
Symbolic Security Criteria for Blockwise
Adaptive Secure Modes of Encryption

Catherine Meadows

Naval Research Laboratory (USA
Washington, DC 20375

Email: catherine.meadows@nrl.navy.mil

Abstract. Symbolic methods for reasoning about the security of cryp-
tographic systems have for some time concentrated mainly on protocols.
More recently, however, we see a rising interest in the use of symbolic
methods to reason about the security of algorithms as well, especially
algorithms that are built by combining well-defined primitives. For this
kind of application two things are generally required: the ability to reason
about term algebras obeying equational theories at the symbolic level,
and the ability to prove computational soundness and completeness of the
symbolic model. It is often challenging to provide both these capabilities,
especially for an adaptive adversary that can perform chosen plaintext or
ciphertext attacks. In this paper we derive sound and complete symbolic
criteria for computational security against adaptive chosen plaintext at-
tacks of a class of modes of encryption. These apply to any scheduling
policy used to send the cipher text, ranging from the messagewise sched-
ule, in which ciphertext blocks are sent to the adversary only after all the
plaintext blocks have been received, to the blockwise schedule, in which
ciphertext blocks are sent as soon as they are computed. We also discuss
how this approach could extended to larger classes of modes, and how
could it be applied to the automatic synthesis of cryptosystems.

1 Introduction

Symbolic methods for the analysis of cryptographic systems have been increasing
in popularity, and they have proven to be useful for addressing a number of
different cryptographic problems. One use of such a symbolic approach is to
provide computational guarantees; that is, security on the symbolic level should
guarantee security at the computational level. This line of research started in the
analysis of cryptographic protocols, but has proved particularly effective in the
analysis of cryptographic algorithms, in particular algorithms built by combining
different cryptographic primitives, which can often be represented symbolically.

However, a problem arises when trying to combine symbolic algebras satis-
fying equational theories with more powerful adversarys. Early on, researchers
were able to obtain soundness and completness results for the powerful Dolev-
Yao adversary for free symbolic algebras. However, once the algebra satisfies
some equational theory, the problem becomes harder. Indeed most results on

computational soundness and completeness in the face of adaptive adversarys
put limitations on the adversary’s adaptive capabilities, (e.g [17, 10]) allowing
the adversary to choose adaptively from a previously chosen set of values, but
not to input unrestricted plaintext.

There have, however, been some approaches that have provided symbolic
conditions for security against more robust adaptive adversarys. For example,
Malezomoff et al. [19] and Hoang et al. [14] derive security conditions for different
types of modes of encryption that hold for a messagewise adaptive adversary.
A mode of encryption is a process that is applied to block ciphers, which can
encrypt only one block at a time, to produce encryptions of messages that are
more than one block long. A messagewise adaptive adversary has access to an
oracle that encrypts messages supplied by the adversary, but does not see any
blocks of the encrypted message until it has submitted all the plaintext blocks.
The conditions of [14, 19] can be stated and verified in a symbolic algebra that
has both an exclusive-or operator and an encryption operator. This makes it
possible to check the conditions symbolically.

In this paper symbolic guarantees symbolic criteria for security against adap-
tive chosen plaintext attacks against a class of modes of encryption using exclusive-
or and block ciphers that are both sound and complete with respect to the com-
putational model. Secondly, these criteria hold no matter what schedule is used to
send the ciphertext blocks to the adversary. In particular they can be used both
for the messagewise adaptive adversary and the blockwise adaptive adversary
[7, 15], that has access to an oracle that sends a ciphertext block immediately
after receiving a plaintext block. Blockwise adaptive security is strictly stronger
than message adaptive security; for example cipher block chaining is known to
be message adaptive but not blockwise adaptive; see [7, 15]. In order to reason
about blockwise adaptive security, we make use of a methodology based on the
Baader-Schulz combination procedure [2] for combining unifiers for disjoint equa-
tional theories. We believe this methodology can be extended to other adaptive
computational soundness and completeness problems as well.

The proof strategy we use is the following. We consider three different models
of computation: a symbolic model with equational theories, the computational
algebra of Baudet et al. [5], and the probabilistic polynomial time Turing ma-
chine (PPT) model used by cryptographers. In the symbolic model the adversary
can compute and send only symbolic expressions. In the computational algebra
model, the adversary has the computational power of a PPT Turing machine,
but will send only messages that can be expressed via the computational alge-
bra, which is a computational image of the symbolic algebra. In the PPT model
we assume that the adversary may compute and send any message computable
by a PPT algorithm. We define a security property for R-wise adaptive security
based on IND$-CPA that we call IND$-RCPA, where R is any deterministic sched-
ule without choice points used to send encrypted blocks to the adversary. We
show that, given certain conditions on the mode, IND$-RCPA security holds if
and only if the adversary is unable to force a mode of encryption oracle to force
two terms from a certain class of encrypted terms to be equal, thus reducing

the problem of finding an attack to a unification problem. However, it is a uni-
fication problem with constraints, since the adversary can only use information
it itself has created or that it has already received from the oracle to construct
the unifier. The main result is the identification of a symbolic condition on the
unification problem that holds if and only if no unifier can be computed with
non-negligible probability by a PPT adversary.

The key problem is determining whether or not it is possible to construct
a unifier that satisfies these constraints. We show that a unifier does so if and
only if it satisfies a PPT analogue of the linear constant restriction defined for
symbolic algebras. We divide our constrained unification problem into two, as
in Baader-Schulz. However, instead of dividing the problem into two problems
in the component equational theories, we divide into it into two problems that
describe the programs executed respectively by the adversary and the oracle,
as in Carmer and Rosulek [10]. We then show that there is a solution to the
adversary’s problem in all three models if and only if the unification problem has
a solution realizing these constraints. We are able to provide characterizations
of the problems with realizable constraints, thus giving our result.

The paper is organized as follows. In Section 2 we discuss background and re-
lated work. In Section 3 we present standard results and definitions for symbolic
algebras that we use. In Section 4 we present symbolic and computational alge-
bra models of cryptographic operations and show how they relate to symbolic
and PPT adversaries. In Section 5 we present known results on soundness and
completeness that we use. In Section 6 we present the mode of encryption prob-
lem as a program (the MOE program) executed by the adversary and an oracle.
We give a computational definition of IND$-RCPA for MOE programs and show
that it is equivalent to a collision-freeness property for a certain class of modes.
In Section 7 we derive our symbolic conditions for security of MOE programs.
In Section 8 we show that a MOE program is secure against a PPT adversary
if and only it is secure against a symbolic adversary. Finally, in Section 9 we
conclude the paper and discuss potential improvements and future applications
of the methodology that we have developed.

2 Background and Related Work

Probably the earliest work on using symbolic methods for cryptographic proofs of
security protocols in the face of adaptive adversarys is that of Backes, Pfitzmann,
and Waidner beginning in [3], in which the underlying encryption primitives
are defined in a cryptographic library, and the adversary is a full Dolev-Yao
adversary that interacts with principals over a network it completely controls.
In later work Micciancio and Panjwani [20] prove a computational soundness
and completeness theorem for adaptive adversaries that applies to any CPA
encryption scheme. However these works used the free equational theory, and so
were not useful for algorithms constructed using cryptographic primitives, since
this generally requires the modeling of non-trivial equational theories.

More recent work has addressed computational soundness and completeness
of symbolic security in different equational theories, but in general this work has
only led to results for weaker, e.g. passive adversaries. One notable exception is
the work of Kremer and Mazaré [17], which addresses the soundness of static
equivalence, a symbolic concept used to express indistinguishability properties,
in the face of an adaptive adversary. However, this does not allow arbitrary input
from the adversary; instead the adversary is restricted to adaptively choosing
from a set of protocol executions with which it interacts passively. This is because
the soundness results require that the input to the protocol obey certain typing
restrictions, which an adversary will not necessarily follow.

There has also been a substantial body of work that focuses explicitly on
modes of encryption. Gagné et. al [13] have developed a Hoare logic for proving
semantic security of block cipher modes of encryption, and a program imple-
menting the logic than can be used to automatically prove their security. How-
ever, their work concentrates on heuristically driven theorem proving techniques
rather than evaluating symbolic security conditions. We also note the work of
Bard [4], who considers circumstances under which security for modes of en-
cryption can be reduced to a collision-freeness property. Although [4] does not
address symbolic security, our approach to deriving collision-freeness criteria se-
curity owes much to it. The work of Malezomoff et al. [19] and Hoang et al. [14]
is probably the closest to that in this paper. They prove messagewise adaptive
chosen plaintext security of modes of encryption block ciphers [19] and authen-
ticated modes of encryption using block ciphers with tweaks [14] by defining
a set of symbolic conditions checked on automatically generated modes. These
conditions are proved complete; however no guarantee is given that all secure
modes satisfy them. Our own results on symbolic conditions can be thought of
as an extension of the criteria [19] to sound and complete criteria for security
against an R -wise chosen plaintext adaptive adversary.

Another approach to which ours is closely related is Carmer and Rosulek’s
Linicrypt model [10], which is used to reason about algorithms that involve
hash functions or block ciphers, and additive group operations, but in which the
adversary is unable to compute the hash functions/block ciphers itself. This has
applications to a number of types of algorithms, including block cipher modes of
encryption, one-time lightweight signature schemes, and garbled circuits. Both
our work and [10] follow the procedure of dividing the symbolic program into an
adversarial program and an oracle program.

Although the general Linicrypt model is designed to allow adversarial input,
the work in [10] limits itself to input-free Linicrypt programs; however the ad-
versary is allowed to choose among a fixed set of input-free Linicrypt programs
to run, similar to the case of [17]. In this paper we do not attempt to achieve
the same breadth as in Linicrypt, concentrating instead on reasoning about a
powerful adversary in the context of a specific problem. However we believe the
scope of our results can be extended in future work.

3 Symbolic Preliminaries

A signature is a finite set of function symbols Σ of different arities. An order-
sorted signature is a signature together with a finite poset of sorts (S,≤), such
that each function symbol and each argument of a function symbol is assigned
a sort. We assume an S-sorted family X = {Xs}s∈S of disjoint countably infinite
variable sets Xs. We write TΣ(X) and TΣ for the corresponding set of all possible
terms and ground terms. TΣ(X) and TΣ are referred to as term algebras.

We write Var(t) and Sym(t) for the set of variables (respectively function
symbols) present in a term t. A position is either Λ or a sequence of positive
integers i1.ik. If t is a term and p is a position, we say that the subterm of t
at p, denoted by t|p, is t if p = Λ, and, if p = q.r and t|q = f(s1, . . . , sr, . . . , sk),
then t|p = sr, and t[u]p is the result of replacing t|p by u in t. If t|p is defined, we
say p is a position of t, and if t|p is (respectively, is not) a variable, we say that
p is a variable (respectively, non-variable) position of t. The set of positions of
a term t is written Pos(t), and the set of non-variable positions PosΣ(t). Thus,
if t = f(x, g(x, y)), then Pos(t) = {Λ, 1, 2, 2.1, 2.2}, t|Λ = f(x, g(x, y)), t|1 = x,
t|2 = g(x, y), t|2.1 = x, and t|2.2 = y. In addition, t[z]2 = f(x, z).

A Σ-equation is a pair t = t′. A set E of Σ-equations induces a congruence
relation =E on terms t, t′ ∈ TΣ(X), so that t =E t′ if and only if t can be made
equal to t′ via applications of equations from E. An equational theory is pair
(Σ,E), where Σ is an order-sorted signature and E a set of Σ-equations. We
will refer to a term algebra TΣ(X) together with an equational theory (Σ,E) as
(TΣ(X), E). Continuing our example above, suppose that Σ = {f/2, g/2, 0/0},
and E = {f(x, g(x, y)) = 0}. Then g(f(g(z, z), g((g(z, z), w)), v) =E g(0, v), by
setting x = g(z, z) and y = v in the equation f(x, g(x, y)) = 0.

A substitution σ is a sort-preserving mapping from X to TΣ(X) that is the
identity on all but a finite subset of X known as the domain of σ. Substitutions
are homomorphically extended to TΣ(X). Application of σ to a term t is denoted
by σt, and its restriction to a set of variables V is σ|V . The composition of two
substitutions is (σθ)X = σ(θX) for X ∈ X . A substitution σ is an E-unifier of a
system of equations S = {. . . , si =? ti. . . .}, if σsi =E σti for every si =? tj ∈ S.
Thus, consider the equation S = {g((g(z1, z2), g(z3, w)), v) =? 0} in the algebra
(Σ,E) described in the previous paragraph. Then σ : z2 7→ z1, σ : z3 7→ g(z1, z1),
is a unifier of S modulo E.

We will be interested in the algebra consisting of a number of free symbols
that obey no equational theory, plus an exclusive-or operator ⊕ and a null op-
erator 0. The ⊕ operator is associative and commutative and satisfies X⊕0 = 0
and X⊕X = 0. Equality of two terms modulo this theory is equivalent to equal-
ity under the theory (R⊕] AC) where AC is the associative and commutative
rules for ⊕, and R⊕ is a set of rewrite rules, {X ⊕ 0 → X, X ⊕ X → 0} ori-
ented from left to right. A rewrite rule ` → r is applied to a term t by finding
a position p of t such that t|p = σ` modulo AC for some substitution σ, and
replacing t by t[σr]p. Thus 0 ⊕ a ⊕ b can be reduced to a ⊕ b by noting that
0 ⊕ a ⊕ b = (0 ⊕ a) ⊕ b = σ` ⊕ b modulo AC, where ` is the left-hand side
of X ⊕ 0 → X, and σX = a. In addition, every term t reduces after a finite

number of steps to a normal form ↓R⊕,ACt to which no further rewrite rules can
be applied, and this normal form is unique up to AC-equivalence.

4 Symbolic and Computational Models of Cryptographic
Operations

In this section we present three different ways of modeling cryptographic oper-
ations: the first using symbolic algebras, the second using computational alge-
bras that implement symbolic operations as cryptographic ones, and the third
the standard computational model used in cryptography. We also give relevant
soundness and completeness results from the literature.

4.1 Symbolic Algebra Representation of Cryptographic Operations

A symbolic cryptographic algebra is a sorted term algebra (TΣ(X), E) augmented
with a quantifier ν. A bound variable ν.X denotes a random variable in the
cryptographic theory. No substitutions may be made to bound variables. Thus,
a bound variable behaves identically to a free constant, except that there are a
countably infinite number of them. We say that a term is closed if all its variables
are bound. Thus, νX.νY.f(g(X,Y)) is closed, while νX.f(g(X,Y)) is not. We
let FV ar(t) denote the free variables of t.

Such bound variables are often referred to as names, a terminology that comes
from the applied pi calculus [1], but often used independently of it. We will refer
to them as random names, to avoid confusion with identifiers of principals.

We will be interested in security properties that can be expressed in terms of
sequences of messages created and/or observed by an adversary. Such sequences
are expressed as frames in the symbolic algebra. These are defined below.

Definition 1. Let (TΣ(X), E) be a term algebra with quantifier ν. A frame is
a set of unquantified variables {x1, . . . , xn} together with a substitution φ on
TΣ(X) with domain x1, . . . , xn. We will refer to a frame simply by φ when we
can avoid confusion. and often refer to φ as [φx1, . . . , φxn],

A frame represents a sequence of messages sent and received by partici-
pants in a protocol. Thus, a principal sends a message at step i by computing
a substitution to Xi. For example, suppose that A sends a message νr.r to
B, B returns νs.(r ⊕ s), and A returns s. Then the corresponding frame is
φ[X1, X2, X3] = νr.νs.[r, r ⊕ s, s],

There is generally more than one way of computing a substitution. For ex-
ample, in the exchange above, B computes s by choosing a random nonce. A
however computes s indirectly by first computing r, waiting until she receives
r⊕s, and computing r⊕r⊕s =R⊕,AC s. We make this precise via the definition
of substitution programs below.

Definition 2. Let (TΣ(X), E) be a term algebra, and t1, . . . , tn be elements of
TΣ(X). A substitution program Θ : x1, . . . , xn 7→ t1, . . . , tn, is a program such
that, if Θx = t, then Θ(x|p.r) is computed before Θ(x|p).

A substitution program is computable by a principal if it can be produced
by applying operations available to that principal to terms it has previously
received or produced. Thus, in the exchange between A and B given right before
Definition 2, s is not computable by A until it has received r⊕s. We will make this
more formal later on when we introduce Mode of Encryption (MOE) programs.

4.2 Computational Algebra Semantics

In this section we present the concrete computational algebra semantics for sym-
bolic cryptographic algebras from [17].

Definition 3. Given a cryptographic term algebra (TΣ(X), E) with sorts S, the
associated computational algebra is an algebra A(X) consisting of

– for each sort s, a non-empty set of bitstrings JsKA, such that if s2 ≤ s1, then
Js1K ⊆ Js2K;

– for each f ∈ Σ of sort s with arity k and arguments of sort s1 through sk, a
function JfKA : Js1KA × . . .× JskKA → JsKA.

– an effective procedure to draw random elements from JsKA, denoted by X
A←−

JsKA;
– A countable set of sorted variables X .

We will refer to A(X) simply as a computational algebra when we can avoid
confusion.

Substitutions and substitution programs are defined for computational alge-
bras analogously to the case of symbolic algebras. Gven a substitution program
Θ = {x1 7→ t1, . . . xn 7→ tn}, a concrete program JθKA is computed as follows:

1. For each random name a of sort s appearing in t1, . . . , tn, draw a value

â
R←− JsKA.

2. For each constant c appearing in t1, . . . , tn, ĉ = c.
3. For r = f(r1, . . . , rk) appearing in t1, . . . , tn, r̂ = f(r̂1, . . . , r̂k).
4. For each unbound variable of sort s X̂ = X, and is also of sort s.
5. Return the value Θ̂ = {x1 7→ t̂1, . . . , xn 7→ t̂n).

We call Θ̂ the output of Θ.
We next introduce constructs that will be needed to reason about asymp-

totic security. We consider families of computational algebras (Aη) indexed by a
complexity parameter η. The concrete semantics of a closed frame φ is a family
of distributions over concrete frames JφKAη . We will use the terminology JφKη
when we can avoid confusion, and define φ̂η to be the output of JφKη.

As an example, consider the term algebra (TΣ(X), (⊕, AC) where Σ =
{⊕/2, 0/0}. Consider the term νx.νy.(x⊕y⊕0). The term in the concrete seman-
tics is a program that, for each value of the security parameter η, chooses two
length η bitstrings uniformly at random and returns the the bitwise exclusive-or
of these and 0η.

4.3 PPT Functions

In this section we develop a theory of PPT functions in a way analogous to the
theory of computational algebras.

We consider programs P computable by a probabilistic Turing machine with
an input tape x, a random input tape r, and one output tape. We denote this
program by νr1 . . . νrn.P (x1, . . . , xn, r1, . . . , rm), where the xi are logical vari-
ables standing for strings taken from x, and the ri are random names standing
for strings taken from r. When we can avoid confusion, we denote by P by
P (x1, . . . , xn). Consider a family of probabilistic programs {Pη(x1, . . . , xn)|η ∈
Z+} such that the time to compute Pη is a bounded by a polynomial function
of η. We say that P = {Pη(x1, . . . , xn)|η ∈ Z+} is a PPT function of x1, . . . , xn.
Given a countable set of variables X we define P(X) to be the set of PPT func-
tions defined on variables from X . Terms from a computational algebra A may
be embedded in the set of PPT functions in the obvious way. As in the other
models, we say that P is closed if all variables are bound.

We are now ready to define PPT analogues of substitution and unification.

Definition 4. Let x1, . . . , xn be variables in X . A PPT substitution program
Θ on x1, . . . , xn is a map that sends each xi to a PPT function Qi and is the
identity on all other variables. We let Θ̂ηx denote an output of the program Θx.

We now define unification as follows:

Definition 5. A PPT unification problem S = {. . . , si =? ti, . . . } is a system of
equations where si and ti are PPT functions. We say that a substitution program
Θ unifies S with probability pη if P (Θ̂η ŝiη = Θ̂η t̂iη) = pη.

For example, let S = {x =? c}, be a unification problem, where cη is a
function that returns a uniformly random string of bets of length η. Let dη
be a function that first samples cη and then performs one of two actions. With

probability 1/2 it returns ĉη; otherwise it ignores ĉη and returns 0η. Thus Θ̂xη =

d̂η is a solution to S with probability pη = 2−1 + 2−η−1. That is, it is the sum
of the probability 2−1 that dη returns ĉη and the probability 2−η−1 that ĉη is
ignored but is equal to 0.

We will often need to convert unification problems to equivalent ones. We
define equivalence in the PPT model below.

Definition 6. Let S and S′ be two PPT unification problems. We say that they
are equivalent if they have the same free variables and, for all substitution pro-

grams Θ with domain FV ar(S), Θ̂η is a unifier of Ŝη if and only if (̂Θ)η is a

unifier of Ŝ′η.

Finally, we note that in this section we have introduced different notations
to describe the different models. This us useful when we need to distinguish
between them, but it can become cumbersome in the cases in which we prove
the same result for two or more of the theories in the same theorem. Thus, when
we can avoid confusion, we will use the symbolic notation and simply refer to
the relevant model (symbolic, computational algebra, or PPT).

5 Computational Soundness and Completeness Results
for Theories of Interest

In this section we consider theories for block ciphers and exclusive-or, and prove
relevant results on soundness and completeness.

We make use of the following definition [5].

Definition 7. Let (T , E) be a cryptographic term algebra, and (Aη) a family of
computational algebras. We say (T , E) is

– =E-sound if for every pair of closed terms t1, t2 ∈ T of the same sort,

t1 =E t2 implies that P [e1, e2
R←− Jt1, t2KAη : e1 =Aη e2] is overwhelming.

– =E-faithful if for every pair of closed terms t1, t2 ∈ T of the same sort,

t1 6=E t2 implies that P [e1, e2
R←− Jt1, t2KAη : e1 =Aη e2] is negligible.

5.1 Block Ciphers

The symbolic model in this case consists consists of a free term algebra (TΣ∪{f}, ∅),
where all symbols and their arguments belong to a single sort block and f is a
unary function symbol.

In the computational model, we let f = Fk where F is a strong pseudorandom
permutation, as defined in [16].

Definition 8. Let F be a function {0, 1}∗ × {0, 1}∗ → {0, 1}∗, and denote the
function F (k,) as Fk. Let k ← {0, 1}η be chosen uniformly at random, and G
be chosen uniformly at random from the set of permutations on η-bit strings.We
say that F is a strong pseudorandom permutation if Fk is a permutation of
{0, 1}η, and for all probabilistic polynomial-time adversaries A, the expression

|Pr[AFk(·),F
−1
k (·)(1η)− Pr[AG(·),G−1(·)(1η) = 1]|

is a negligible function of η.

Suppose that a computational algebra semantics is defined for (TΣ(X), E).
Then the computational algebra semantics for (TΣ∪{f}(X), E) is defined by map-
ping f to Fk for some k chosen uniformly at random.

Lemma 1 Suppose that (TΣ , E) is =E sound (respectively, = E-faithful). Then
so is (TΣ,f , E).

Proof. The proof follows from the fact that f(t) =E f(s) if and only if t =E s.

5.2 Exclusive-Or

In this section we consider the ⊕ algebra (TΣ , E⊕), where Σ consists of the
symbols ⊕/2, 0/0 and E = R⊕] AC. There is a single sort, block. In the com-
putational algebra Aη, ⊕ is mapped to the bitwise exclusive-or operation on
η-length bitstrings, and 0 is mapped to the bitstring 0η.

Lemma 2 The ⊕ algebra is =E⊕-faithful and =E⊕-sound.

Proof. In Appendix.

6 Mode of Encryption (MOE) Programs

In this section we formalize modes of encryption as programs executed by an
adversary and an oracle and define security properties of MOE programs.

6.1 Definition of MOE Program

A MOE program is a program jointly executed by an adversary and an oracle
in which the adversary sends messages and the oracle uses them to instantiate
variables in MOE terms that represent encrypted blocks. In the symbolic and
computational algebra models, the messages sent by the adversary are terms in
TΣ(X) that can be computed from terms the adversary has already received and
from random names generated by the adversary. In the PPT case the adversary’s
messages can be any term computable by a probabilistic polynomial time Turing
machine from the messages the adversary has already received.

We give definitions of MOE programs in the symbolic model. Definitions in
the computational algebra and PPT models can be straightforwardly derived
from these. We describe the oracle’s program as follows. The oracle can perform
two types of actions: it can receive a message from the adversary, or it can
compute and send a MOE term.

Definition 9. The MOE program actions engaged in by the oracle are the fol-
lowing, where the random name c is a session identifier, identifying blocks that
belong to the same message.

1. Rcv START(c). The oracle receives a START message from the adversary,
indicating that it is going to start sending a sequence of plaintext blocks.

2. Rcv STOP(c). The oracle receives a STOP message from the adversary, in-
dicating that it has stopped sending plaintext blocks.

3. Rcv BLOCK(c, x). The oracle receives a block to be encrypted from the ad-
versary. This is represented by a logical variable x, which will be instantiated
to the message sent by the adversary as the program executes.

4. Send(c,m). The oracle sends a MOE term m ∈ TΣ(X) whose unbound vari-
ables are variables x such that Rcv BLOCK(c, x) occurs before Send(c,m).

The oracle’s choice of which it does and the MOE term it sends is entirely
determined by the type of messages it has received and the value of c. We call
the specification of the point at which Send(c,m) occurs the schedule of the
program, denoted by R. We have already described two schedules: the message-
wise schedule, in which ciphertext blocks are not sent until all plaintext blocks
have been received (that is, after the Rcv STOP(c) action), and the blockwise
schedule, in which a ciphertext block as sent as soon as it is computed.

The oracle program can also return more than one block per plaintext block
from the adversary. However, we assume that the oracle, like the adversary,
can only preform PPT computations. Thus, the number of blocks returned by
the oracle, and the number of computations required to compute those blocks,
should be bounded by a polynomial function of the security parameter η.

A MOE program is executed by the adversary as follows. The adversary
first sends a START(c) message. At any later point, after that adversary has
received all messages expected from the oracle, it can send another message,
which can be another START(c′) using a fresh value c′, or, if it has previously
sent START(c) but has not sent STOP(c), it can send a BLOCK(c, x) message
or a STOP(c) message. Thus the adversary is able to interleave the encryption of
several different messages by interleaving messages labeled with different unique
identifiers. The adversary can also terminate the program at any time.

We now define MOE frames.

Definition 10. Let G be a trace of a MOE program. We let G′ be the seqence
obtained by removing all START and STOP messages. We define the MOE
frame associated to G, or φG, to be the frame defined by φXi 7→ t if the i-th
action of G′ is Rcv BLOCK(t) or Send(t).

Example 1. We introduce a running example. In CBC mode the MOE trace of
the encryption of a two-block message in the presence of a a blockwise-adaptive
adversary that sends its first message after receiving the IV is

νcνr.[Rcv START(c), Send(c, r),Rcv BLOCK(c, x1),

Send(c, f(x1 ⊕ r)),Rcv BLOCK(c, x2), Send(c, f(x2 ⊕ f(x1 ⊕ r))),Rcv STOP(c)]

The corresponding frame is νr[r, x1, f(x1 ⊕ νr), x2, f(x2 ⊕ f(x1 ⊕ r))].

We now describe the term algebra we will use.

Definition 11. Let Σ = {0/0,⊕/2, f} where {f} stands for block cipher eval-
uation with Fk, and let E = R⊕] AC. We call (TΣ(X), E) the ⊕-Mode of
Encryption (⊕-MOE) algebra. We call MOE programs defined in the ⊕-MOE
algebra ⊕-MOE programs.

Example 2. We give two examples of modes of encryption defined using the ⊕-
MOE algebra. Let xi be a variable standing for the i’th block of plaintext, and
let Ci stand for the i’th block of ciphertext. Then Cipher Block Chaining (CBC)
is defined by C0 = ν.r and Ci = f(Ci−1 ⊕ xi) for i > 0, and Cipher Feedback
Mode (CFB) is defined by C0 = ν.r and Ci = f(Ci−1)⊕ xi for i > 0.

Proposition 1. The ⊕-MOE algebra is is =E-faithful and =E-sound.

Proof. From the =E-faithfulness and =E soundness of the exclusive-or theory,
and Lemma 1.

6.2 Cryptographic Security Definitions

In the following, we make the assumption that the function F is a strong pseu-
dorandom function, and let f = Fk for randomly chosen k. We assume that
plaintext blocks and ciphertext blocks and keys are of length η, where η is the
security parameter.

Definition 12. A MOE program is admissable if

1. The oracle computes one new f -rooted term or one new random name νr for
each new block of ciphertext. We call such a term appearing in a ciphertext
block the fresh term of that block.

2. Each block computed by the oracle is of the form h or h ⊕ t, where h is
the fresh term, the adversary is able to compute t, and h is not used in the
computation of t.

Example 3. We note that if each block of ciphertext produced by a MOE pro-
gram Π is either hi or hi ⊕ Pi where hi is a fresh term and Pi is a plaintext
block, then Π is admissable. Thus CBC and CFB are both admissable modes of
encryption expressible in the ⊕-MOE algebra.

Some other admissable modes of encryption in the ⊕-MOE algebra are OFB
[11], PCBC [11], and infinite garble extension [9].

We now define a notion of R-chosen-plaintext adaptive security for a MOE
program with policy R that is analogous to the Rogaway’s IND$-CPA security
[21]: but uses an adversarial model similar to Joux’s et al.’s BACPA security [15].

Definition 13. We define a MOE game over a MOE program Π with schedule
R, security parameter η, and strong pseudorandom function F as follows. The
environment chooses k uniformly at random, and lets f = Fk¿

The adversary interacts with one of two oracles, Π(·) and $(·) by submitting
START, STOP and BLOCK messages and receiving responses from the oracle
(if expected) as if interacting with the MOE program Π. The Π(·) oracle re-
sponds according to the MOE program Π, while the $(·) oracle returns randomly
generated streams of the same length and returned at the same time as those
returned by the Π(·) oracle.

At any point the adversary may halt the game guess which oracle it is in-
teracting with. The output of the game is 1 if it has guessed correctly. We say
that Π is IND$-RCPA secure if the following is negligible in η for all probabilistic
polynomial time algorithms A:∣∣∣Prk←{0,1}nη [AΠ(·) = 1

]
− Pr

[
A$(·) = 1

]∣∣∣
We next define a security condition equivalent to IND$-RCPA that is defined

in terms of a unification problem for admissable MOE programs.

Definition 14. Consider a game identical to that in Definition 13, except that
its output is 1 if any two blocks returned by the oracle are have identical fresh
terms. We say that Π is IND$-R-UNIF secure if the following is negligible in η
for all probabilistic polynomial time algorithms A′:

∣∣∣Prf←Fneta [A′Π(·)
= 1
]∣∣∣

Proposition 2. An admissible MOE program Π is IND$-RCPA secure if and
only if it IND$-R-UNIF secure.

Proof. See the Appendix.

This result makes comparing the real and symbolic game much easier than
is normally the case. Instead of trying to prove indistinguishability directly, we
need only determine whether or not the adversary can compute a non-negligible
unifier of two terms sent by the oracle. This means we can avoid such issues
as soundness and completeness of properties such as static equivalence [1], and
consider only =E soundness and =E-faithfulness.

We now define computable substitutions on MOE frames.

Definition 15. Let φ be a MOE frame from a MOE game G. We say that a
PPT (respectively, computational algebra) substitution program Θ is computable
where xi is the variable standing for the i’the plaintext block sent by the adver-
sary, can be computed by the adversary using information it has received before
sending xi. We say that a symbolic unifier Θ is a computable symbolic unifica-
tion program if for each such xi, Θxi can be computed using a combination of
1) random names that do not appear in the MOE frame, 2) messages that were
sent by the oracle previously to the sending of xi, 3) applications of any operator
deemed to be computable by the adversary, in particular ⊕.

Example 4. Consider the frame from Example 1: νr[r, x1, f(x1 ⊕ r), x2, f(x2 ⊕
f(x1 ⊕ r))]. We note that Θ1 : x1 7→ r, x2 7→ f(x1 ⊕ r) is computable, and thus
cipher block chaining is not IND$-RCPA-secure when R is the blockwise schedule.
But Θ2 : x1 7→ f(x1⊕ r) is not computable, since the adversary has not received
f(x1 ⊕ r) by the time it sends x1.

Lemma 3 An ⊕-MOE frame substitution is computable in the computational
algebra model if and only if it is computable in the symbolic model.

Proof. This is a direct consequence of the =E-soundness and faithfulness of the
⊕ algebra and the definition of computability in both models.

7 Computing Unifiers for ⊕-MOE Programs

The unification programs we produce must be computable by the adversary. This
means it must be possible to produce a unifier without the use of f -rooted terms
or oracle-produced random names that it has not yet seen. In order to determine
whether this is possible we adapt the Baader-Schulz unification procedure [2].
This is a procedure for solving a unification problem for a combination of disjoint
theories E1 and E2 for which unification algorithms are already known. In the
first part of the algorithm, the original problem is divided into an E1 problem
and an E2 problem. There is a unifier for the original problem if and only there
are solutions for the E1 and E2 problems that satisfy separate constraints that

obey certain consistency criteria. These constraints are closely related to the
constraints on our unification programs.

Our strategy will be as follows. We wish to find a symbolic criterion for
the existence of a computable unifier arising from an ⊕-MOE frame. We use
a variant of the Baader-Schulz procedure to show that the unification problem
can be used to derive two unification problems, one for the adversary, and one
for the oracle, where the oracle problem is in solved form, and the adversarial
problem is defined over the exclusive-or theory. We show that the PPT unifier
must satisfy a condition similar to the linear constant restriction used in Baader-
Schulz. We then use this result to derive a symbolic condition on the unification
problem that is asymptotically sound and complete with respect to IND$-R-UNIF
security.

7.1 Computing Equations for ⊕-MOE Unification

Let S(s1, s2) = {s1 =? s2} (denoted as S when we can avoid confusion) where s1
and s2 are sent by the oracle in a MOE frame φ. We begin by converting S into
a derived problem S2(s1, s2) so that each equation in S2 is either a pure equation
in the exclusive-or theory or describes a computation done by the oracle. This is
done by replacing terms with new variables. In the following, we use the notation
yt to denote a variable that replaces a term t.

For any term t ∈ TΣ(X), we define pure(t) recursively as follows:

pure(x) = x; pure(r) = zr; pure(f(t)) = zf(t); pure(g ⊕ t) = pure(g)⊕ pure(t)

where x is a variable, r is a random name, and g is a variable, random name, or
f -rooted term. We now define S2 as follows:

1. If t = f(t′) is an f -rooted subterm of s1 or s2, add zf(t
′) =? f(zt

′
) to S2 and

also add zt
′

=? pure(t′) to S2 if t′ is ⊕-rooted.
2. If r is a random name, add zr = r to S2.
3. Add zs1 =? zs1 to S2.

Example 5. Consider the ⊕-MOE frame νr1.[r1, x1, f(x1⊕r1), x2, f(x2⊕f(x1⊕
r1))], and the problem and suppose we want to see if the adversary can solve
S(f(x1 ⊕ r1), f(x2 ⊕ f(x1 ⊕ r1))). We convert it to the problem S2 of the form

yr1 =? r1; wx1⊕r1 =? x1 ⊕ yr1 ;
yf(x1⊕r1) =? f(wf(x1⊕r1)) wx2⊕f(x1⊕r1) =? x2 ⊕ yf(x1⊕r1)

yf(x1⊕r1) =? yf(x2⊕f(x1⊕r1))

We characterize the variables of S2 as follows. If x is a variable that originally
appeared in S, then it stands for a term created by the adversary, and we call
it an adversarial variable. If y = yf(t) or yc, where c is a random name, we call
y an f -variable. If w = wt1⊕...⊕tn where n > 1, we call w an ⊕ variable. We will
use the convention that the letter x stands for an adversarial variable, y stands
for an f -variable, w stands for an ⊕-variable, and z may stand for any variable.

7.2 Introducing Partitions and Splitting S2

Following the Baader-Schultz approach, we now introduce partitions of variables,
where, if Θ is a substitution program with domain D, then P ⊂ D × D is the
partition enforced by Θ if (z1, z2) ∈ P if and only if Θz1 = Θz2. The idea is
that each symbolic unifier must enforce some partition of the variables, even if
it is only the empty one. Thus, if we can show if that no unifier exists for any
partition, then no unifier exists at all. We now show how to introduce a partition
of FV ar(S2) and how it can be used to split S2 into two problems, one for the
adversary, and one for the oracle.

We define the oracle’s problem first.

Definition 16. Given a problem S(s1 =? s2) arising from an ⊕-MOE frame φ,
and the derived problem S2, we define the oracle’s substitution program arising
from S to be S2 \ {ys1 =? ys2}.

We now define the adversary’s problem.

Definition 17. Suppose that P is a partition of the variables of S2. We let IP
to be the set of equations zt1 =? zt2 such that (zt1 , zt2) ∈ P . We let SA,P be

the set of all equations ↓R⊕,AC(
︷︸︸︷
zi ⊕

︷︸︸︷
zj) =? 0 such that zi =? zj ∈ IP , where︷︸︸︷

z = z if z is an adversarial or f -variable, and
︷︸︸︷
z = pure(t) if z = wt where

wt is an ⊕-variable.

Lemma 4 SA,P ∪SO is equivalent to IP ∪SO. Moreover, FV ar(SA,P) contains
only adversarial and f -variables, and Sym(SA,P) ⊆ {⊕, 0}.

Proof. The first statement follows from the fact that for any t1, t2 such that

zt1 =? zt2 ∈ IP , the equation (
︷︸︸︷
zt1 ⊕

︷︸︸︷
zt2) =? 0 may be transformed into

zt1 ⊕ zt2 and vice versa by use of SO. The rest follows from the construction of
SA,P .

Example 6. Consider the derived problem S2 obtained in Example 5. We dentify
wx1⊕r1 and wx2⊕f(x1⊕r1), which is indeed necessary in order to solve yf(x1⊕r1) =?

yf(x2⊕f(x1⊕r1)), thus obtaining IP = {yf(x1⊕r1) =? yf(x2⊕f(x1⊕r1)), wx1⊕r1 =?

wx2⊕f(x1⊕r1)}. We have SO =

yr1 =?r1 wx1⊕r1 =?x1 ⊕ yr1

yf(x1⊕r1) =?f(wf(x1⊕r1)) wx2⊕f(x1⊕r1) =?x2 ⊕ yf(x1⊕r1)

yf(x1⊕r1) =?yf(x2⊕f(x1⊕r1) x1 ⊕ yr1 =?x2 ⊕ yf(x2⊕f(x1⊕r1))

We then use IP and SO to obtain SA,P =

{yf(x1⊕r1) =? yf(x2⊕f(x1⊕r1), x1 ⊕ yr1 =? x2 ⊕ yf(x2⊕f(x1⊕r1))}

7.3 Computing the Partial Order Restriction

Any computable substitution program on the variables in S2 is constrained by
the properties of the oracle and the adversary. First, the program is constrained
by the oracle’s program, which is fixed by the definition of the frame. Secondly,
the only f -rooted terms and random names computed by the oracle that the
adversary can use are those it has previously seen. We also assume that it the
adversary sends xi before xj , then for any σ computed by the adversary, σxi is
computed before σxj . This is actually not strictly true. As long as it has not
sent either term yet, it could even compute σxj first and use this to compute
σxi, However, this is equivalent to the adversary computing some program Q
first and then using the output of Q to compute first σxi and then σxj . Thus,
without loss of generality we may assume that σxi is computed before σxj .

We begin by defining the two partial orders below.

Definition 18. We define the relation z1 <O z2 on the variables of S2 by 1)
x <O z

t if the adversarial variable x is a subterm of t, and 2) for any two oracle
variables zt1 and zt1 , zt1 <O z

t2 if t1 is a subterm of t2.

We define the relation <A on variables of S2 by 1) yt <A x if x is an
adversarial variable, and t is the fresh term in a term sent by the oracle to
the adversary before x is sent by the adversary to the oracle, and 2) for any
two adversarial variables xi and xj, xi <A xj if and only if xi is sent by the
adversary to the oracle before xj.

Example 7. Consider the ⊕-MOE frame from Example 1:

[r1, x1, f(x1 ⊕ r1), x2, f(x2 ⊕ f(x1 ⊕ r1))]

with derived problem S2 as in Example 5. Then for SA we have

yr1 <A x1, y
r1 <A x2, y

f(x1⊕r1) <A x2, x1 <A x2

and for SO, <O is the transitive closure of the following:

yr1 <O wx1⊕r1 x1 <O wx1⊕r1

x2 <O wx2⊕f(x1⊕r1) wx1⊕r1 <O yf(x1⊕r1)

yf(x1⊕r1) <O wx2⊕f(x1⊕r1) wx2⊕f(x1⊕r1) <O yf(x2⊕f(x1⊕r1)

Our plan will be to solve SA,P , and, if a unifier can be found that satisfies
the constraint imposed by <A,P , combine it with SO to obtain a unifier for S2.
However, we will need to guarantee that when these two separate unifiers are
combined, the result satisfies both sets of constraints. We do this by showing
that the combination of <A,P and <O is itself a partial order on the variables
of S2, so that the combined unifier contains no cycles.

7.4 Computing a Solved Form for SA,P

Here we describe a canonical form for SA,P , and show how to compute it. This
is used to determine if an ⊕-MOE unification problem has a solution or not.

Definition 19. Let S be an ⊕-MOE unification problem with derived problem
S2, and let P be a partition of FV ar(S2).For each y-variable yti ∈ S2, we define
EO,P (yti) to be the set of all f -variables ytj such that (yti , ytj) ∈ P . We then
define a choosing function π on the f -variables of S2 to be

1. If EO,P (yti) contains an f -variable ytj where tj is the fresh term in a term
sent by the oracle to the adversary, let πyti be the fresh term in the earliest
term sent by the oracle such that its fresh term is in EO,P (yti).

2. Else, pick an arbitrary ytj ∈ EO,P (yti) to be π(y) for all y ∈ EO,P (yti).

We then let πSA,P be the unification problem obtained by replacing each variable
yti appearing in SA,P with πyti

We note that πSA,P ∪ SO is equivalent to SA,P ∪ SO.

Example 8. Consider the problem SA,P from Example 7. In this case we have

EO,P (yf(x1⊕r1)) = {yf(x1⊕r1), yx2,f(x1⊕r1)}, and EO,P (yr
1

) = {yr1}. By default,
πyr1 = yr1 . For EO,P (yf(x1⊕r1)) both variables represent terms sent by the
oracle to the adversary, but the term f(x1 ⊕ r1) is sent first, so πyf(x1⊕r1) =
πyf(x2⊕f(x1⊕r1)) = yf(x1⊕r1). The unification problem πSA,P consists of the

equations x1 ⊕ yr1 =? x2 ⊕ yf(x1⊕r1), and yf(x1⊕yr1) =? yf(x2⊕yf(x1⊕r1)), so
πSA,P = {x1 ⊕ yr1 =? x2 ⊕ yf(x1⊕r1), 0 =? 0}.

We now show how, given a partition P , and a problem SA,P , we can use any
choosing function π on P to transform SA,P into a solved ⊕ unification problem
we call its ⊕-MOE solved form. This will be used to characterize the cases in
which the original problem S(s1, s2) is or is not solvable by the adversary.

Definition 20. Given πSA,P where π is a choosing function, we define the ⊕-
MOE solved form of M(πSA,P) as follows. First, we let πSA,P

′ be the system
of equations obtained by first writing each equation of πSA,P in the form

(

k−1∑
j=0

⊕αi,jxk−j) =? (

m∑
j=1

⊕βi,jytj)

where x1, . . . , xm are the adversarial variables in SA,P in the order in which they
are sent by the adversary, and yt1 . . . , ytm are the y-variables of πSA,P , and then
converting the problem to reduced row echelon form in the x-variables. Thus each
equation in πSA,P

′ is in one of the following forms:

1. 0 =? 0;
2. For each adversarial term xi, at most one equation of the form

xi ⊕ (
∑i−1
j=1⊕α′jxi−j) =?

∑n
j=1⊕β′i,jytj or ;

3.
∑n
j=1⊕β′i,jytj =? 0 where at least one β′i,j = 1.

In the ⊕-MOE solved form M(πSA,P), each equation containing an adversar-

ial variable is to the form xi =? (
∑i−1
j=1⊕α′jxi−j) ⊕ (

∑n
j=1⊕β′i,jyj), and the

tautological equations 0 =? 0 are removed.

Example 9. Consider the problem x1 ⊕ yr1 =? x2 ⊕ yf(x1⊕r1) from Example 8.
The MOE solved form of this problem is x2 =? x1 ⊕ yr1 ⊕ yf(x1⊕r1)

Definition 21. We say that a problem πSA,P is well-ordered if its ⊕-MOE

solved form consists of equations of the form xi =? (
∑i−1
j=1⊕α′jxi−j)⊕(

∑n
j=1⊕β′i,jyj) ∈

M(πSA,P) such that β′i,j 6= 0 implies that yj <A,P xi. We say that SA,P is well-
ordered if there is a choosing function π such that πSA,P is well-ordered.

Lemma 5 If there exists a choosing function π on P such that πSA,P is well-
ordered, then so is π′SA,P for any choosing function π′ on P .

Proof. This follows directly from the fact that choosing functions can differ only
for f -variables y such that there is no member yt of y’s equivalence class such
that t is sent by the oracle to the adversary..

Lemma 5 means that we do not need to check all choosing functions π to see
if there is a well-ordered πSA,P ; it is enough to pick an arbitrary one. Thus we
may assume that for each partition P , there is a single choosing function πP .

We now show how to construct a computable unifier for an ⊕-MOE problem
S, given that there is a partition P of the variables of S2 such SA,P is well-
ordered.

Lemma 6 The order <A,O on the variables of S2 defined as the transitive clo-
sure of <A ∪ <O) is suborder of a total order <`.

Proof. In the Appendix.

Definition 22. Given an ⊕-MOE unification problem S with derived problem
S2 with partition P of its variables such that SA,P is well-ordered, compute Ξ
on each non-adversarial variable zt ascending in the <`-order, where Ξzt = t.
Then compute ΘS,P on each adversarial variable x as follows, ascending in the
`-order.

1. If z = xi, where xi =? (
∑i−1
j=1⊕α′jxi−j)⊕ (

∑n
j=1⊕β′i,jΞytj) ∈M(πPSA,P),

then ΘS,P z = ((
∑i−1
j=1⊕α′jxi−j)⊕ (

∑n
j=1⊕β′i,jΞytj));

2. Else, if z = xi, where there is no xi =? (
∑i−1
j=1⊕α′jxi−j)⊕

∑n
j=1⊕β′i,jytj ∈

M(πPSA,P), then ΘS,Pxi = 0.

Proposition 3. Suppose that for a given ⊕-MOE problem S and partition P ,
the problem SA,P is well-ordered. Then ΘS,P is a computable solution program
in all three models.

Proof. In the Appendix.

8 Completeness of the Well-Orderedness Criterion

We are not interested only in the behavior of an adversary with respect to a
given frame, unification problem, and partition, but all computable ⊕-MOE
frames, problems, and problems arising from a given ⊕-MOE program. Given
that the number of partitions of a set asymptotically approaches an exponential
function of its size (see for example [8]), we need to rule out the case in which
the probability of the adversary succeeding overall is non-negligible, but the
probability of its succeeding with respect to any given frame is negligible. For
this we make use of a result of Bellare’s [6] on negligible functions, which says
that any (infinite) set of negligible functions is bounded by a negligible function.

We first prove completeness for a single ⊕-MOE frame.

Proposition 4. In the PPT and computational algebra models, given an ad-
missable ⊕-MOE program G, let φ be an ⊕-MOE frame and let Θ be a com-
putable substitution program whose domain is FV ar(φ). Suppose that the proba-
bility that there is an ⊕-MOE unification problem S(s1, s2) derived from φ such

that Θ̂s1η = Θ̂s1η is non-negligible. Then there is an ⊕-MOE unification prob-
lem S(s′1, s

′
2) derived from φ and a partition P of the variables of S2(s′1, s

′
2)

such that SA,P (s1, s2) is well-ordered. Likewise, in the symbolic model, if Θ is
a computable unifier of S(s1, s2), then there is a partition P of the variables of
S2(s1, s2) such that SA,P (s1, s2) is well-ordered.

Proof. In the Appendix.

We now give the full completeness result.

Theorem 7. An admissable ⊕-MOE program is IND$-RCPA-secure in all three
models and only if there is no ⊕-MOE frame φ with unification problem S(s1 =?

s2), with a partition P of the variables of S2(s1, s2) such that S(s1, s2)A,P is
well-ordered.

Proof. In the Appendix.

Example 10. We now show that two modes of encryption are IND$-RCPA secure:
CFB with the blockwise schedule, and CBC with a delayed schedule in which
the i’th cipher text is sent after the i+1st plaintext. The latter is due to Fouque
et al. [12], and known as delayed CBC (DCBC).

In the case of CFB, let hi and hj where i < j be the first pair of fresh terms
that the adversary is able to make equal with non-negligible probability. We
consider the case hi = f(hi−1⊕xi−1 and hj = f(hj−1⊕xj−1. Thus the adversary
needs to solve the equation xj−1 =? xi−1 ⊕ yhj−1 ⊕ yhi−1 . But xj−1 6< yj−1, so
this is only possible h` and hj are unified by the adversary. But this means that
h` and hi are unified by the adversary, thus contradicting our assumption. In
the case of DCBC, under the same assumptions, the adversary needs to solve
hi−1 ⊕ xi =? hj1 ⊕ xj before it has seen hj−1. This is impossible by the similar
argument to that for CFB.

:

9 Conclusion

In this paper we have identified a symbolic condition that is equivalent to a
computational notion of security of a class of modes of encryption: IND$-RCPA.
Here we consider some open problems and ways this work could be extended.

One problem that remains is efficient verification of the symbolic conditions.
The existence of a computable unifier can be checked by finding a most general
set of unifiers and checking if any has an instance convertible to a well-ordered
⊕-MOE normal form. This can be done by checking all the partitions that are
refinements of partitions imposed by the unifier, but more efficient solutions
may be possible. In addition, we note that we can model the R-UNIF game as
a protocol executed between the adversary and oracle. Thus, it may be possible
to apply a model-checker for cryptographic protocols to the problem, in which
case the symbolic constraints are enforced automatically. In that case our result
can be used as a straightforward soundness and completeness guarantee.

The problem remains of verifying our conditions for all possible ⊕-MOE
frames. This appears to be made more tractable by the fact that for reasons of
efficiency modes of encryption are defined recursively. However, the complexity
of the security problems for recursively defined protocols using exclusive-or is not
that well understood. In [18] Küsters and Truderung consider the decidability
of the secrecy problem (related, although not identical, to our security crite-
rion) for recursive protocols using a theory that includes encryption/decryption,
cryptographic hashes, concatenation/deconcatenation, and exclusive-or. Secrecy
is shown to be undecidable in the bounded session model, and only becomes
decidable for ⊕-linear protocols; however such a restriction is not practical for
most modes of encryption.But the undecidability proof makes extensive use of
the concatenation operator, as well as the ⊕ and hash operators. If the concate-
nation operator is removed, then the decidability result might change.

We also note that these results may extend, not only to other algorithms in
the Linicrypt model, but to other theories, including some that do not satisfy
=E-soundness and faithfulness. One example is the increment by one function inc
which is used to implement the blockwise adaptive secure counter mode. The inc
function, when combined with ⊕ is not =E-sound or faithful, since inc(r) = r⊕1
with probability 1/2 for random r. Malozemoff at al. deal with this problem in
[19] by restricting themselves to cases where this ambiguity can be avoided,
that is a subset of terms for which the theory combining ⊕ and inc is E-sound
and complete. Looking further, one could think of an analysis with three types of
outcomes: when =E-soundness and faithfulness hold, wither provably insecure or
provably insecure depending on whether symbolic security holds, and unknown
when =E-soundness and faithfulness fail to hold.

In summary, our results open up a new connection between symbolic meth-
ods for security of cryptographic algorithms and research in unification theory.
Unification theory has proved a powerful tool in the verification of cryptographic
protocols, and the interaction between the two has been an impetus to develop-
ing new unification techniques for this application. We believe that the same can
be true for automatic generation and verification of cryptographic algorithms.

Acknowledgments

The author would like to thank ONR Code 31 for funding this work. She also
thanks Jonathan Katz and Christopher Lynch for helpful comments.

References

1. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, London, UK, January 17-
19, 2001, pages 104–115, 2001.

2. Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equational
theories: Combining decision procedures. J. Symb. Comput., 21(2):211–243, 1996.

3. Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof
of the needham-schroeder-lowe public-key protocol. In FST TCS 2003: Founda-
tions of Software Technology and Theoretical Computer Science, 23rd Conference,
Mumbai, India, December 15-17, 2003, Proceedings, pages 1–12, 2003.

4. Gregory V. Bard. Blockwise-adaptive chosen-plaintext attack and online modes
of encryption. In Cryptography and Coding, 11th IMA International Conference,
Cirencester, UK, December 18-20, 2007, Proceedings, pages 129–151, 2007.

5. Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound
implementations of equational theories against passive adversaries. In Automata,
Languages and Programming, pages 652–663. Springer, 2005.

6. Mihir Bellare. A note on negligible functions. J. Cryptology, 15(4):271–284, 2002.

7. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated en-
cryption in SSH: provably fixing the SSH binary packet protocol. In Proceedings of
the 9th ACM conference on Computer and communications security, pages 1–11.
ACM, 2002.

8. Daniel Berend and Tamir Tassa. Improved bounds on bell numbers and on
moments of sums of random variables. Probability and Mathematical Statistics,
30(2):185–205, 2010.

9. Carl Campbell. Design and specification of cryptographic capabilities. IEEE Com-
puter Society Magazine, 16(6):15–19, 1978.

10. Brent Carmer and Mike Rosulek. Linicrypt: A model for practical cryptography. In
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III,
pages 416–445, 2016.

11. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. Technical Report SP 800-38A, National Institute of Standards and
Technology, December 2001.

12. Pierre-Alain Fouque, Gwenaëlle Martinet, and Guillaume Poupard. Practical sym-
metric on-line encryption. In Fast Software Encryption, 10th International Work-
shop, FSE 2003, Lund, Sweden, February 24-26, 2003, Revised Papers, pages 362–
375, 2003.

13. Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh Safavi-Naini.
Automated proofs of block cipher modes of operation. J. Autom. Reasoning,
56(1):49–94, 2016.

14. Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. Automated analysis
and synthesis of authenticated encryption schemes. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-6, 2015, pages 84–95, 2015.

15. Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Blockwise-adaptive at-
tackers revisiting the (in) security of some provably secure encryption modes:
CBC, GEM, IACBC. In Annual International Cryptology Conference, pages 17–30.
Springer, 2002.

16. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
Press, 2014.

17. Steve Kremer and Laurent Mazaré. Adaptive soundness of static equivalence. In
Computer Security–ESORICS 2007, pages 610–625. Springer, 2007.

18. Ralf Küsters and Tomasz Truderung. On the automatic analysis of recursive secu-
rity protocols with XOR. In STACS 2007, 24th Annual Symposium on Theoretical
Aspects of Computer Science, Aachen, Germany, February 22-24, 2007, Proceed-
ings, pages 646–657, 2007.

19. Alex J Malozemoff, Jonathan Katz, and Matthew D Green. Automated analysis
and synthesis of block-cipher modes of operation. In Computer Security Founda-
tions Symposium (CSF), 2014 IEEE 27th, pages 140–152. IEEE, 2014.

20. Daniele Micciancio and Saurabh Panjwani. Adaptive security of symbolic encryp-
tion. In Theory of Cryptography, pages 169–187. Springer, 2005.

21. Phillip Rogaway. Nonce-based symmetric encryption. In Fast Software Encryption,
11th International Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised
Papers, pages 348–359, 2004.

Appendix: Proofs of Results

Proofs for Section 5

Lemma 2 The ⊕ algebra is =E⊕-faithful and =E⊕-sound.

Proof. Baudet at al. [5] prove this result for a slightly larger algebra that extends
the ⊕ theory to include the symbol 1, which is mapped to the bit string 0η−11
in the computational algebra. Since the larger algebra is =E⊕ -faithful and =E⊕ -
sound, so is the ⊕ algebra.

Proofs for Section 6

Proposition 2 An admissable MOE program Π is IND$-RCPA secure if and
only if it IND$-R-UNIF secure.

Proof. We prove the ”if” direction first. Suppose Π is IND$-R-UNIF secure, that
is for any MOE frame φ, and any closed substitution Θ to the variables of φ,

the probability pΘφ that at least one pair of fresh terms in Θ̂φη being equal is
negligible. If the frame is of length n, then there is at least one pair of fresh terms

hi and hj such that P (Θ̂hiη = Θ̂hlη) ≥ pφ/n(n−1). Since n is bounded by some

polynomial function of η, if pφ is negligible, so is P (t̂iη = t̂jη) ≥ pφ/n(n − 1).
Thus the fresh terms are pairwise independent with overwhelming probability.

Since they are also indistinguishable from random, the sequence (h0, h1, . . . , hn)
is indistinguishable from random as well.

Let (C0, C1, . . . , Cn) be the ciphertext sequence produced by (h0, h1, . . . , hn).
By the assumption of admissability, either Ci = hi, or Ci = hi ⊕ ti, where hi
is not used in the computation of ti. By the fact that P (Θ̂hiη = Θ̂hjη) is
negligible for i 6= j for any Θhj , and that, also with overwhelming probability,

the adversary has not yet seen Θ̂hiη at the time of computing any plaintext

blocks used to compute ti, the probability that Θ̂hjη is used to produce P (Θ̂hiη)

is also negligible. Thus, {Θ̂h0η, . . . , Θ̂hnη} is indistinguishable from a uniformly

random generated sequence of bits that is independent from {Θ̂g0η, . . . , Θ̂gnη}
where gi = 0 or hi, depending on how Ci is calculated. Thus {Θ̂C0η, . . . , Θ̂hCη}
is indistinguishable from random as well.

Conversely, suppose that there is a pair of fresh terms hi and hj such that

P (Θ̂hiη = Θ̂hjη) is non-negligible. Since the adversary is able to compute gi

and gj from Ci and Cj it will be able to see that P (Θ̂hiη = Θ̂hjη) and thus

distinguish {Θ̂C0η, . . . , Θ̂Cnη} from random with non-negligible probability.

Proofs for Section 7

Lemma 6 The order <A,O on the variables of S2 is a suborder of a total order
`,.

Proof. We define ` as follows.

Definition 23. Given an ⊕-MOE frame φ, we define a φ-position of a term t to
be i.p, where p is a position of t in φXi. We put a total order <` on φ-positions,
with p <` q if either p = q.r, or p = u.n.v, q = u.m.w, where u is a φ-position
or Λ, n and m are integers, v and w are positions, and n < m. We put a total
order <` on the terms of φ, where t <` s if the least φ-position of t is less than
the least φ-position of s. Given an ⊕-MOE unification problem S(s1, s2) from
φ, we put a total order on the variables of S2(s1, s2) defined by 1) zt1 <` z

t2 if
t1 <` t2, 2) xi <` z

t (resp. xi >` z
t) if xi <` t (resp. xi >` t), and 3) xi <` xj

if i < j.

Example 11. Given the frame φ in Example 1, the φ-positions of x1 are 2, 3.1,
and 5.2.1, the φ-positions of r1 are 1, 3.2, and 5.2.2, and the φ-position of f(x⊕r1)
is 3 and 5.2. Thus yr1 <` x1 <` y

f(x⊕r1),

It is straightforward to check that <A and <O are suborders of <`.

Proposition 3 Suppose that for a given ⊕-MOE problem S and partition P ,
the problem SA,P is well-ordered. Then ΘS,P is a computable solution program
in all three models.

Proof. Suppose that ΘS,Px = t. Then by construction FV ar(t) contains only
adversarial variables x′ such that x′ <A x; Thus ΘS,P is a well-defined substitu-
tion program in all three models.

We next note Θ′S,P = ΘS,PΞ is a unification program for M(πSA,P ∪ SO),
which is equivalent to πSA,P ∪SO, which is equivalent SA,P ∪SO, which contains
S2. Thus Θ′S,P is a unifier of S2. Moreover, Θ′S,P = ΘS,PΞ, and ΞS2 = S. Thus
Θ′S,P is a unification program for S.

Finally, we note that, since SA,P is well-ordered, ΘS,P is also computable.

Proofs for Section 8

To prove Proposition 4, we will need the following definition and lemma.

Definition 24. Let Θ be a substitution program to the variables in a unification
problem Q. Let P be a partition of the variables of Q,and let Θ be a substitution
program. In the symbolic model we say that Θ enforces P if Θ if Θz =E Θz′ if
and only if (z, z′) ∈ P . In the computational algebra and PPT models, we say
that Θ enforces P with probability pη if

P ((∧(zz′)∈P (Θ̂ηz = Θ̂ηz
′)) ∧ (∧(zz′)6∈P (Θ̂ηz 6= Θ̂ηz

′))) = pη

Lemma 8 Given an ⊕-MOE frame φ with ⊕-MOE unification problem S(s1, s2),
suppose that Θ is a non-negligible unification program for S2(s1, s2) in the PPT
model. Suppose furthermore that there is a partition P of the variables of S2(s1, s2)

containing (zs1 , zs2) such that P (Θ̂η enforcesP is non-negligible. Then SA,P (s1, s2)
is well-ordered.

Proof. If Θ enforces P with non-negligible probability, then ΘΞ is is a non-
negligible unification program for SA,P ∪ SO, where Ξ is the unifier of SO.
Suppose that SA,P (s1, s2) is not well-ordered. Then one of two things can occur.
The first is that there is an equation in M(πSA,P (s1, s2)) of the form x` =?

(
∑`−1
i=1 ⊕αixi)⊕ (

∑n
i=1⊕βiyf(ti)) where there is at least one j such that βj 6= 0

and x` fails to dominate y(tj) in the <A order. Thus there is no yf(t) <A x` such
that P (Θ̂Ξηy

f (t) = Θ̂Ξηy
f(tj)) is non-negligible. Thus, if

Θ̂Ξηx` = (

`−1∑
i=1

⊕αiΘ̂Ξηxi)⊕ (

n∑
i=1

⊕βiΘ̂Ξηyf(ti))

with non-negligible probability, then the adversary is able, also with non-negligible
probability, to compute the exclusive-or of f -rooted terms it has not yet seen,
contradicting our assumption that f is a member of a strong pseudo-random
function family.

The other possibility is that there is an equation
∑n
i=1⊕βiyf(ti) =? 0 such

that, with non-negligible probability
∑n
i=1⊕βiΘ̂ηyf(ti) =? 0 and Θ̂Ξηy

f(ti) 6=
Θ̂Ξηy

f(tj) whenever βi = βj = 1. But this contradicts the assumption that f is
a member of a strong pseudo-random function family.

We are now ready to prove Proposition 4.

Proposition 4 In the PPT and computational algebra models, let φ be an ⊕-
MOE frame and let Θ be a computable substitution program whose domain is
FV ar(φ). Suppose that the probability that there is an ⊕-MOE unification prob-

lem S(s1, s2) derived from φ such that Θ̂s1η = Θ̂s1η is non-negligible. Then there
is an ⊕-MOE unification problem S(s′1, s

′
2) derived from φ and a partition P of

the variables of S2(s′1, s
′
2) such that SA,P (s1, s2) is well-ordered. Likewise, in the

symbolic model, if Θ is a computable unifier of S(s1, s2), then there is a partition
P of the variables of S2(s1, s2) such that SA,P (s1, s2).

Proof. The proof for the symbolic model is a direct consequence of Lemma 8.
For the PPT and computational algebra models, all we need to note is that the
number of ⊕-MOE unification problems S(s1, s2) and the number of partitions
of the variables of S2(s1, s2) remain fixed as the security parameter η increases.
Thus, there must be at least one unification problem S(s′1, s

′
2) and partition P

of the variables of S(s′1, s
′
2) such Θ enforces P with non-negligible probability.

The result then again follows from Lemma 8.

Theorem 7 An admissable ⊕-MOE program is IND$-RCPA-secure in all three
models and only if there is no ⊕-MOE frame φ with unification problem S(s1 =?

s2), with a partition P of the variables of S2(s1, s2) such that S(s1, s2)A,P is
well-ordered.

Proof. We prove the result for the PPT model, of which the computational
algebra model is a special case. The proof for the symbolic model follows from
its =E soundness and =E faithfulness. The “only if” part of the proof follows
from Proposition 3. To prove the “if” part, suppose that an ⊕-MOE game G is
not IND$-RCPA-secure. We need to show that there is an ⊕-MOE frame φ and
a computable substitution program unifying with non-negligible probability two
terms s1 and s2 sent by the oracle in φ.

The probability of the adversary’s winning the game when the security pa-

rameter is η is Pη =
∑
φ p(φ, η)q(Θ̂[φ]η), where p(φ, η) is the probability that

the adversary executes frame φ when the value of the security parameter is η,

and q(Θ̂[φ]η) is the probability that the substitution program Θ̂[φ]η unifies two
terms sent by the oracle in φ. Note that for any value of η, p(φ,η) is zero for all
but a finite number of frames φ, so Pη is well-defined.

Suppose that for all Θ, q(Θ,η) is a negligible function of η. According to
Bellare [6], any (infinite) set of negligible functions is bounded by a negligible
function, so there is a negligible function neg(η) > q(φ,η) for all φ and η. But
then

Pη =
∑
φ

p(φ,η)q(Θ̂[φ]η) < neg(η)(
∑
φ

p(φ,η)) = neg(η)

contradicting its non-negligibility. Thus, by Lemma 4, S(s1, s2)A,P is well-ordered
for some partition P .

