
How Far Can We Reach? Breaking Masked AES
Smartcard Implementation Using One Trace

Wei Cheng1, Chao Zheng1, Yuchen Cao1,2, Yongbin Zhou1,2,
Hailong Zhang1, Sylvain Guilley3,4, Laurent Sauvage3,4

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

4Secure-IC S.A.S., Cesson-Sévigné, France
{wei.cheng,zhouyongbin}@iie.ac.cn,

{sylvain.guilley}@telecom-paristech.fr

Abstract. Rotating Sbox Masking (RSM) scheme is a highly efficien-
t masking scheme proposed to protect cryptographic implementations
from side channel attacks. It is a Low Entropy Masking Scheme and
has attracted special attention for its low overhead but high perfor-
mance. The two public targets of international academic competition
DPA Contest v4 are both RSM-masked AES implementations, specif-
ically, RSM-AES-256 for v4.1 and RSM-AES-128 for v4.2 respectively.
The side channel security of RSM-AES-256 was intensively studied by
researchers worldwide under the framework of DPA Contest and sever-
al flaws were identified, while the security of RSM-AES-128 is still not
thoroughly studied. In this paper, we focus on analyzing the practical se-
curity of RSM-AES-128 from a profiling attack point of view. Specifically,
we firstly present a Multivariate Template Attack (MTA) to maximize
the success rates of key recovery attack. Next, we propose a new Depth-
First Key Enumeration Algorithm (DFKEA) that could be applied to
find the correct key efficiently after a side channel attack. By integrat-
ing the DFKEA to our MTA, we propose a novel multivariate profiling
attack which could recover the whole secret key of RSM-AES-128 with
over 95% possibility only using one electromagnetic trace. It is the best
attack among all attacks submitted to DPA Contest Official up to now.
Finally, we present one proposal to further improve the practical security
of RSM-AES-128 at an acceptable overhead.

Keywords: Side Channel Attacks · Template Attack · DPA Contest ·
Countermeasures · Rotating Sbox Masking Scheme · Shuffling Scheme.

1 Introduction

Side Channel Attacks (SCA) have been proven to be a serious threat on prac-
tical security of cryptographic implementations, in which an adversary always
extracts the sensitive information like secret key by statistic analysis on “physi-
cal observable” leakages [30,31,33,35]. These threats tend to get much worse with

2 Wei Cheng et al.

the advent of the Internet of Things (IoTs), since on one hand the IoT devices
are typically too constrained with resources to deploy complex countermeasures
for achieving a high security level. On the other hand, the adversary always
has full control on these devices to carry out certain very intensive analysis
and powerful attacks, especially including some profiling attacks. Particularly,
recent attacks Spectre [6] and Meltdown [5] are essentially two Cache-based S-
CA exploiting architectural vulnerabilities in CPU-level, which severely affect
almost all modern CPUs. Although huge differences exist between IoT devices
and CPU-based devices (like PC and cloud server) from architectures to low-
level implementations, they all perform physically observable computations [12]
and share the great threat induced by SCA. Therefore, countermeasures are the
integrant parts of the security-critical systems.

In order to protect cryptographic implementations (devices) against SCA,
many countermeasures have been proposed including masking, shuffling and
hiding. Specifically, masking schemes [13,24,34,27] randomize the dependency
between sensitive data and leakages by dividing each sensitive variable into sev-
eral random shares to thwart SCA, while Shuffling schemes [25,26] randomize
the order of operations during the executions. Quite differently, by circuit-level
alteration, hiding-based countermeasures [32,34,14] make the leakages uniformly
independent to the data processed. Among them, masking schemes are a class of
the most attractive and frequently used techniques against SCA, since they pro-
vide formally provable security and could be implemented on algorithmic-level
with no hardware alteration. Despite the improvements with respect to SCA
security, almost all countermeasures always cause a significant overhead and
performance loss on cryptographic implementation compared to an unprotected
one. As a consequence, lightweight and efficient solutions for SCA countermea-
sures are very attractive for researchers and designers.

Rotating Sbox Masking (RSM) [7,11] scheme emerges as a very efficient coun-
termeasure to provide 1st-order SCA security (actually immune to 1st- and 2nd-
order zero-offset CPA [3]), which is a typical implementation of Low Entropy
Masking Scheme (LEMS) [20,10,2]. It is the core protection scheme used in the
latest edition of DPA Contest, namely DPA Contest v4 [16]. DPA Contest is an
international open framework held for worldwide participants and researchers
to evaluate and compare their attacks under a common setting [1]. Particularly,
the forth edition of DPA Contest (both v4.1 and v4.2) are launched to evaluate
the practical security of protected AES implementations running on an Atmel
ATMega-163 smart-card. Specifically, the DPA Contest v4.1 (DPACv41)[15] has
closed, while the DPA Contest v4.2 (DPACv42) is the latest version and stil-
l open. The target of DPACv41 is a RSM-masked AES-256 implementation,
namely RSM-AES-256. During the DPACv41, the practical security of RSM-
AES-256 was thoroughly studied from both non-profiling attacks and profiling
attacks points of view, and several flaws were identified, especially the pitfalls
in the RSM scheme [1,18,19] like constant difference in the RSM mask set,
which could be exploited to break RSM scheme and then recover the secret key
only using 14 traces. The RSM-AES-128 is the improved one of RSM-AES-256,

How Far Can We Reach? 3

in which several pitfalls were fixed [1] and it is the open target of DPACv42.
The improved RSM scheme in RSM-AES-128 is also called RSM scheme, since
we only focus on the improved one, there is no ambiguity in denotation.

Intuitively, the combination of different countermeasures could improve the
practical security of the cryptographic implementations only if they are carefully
implemented. This strategy was adopted in DPA Contest v4.2, in which both
masking and shuffling are applied to upgrade the original RSM in terms of
SCA security. Since several implementation flaws have been fixed (mainly by
reprogramming in assembly code, precharging and the improved RSM scheme)
and a new shuffling scheme is adopted [1], RSM-AES-128 is expected to achieve
a high SCA security level. However, its practical security is still not intensively
studied, especially from a viewpoint of profiling setting. In this paper we focus on
security analysis of RSM-AES-128 using profiling attacks [23]. More concretely,
although in presence of these security-oriented improvements in RSM-AES-128,
our final question is that, can we recover the secret key of RSM-AES-128 only
using one trace? If possible, what’s the most efficient way to find the secret key?

To answer these two questions, two techniques are utilized in this paper to
carry out our attack against RSM-AES-128. One is Template Attack, which is
the strongest form of SCA from a perspective of information theory [28]. It’s a
natural better choice compared to other profiling attacks like Linear-Regression
based attacks [4,9]. Furthermore, the multivariate attack which exploits leak-
ages of consecutive intermediates [36] (similar to Multi-target DPA [29]) is more
powerful compared to univariate counterpart. The other one is Key Enumera-
tion Algorithm (KEA). KEA is a post-processing technique to find the correct
key effectively after an attack. Recently, several KEA [37,39,38] have been pro-
posed to optimize the effectiveness, efficiency and memory overhead. Particularly,
the optimal KEA [37] provides an optimal order to enumerate the results after
an attack but with large memory overhead in terms of “key trails”, while the
Histograms-based KEA [38] leads to straightforward parallelization with simple
bounds of rounding errors. These KEA methods generally assume that differen-
t subkey candidates are similarly distributed, therefore they can be viewed as
breadth-first methods and adopt a combine-then-verify route. However, if the
distributions of different chunks of key candidates vary from each other, existing
KEA method would be less efficient since extra computational costs are induced
and more key verifications are inevitable for finding the secret key.

Our Contributions. Since the goal is to carry out attacks against RSM-
AES-128 with only one trace, our contributions are threefold as follows.

Multivariate Template Attack (MTA). The strong capacity on key re-
covering of TA comes from the accurate characterization of the data-dependent
leakages, which is also called templates. In this paper, we propose a high-
dimensional Multivariate Template Attack (MTA). Particularly, multivariate
means our attacks targeted on multiple sensitive variables. We also use Prin-
ciple Component Analysis (PCA) [40,41] as a leakage-feature extraction tool to
reduce the dimensionality of our MTA, thus to dramatically decrease the data
complexity of templates. By applying several optimization, our MTA can break

4 Wei Cheng et al.

the RSM scheme and shuffling scheme with 100% probability using one trace,
meanwhile the partial success rates (PSR [8], corresponding to recovery of each
subkey) of attack varies in a range from 93% to 98%, and the global success rate
(GSR [8], corresponding to the recovery of entire secret key) is increased from
55% to 83% which increased 50.91% (also using one trace).

Depth-First Key Enumeration Algorithm (DFKEA). We propose a
new key enumeration algorithm DFKEA featured with the high efficiency in find-
ing the secret key after SCA. Compared to the state of the art KEA method,
on one hand, DFKEA doesn’t need to combine the possibilities of subkey can-
didates in different chunks, by which reduces the extra computations to speed
up the key-finding process. On the other hand, the ranks of correct subkey hy-
pothesis after side channel attacks could be very various in different chunks
after a practical attack. Actually, our DFKEA adopts a (bounded) depth-first
approach to efficiently traverse the most possible subkey hypothesis. By inte-
grating DFKEA into our MTA scheme, its GSR is significantly increased from
83% to 95% (increased 14.46%, evaluation from DPA Contest Official) with an
acceptable computation overhead. These results distinctly indicated that RSM-
AES-128 is vulnerable to profiling attacks, especially for our MTA.

Shuffled Offset. Countermeasures are requisite for leakage-preventing to
thwart SCA. Since the shuffling scheme and RSM scheme are independently
applied in RSM-AES-128 [1], they can be compromised separately. To address
this problem, by encoding the nonce used in shuffling scheme into offset, we
propose a method to improve the security of RSM scheme by eliminating the
mask-dependent leakage existing in full rounds of encryption process.

The rest of the paper is organized as follows: Section 2 introduces the details
of RSM-AES-128 and template attacks. Section 3 explains the rationale of our
MTA and its application to break the RSM scheme and shuffling scheme, and
then to conduct the key-recovery attack. In section 4, the new key enumeration
algorithm DFKEA is proposed with necessary validation experiments, and one
proposal to further improve the practical security of RSM-AES-128 is described
in section 5. Finally, conclusions are drawn in section 6 and some evaluation
results of our attack from DPA Contest Official are in Appendix.

2 Preliminary and Notations

2.1 RSM-AES-128 Implementation

RSM-AES-128 [1] is a software implementation of AES-128 algorithm protected
by both RSM scheme and shuffling scheme. Specifically, RSM scheme is applied
to full rounds of encryption to protect all intermediate variables, while shuffling
is only adopted in the first and last rounds of transformation to protect the
commonly “vulnerable” part of implementation [42].

RSM Scheme. The well-designed masking and unmasking methodse make RSM
very efficient. Essentially, RSM scheme is a low entropy boolean masking scheme,

How Far Can We Reach? 5

the mask set only contains 16 fixed mask values as follows.

M = { 0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69,
0x96, 0x99, 0xa0, 0xaf, 0xc5, 0xca, 0xf3, 0xfc } (1)

where mi and Mi both denotes the i-th mask value (i = 0, 1, . . . , 15).
In a masked cryptographic implementation, all sensitive variables are re-

quired to be masked, and the nonlinear layer of the cipher is the most critical
part for designers [22]. In AES, its round function consists of four subfunction,
namely KeyAdd (AK), SubBytes (SB), ShiftRows (SR) and MixColumns (MC).
The SubBytes is the only nonlinear part in AES, while the other three are linear
transformations, in which the RSM could be applied straightforwardly.

Let SB, MSB denote the original and masked SubBytes respectively, x ∈ Fn
2

(n = 8 in AES) is an intermediate variable. Then the RSM-masked Sbox is

MSBi(x) = SB(x⊕mi)⊕mi+1, i = 0, ..., 15 (2)

where the mi,mi+1 denotes the input and output mask of Sbox respectively,
which are consecutive in mask set M . The index i varies for all sixteen Sboxes,

which determined by an offset vector with 16 elements, namely
−−−−→
offset, to guar-

antee that all Sboxes are masked independently. Finally, the mask compensations
MaskComp are applied at the end of each round to ensure correctness.

MaskCompi,r =

{
M−−−−→

offset+r
⊕MC(SR(M−−−−→

offset+r
)), for r = 1, ..., 9

SR(M−−−−→
offset+r

), for r = 10
(3)

where r is the round index of AES and all indexes are increasing with mod(16).
Shuffling Scheme. In RSM-AES-128, the shuffling scheme only adopted to
protect the Sbox layer (SubBytes) in the first and last round by using Shuffle0
and Shuffle10 respectively. It is a 4-bit based permutation applied to change the
order of sixteen Sboxes.

Shuffle0, Shuffle10 : {0, 1, ..., 15} −→ {0, 1, ..., 15} (4)

2.2 Template Attacks

TA is the strongest form of SCA in an information theoretic sense, which assume
that an adversary can fully characterize the leakage features of target device
[28,23]. It’s a two-phase attack consisting of profiling phase and attacking phase.

Let k∗, k denote the secret key and any possible key hypothesises respectively,
and T is the public parameters like plaintext or ciphertext. We suppose that all
intermediates x are elements of Fn

2 . Let f(·) be a mapping from T to a sensitive
variable X, the measured leakages L can then be written as

L = L(X) +Noise = L(f(k∗, T)) +Noise (5)

where L(·) denotes the data-dependent leakage function and Noise is the inde-
pendent noise (as commonly assumed [28]). Particularly, L = [L1, L2, . . . , LD]

6 Wei Cheng et al.

denotes D PoIs (points-of-interest) in a leakage trace, and a set of N measured
traces are L = {L1, L2, . . . , LN}.
Profiling Phase. In this phase, templates are built for each value of targeted
intermediate v ∈ V in a cryptographic implementation. A template is parame-
terized by the mean vector and covariance matrix of the leakages corresponding
to v, namely (µv, Σv). In practice, the tuple (µv, Σv) are estimated by empirical

mean and covariance matrix (µ̂v, Σ̂v) as follows.

µ̂v =
1

Nv

Nv∑
i=1

Lv,i

Σ̂v =
1

Nv − 1

Nv∑
i=1

(Lv,i − µ̂v)T (Lv,i − µ̂v)

(6)

where Lv,i denotes the i-th trace in divided groups associated to intermediate
variable v, while Nv is the number of v-th group of traces.
Attacking Phase. Assume that all |V| templates have constructed for each
value of v ∈ V. Let the L′ = {L1, L2, . . . , LQ} denotes the Q attacking traces. In
order to determine which value of v was used in Li, the matching probabilities
are computed for each template (µv, Σv) as follows.

pi,v(Li; (µv, Σv)) =
exp(− 1

2 (Li − µv)TΣ−1v (Li − µv))√
(2π)D · det(Σv)

(7)

where again D is the dimensionality of Li. Finally, with Maximum Likelihood
(ML) principle the value of sensitive intermediate v is indicated by maximal pi,v.

v∗ = arg max
v∈Fn

2

pi,v(Li; (µv, Σv)) (8)

Note that v is key-dependent intermediate, resulting that the secret key could be
inferred after all chunks of v are recovered. Under the independence assumption
among different traces, attacking results of Q traces are usually integrated for
high confidence of correct key hypothesis.

In practice, SCA are more likely to focus on single sensitive intermediate,
especially true when against protected implementations. However, under the
context of profiling attacks like TAs, an attacker always has capacity to carry
out attacks against several directly associated intermediates in sequence.

3 Multivariate Template Attack against RSM-AES-128

Under the open framework of DPA Contest v4.2, attackers are allowed to ac-
cess all information and leakage datasets including cryptographic parameters
and measured electromagnetic traces. In this section we propose a Multivariate
Template Attack (MTA), in which high-dimensional leakages are exploited simul-
taneously. More importantly, our attack provide a new practical perspective of

How Far Can We Reach? 7

TA integrated with PCA against protected cryptographic implementation with
minimal number of traces, while the latter is mainly adopted for leakage-features
extraction on physical leakages rather than data-dimension reduction.

The Onion-peeling strategy is the core to our attack against RSM-AES-
128. Firstly, TAs are applied against masking scheme and shuffling scheme by

recovering
−−−−→
offset and Shuffle0, respectively. Once the combined countermeasure

is compromised, a MTA is applied to recover the secret key with as high success
rates as possible. Finally, post-processing methods like our DFKEA in Sec.4 are
employed to dramatically improve the success rates at a practical tractable cost.

Let Vi, i ∈ [1, 2, 3, 4, 5] denote the sensitive intermediates related to masks,
shuffles, inputs of Sbox (Sboxin), Outputs of Sbox (Sboxout) and inputs to the
MixColumns (MCin) respectively, thus Vi,j , j ∈ [0, 1, . . . , 15] is j-th byte, and
vi,j is the instance of Vi,j .

Li = L(Vi) +Noise = HW (Vi) +Noise, for i = 1, ..., 5

Vi =



M−−−−→
offset

, i = 1

Shuffle0, i = 2
M−−−−→

offset
⊕K ⊕ T, i = 3

MSB(M−−−−→
offset

⊕K ⊕ T), i = 4

SR(MSB(M−−−−→
offset

⊕K ⊕ T)), i = 5

(9)

where SR(·) is ShiftRows in AES, and the same as usual, Hamming Weight
(HW) model are used for leakage detection and PoI selection.

3.1 Breaking the Combined Countermeasure

Attacking RSM scheme. All masks in RSM scheme are determined by
−−−−→
offset =

{s0, s1, . . . , s15}. In the first round of encryption, all masks are involved into the
encryption process. As a consequence, our TA targets all Msi in the first round
for simplicity (similar to carry out TA targeting at last round operations). The
leakage features of the first two masks of RSM-AES-128 are depicted as Fig.1(b).

0 2 4 6 8 10 12 14 16 18

x 10
5

−150

−100

−50

0

50

100

150

E
le

c
tr

o
m

a
g

n
e

ti
c
 R

a
d

ia
ti
o

n

Sample points

(a) Plotting one electromagnetic trace

0 2 4 6 8 10 12 14 16 18

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

Sample points

Byte 1
Byte 2

(b) Leakage of the first two Masks.

Fig. 1. (a) Visualization of one trace, and (b) leakage of masks in the first two bytes
of RSM-AES-128 (HW, Correlation).

Our proposed TA follows a typical two-step roadmap as follows. In profiling
phase we build templates for all possible values of V1,j , j ∈ [0, 1, . . . , 15]. Appar-

ently, recovering masks is equivalent to recover the
−−−−→
offset. Since PCA is utilized

8 Wei Cheng et al.

to extract device-specific leakage features, for each V1,j , leakages selected from
about 1200 PoIs are integrated, then only top 10 components corresponding to
first 10 eigenvalue (data-dimensions are reduced from D = 1200 to D = 10)
are chosen to build templates (µV1,j , ΣV1,j) as Equ.6. In attacking phase, Equ.7
and Equ.8 are applied to determine the most possible mask (or equivalently
sj , j ∈ [0, 1, . . . , 15]) hypothesis after PCA.

Our experimental results validated the effectiveness of our PCA-based TA
against RSM scheme. The success rates for recovering all masks are 100%.
One main reason is that all masks involved almost all cryptographic operations
throughout entire execution of RSM-AES-128, thus from an attacker’s point of
view, these operations leak sufficient information to recover all masks.
Attacking Shuffling scheme. The attack of shuffling scheme is very similar to
compromise RSM scheme. The major difference and main difficulty is the very
limited exploitable leakages only leaking from Sbox-shuffling in the first round of
RSM-AES-128. As a consequence, in order to recover the Shuffle0 by one trace,
different number of PoIs are used for each element of Shuffle0 (as Tab.1).

Table 1. Number of PoIs for PCA and selected number of components after PCA

Byte index ‖PoIs‖ ‖Components‖ Byte index ‖PoIs‖ ‖Components‖
0 571 85 8 419 85

1 436 85 9 507 85

2 493 85 10 421 85

3 427 85 11 506 85

4 458 85 12 425 85

5 453 85 13 523 85

6 477 85 14 424 85

7 492 85 15 406 85

Despite the variety existed in number of PoIs when attacking different ele-
ments of Shuffle0, the success rate of recovering Shuffle0 is 100%.

Once the combined countermeasure is compromised, RSM-AES-128 becomes
an unprotected implementation, thus the key-recovery attack can be carried
out to recover the secret key. Particularly, our experiments also validate the
effectiveness of applying PCA and a profiling attack to break countermeasures
in a very efficient way (especially from a engineering perspective).

3.2 Our Multivariate Template Attack

We propose a MTA to retrieve the secret key in an effective way. Here mul-
tivariate means that multiple key-dependent variables are targeted to obtain
subkeys. Specifically, our MTA targets at three sensitive variables depending
on the same subkey. These three variables are V3,j = M−−−−→

offset[j]
⊕ Kj ⊕ Tj ,

V4,j = MSB(M−−−−→
offset[j]

⊕Kj ⊕Tj) and V5,j = SR(MSB(M−−−−→
offset[j]

⊕Kj ⊕Tj)).
Note that our MTA combines the results of three univariate TAs, rather than
combining leakages in measured traces before the attack to keep low computa-
tional overheads (similar idea applied in [29] but with a non-profiling setting).

How Far Can We Reach? 9

Similarly, in profiling phase, all templates are built for each possible value
of V3,j , V4,j and V5,j , j ∈ [0, 1, . . . , 15] using Equ.6. The PCA is also used to
extract features of data-dependent leakages and to reduce the data complexity.
Concretely, leakages selected from 500 PoIs (D = 500) are feeded into PCA and
various number of components are chosen to build templates, which the latter
differs from the component-choosing method in recovering Shuffle0. The number
of selected components are listed in Tab.2.

Table 2. Number of chosen components after PCA for V3,j , V4,j and V5,j

Byte index j ‖V3,j‖ ‖V4,j‖ ‖V5,j‖ Byte index j ‖V3,j‖ ‖V4,j‖ ‖V5,j‖
0 70 50 55 8 60 50 55

1 75 50 60 9 50 50 50

2 60 50 55 10 60 50 50

3 75 50 50 11 70 50 50

4 60 50 65 12 60 50 50

5 60 50 50 13 70 50 60

6 65 50 50 14 60 50 55

7 55 50 50 15 55 50 55

Subsequently, in attacking phase, leakages from selected PoIs firstly feed into
PCA and then Equ.7 is applied to obtain the ranked subkey candidates, which
sorted by their possibilities. Since the combined protection scheme has been

compromised, we focus on key-dependent variables by assuming that
−−−−→
offset

and Shuffle0 are known for following analysis.
The d-th order partial and global success rates V3,j , V4,j , V5,j (j ∈ [0, . . . , 15])

and our MTA are plotted in Fig.2. Particularly, for our MTA, Fig.2(d) shows
that the first-order PSR of all subkey bytes are over 98%, except the fourteenth
subkey byte for 93%. In addition, we can observe that:

1. PSR of all subkey candidates follow a extreme Pareto distribution, which
means the roughly 10% of subkey candidates lead to almost 90% of PSR.
The lower the rank (from 1 to 256 and the lowest one is 256-th) of subkey
candidates, the lower possibility of it to be the correct subkey hypothesis.

2. More importantly, compared to univariate TA, MTA makes the correct sub-
key hypothesis approach to the highest ranks among all subkey candidates,
even for the worst subkey. This approaching effect also validates the positive
impact of our MTA on revealing the secret key. Consequently, the GSR of
MTA is significantly higher than all three univariate TAs.

3. Different byte-positions (indexes) of subkeys have small effects on attacking
results except the fourteenth subkey, which is the worst byte of all subkeys
in all four cases. However, this “information” could be exploited to improve
the success rates by post-processing techniques, especially to improve GSR.
But in order to keep the generality of our attack, this “information” is not
utilized in our MTA and following DFKEA.

In practice, it’s advantageous to make use of information about subkey rank
distributions to maximize the GSR with constrained computational complexity.

10 Wei Cheng et al.

1 2 3 4 5 6 7 8 910 20 30 40 50 60 80 100 200 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 ra
te

Order of key ranks

GSR
j = 0
j = 1
j = 2
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8
j = 9
j = 10
j = 11
j = 12
j = 13
j = 14
j = 15

(a) Attacking V3,j (Sboxin).

1 2 3 4 5 6 7 8 910 20 30 40 50 60 80 100 200 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 ra
te

Order of key ranks

GSR
j = 0
j = 1
j = 2
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8
j = 9
j = 10
j = 11
j = 12
j = 13
j = 14
j = 15

(b) Attacking V4,j (Sboxout).

1 2 3 4 5 6 7 8 910 20 30 40 50 60 80 100 200 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 ra
te

Order of key ranks

GSR
j = 0
j = 1
j = 2
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8
j = 9
j = 10
j = 11
j = 12
j = 13
j = 14
j = 15

(c) Attacking V5,j (MCin).

1 2 3 4 5 6 7 8 910 20 30 40 50 60 80 100 200 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 ra
te

Order of key ranks

GSR
j = 0
j = 1
j = 2
j = 3
j = 4
j = 5
j = 6
j = 7
j = 8
j = 9
j = 10
j = 11
j = 12
j = 13
j = 14
j = 15

(d) Our MTA.

Fig. 2. Partial Success Rates (PSR) and Global Success Rate (GSR) of key-recovery
attacks targeted at (with logarithmic X-axis) (a) V3,j , (b) V4,j , (c) V5,j and (d) our
MTA for each j-th subkey, j ∈ [0, . . . , 15], only one trace is used in all four cases.

In next section, we propose the Depth-First Key Enumeration Algorithm to
dramatically improve the GSR of MTA based on observation 1 and 2.

4 Depth-First Key Enumeration Strategy

Our primary interest is to recover the secret key of RSM-AES-128 in a very
efficient way, thus two main requirements for post-processing methods are the
high efficiency of key-finding and the maximal success rates. The former requires
the minimal number of key verifications and less extra computations which may
be caused by combining all sixteen sorted subkey lists together to obtain global
key sorting results [37,39,38]. While the latter requires a high coverage of the
highly possible subkey candidates.

Keeping these requirements in mind, we firstly investigate the distribution of
errored subkey candidates. Here “errored” subkey means its correct candidate is
not ranked first among all possible candidates. The ranks of errored subkeys and
cumulative errors of each subkey are depicted as Fig.3. Unsurprisingly, same as
observed in Sec.3.2, the fourteenth subkey is the worst case among all subkeys
from an attacking point of view.

In order to improve the coverage of the most possible subkey candidates, we
also inspect the number of errored subkeys Nerr per attack (or per trace) as
showed in Fig.4. By using 25,000 to 40,000 traces, two main observations are:

How Far Can We Reach? 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20
40
60
80

100
120
140
160
180
200
220
240
260

Subkey index

R
an

ks
 o

f e
rr

or
ed

 s
ub

ke
y

50

100

150

200

250

(a) The ranks of errored subkeys.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

C
um

ul
at

iv
e

er
ro

rs
 o

f e
ac

h
su

bk
ey

Subkey index

50

100

150

200

250

(b) Cumulative errors of each subkey.

Fig. 3. The distribution of errored subkey candidates, “errored” means failed to recover
a subkey by first-order rank (80,000 traces from DPA Contest v4.2 [16] are used).

1) Nerr ≤ 4, and 2) the frequency of each Nerr significantly decreases with the
increase of Nerr. Hence, if we take Nerr into consideration, and enumerate all
possible subkey candidates along with the increase of Nerr, the most possible
subkey could be covered. Thus key-recovery could be very efficient. Hereafter, we
propose a Depth-First Key Enumeration Algorithm (DFKEA) to utilize these
Nerr-related information to find the secret key. To keep portability to other
attack scenarios, we insist on only utilizing statistics of Nerr in our DFKEA.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

N
um

be
r

of
 a

tta
ck

s

Number of errored bytes

40000 traces
35000 traces
30000 traces
25000 traces

(a) Number of Errored Subkeys Nerr

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 r

at
e

Number of errored bytes

 0.7812

 0.2598

 0.0244
0.00096 4e−05 0 0 0 0

40000 traces
35000 traces
30000 traces
25000 traces

(b) Frequency

Fig. 4. The distribution of number of errored subkeys (Nerr) with number of traces
from 25,000 to 40,000 (the first eight datasets from DPA Contest v4.2 [16]).

4.1 Proposal of DFKEA

Main idea behind the DFKEA is to enumerate subkey candidates along with
increase of Nerr in a depth-first way. Specifically, we firstly verify the subkey
candidates with Nerr = 0, which means to enumerate candidates with the high-
est rank. Next, subkey candidates with Nerr = 1 are enumerated, that is to test
all candidates in which only one subkey is not ranked first (while other fifteen
correct candidates ranked first). Similarly, candidates with Nerr from 2 to 15 can
be enumerated and then verified. Particularly, based on aforementioned obser-
vations, our key enumerations could be efficiently done by restricting Nerr ≤ 4.

Let dj denotes the enumeration depth of j-th subkey byte in our DFKEA for
j ∈ [0, . . . , 15], and dj,nerr

for dj with Nerr = nerr. Note that we have different
dj,nerr

according to varied Nerr. On the basis of observations from Fig.4, the

12 Wei Cheng et al.

schematic of our DFKEA withNerr = 1 is depicted as Fig.5(b). In fact, principles
behind of the state-of-the-art KEA methods are the breadth-first strategy as
illustrated in Fig.5(a), in which all sixteen subkeys candidates are enumerated
with an approximately equal depth. On the contrary, our DFKEA adopts a
depth-first strategy, which treat each byte of subkey differently, resulting with
different enumeration depth dj for each byte of subkey.

(a) A breadth-first KEA (b) Our DFKEA with Nerr = 1

Fig. 5. Main enumeration strategies of the breadth-first KEA vs our DFKEA.

Our algorithm of DFKEA is described as Alg.1. Note that convertKey(ci)
in line 10 converts each combination ci to the errored subkey indexes by which
these errored subkeys will be enumerated later.

Algorithm 1 Our Depth-First Key Enumeration Algorithm (DFKEA)

Input : Sixteen lists of possible subkey candidates, skCandi[256][16],
Nerr, dj,nerr [], plaintexts P [16] and ciphertexts C[16].

Output: Secret key or the most possible subkey candidates sk[16].
1: Flag = false
2: if true == KeyVerification(P [], C[], skCandi[1][]) then
3: Flag = true
4: return sk[] = skCandi[1][]
5: else
6: for nerr ∈ [0, Nerr] do
7: comb[nerr] = {Cnerr

16 elements} /* Ck
m is the combination formula */

8: for ci ∈ comb[nerr] do
9: /*convertKey(ci) converts ci to subkey indexes for enumeration */

10: keyInd = convertKey(ci)
11: for key ∈ skCandi[dj,nerr []][keyInd] do
12: Flag = KeyVerification(P [], C[], key)
13: if true == Flag then
14: return sk[] = key
15: end if
16: end for
17: end for
18: end for
19: end if
20: if false == Flag then
21: return sk[16] = skCandi[1][] /*Deal with failures on finding the correct key */
22: end if

How Far Can We Reach? 13

In practice, the efficiency is straightforwardly determined by the number
of key verifications. For our DFKEA, we assume that the enumeration depths
dj,nerr keep the same for each subkey, while change with different nerr. Note
that this setting is for the sake of simplicity but not necessary, since if an at-
tacker knows that attacks on some subkeys are always worse than others, their
enumeration depth dj,nerr

could be larger to improve the coverage of possible
candidates. Let EC denotes the number of enumerations, ECnerr

denotes EC
for Nerr = nerr, and the first-order success rate of each subkey is p, thus we
assume that nerr obeys the binomial distribution, nerr ∼ B(16, p). The total
number of enumerations ECtotal can be computed as follows.

ECnerr 6 Cnerr
16 ∗ (dj,nerr − 1)nerr

ECtotal =

Nerr∑
nerr=0

Pr(nerr) ∗ ECnerr

6
Nerr∑

nerr=0

Cnerr
16 ∗ (1− p)nerr ∗ p16−nerr ∗ (dj,nerr − 1)nerr

(10)

where 6 is used because our DFKEA will stop (Early Stopping) once the correct
key is found, and dj,nerr keep the same for j ∈ [0, . . . , 15]. Typically, let nerr = 1
and dj,nerr

= dj,1 = 256, thus the maximal number of enumerations is ECnerr
=

EC1 = C1
16 ∗ 255 ≈ 212. For increased nerr = 3, we set dj,nerr

= dj,3 = 10,
thus EC3 = C3

16 ∗ (10− 1)3 ≈ 218.64. Apparently, nerr (or more precisely, Nerr)
and dj,nerr directly affect the number of enumerations for our DFKEA and the
coverage of possible subkey candidates.

4.2 Analysis and Experimental Results

The efficiency of an algorithm is critical in practice. Here, we primarily take
the number of enumerations EC into account, which is also the number of key-
verifications. The computational complexity comparison of our DFKEA with the
simple KEA is tabled as Tab.3. Importantly note that the state-of-the-art KEA
adopts the same breadth-first strategy with this simple KEA.

Table 3. Comparison of our DFKEA and a simple KEA with EC as evaluation criteria,
total is max(ECtotal) computed with Nerr = 3

Depth dj,nerr

DFKEA using Equ.10
Simple KEA

nerr = 1 nerr = 2 nerr = 3 total (Nerr = 3)

2 24.00 26.91 29.13 29.44 216.00

3 25.00 28.91 212.13 212.29 316 ≈ 225.36

4 25.58 210.08 213.88 213.99 416 = 232.00

5 26.00 210.91 215.13 215.21 516 ≈ 237.15

10 27.17 213.25 218.64 218.67 1016 ≈ 253.15

20 28.25 215.40 221.87 221.89 2016 ≈ 269.15

256 211.99 222.90 233.11 233.11 25616 = 2128.00

14 Wei Cheng et al.

In Tab.3, it is divided into two parts by the table-cells colored with green. The
upper half part is featured with EC 6 230, while the lower-right part is on the
contrary. Obviously, compared to this breadth-first KEA, our DFKEA are much
powerful on enumerating candidates with high enumeration depths. Although we
always theoretically assume that attacks against different subkeys would obtain
similar distribution for different candidates, practical results of different subkeys
always varies from each other, especially when using electromagnetic traces.
Hence, our DFKEA is very suitable for these attacking scenarios.

With the same 40,000 traces as in Fig.4, we practical evaluate the effective-
ness of our DFKEA. Considering the high efficiency requirement, we restrict the
enumeration depthes with EC 6 220, which means that roughly dj,1 = 256,
dj,2 = 20, dj,3 = 10 and dj,4 = 5 for nerr = 1, 2, 3, 4, respectively. For purpose of
comparison, the enumeration depth of simple KEA is set to d1 = 2 and d2 = 5
which means EC1 = 216 and EC2 = 237.15, respectively. The experimental re-
sults are depicted as Fig.6. Quite clearly, our DFKEA is significantly better than
the simple KEA, and the success rates increase by 24.06% and 20.05% compared
to the breadth-first KEA for d1 = 2 and d2 = 5, respectively. These results are
also in very accordance with our observations from Fig.4 that the number of
errored subkeys dropped off sharply with the increase of nerr, thus it’s very
advantageous to adopt the depth-first strategy as in DFKEA. However, as a
post-processing technique, DFKEA also improves the error-tolerant capability
of side channel attacks, since not only the first-ranked subkey candidates, but
also some of the most possible subkey candidates would be verified to obtain a
high success rate.

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 8090 200 256

Key ranks

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
0.98

1

S
uc

ce
ss

 r
at

e

Our DFKEA
No enumeration
Simple KEA with d = 5
Simple KEA with d = 2

Fig. 6. Comparison between our DFKEA and the breadth-first KEA with respect to
different enumeration depth (with logarithmic X-axis).

To summarize up, experimental results strongly validate the effectiveness of
our DFKEA in terms of both key-recovery efficiency and attacking success rates
(also equivalent to guessing entropy [8]). More importantly, compared to the sim-
ple KEA, our DFKEA doesn’t require to combine all sixteen lists of candidates
to get a global key-ranking list [38], which in return reduces computational bur-
den and makes our DFKEA much more efficient than the breadth-first KEAs.
Furthermore, our DFKEA is also generally applicable to both profiling and non-
profiling attacks in SCA. Assembling our MTA with DFKEA, our attacking

How Far Can We Reach? 15

scheme can recover the entire secret key of RSM-AES-128 by using only one
electromagnetic trace with a probability of more than 95% (more details refer
to official evaluation report released by DPA Contest v4.2[17]).

5 Proposal for Further Improving RSM-AES-128

RSM scheme is a first-order masking scheme which featured with high efficiency
and low overhead, even integrated with shuffling scheme as in RSM-AES-128.
Practically, it’s hard to retrieve masks (offsets) and shuffling vectors used in pro-
tected cryptographic implementations (e.g. RSM-AES-128) with non-profiling
attacks, but these sensitive parameters aren’t immune to profiling attacks like
TA and leakage “fingerprints” matching methods [43]. This is also evidently val-
idated by our attacks in Sec.3. In fact, our attack exploits the distinct leakage
features to differentiate and recover the masks and shuffle vectors. Therefore, the
core to improve the practical security of RSM-AES-128 (or other RSM-masked
implementations) is to reduce or even eliminate these distinguishable leakage fea-
tures. Based on our observations and results of MTA and DFKEA, we hereafter
present one proposal to improve the practical security of RSM-AES-128.

Shuffled Offset Method. Considering the RSM scheme applied in RSM-AES-

128, all 16×11 = 176 masks are determined by sixteen offsets denoted as
−−−−→
offset.

In fact, each element of
−−−−→
offset determines all eleven masks used in entire ten

rounds. From attacking point of view, it’s a deterministic relation between each
offset and corresponding eleven masks. As a result, the leakages of every eleven
masks could be exploited to recover corresponding offset[43]. For illustration,
leakages of the first two and four bytes of masks are showed in Fig.7.

0 2 4 6 8 10 12 14 16 18

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

Sample points

Byte 1
Byte 2

(a) One trace with 1,700,000 samples

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

Sample points

Byte 1
Byte 2
Byte 3
Byte 4

(b) Zoomed in from 150,000 to 500,000.

Fig. 7. Leakages of (a) masks used in the first two byte positions and (b) masks used
in the first four byte positions respectively (HW, Correlation, with 40,000 traces).

In Fig.7(a), it’s obvious that each of eleven masks corresponding to the first
two bytes leaked the mask-dependent information during whole encryption pro-
cess, which could be exploited to reveal the first two offsets. Similarly, all sixteen
offsets could be revealed. By zoomed in view in Fig.7(b), it’s clear that leakages
of masks in the first four bytes occur in a deterministic sequential order.

In order to randomize the leakages of offsets during whole encryption (de-
cryption) process, we propose a new masking and unmasking method for RSM

16 Wei Cheng et al.

scheme. The rationale of new MaskComp(·) is to update all offsets for every
rounds of encryption. Specifically, we only change the offsets and mask compen-
sation adopted in RSM scheme of RSM-AES-128. Namely, the new offset vector

is determined by
−−−−→
offsetin and round index r as follows.

MSB′(X) = SB(X ⊕M−−−−→
offsetin+(r−1))⊕M−−−−→offsetin+r

(11)

where MSB′(·) is the new masked sboxes. In order to improve efficiency, we

assign
−−−−→
offsetin =

−−−−→
offset+sh[r−1], where sh[r] is the r-th element of Shuffle0.

Then the masking and compensation could be done easily as follows.

MSB′(X) = SB(X ⊕M−−−−→
offset+sh[r−1]+(r−1))⊕M−−−−→offset+sh[r−1]+r

MaskComp′i,r =


M−−−−→

offset+sh[r]+r
⊕MC(SR(M−−−−→

offset+sh[r−1]+r
)),

for r = 1, ..., 9
SR(M−−−−→

offset+sh[r−1]+r
), for r = 10

(12)

More importantly, our new improved RSM scheme is more secure than RSM
scheme used in RSM-AES-128, since it would be degraded to the original RSM
scheme if the Shuffle0 is compromised or deactivated by adversaries (in the

worst case). By using independent
−−−−→
offset in adjacent rounds, attacks exploiting

multi-round leakages[43] to against RSM scheme can be effectively hindered.
Apparently, our proposal is compatible with other proposals like new mask

set[21] to provide a high level of practical security for cryptographic devices. In
addition, it could be implemented on the other platforms like FPGA integrated
with typical hardware-oriented countermeasures (e.g. random delays[34]).

6 Conclusions and Perspectives

As a highly efficient and lightweight masking scheme, RSM is proposed to pro-
tect cryptographic implementations like AES from side channel attacks. In this
paper, by means of profiling attacks, we have thoroughly analyzed the practical
security of public target of DPA Contest v4.2, namely RSM-AES-128 in an ex-
treme condition (using only one trace). Specifically, under the framework of DPA
Contest v4.2, we firstly propose a Multivariate Template Attack, which recovers
the secret key of RSM-AES-128 with global success rate increased from 55%
to 83% (significantly increased by 50.91%). Secondly, based on several attack-
oriented observations, we propose a new Depth-First Key Enumeration Algo-
rithm (DFKEA) to further improve the global success rates of our attack. After
integrated with DFKEA, the global success rate of our MTA soars to about 95%
(evaluated by DPA Contest Official), with a increase of 14.46% compared to o-
riginal MTA. Furthermore, theoretical analysis and experiments shows that our
DFKEA is definitely more effective than the breadth-first KEA. Finally, we pro-
pose a shuffled offset method to improve the practical security of RSM-AES-128,
in which the leakages directly associated to consecutive offsets are eliminated.

How Far Can We Reach? 17

However, although our DFKEA is very efficient than a simple breadth-first
KEA, there are still some theoretical and practical issues need to be studied,
like the quantitative relation between the global success rate and enumeration
depths. From a more practical point of view, parallel computing is very suitable
for key enumeration algorithm, especially using GPU platforms. Therefore, it’s
worthwhile to transform our DFKEA to a paralleled fashion in future work.

Acknowledgments. This work was supported in part by National Natural Sci-
ence Foundation of China (Grant No.61632020, No.61472416 and No.61602468).

References

1. Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, Zakaria Najm.
Analysis and Improvements of the DPA Contest v4 Implementation. SPACE 2014:
201-218 (2014)

2. Houssem Maghrebi, Sylvain Guilley, Jean-Luc Danger. Leakage Squeezing Counter-
measure against High-Order Attacks. WISTP 2011: 208-223 (2011)

3. Eric Brier, Christophe Clavier, Francis Olivier. Correlation Power Analysis with a
Leakage Model. CHES 2004: 16-29 (2004)

4. Julien Doget, Emmanuel Prouff, Matthieu Rivain, François-Xavier Standaert. Uni-
variate side channel attacks and leakage modeling. J. Cryptographic Engineering
1(2): 123-144 (2011)

5. Lipp Moritz, Schwarz Michael, Gruss Daniel, Prescher Thomas, Haas Werner, Man-
gard Stefan, Kocher Paul, Genkin Daniel, Yarom Yuval, Hamburg Mike. Meltdown.
ArXiv e-prints, arXiv 2018:1801.01207 (2018)

6. Kocher Paul, Genkin Daniel, Gruss Daniel, Haas Werner, Hamburg Mike, Lipp
Moritz, Mangard Stefan, Prescher Thomas, Schwarz Michael, Yarom Yuval. Spectre
Attacks: Exploiting Speculative Execution. ArXiv e-prints, arXiv 2018:1801.01203
(2018)

7. Shivam Bhasin, Claude Carlet, Sylvain Guilley. Theory of masking with codeword-
s in hardware: low-weight dth-order correlation-immune Boolean functions. IACR
Cryptology ePrint Archive 2013: 303 (2013)

8. François-Xavier Standaert, Tal Malkin, Moti Yung. A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks. EUROCRYPT 2009: 443-461
(2009)

9. Nicolas Bruneau, Claude Carlet, Sylvain Guilley, Annelie Heuser, Emmanuel Prouff,
Olivier Rioul. Stochastic Collision Attack. IEEE Trans. Information Forensics and
Security 12(9): 2090-2104 (2017)

10. Claude Carlet, Jean-Luc Danger, Sylvain Guilley, Houssem Maghrebi. Leakage
Squeezing of Order Two. INDOCRYPT 2012: 120-139 (2012)

11. Maxime Nassar, Youssef Souissi, Sylvain Guilley, Jean-Luc Danger. RSM: A small
and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs.
DATE 2012: 1173-1178 (2012)

12. Silvio Micali, Leonid Reyzin. Physically Observable Cryptography (Extended Ab-
stract). TCC 2004: 278-296 (2004)

13. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, Pankaj Rohatgi. Towards Sound
Approaches to Counteract Power-Analysis Attacks. CRYPTO 1999: 398-412 (1999)

14. Pablo Rauzy, Sylvain Guilley, Zakaria Najm. Formally Proved Security of Assembly
Code Against Leakage. IACR Cryptology ePrint Archive 2013: 554 (2013)

15. TELECOM ParisTech SEN Research Group. The DPA Contest 4th Edition. 2013-
2014, DPACv41, http://www.dpacontest.org/v4/index.php (2014)

18 Wei Cheng et al.

16. TELECOM ParisTech SEN Research Group. The DPA Contest 4th Edition. 2014-
2018, DPACv42, http://www.dpacontest.org/v4/42 doc.php (2018)

17. Evaluation Reports of the Submitted Attacking Scheme. Available at:
http://www.dpacontest.org/v4/evals/2016-01-25 anonymous.pdf . (2016)

18. Amir Moradi, Sylvain Guilley, Annelie Heuser. Detecting Hidden Leakages. ACNS
2014: 324-342 (2014)

19. Xin Ye, Thomas Eisenbarth. On the Vulnerability of Low Entropy Masking
Schemes. CARDIS 2013: 44-60 (2013)

20. Maxime Nassar, Sylvain Guilley, Jean-Luc Danger. Formal Analysis of the Entropy
/ Security Trade-off in First-Order Masking Countermeasures against Side-Channel
Attacks. INDOCRYPT 2011: 22-39 (2011)

21. Nikita Veshchikov, Sylvain Guilley. Implementation flaws in the masking scheme
of DPA Contest v4. IET Information Security 11(6): 356-362 (2017)

22. Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, Matthieu
Rivain. Higher-Order Masking Schemes for S-Boxes. FSE 2012: 366-384 (2012)

23. François-Xavier Standaert, François Koeune, Werner Schindler. How to Compare
Profiled Side-Channel Attacks?. ACNS 2009: 485-498 (2009)

24. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain. Side Channel Crypt-
analysis of a Higher Order Masking Scheme. CHES 2007: 28-44 (2007)

25. Christoph Herbst, Elisabeth Oswald, Stefan Mangard. An AES Smart Card Im-
plementation Resistant to Power Analysis Attacks. ACNS 2006: 239-252 (2006)

26. Matthieu Rivain, Emmanuel Prouff, Julien Doget. Higher-Order Masking and Shuf-
fling for Software Implementations of Block Ciphers. CHES 2009: 171-188 (2009)

27. Matthieu Rivain, Emmanuel Prouff. Provably Secure Higher-Order Masking of
AES. CHES 2010: 413-427 (2010)

28. Suresh Chari, Josyula R. Rao, Pankaj Rohatgi. Template Attacks. CHES 2002:
13-28 (2002)

29. Luke Mather, Elisabeth Oswald, Carolyn Whitnall. Multi-target DPA Attacks:
Pushing DPA Beyond the Limits of a Desktop Computer. ASIACRYPT (1) 2014:
243-261 (2014)

30. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. CRYPTO 1996: 104-113 (1996)

31. Paul C. Kocher, Joshua Jaffe, Benjamin Jun. Differential Power Analysis. CRYP-
TO 1999: 388-397 (1999)

32. Christophe Clavier, Jean-Sébastien Coron, Nora Dabbous. Differential Power Anal-
ysis in the Presence of Hardware Countermeasures. CHES 2000: 252-263 (2000)

33. Karine Gandolfi, Christophe Mourtel, Francis Olivier. Electromagnetic Analysis:
Concrete Results. CHES 2001: 251-261 (2001)

34. Stefan Mangard, Elisabeth Oswald, Thomas Popp. Power analysis attacks - reveal-
ing the secrets of smart cards. Springer 2007, ISBN 978-0-387-30857-9, (2007)

35. Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, Pankaj Rohatgi. The EM
Side-Channel(s). CHES 2002: 29-45 (2002)

36. Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, Yannick Teglia. Multi-variate
High-Order Attacks of Shuffled Tables Recomputation. CHES 2015: 475-494 (2015)

37. Nicolas Veyrat-Charvillon, Benôıt Gérard, Mathieu Renauld, François-Xavier S-
tandaert. An Optimal Key Enumeration Algorithm and Its Application to Side-
Channel Attacks. Selected Areas in Cryptography 2012: 390-406 (2012)

38. Romain Poussier, François-Xavier Standaert, Vincent Grosso. Simple Key Enumer-
ation (and Rank Estimation) Using Histograms: An Integrated Approach. CHES
2016: 61-81 (2016)

How Far Can We Reach? 19

39. Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, Marc
Witteman. Fast and Memory-Efficient Key Recovery in Side-Channel Attacks. SAC
2015: 310-327 (2015)

40. François-Xavier Standaert, Cédric Archambeau. Using Subspace-Based Template
Attacks to Compare and Combine Power and Electromagnetic Information Leak-
ages. CHES 2008: 411-425 (2008)

41. Youssef Souissi, Maxime Nassar, Sylvain Guilley, Jean-Luc Danger, Florent Fla-
ment. First Principal Components Analysis: A New Side Channel Distinguisher.
ICISC 2010: 407-419 (2010)

42. Emmanuel Prouff. DPA Attacks and S-Boxes. FSE 2005: 424-441 (2005)
43. Zeyi Liu, Neng Gao, Chenyang Tu, Jian Zhou, Yuan Ma, Yuan Zhao. Leakage

Fingerprints: A Non-negligible Vulnerability in Side-Channel Analysis. AsiaCCS
2016: 807-818 (2016)

A Appendix

A.1 Evaluation Results of Our attack from DPA Contest v4.2 [17]

For our experimental results using all sixteen public datasets (80,000 traces in
total), the success rate is 100%, while the success rate is about 95% which is
evaluated by DPA Contest Official with their private datasets. Although the
success rate decreased, the evaluation results still validated the effectiveness of
our Multivariate Template Attack (MTA) and Depth-First Key Enumeration
Algorithm (DFKEA).

The Global Success Rate (GSR) and the Partial Success Rates (PSR) [8]
released by DPA Contest Official are depicted as Fig.8 and Fig.9. For the purpose
of comparison, the evaluation results of Partial Guessing Entropy (PGE) are also
showed as Fig.10.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

G
lo

b
a
l
S

u
c
c
e
s
s
 R

a
te

Number of traces

Fig. 8. The Global Success Rate (GSR) of our attack released by DPA Contest Official.

20 Wei Cheng et al.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

P
a
rt

ia
l
S

u
c
c
e
s
s
 R

a
te

Number of traces

Partial Success Rate for Subkey Bytes #1 to #8

01 02 03 04 05 06 07 08

(a) Subkey index from #1 to #8

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

P
a
rt

ia
l
S

u
c
c
e
s
s
 R

a
te

Number of traces

Partial Success Rate for Subkey Bytes #9 to #16

09 10 11 12 13 14 15 16

(b) Subkey index from #9 to #16

Fig. 9. The Partial Success Rate (PSR) of our proposed attack released by DPA Con-
test Official, for all sixteen subkeys.

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

P
a

rt
ia

l
G

u
e

s
s
in

g
 E

n
tr

o
p

y

Number of traces

Partial Guessing Entropy for Subkey Bytes #1 to #8

01 02 03 04 05 06 07 08

(a) Subkey index from #1 to #8

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

P
a

rt
ia

l
G

u
e

s
s
in

g
 E

n
tr

o
p

y

Number of traces

Partial Guessing Entropy for Subkey Bytes #9 to #16

09 10 11 12 13 14 15 16

(b) Subkey index from #9 to #16

Fig. 10. The Partial Guessing Entropy (PGE) of our proposed attack released by DPA
Contest Official, for all sixteen subkeys.

	How Far Can We Reach? Breaking Masked AES Smartcard Implementation Using One Trace

