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Abstract. Linear cryptanalysis makes use of statistical models that
consider linear approximations over practical and ideal block ciphers
as binary random variables. Recently, more complex models have been
proposed that take also into account the statistical behavior of correla-
tions of linear approximations over the key space of the cipher and over
the randomness of the ideal cipher. The goal of this ongoing work is to
investigate independence properties of linear approximations and their
relationships. In this third revised version we show that the assumptions
of Proposition 1 of the previous version are contradictory and hence ren-
ders that result useless. In particular, we prove that linear and statistical
independence of binary random variables are equivalent properties in a
vector space of variables if and only if all non-zero variables in this vector
space are balanced, that is, correspond to components of a permutation.
This study is motivated by finding reasonable wrong-key hypotheses for
linear cryptanalysis and its generalizations which will also be discussed.
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1 Introduction

Linear cryptanalysis is a method that is used for distinguishing a block cipher
from a random permutation and can be extended to key recovery attacks in
practical applications.

To this end, a cryptanalyst builds a statistical model of the linear approxi-
mations over the cipher, on the one hand, and over a random permutation, on
the other hand. Sometimes only the latter is used.

The goal of this ongoing work is to investigate the relationship between lin-
ear and statistical independence of linear approximations seen as random binary
variables over the text space. It is clear that linearly dependent linear approx-
imations cannot be statistically independent. On the other hand, it would be
important to know what kind of independence assumptions are required for a
set of linear approximations that is used in multiple linear cryptanalysis.



Recently, more complex models have been proposed that take also into ac-
count the statistical behavior of correlations of linear approximations over the
key space of the cipher and over the randomness of the ideal cipher. In the previ-
ous version of this report, it was stated in Proposition 1 that under the assump-
tion of pairwise independence of the linear approximations and non-zero variance
of their correlations over the key space, statistical independence of correlations
is equivalent to linear independence of the approximations. Unfortunately, there
is no such world, since pairwise statistical independence of linear approximations
imply that all nontrivial correlations are equal to zero and do not have non-zero
variance.

After proving this result, we discuss only informally some aspects of statistical
independence of correlations and give some partial results.

In the context of linear cryptanalysis, a linear approximation of a transfor-
mation F from Fn

2 to Fm
2 is a Boolean function in Fn

2 defined by two vectors
a, b ∈ Fn

2 as follows
x 7→ a · x+ b · F (x).

In the statistical setting, a linear approximation is considered as a binary random
variable X over the given space of transformations with a probability density
function defined by

Pr(X = 0) = #{x ∈ Fn
2 | a · x+ b · F (x) = 0}.

So we can writeX = a·x+b·F (x). In the algebraic setting, a linear approximation
a ·x+ b ·F (x) is identified with the vector (a, b) in the linear space Fn

2 ×Fn
2 over

F2.

2 Independence of Binary Random Variables

In this section, we consider binary random variables X, which form a linear
space X over F2, and their statistical and linear independence. We show that
under the condition of pairwise statistical independence of all variables, random
variables in any subset of X are statistically independent if and only if they are
linearly independent.

We first recall the classical Xiao-Massey lemma [6]. For a short proof, see [3].

Lemma 1. (Xiao-Massey lemma) A binary random variable Y is independent
of the set of k independent binary variables X1, . . . , Xk if and only if Y is
independent of the linear combination λ1X1 + · · · + λkXk for every choice of
λ1, . . . , λk, not all zero, in F2.

Let us now state the main result.

Theorem 1. Let X be a linear space of binary random variables over F2 such
that any two different variables in X are statistically independent. Then lin-
early independent random variables in X are also statistically independent. The
converse holds for nonzero random variables in X .



The proof of the theorem goes by induction, where the main step is given by the
following lemma.

Lemma 2. Let X be a linear space of binary random variables over F2 such
that any two different variables in X are statistically independent. Assume that
the binary random variables X1, . . . , Xk in X are linearly and statistically inde-
pendent. If given Y ∈ X the variables X1, . . . , Xk, Y are linearly independent,
then they are also statistically independent.

Proof. Assume that X1, . . . , Xk, Y are statistically dependent. Since X1, . . . , Xk

are independent, it means that Y is dependent of the set X1, . . . , Xk. By the
Xiao-Massey lemma, this can happen only if there exist λ1, . . . , λk not all zero
in F2 such that Y and λ1X1 + · · ·+λkXk are statistically dependent. Since both
of these variables are in X it follows that Y and λ1X1 + · · · + λkXk must be
equal, and therefore X1, . . . , Xk, Y are linearly dependent. ut

Proof. (Proof of Theorem 1) Assume first that the variables X1, . . . , Xm in X
are linearly independent. For 2 ≤ k < m let us state the induction hypothesis
as follows: If X1, . . . , Xk are linearly independent, then they are statistically
independent. Since linear independence of any two of them implies that they are
different, they are also statistically independent by the assumption. Hence the
induction hypothesis holds for k = 2.

Let us assume that the induction hypothesis holds for k, and let X1, . . . , Xk+1

be linearly independent. Then X1, . . . , Xk are linearly independent and hence by
the induction hypothesis also statistically independent. By Lemma 2 it follows
that X1, . . . , Xk+1 are statistically independent.

Assume then that the variables X1, . . . , Xm are nonzero and linearly depen-
dent. W.l.o.g it can be assumed that there exist a relation

X1 = X2 + · · ·+Xk

where X2, . . . , Xk are linearly independent and k ≤ m. By the first part of the
proof it then follows that X2, . . . , Xk are statistically independent. Now by the
Xiao-Massey lemma, Lemma 1, the variable X1 must be statistically dependent
of X2, . . . , Xk. Hence X1, . . . , Xm are not statistically independent. ut

3 Linear Spaces of Binary Variables

Let us first recall the piling-up lemma. We state it here for two variables. A
proof for an arbitrary number of variables can be found in [5].

Lemma 3. Piling-up Lemma. Let X1 and X2 be binary random variables. If X1

and X2 are independent then

Pr(X1 +X2 = 0)− 1

2
= 2(Pr(X1 = 0)− 1

2
)(Pr(X2 = 0)− 1

2
). (1)



The aim of this section is to show that pairwise statistical independence in a
vector space of binary random variables is quite a stringent condition and essen-
tially implies balancedness of all non-constant random variables. The next result
is an easy consequence of the piling-up lemma, and can be found in textbooks.

Lemma 4. If binary random variables X1 and X2 are statistically independent,
then X1 and X1 + X2 are statistically independent only if X1 is constant or
Pr(X2 = 0) = 1

2 .

Proof. If X1 and X1 + X2 are statistically independent, then by the piling-up
lemma

Pr(X2 = 0)− 1

2
= 2(Pr(X1 = 0)− 1

2
)(Pr(X1 +X2 = 0)− 1

2
).

On the other hand, by the independence of X1 and X2 Equation (1) holds. By
substituting it to the above equation, one obtains

Pr(X2 = 0)− 1

2
= 4

(
Pr(X1 = 0)− 1

2

)2(
Pr(X2 = 0)− 1

2

)
.

This equation holds only if X2 is balanced or X1 is constant.

Given an arbitrary binary random variable X1 let us pick another X2. As-
suming pairwise independence of both pairs X1 and X1+X2 and X2 and X1+X2

we get the following result. In particular, the always-one variable is excluded,
since X1 and X2 = X1 + 1 are not statistically independent.

Theorem 2. If in a vector space X of binary random variables all elements are
pairwise statistically independent, then all non-zero elements in X are balanced.

Next we show the converse, that is, that in a vector space of binary variables,
balancedness implies pairwise independence. For this, we need the converse of
the piling-up lemma.

Lemma 5. Converse of Piling-up Lemma. Let X1 and X2 be binary random
variables. If 1 holds, then X1 and X2 are independent.

Proof. Let us observe that for all (t1, t2) ∈ {0, 1}2 the following holds.

Pr(X1 = t1, X2 = t2)

=
1

4
+

1

2
(−1)t1(Pr(X1 = 0)− 1

2
) +

1

2
(−1)t2(Pr(X2 = 0)− 1

2
)

+
1

2
(−1)t1+t2(Pr(X1 +X2 = 0)− 1

2
). (2)

This can be verified exhaustively for all four values of (t1, t2), or by the general
formula

Pr(X = t) = 2−n
∑
a∈Fn

2

(−1)a·t(2 Pr(a ·X = 0)− 1)



where X is a random variable in Fn
2 , t ∈ Fn

2 , and n any positive integer. Substi-
tuting (1) in (2) gives

Pr(X1 = t1, X2 = t2)

=

(
1

2
+ (−1)t1(Pr(X1 = 0)− 1

2
)

)(
1

2
+ (−1)t2(Pr(X2 = 0)− 1

2
)

)
= Pr(X1 = t1) Pr(X2 = t2).

Let us now state the converse of Theorem 2.

Theorem 3. If in a vector space X of binary random variables all non-zero ele-
ments are balanced, then any two variables X1 and X2, X1 6= X2, are statistically
independent.

Proof. Take X1, X2 ∈ X such that X1 6= X2. By the assumption of balancedness
we have

Pr(X1 +X2 = 0)− 1

2
= 0 = 2

(
Pr(X1 = 0)− 1

2

)(
Pr(X2 = 0)− 1

2

)
. (3)

By the converse of the piling-up lemma the claim holds in this case.

4 Boolean Functions

As an application let us now consider vectorial Boolean functions F from Fn
2 to

Fm
2 where n and m are positive integers. Let a ∈ Fn

2 . We call the Boolean function
a ·F the component of F . The components of F form a vector space of dimension
m and can be identified with binary random variables over the input space Fn

2 .
By Theorem 2 the components of a vectorial Boolean function are pairwise
statistically independent only if the non-zero components are balanced. Hence
F is a truncated permutation. Conversely, it follows from Theorem 3 that the
components of a (truncated) permutation are pairwise statistically independent.

It follows that the only vectorial Boolean functions with pairwise independent
components are the truncated permutations. We state the following corollary of
Theorem 1.

Corollary 1. A set of non-zero components of a permutation are statistically
independent if and only if they are linearly independent.

On the other hand, the condition that linearly independent components are
statistically independent implies pairwise independence.

Corollary 2. Let F be a vectorial Boolean function with the property that any
set of linearly independent components are statistically independent. Then F is
a truncated permutation.



5 Statistical Independence of Correlations

Given a binary random variable X its correlation cor(X) is defined as

cor(X) = Pr(X = 0)− Pr(X = 1) = 2 Pr(X = 0)− 1.

The correlations of linear approximations X = a · x+ b ·F (x) depend on the
function F . By randomizing the function space, the correlations become random
variables.

Next we investigate whether there is any relationship between linear depen-
dence of linear approximations and statistical independence of their correlations.

From the discussion of permutations in the previous section, we see that the
correlations of any set of linear components of permutations are equal to zero
and hence statistically independent. Hence linear independence is not a necessary
condition for correlations to be statistically independent.

Linear approximations of functions are not balanced in general and their
behavior is different from the components of permutations as demonstrated by
the following two examples. First, we show that linear approximations are not
necessarily pairwise statistically independent.

Example 1. Let F be a permutation, and a · x + b1 · F (x) and a · x + b2 · F (x)
two linear approximations that share the same input mask. If their correlations
are non-zero, they are not independent. This follows by the piling-up lemma by
observing

cor(a · x+ b1 · F (x))cor(a · x+ b2 · F (x)) 6= 0 = cor((b1 + b2) · F (x)).

The following example illustrates a situation where correlations of linearly
dependent linear approximations of the ideal cipher cannot be statistically inde-
pendent.

Example 2. Let X1 and X2 be binary random variables related to linear approxi-
mations of random permutation. Assume that they are statistically independent
for all F and that X1 +X2 has non-zero ELP, that is,

Exp(cor(X1 +X2)2) 6= 0.

By the piling-up lemma

Exp(cor(X1 +X2)cor(X1)cor(X2)) 6= 0.

On the other hand, Exp cor(X1) = 0, from where it follows that cor(X1), cor(X2),
and cor(X1 +X2) are not statistically independent.

However, it is not clear that such X1 and X2 exist. More generally, possible
independence of correlations of linearly dependent linear approximations remains
an open question.



6 Wrong-Key Hypotheses

In previous literature on linear cryptanalysis, single linear approximations of
random permutations (ideal ciphers) were modeled as balanced random Boolean
functions until it was observed in [2] that they are not strictly balanced, and
should be more accurately modeled as random Boolean functions. Then for large
input size n, the probability distribution of the correlation of a linear approxi-
mation can be approximated by a normal distribution with mean equal to zero
and variance 2−n.

Distinction between balanced and general random Boolean functions is also
important for the so-called zero-correlation linear cryptanalysis [1]. If such dis-
tinction is not made the linear approximations of a cipher having zero-correlation
linear approximation (for all keys) cannot be distinguished from linear approxi-
mations of a random permutation.

The distinction between random Boolean functions and balanced Boolean
functions has been studied in a general setting of distinguishing between random
vectorial Boolean functions and truncated Boolean permutations. It was shown
in [4] that the distinguishing advantage is upperbounded by

q

2n−
m
2

where n is the input size, m is the output size, and q is the number of queries.
This bound is also tight for larger number of queries, see [4] for details. The
advantage grows exponentially as the output size m grows, which suggests that
using truncated permutations to model multidimensional linear approximations,
which are not permutations, is not a valid approach as the sample size (number
of queries) exceeds 2n−

m
2 .

In multiple linear cryptanalysis, the information extracted from the (ideal)
cipher is given in the form of correlations of a number of distinct linear approx-
imation. A single linear approximation behaves as a random Boolean function
(m = 1) and almost the full codebook of data is needed to distinguish it from a
balanced Boolean function. It is not known what is the effect of using multiple
correlations simultanously to the distinguishing advantage between a permuta-
tion and a random function. Nevertheless, modeling linear approximations of an
ideal cipher as components of a random vectorial Boolean function rather than
those of a permutation seems like a reasonable approach also in this case. In gen-
eral, such linear approximations (similarly as components of random functions)
may have pairwise statistical dependencies.

7 Conclusion

We showed that permutations are the only functions which have components
such that their linear and statistical independence are equivalent concepts. We
also demonstrated that different behavior can be found in the vector space of
linear approximations. Further, some arguments were elaborated to support the



idea that random Boolean functions provide a natural setting for modeling lin-
ear approximations of random permutation. For single linear approximations
this has been known to be the case. The problem arises if more than one linear
approximations are to be used simultaneously. In multidimensional linear crypt-
analysis we propose to use the statistical properties of random vectorial Boolean
functions to model correlations in multidimensional linear approximation of ran-
dom permutations.
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