement is an NP statement, and so we can invoke a general purpose zero-
knowledge protocol for NP (e.g., the classical [GMW91] protocol or the more efficient [[KOS09]
protocol).?’

Herein arises the main difficulty with this approach. While the statement that the verifier
needs to check at the end of the interaction does consist of an existential quantifier applied to a
polynomial-time computable predicate, the latter predicate makes oracle access to the input z and
so we do not know how to express it as an NP statement. To resolve this difficulty, we restrict
our attention to verifiers that make prover-oblivious queries. Thus, our verifier can actually make its
queries before and we can construct a NP statement that refers to the actual values that it reads
from the input. At this point we can indeed invoke a general purpose zero-knowledge protocol
for NP and conclude the proof.

Lastly, we remark that the specific flavor of soundness and zero-knowledge that we obtain
depends on the commitment scheme we use. Specifically, instantiating the above approach with a
computationally hiding and statistically binding commitment scheme yields a computational zero-
knowledge proof of proximity, whereas a statistically hiding and computationally binding one
yields a statistical zero-knowledge argument of proximity.

As noted above, we need the following result from [IKOS09]:

Lemma 6.4 ([IKOS09]). Let £ € NP with witness relation R(-,-) that is computable in time t. If there
exist one-way functions, then L has a computational zero-knowledge proof in which the verifier runs in time

O(t) - poly(k) and the prover runs in time poly(N, k). For every (malicious) verifier running in time T,
the simulator runs in time (T + O(t)) - poly(k). The number of rounds is poly(k).

Actually, since the running times are not specified in [IKOS09], we give an overview of the
construction in Appendix B.4.

We proceed to give a proof sketch of Theorem 6.2 and note that Theorem 6.3 is proved similarly
(using statistically hiding commitments).*"

Proof Sketch of Theorem 6.2. The existence of one-way functions implies the existence of the follow-
ing cryptographic protocols that we will use:

e A computationally hiding and statistically binding commitment scheme [Na091, HILL99].
Moreover, after one initial set-up message from the receiver to the sender (where this setup
can be re-used for a polynomial number of commitments), the commitment scheme is non-
interactive: the sender only needs to send a single message to the receiver. (This commitment
scheme will be used to derive the first part of Theorem 6.2.)

PThe verifier in the [[KOS09] protocol runs in time that is linear in the complexity ¢ of the NP verification process. In
contrast, the [GMW91] verifier runs in time poly(t). The distinction is important for us since in Corollaries 6.8 and 6.9
below, we will apply Theorem 6.2 on a statement that can be verified in roughly /n time, and so we cannot afford a
polynomial overhead.

*Note that statistically hiding commitments can be based on any one-way function [HNO™09]. For the furthermore
part, we need to use constant-round statistically hiding commitments and constant-round statistical zero-knowledge ar-
guments for NP. Both are known to exist assuming collision resistant hash functions [NY89, BCY91].

34

e Computational zero-knowledge proofs for any language in NP in which the verifier runs in
time that is almost linear in the complexity of the witness relation (see Lemma 6.4).

Let (P,V) be an ¢-round public-coin IPP for £ with prover oblivious queries. We describe the
construction of a computational zero-knowledge proof of proximity for £. As alluded to above,
the construction of a statistical zero-knowledge argument of proximity is similar, except that we
replace the computationally hiding and statistically binding commitment with one that is statisti-
cally hiding and computationally binding, and replace the computatational zero-knowledge proof
for NP with a statistical zero-knowledge argument.

We proceed to describe the computational ZKPP (P’, V') for £, on input = of length N, security
parameter k and proximity parameter e. First, (P, V') run the setup for the commitment scheme.
After this initial step, the interaction consists of two main parts. In the first part, P’ and V' emulate
the interaction between P and V, where P’ only commits to the messages that P would have sent.
Since the protocol (P, V) is a public-coin protocol, the verifier V' can continue the interaction with-
out actually knowing the contents of the messages that it receives (since V' only needs to sample
and send random coin tosses).

Then, in the second part, V' has already obtained commitments cy,...,c, to some messages
ai1,...,ap that P would have sent. At this point we would like P’ to prove the statement:

d; is a decommitment of ¢; with respect to message «;, for every i € [r]
3dy,...,ds, aq,. .., qp such that and
VI(N,& k‘, (041,,81, ..o, Oy, Bg)) =1.
(14)

The statement in Equation (14) is almost, but not quite, an NP statement. The reason that we
would like to phrase it as an NP statement is that by Lemma 6.4 (and using our assumption that
there exist one-way functions), there exist very efficient (computational) zero knowledge proofs
for any language in NP. Thus, we would like for P’ to prove Equation (14) to V' using such a
general purpose zero-knowledge proof-system.

The problem that we encounter is that Equation (14) is not precisely an NP statement since it
refers to oracle access to a given string z.>! To overcome this problem, we use our assumption
that V makes prover oblivious queries. Hence, the queries that V makes depend only on its own
random coin tosses (and answers to previous queries that it has made), but not on the messages
sent by P. Denote by Q(z; p) the sequence of (possibly adaptive) queries that V makes on input
and random string p. Since Q(z, p) depends only on the randomness (and, possibly, on answers to
previous queries to z), the verifier V' can sample p at random and generate this set. We can now
re-state Equation (14) as:

d; is a decommitment of ¢; with respect to message «;, for every i € [r]
ddq,...,ds, a1, ..., apsuch that and
V(xQ(:r;p)a (Nv &, k)’ (011, B, -5 Qu, 5@)) =1,
(15)

which is in fact an NP relation, for which P’ has a witness. Therefore, using our assumption that
one-way functions exist, there exists a computational zero-knowledge proof for Equation (15). P’

3! As a matter of fact Equation (14) can be expressed as an “non-interactive proof of proximity” or MAP [GR16].

35

and V' engage in this proof-system and V' accepts or rejects accordingly. (To actually run this
proof-system V' first shares p with P’ - but it does so only after they have completed the emulation
of (P,V).)

Completeness of (P’, V') follows from the completeness of (P, V) and the (perfect) complete-
ness of the [IKOS09] zero-knowledge proof. The analysis of soundness and zero-knowledge is
standard and we omit them from this preliminary version.

We proceed to analyze the efficiency of the proof-system. We consider the three phases of
interactions separately:

e Setup Phase: First, the two parties set up the commitment scheme this step is done using a
single round of communication and with complexity poly(k) for both parties.

e Commitment Phase: Each bit that P sends to V in the original protocol is emulated by a
(non-interactive) commitment (with a poly(k) overhead). Messages sent from V to P are
unchanged (recall that these refer to random coin tosses). Thus, the round complexity of this
part is £ and there is a poly(k) overhead to the running time of both parties.

e Final Phase: V' first sends the random string used by the underlying V. This introduces
a ty(N, k,e) overhead to both parties. Then, both parties run the [IKOS09] protocol on an
NP statement that can be verified in time ¢t = ty(N,¢, k) - poly(k). The [IKOS09] verifier
runs in time that is O(t) = ty(N,¢, k) - poly(k) whereas the [IKOS09] prover runs in time
poly(t) = poly(ty(N, ¢, k), k). The number of rounds is poly(k).

(]

To obtain our ZKPP results, we will combine Theorem 6.2 with known results from the lit-
erature. Specifically, we will use the following results: (where throughout N denotes the input
length, k the security parameter, and ¢ the security parameter).

Theorem 6.5 ((RVW13]). Every language in logspace-uniform NC, has a polylog(N)-round public-coin e-

IPP, for e = N—'/2, with perfect completeness and 1/2 soundness error. The verifier runs in time N ato(1)
and the (honest) prover runs in time poly(N). Furthermore, the verifier makes prover oblivious queries.

Theorem 6.6 ([RRR16]). Let L be a language that is computable in poly(N)-time and O(N?)-space, for
some sufficiently small constant o > 0. Then L has a constant-round public-coin e-IPP for ¢ = N~1/2,
with perfect completeness and 1/2 soundness error. The verifier runs in time N/t and the (honest)
prover runs in time poly(N). Furthermore, the verifier makes prover oblivious queries.

Theorem 6.7 ([Kil92, BGH 06, DR06]). Assume that there exist collision-resistant hash functions. Then,
every language in NP has a 4-message public-coin argument of e-proximity with perfect completeness and
1/2 soundness error (for any value of ¢ > 0). The verifier runs in time poly(log(N), k, 1/¢) and the prover
runs in time poly(N, k). Furthermore, the verifier makes prover oblivious queries.

We remark that the fact that the verifier makes prover oblivious queries is not stated explicitly
in the above works but can be verified by inspection.’” Combining Theorems 6.5 and 6.6 with
Theorem 6.2, and Theorem 6.7 with Theorem 6.3 we derive the following corollaries:

2Theorem 6.7 is obtained by applying Kilian’s [Kil92] protocol to a PCP of proximity (c.f., [BGH 06, DR06]). See
further discussions in [RVW13, KR15]. We remark that for the resulting argument of proximity to have proof oblivious
queries, we need to use a PCP of proximity whose queries are non-adaptive in the proof. Such general purpose PCPs
of proximity were constructed in [BGH 06, DR06].

36

Corollary 6.8 (Computational ZKPP for Bounded Depth). Assume that there exist one-way functions.
Then, every language in logspace-uniform NC, has a (polylog(N) + poly(k))-round computational zero-
knowledge proof of e-proximity, for e = n~1/2. The verifier runs in time N2 +°() . poly(k) and the (honest)
prover runs in time poly(N, k). The simulation overhead is s(tg, N, k,¢) = tgy - poly(k), for (malicious)
verifiers running in time tg = t5(N, k, €).

Corollary 6.9 (Computational ZKPP for Bounded Space). Assume that there exist one-way functions.
Let L be a language that is computable in poly(N)-time and O(N?)-space, for some sufficiently small
constant o > 0. Then, L has a poly(k)-message computational zero-knowledge proof of e-proximity, for
e = N~Y2, The verifier runs in time N*/>*9() . poly(k) and the (honest) prover runs in time poly(N, k).
The simulation overhead is s(ty, N, k,e) = tg - poly(k), for (malicious) verifiers running in time ty =
tv(N Jk,€).

Corollary 6.10 (Statistical Zero-Knowledge Arguments). Assume that there exist collision resistant
hash functions. Then, every language in NP, has a constant-round statistical zero-knowledge argument of
e-proximity, for every value of € > 0. The verifier runs in time poly(log(N), k, 1/¢) and the (honest) prover
runs in time poly(N, k).

Acknowledgments

We thank Oded Goldreich and Omer Paneth for useful discussions.

The first and third author were supported in part by NSF Grants CNS-1350619 and CNS-
1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation,
a Steven and Renee Finn Career Development Chair from MIT. This work was also sponsored in
part by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research
Office under contracts W911NF-15-C-0226.

The second author was partially supported by NSF MACS - CNS-1413920, DARPA IBM -
WO911NF-15-C-0236 and SIMONS Investigator award Agreement Dated 6-5-12.

References

[ABG'14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Can-
didate weak pseudorandom functions in ACO o MOD,. In Innovations in Theoreti-
cal Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 251-260,
2014. 2

[AKNSO0] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular lan-
guages are testable with a constant number of queries. SIAM |. Comput., 30(6):1842—
1862, 2000. 4

[BCF™16] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Ri-
abzev, and Nicholas Spooner. On probabilistic checking in perfect zero knowledge.
IACR Cryptology ePrint Archive, 2016:988, 2016. 1.2

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part 1I, pages 31-60, 2016. 8

37

[BCY91]

[BGG'88]

[BGH"06]

[BMS8S]

[BY96]

[CL17]
[CS10]

[CS16]

[DORS08]

[DRO6]

[EKR04]

[FGL14]

[FLS99]

Gilles Brassard, Claude Crépeau, and Moti Yung. Constant-round perfect zero-
knowledge computationally convincing protocols. Theor. Comput. Sci., 84(1):23-52,
1991. 30

Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Hastad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge.
In Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1988, Proceedings, pages 37-56, 1988. 1.1.2,
6,6

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM |. Comput.,
36(4):889-974, 2006. 1.1.2,5.18, 6, 6.7, 32

L&szl6 Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system
and a hierarchy of complexity classes. Journal of Computer and System Sciences, pages
254-276,1988. 5.5,5.2.2

Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-
knowledge based on any trapdoor permutation. |. Cryptology, 9(3):149-166, 1996. 1,
1.1.1,5,4.1.1,12

Ran Canetti and Amit Lichtenberg, 2017. Unpublished manuscript. 1

Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs.
Combinatorics, Probability & Computing, 19(5-6):693-709, 2010. 1.1.1, 4.2, 4.2, 17, 4.2,
4.17

Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA,
USA, January 14-16, 2016, pages 47-58, 2016. 2

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy ex-
tractors: How to generate strong keys from biometrics and other noisy data. SIAM J.
Comput., 38(1):97-139, 2008. 2.2,2.1.2,2.6

Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP theorem. SIAM . Comput., 36(4):975-1024, 2006. 1.1.2, 6, 6.7, 32

Funda Ergiin, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically
checkable proofs. Inf. Comput., 189(2):135-159, 2004. 1

Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests and
decomposability. In Innovations in Theoretical Computer Science, ITCS'14, Princeton, NJ,
USA, January 12-14, 2014, pages 483-500, 2014. 1, 4

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM Journal on Computing, 1999. Preliminary
version in FOCS’90. 1

38

[GG16] Oded Goldreich and Tom Gur. Universal locally testable codes. Electronic Colloquium
on Computational Complexity (ECCC), 23:42, 2016. 1

[GGK15] Oded Goldreich, Tom Gur, and Ilan Komargodski. Strong locally testable codes with
relaxed local decoders. In 30th Conference on Computational Complexity, CCC 2015, June
17-19, 2015, Portland, Oregon, USA, pages 1-41, 2015. 5.18

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. . ACM, 45(4):653-750, 1998. 1,1.1.1, 4.2

[GGR15] Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity for context-
free languages and read-once branching programs - (extended abstract). In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 666—677,2015. 1, 4.2

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, pages 186—208, 1989. Prelimi-
nary version in STOC’85. 1

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing (STOC), pages 218-229, 1987. B4, 1

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, pages 691-729, 1991. Preliminary version in FOCS’86. 1, 6, 29

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
2001. 1,11

[Gol16] Oded Goldreich. Introduction to Property Testing. forthcoming (http://www.
wisdom.weizmann.ac.il/~oded/pt-intro.html), 2016. 1

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree
graphs. Combinatorica, 19(3):335-373, 1999. 4.3

[GRO2] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorith-
mica, 32(2):302-343,2002. 1.1.1,1.1.1,4.2,4.3

[GR11] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. In
Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the In-
terplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir
Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam
Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuck-
erman, volume 6650 of Lecture Notes in Computer Science, pages 68-75. Springer, 2011.
1.1.1,42

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. J.
Cryptology, 26(3):484-512,2013. 1

39

http://www.wisdom.weizmann.ac.il/~oded/pt-intro.html
http://www.wisdom.weizmann.ac.il/~oded/pt-intro.html

[GR15]
[GR16]

[GR17]

[GS89]

[GS92]

[GS06]

[GSVI8]

[HILL99]

[HNO*09]

[IKOS09]

[TW14]

[Kil92]

[KR15]

Tom Gur and Ron D. Rothblum, 2015. Unpublished observation. 1.1.1, 4.1

Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Computational
Complexity, pages 1-109, 2016. 1,4.1,2,5.2,5.2.1,5.18, 28, 31

Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of prox-
imity. In Proceedings of the 2017 ACM Conference on Innovations in Theoretical Computer
Science, Berkeley, CA, USA, January 9-11, 2016,2017. 1,5.1,5.2,5.2.2

Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. Advances in Computing Research: Randomness and Computation, pages
73-90, 1989. 5.2.2

Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf.
Process. Lett., 43(4):169-174, 1992. B.3

Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear
length. |. ACM, 53(4):558-655, 2006. 5.9

Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26,
1998, pages 399-408, 1998. 7

Johan Héstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM |. Comput., 28(4):1364-1396, 1999. 6,
36

Iftach Haitner, Minh Nguyen, Shien Jin Ong, Omer Reingold, and Salil Vadhan. Statis-
tically hiding commitments and statistical zero-knowledge arguments from any one-
way function. SIAM Journal on Computing, pages 1153-1218, 2009. Preliminary ver-
sions in FOCS ‘06 and STOC ‘07. 30

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM |. Comput., 39(3):1121-1152, 2009.
6,6.4,6,29,6,B4,35, B4

Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-
knowledge. In Theory of Cryptography - 11th Theory of Cryptography Conference, TCC
2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages 121-145, 2014. 1.2

Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing
(STOC), pages 723-732,1992. 1.1.2,6,6.7, 32

Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [extended ab-
stract]. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part 1I, pages 422-442, 2015.
1,27,32

40

[KS11] Satyen Kale and C. Seshadhri. An expansion tester for bounded degree graphs. SIAM
J. Comput., 40(3):709-720, 2011. 1.1.1, 4.2

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 80-86, 2000. 5.10

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151-158,
1991. 6, 36

[NS10] Asaf Nachmias and Asaf Shapira. Testing the expansion of a graph. Inf. Comput.,
208(4):309-314, 2010. 1.1.1, 4.2, 4.16

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing
(STOC), pages 33—43, 1989. 30

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 49-62,2016. 1,1.1.2, 8,6, 6.6

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252-271,1996. 1, B.3

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proxim-
ity: delegating computation in sublinear time. In Symposium on Theory of Computing
Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 793-802, 2013. 1, 1.1.1,
1.1.2,43,4.18,55,52,52.2,5.17,6,6.5,32

[Sud95] Madhu Sudan. Efficient Checking of Polynomials and Proofs anf the Hardness of Approxi-
mation Problems, volume 1001 of Lecture Notes in Computer Science. Springer, 1995. B.3

[Vad99] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1999. 7,2.2,2.22,2.22,3,3,3.6,3.7,
41.1,51,A,A

[Vad12] Salil P. Vadhan. Pseudorandomness. Now Publishers Inc., Hanover, MA, USA, 2012. 2.5

A Reducing HV-SZKPP to Entropy Difference

In this section we show how to reduce any property with honest-verifier zero-knowledge to an
instance of Entropy Difference.

Lemma A.1. Suppose that a property 11 has a honest-verifier statistical zero-knowledge -1PP such that for
every input length N and security parameter k € N the simulator’s expected running time is bounded by
ts(e, N, k) = tg(e, N) - poly(k) and for every e the function tg(e, -) is monotone non-decreasing.

Then, there is a reduction from 11 to ED. Specifically, the reduction is given € and an input length N
and outputs two oracle aided circuits Cy, Cy: {0,1}™ — {0, 1}™ such that the following holds.

41

1. (Cy, Ch) is an instance of ED:

2. The reduction’s running time is poly(ts(e, N, poly(tg(e, N)))).

Note that the last item implies that for every z € {0,1}™ and b € {0,1}, computing Cy(z)
requires only poly(tg(e, N, poly(tg(e, N)))) many oracle calls. The proof of the above lemma fol-
lows from the proof that entropy difference is SZK-hard [Vad99]. We only give sufficient details to
demonstrate how to apply that proof to our setting.

Proof sketch. Assume that (P, V) is the e-IPP for II and let S be the honest-verifier simulator for
(P, V) whose simulation deviation is p(k) = negl(k). We assume for simplicity that tg(N, k,¢) is
a strict bound (and not only expected) on the running of S. The proof can be extended to handle
expected bounds as well (in fact, the proof in [Vad99] handles even weaker simulators). Assume
without loss of generality that P and V send their messages in turns, P sends the odd messages
and V the even ones. Let v(e, N, k) be a bound on the number of messages sent by V to P for every
f. In addition, let ¢(e, N, k) and (e, NV, k) be bounds on the total communication (measures in
bits) between P and V and the number of random bits accessed by the verifier, respectively. We
now modify the proof system so that V sends its random coins to P in an additional message just
before the end of the protocol. The total communication and number of messages sent from V to
P now increases to ¢/(e, N, k) = c(e, N, k) + r(e, N, k) and v’ (e, N, k) = v(e, N, k) + 1, respectively.
S is modified to simulate the additional last message as well, without increasing its simulation
deviation (this is possible since S was supposed to simulate V’s random coins anyway).

Fix ¢ and N and let ¥ € N such that u(k') < min{1/v'(e, N,K')- (¢, N,k'),1/4 — 274} and
the completeness and soundness errors of (P,V) are at most 2740, Note that it suffices to take
k" = poly(tg(e, N)) (i.e., a fixed polynomial for all e and N): It holds that v'(e, N, k) - ¢/(e, N, k') <
ti(e, N, k') = t&(e,N) - poly(k’). Thus, we can take ¥’ such that x/(k') < 1/t(e, N), for some
negligible function p/(k") = u(k’) - poly(k’). Since tg(e, N) is monotone non-decreasing in NN,
taking k" = poly(tg(e, IV)) guarantee the required condition for large enough (depending on) N
(for simplicity, we ignore shorter inputs that can be solved via brute-force by the verifier).

Finally, let Sif be the random variable distributed according to the first i messages in the output
of a random execution of S7 (¢, N, k). In the following we remove ¢, N and %’ from the notation.

Constructing Cy and C;. Define X = S2f ® SZ R ® ng,.“ Similarly, define Y; to be Y7 =
S{ ® S:{ ® - ® ng,_l and define Y5 to be the uniform distribution on r — 7 bits. Furthermore,
define Y3 as follows: run S/ 81n(c/v/ + 2) times independently; if the verifier rejects in the majority
of the transcripts obtained, output ¢'v’ 42 random bits; otherwise, output the empty string. Define
Y =Y ®Ys ® Y3. Finally, the circuits C and C; take as input random coins to sample and output
x + X and y < Y, respectively. Since we require that the input (resp., output) lengths of Cp and
C; will be equal, we pad the shorter input (resp., output) with redundant random coins (resp.,
zeros).**

%Recall that P ® Q stands for the product distribution of P and Q.
*Let mx and ny denote the input and output lengths of X, respectively. Let my,ny be similarly defined. For
example, if mx < my and nx < ny we can modify X as follows: sample x < X using part of the given my random

42

Analysis. That (Cp, C1) is an instance of Entropy Difference (Item 1) follows from [Vad99, Claims
3.3.14 and 3.3.15]. The reduction’s running time (Item 2) follows from the constructions of C and
Ch. O

B Missing Proofs

B.1 Proving Lemma 5.3

The proof of Lemma 5.3, sketch of which is given below, immediately follows from Lemmas 2.15
and A.1.

Proof sketch of Lemma 5.3. Both the verifier and the prover will run the reduction form Lemma A.1
to get two distributions encoded by oracle-aided circuits (Cy, C1). They will then run the protocol
from Lemma 2.15 with respect to these distributions. Since the latter is a sample-access protocol
the verifier can indeed run it using only oracle access to its input f.

The running time of the reduction implies that the input and outputs sizes of Cy and C; are
poly(ts(e, N, poly(t5(e,N)))). By Lemma 2.15 the running time of the verifier is thus
poly(ts(e, N, poly(tg(e, N))), k), as required.

Zero-knowledge follows from similar arguments to the ones made above. O

B.2 Proving Claim 5.16

The proof of Claim 5.16 follows similar lines to that of Lemma 5.3.

Proof sketch of Claim 5.16. Both the verifier and the prover will run the reduction form Lemma A.1
with respect to the property Cl and proximity parameter §(C')/2 to get two distributions encoded
by oracle-aided circuits (Co, C1). If w € CDygs ¢ then w is §(C')/2-far from Cl and thus H(C}’) >
H(Cy’) + 1. However, if w € CDng ¢ then w € Cl and thus H(Cy’) > H(C}) + 1.

The verifier and the prover will then run the protocol from Lemma 2.15 with respect to the
instance (C}’, C§’) (note that the order of the circuits has changed) and security parameter k chosen
such that the completeness and soundness errors are both 1/3 for large enough ¢. Since the latter
is a sample-access protocol the verifier can indeed run it using only oracle access to its input w.

Recall that we assumed that Cl € HV-ESZKPP [poly(log(N), k,1/¢)]. Hence, the simulator for
Cl runs in time poly(log(¢), k, 1/¢), which by the choice of parameters is simply poly(log ¢) (recall
the the proximity parameter §(C) and the security parameter & are constant). The running time of
the reduction implies that the input (i.e., the number of bits need to sample from the distribution)
and outputs sizes of Cj and C are poly(log ¢) as well, and by Lemma 2.15 the running time of the
verifier is thus poly(log(?)), as required. O

B.3 Proof Sketch of Lemma 5.11

We start with a low degree extension code, over a finite field F, which view messages = € F¢ as
functions z : H™ — F, where H C Fis a subset and m is a dimension, such that | H"| = ¢. The code
maps x to its low degree extension: namely, the unique individual degree |H| — 1 polynomial that

agrees with z on H™. By the Shwartz-Zippel lemma this code has relative distance 1 — %.

bits and output x0"v "=,

43

Furthermore, this code is known to be locally testable [RS96] and decodable [GS92, Sud95] using

O(|H| - m) queries. We set |[H| = (log(¢))¢, m = okﬁ(;gfgg)(@ and |F| = O(m - |H]|) for a sufficiently
large constant ¢ > 1. Furthermore, we use a field [F which is an extension field of the binary field
Fs.

We then concatenate the above low degree extension code with a good binary linear code.
The overall resulting code has message length k(£) = |H|™ - log(F) = O(¢), blocklength n(f) =
O(F™ -) = O(¢£'*1/¢), constant relative distance and locally testable and decodable with O(|H]| -
m) = polylog(¢) queries, which meets our desired parameters by setting ¢ to be sufficiently large.
Furthermore, since the low degree extension is linear over the large field F, which is an extension

tield of Iy, it is also linear over [, and therefore the resulting code is also F-linear.

B.4 Proof Sketch of Lemma 6.4

We use the [IKOS09] “MPC in the head” construction. More specifically, we will use their sim-
plest variant, which is based on the [GMW87] 3-party protocol, in the OT-hybrid, with semi-honest
security against 2 (semi-honest) players.”> Below we refer to this as the IKOS protocol.

We first recall that the [GMW87] protocol, with 2-out-of-3 semi-honest can be implemented so
that the parties, and the (semi-honest) simulator, run in time O(t’) (where we count OT calls at
unit cost), where ¢’ is the circuit complexity of the function.

The IKOS protocol works in k sequential phases (in order to obtain 27k soundness), where
each phase works as follows. The prover first runs the [GMW87] protocol with respect to to the
function f(z, w1, w2, w3) = R(z, w1 & wy & ws), where w;, we, ws are an additive secret sharing
of the witness W. Observe that f is computable by a size t' = tildeO(t) circuit, where ¢ is the
complexity of R of the NP relation (an extra log factor comes from emulating Turing machines by
circuits). Thus, the parties and the MPC simulator run in time O(t).

After running the MPC protocol (in its “head”), the IKOS prover commits to the view of all
the players.*® Then, the verifier chooses two (distinct) players i, j € {1,2, 3} at random, and sends
i and j to the prover. The prover decommits to these players views. The verifier rejects if the
decommitments are invalid, the views are inconsistent, or if the result of the computation is not 1.
Otherwise it accepts.

For the analysis of soundness and zero-knowledge of the IKOS protocol see [IKOS09]. Here
we focus on the running times of the verifier and the simulator.

Observe that all that the verifier’s running time in each phase is O(t) * poly(secp) as required.

We proceed to describe the IKOS simulator. Fix a malicious verifier V. The simulator also runs
for k phases. In each phase it repeats the following procedure at most poly(secp) times (and aborts
if all fail):

1. Select at random a pair of (distinct) players i, j € {1, 2, 3}, and runs the [GMW87] simulation

on them (with respect to random strings w; and w;).

2. The simulator generates commitments to the simulated views for these players as well as a
fake simulation (e.g., all zero) for the third player. The simulator “sends” these commitments

to the verifier V.

*Indeed, note that the [I[KOS09] approach transforms semi-honest secure MPC protocols into proof-systems that are
zero-knowledge with respect to malicious verifiers.

*Here we use a satistically binding commitment scheme, which follows from the existence of one-way functions
[HILL99, Nao91].

44

3.V responds with a pair of distinct indices 7', ' € {1,2, 3} (otherwise, since the IKOS prover
would abort, the simulator can output its generated view so far followed by a L. symbol).

4. If ¢/, j' are not the same as i, j, then continue the loop.
5. Otherwise, the simulator can send decommitments to V and they continue to the next phase.

Overall the simulation of a single phase takes (O(t) + T) - poly(k) time, where T is the running
time of V. See [IKOS09] for additional details.

45

	Introduction
	Our Results
	Additional Related Works

	Preliminaries
	Hashing and Entropy
	Statistical Zero-Knowledge

	ZKPP — Model and Definitions
	The Power of ZKPP: The Statistical Case
	ZKPP for Permutations
	Promise Expansion is in HV-SZKPP
	Promise Bipartiteness is in HV-SZKPP

	Limitations of SZKPP
	IPPESZKPP
	MAPESZKPP, assuming Circuit Lower Bounds

	Computational ZK Proofs and Statistical ZK Arguments of Proximity
	Reducing HV-SZKPP to Entropy Difference
	Missing Proofs
	Proving lemma:roundreduction
	Proving claim:CDipp
	Proof Sketch of lemma:code
	Proof Sketch of lemma:IKOS

