
Public-Seed Pseudorandom Permutations?

Pratik Soni and Stefano Tessaro

University of California, Santa Barbara
{pratik soni,tessaro}@cs.ucsb.edu

Abstract. A number of cryptographic schemes are built from (keyless) permutations, which are either
designed in an ad-hoc fashion or are obtained by fixing the key in a block cipher. Security proofs for
these schemes, however, idealize this permutation, i.e., making it random and accessible, as an oracle,
to all parties. Finding plausible concrete assumptions on such permutations that guarantee security of
the resulting schemes has remained an elusive open question.
This paper initiates the study of standard-model assumptions on permutations – or more precisely, on
families of permutations indexed by a public seed. We introduce the notion of a public-seed pseudoran-
dom permutation (psPRP), which is inspired by the UCE notion by Bellare, Hoang, and Keelveedhi
(CRYPTO ’13). It considers a two-stage security game, where only the second stage learns the seed,
and the first-stage adversary, known as the source, is restricted to prevent trivial attacks – the secu-
rity notion is consequently parameterized by the class of allowable sources. To this end, we define in
particular unpredictable and reset-secure sources analogous to similar notions for UCEs.
We first study the relationship between psPRPs and UCEs. To start with, we provide efficient con-
structions of UCEs from psPRPs for both reset-secure and unpredictable sources, thus showing that
most applications of the UCE framework admit instantiations from psPRPs. We also show a converse of
this statement, namely that the five-round Feistel construction yields a psPRP for reset-secure sources
when the round function is built from UCEs for reset-secure sources, hence making psPRP and UCE
equivalent notions for such sources.
In addition to studying such reductions, we suggest generic instantiations of psPRPs from both block
ciphers and (keyless) permutations, and analyze them in ideal models. Also, as an application of our
notions, we show that a simple modification of a recent highly-efficient garbling scheme by Bellare et
al. (S&P ’13) is secure under our psPRP assumption.

Keywords: Symmetric cryptography, UCE, permutation-based cryptography, assumptions, indiffer-
entiability

? c© IACR 2017. This is the full version of a paper that appeared in the proceedings of EUROCRYPT 2017.

1 Introduction

Many symmetric cryptographic schemes are built generically from an underlying component, like
a hash function or a block cipher. For several recent examples (e.g., hash functions [BDPV08,RS08],
authenticated-encryption schemes [AJN15], PRNGs [BDPV10,GT16], garbling schemes [BHKR13]),
this component is a (keyless) permutation, which is either designed from scratch to meet cer-
tain cryptanalytic goals (as in the case of SHA-3 and derived algorithms based on the sponge
paradigm) or is instantiated by fixing the key in a block cipher like AES (as in the garbling scheme
of [BHKR13]).

The security of these schemes is usually proved in the ideal-permutation model, that is, the
permutation is randomly chosen, and all parties are given (black-box) access to it. Essentially no
non-tautological assumptions on permutations are known which are sufficient to imply security.1

This situation is in sharp contrast to that of hash functions, where despite the popularity of the
random-oracle model, we have a good understanding of plausible security assumptions that can be
satisfied by these functions. This is particularly important – not so much because we want to put
ideal models in question, but because we would like to assess what is really expected from a good
permutation or hash function that makes these schemes secure.

Our contributions, in a nutshell. This paper initiates the study of computational assump-
tions for permutation-based cryptography. Akin to the case of hash functions, we extend permuta-
tions with a public seed, that is, πs is used in lieu of π, where s is a public parameter of the scheme.
We introduce a new framework – which we call public-seed pseudorandom permutations, or psPRPs,
for short – which we investigate, both in terms of realizability, as well as in terms of applications.
Our approach takes inspiration from Bellare, Hoang, and Keelveedhi’s UCE framework [BHK13],
which we extend to permutations. As we will see, psPRPs are both useful and interesting objects
of study.

Beyond definitions, we contribute in several ways. First off, we build UCEs from psPRPs via
efficient permutation-based hash functions, and show conversely how to build psPRPs from UCEs
using the Feistel construction. We also discuss generic instantiations of psPRPs from block ciphers
and keyless permutations. Finally, we show a variant of the garbling scheme from [BHKR13] whose
security can be based on a psPRP assumption on the underlying block cipher, without compromising
efficiency. Our reductions between psPRPs and UCEs are established by general theorems that
connect them with a weak notion of indifferentiability, which is of independent interest. We explain
all of this in detail in the remainder of this introduction; an overview of the results is in Fig. 1.

The UCE framework: A primer. Bellare, Hoang, and Keelveedhi (BHK) [BHK13] introduced
the notion of a universal computational extractor (UCE). For a seeded hash function H : {0, 1}s ×
{0, 1}∗ → {0, 1}h, the UCE framework considers a two-stage security game. First, a source S is
given oracle access to either H(s, ·) (for a random, and for now secret, seed s), or a random function
ρ : {0, 1}∗ → {0, 1}h. After a number of queries, the source produces some leakage L ∈ {0, 1}∗. In
the second stage, the distinguisher D learns both L and the seed s, and needs to decide whether
S was interacting with H(s, ·) or ρ – a task we would like to be hard. Clearly, this is unachievable
without restrictions on S, as it can simply set L = y∗, where y∗ is the output of the oracle on a
fixed input x∗, and D then checks whether H(s, x∗) = y∗, or not.

1 A notable exception is the line of work on establishing good bounds on the PRF-security of MACs derived from
sponge-based constructions, as e.g. in [MMH+14,ADMA15,GPT15], where one essentially assumes that the under-
lying permutation yields a secure Even-Mansour [EM97] cipher.

1

psPRP[S?up]

psPRP[S?rs]

UCE[S?up]

UCE[S?rs]ideal
cipher

random
permutation

Even-Mansour

?

direct keying

indiff.

5-round Feistel

Chop

?

Fig. 1: Relations established in this paper. Here, ? is set consistently everywhere either to c
or to s. Lack of arrow indicates a separation, dashed lines indicate implications that are open and
which we conjecture to hold true. Also note that in the ideal-cipher model, a random permutation is
obtained by fixing the cipher key (e.g., to the all-zero string). We do not know whether the converse
is true generically – indifferentiable constructions of ideal ciphers from random permutations (e.g.,
[ABD+13]) do not apply here [RSS11].

BHK propose to restrict the set of allowable sources – the security notion UCE[S] corresponds
to a function H being secure against all sources within a class S. For example, unpredictable sources

are those for which a predictor P , given the leakage L
$← Sρ, cannot guess any of S’s queries. They

further distinguish between the class of computationally unpredictable sources Scup and the class of
statistically unpredictable sources Ssup, depending on the powers of P . A somewhat stronger notion

– referred to as reset-security – demands that a distinguisher R given L
$← Sρ accessing the random

function ρ cannot tell whether it is given access to the same oracle ρ, or to a completely independent
random oracle ρ′. One denotes as Ssrs and Scrs the classes of statistical and computational reset-
secure sources, respectively.

While UCE[Scup]-security (even under meaningful restrictions) was shown impossible to achieve
in the standard model [BFM14,BST16] assuming indistinguishability obfuscation (IO) [BGI+01],
there is no evidence of impossibility for UCE[Ssup] and UCE[Ssrs], and several applications follow
from them. Examples include providing standard-model security for a number of schemes and ap-
plications previously only secure in the random-oracle model, including deterministic [BHK13] and
hedged PKE [BH15], immunizing backdoored PRGs [DGG+15], message-locked encryption [BHK13],
hardcore functions [BHK13], point-function obfuscation [BHK13,BS16] simple KDM-secure sym-
metric encryption [BHK13], adaptively-secure garbling [BHK13], and CCA-secure encryption [MH14].
Moreover, as also pointed out by Mittelbach [Mit14], and already proved in the original BHK work,
UCE[Scrs] and UCE[Scup] are achievable in ideal models, and act as useful intermediate security
notions for two-stage security games, where indifferentiability does not apply [RSS11].

Public-seed PRPs.We extend the UCE approach to the case of a seeded permutation π : {0, 1}s×
{0, 1}n → {0, 1}n, that is, πs = π(s, ·) is an efficiently invertible permutation on n-bit strings. As
in the UCE case, the security game will involve a source making queries to a permutation P and
its inverse P−1. In the real case, P / P−1 give access to πs and π−1s , whereas in the ideal case
they give access to a random permutation ρ and its inverse ρ−1. Then, S passes on the leakage

2

L to the distinguisher D, which additionally learns s. The psPRP[S] security notion demands
indistinguishability of the real and ideal cases for all PPT D and all S ∈ S.

This extension is straightforward, but it is not clear that it is useful at all. For instance, UCEs
naturally generalize the notion of an extractor, yet no such natural “generalization” exists here,
except that of extending the PRP game (played by the source) with a public-seed stage (and hence,
the name psPRP). In addition, necessary source restrictions are somewhat less intuitive than in the
UCE case. For instance, for psPRPs, for statistically/computationally unpredictable sources (we
abuse notation, and denote the corresponding source classes also as Ssup and Scup) it must be hard
for a predictor to guess an input or an output of the queries made by S.

UCEs from psPRPs. We first show that psPRPs are not only useful, but essentially allow to
recover all previous applications of UCEs through simple constructions of UCEs from psPRPs.

Our first result shows that all permutation-based constructions which are indifferentiable from
a random oracle [MRH04,CDMP05] transform a psPRP[S?rs]-secure permutation into UCE[S?rs]-
secure hash function, where ? ∈ {c, s}.2 In particular, this implies that the sponge paradigm by
Bertoni et al [BDPV08], which underlies the SHA-3 hash function, can be used for such transforma-
tion, thus giving extra validation for the SHA-3 standard. We note that the permutation underlying
SHA-3 is not seeded, but under the assumption that the underlying permutation is psPRP[S?rs]-
secure when seeded via the Even-Mansour construction [EM97], it is easy to enhance the sponge
construction with a seed.

Note that S?rs is a strictly larger class than S?up (for both psPRP and UCE). Therefore,
when an application only needs UCE[S?up]-secure hashing, one may ask whether the assumption
on the underlying psPRP can also be reduced. We will prove that this is indeed the case, and
show that whenever π is psPRP[S?up]-secure, then the simple construction that on input X outputs
πs(X)[1 . . . r], that is, the first r bits of πs(X) is a secure fixed-input length UCE[S?up] as long as
r < n − ω(log λ). This result can be combined with the domain extender of [BHK14] to obtain a
variable-input-length UCE[S?up]-secure hash function.3

CP-sequential indifferentiability.The technique behind the above results is inspired by Bel-
lare, Hoang, and Keelveedhi’s work [BHK14] on UCE domain extension. They show that every
construction that transforms a fixed-input length random oracle into a variable-input length one
in the sense of indifferentiability [MRH04,CDMP05] is a good domain extender for UCEs.

We extend their result along three axes. First off, we show that it applies to arbitrary pairs of
ideal primitives – e.g., a fixed-input-length or variable-input length random function or a random
permutation. For example, a construction using a permutation which is indifferentiable from a ran-
dom oracle transforms psPRP[S?rs]-secure permutations into UCE[S?rs]-secure functions. Through
such a general treatment, our above result on sponges is a corollary of the indifferentiability analysis
of [BDPV08].

Second, we show that a weaker version of indifferentiability, which we call CP-sequential in-
differentiability, suffices. Recall that indifferentiability of a construction M transforming an ideal
primitive I into an ideal primitive J means that there exists a simulator Sim such that (MI, I) and
(J, SimJ) are indistinguishable. CP-sequential indifferentiability only demands this for distinguish-

2 We note that the computational case, by itself, is not that useful, given we know that UCE[Scup] and hence also
UCE[Scrs] security is unachievable, unless IO does not exist. However, we may want to occasionally apply these
results in ideal models, where the notion is achievable, and thus they are worth stating.

3 Their construction pre-processes the arbitrary-long input with an almost universal hash function, as e.g. one based
on polynomial evaluation.

3

ers that make all of their construction queries to MI / J before they proceed to primitive queries
to I / SimJ. As we will see, this significantly enlarges the set of constructions this result applies to.
For example, truncating the permutation output to r < n bits does not achieve indifferentiability,
because a simulator on an inverse query Y needs to fix π−1(Y) to some X such that, for the given
random function ρ : {0, 1}n → {0, 1}r, ρ(X) is consistent with Y on the first r bits, which is infea-
sible. Yet, the same construction is CP-sequentially indifferentiable, intuitively because there is no
way for a distinguisher to catch an inconsistent random X, as this would require an extra query
to ρ. CP-sequential indifferentiability is dual to the sequential indifferentiability notion of Mandal,
Patarin, and Seurin [MPS12], which considers the opposite order of construction and primitive
queries. In fact, the two notions are incomparable, as we explain below.

Finally, we will also show that under suitable restrictions on the construction M, the result ex-
tends from reset-secure sources to unpredictable ones. This will allow to lift our result for truncation
to unpredictable sources.

Constructing psPRPs. Obviously, a central question is whether the assumption of being a
psPRP is, by itself, attainable. Our general theorem answers this question already – existing indif-
ferentiability result for Feistel constructions [HKT11,CHK+16,DSKT16,DS16] imply already that
the 8-round Feistel construction transforms a function which is UCE[S?rs]-secure into a psPRP[S?rs]-
secure permutation.

It is important however to assess whether simpler constructions achieve this result. Here, we
show that the five-round Feistel construction suffices. Our proof heavily exploits our connection
to CP-indifferentiability. Indeed, the six-round lower bound of [CHK+16] does not apply for CP-
indifferentiabiliy, as it requires the ability to ask construction queries after primitive queries, and
we show that CP-indifferentiability is achieved at five rounds already. Our result is not merely a
simplification of earlier ones, and our simulation strategy is novel. In particular, while we still follow
the chain-completion approach of previous works, due to the low number of rounds, we need to
introduce new techniques to bound the complexity of the simulator. To our rescue will come the
fact that no construction queries can be made after primitive queries, and hence only a limited
number of chain types will need to be completed.

We also note that the we are not aware of any obvious lower bound that shows that more than
four rounds are really necessary – four rounds are necessary alone to reach PRP security in the
eyes of the source. We leave it as an open problem to show whether four rounds are sufficient. We
also note that our result only deals with reset-secure sources, and we leave it as an open problem
to find a similar result for unpredictable sources. For reasons we explain in the body, it seems
reasonable to conjecture that a heavily unbalanced Feistel network with Ω(n) rounds achieves this
transformation.

Constructing psPRPs, in ideal models. While the main purpose of the psPRP framework
is that of removing ideal model assumptions, it is still valuable to assess how psPRPs are built
in the first place. To this end, we also show how to heuristically instantiate psPRPs from exist-
ing cryptographic primitives, and here validation takes us necessarily back to ideal models. Plus,
for ideal-model applications that require psPRP security as an intermediate notion (for instance,
because we are analyzing two-stage games), these provide instantiations.

We validate two strategies: (1) Using a block cipher, and seed it through the key, and (2) Using
a keyless permutation, and seeding via the Even-Mansour construction [EM97]. We prove that the

4

first approach is psPRP[Scrs]-secure in the ideal-cipher model, and prove the second psPRP[Scup]-
secure in the random permutation model.4

Fixed-key block-cipher based garbling from psPRPs.As a benchmark for psPRPs, we re-
visit the garbling schemes from [BHKR13] based on fixed-key block ciphers, which achieve high
degrees of efficiency by eliminating re-keying costs. Their original security analysis was in the
ideal-cipher model, and their simplicity is unmatched by schemes with standard-model reductions.

We consider a simple variant of their Ga scheme and prove it secure under the assumption the
underlying block cipher, when seeded through its key input, is psPRP[Ssup]-secure. Our construction
is slightly less efficient than the scheme from [BHKR13], since a different seed/key is used for every
garbling. However, we still gain from the fact that no re-keying is necessary throughout a garbling
operation, or the evaluation of a garbled circuit. We also note that our approach also extends to
the GaX scheme of [BHKR13] with further optimizations.

Extra related work. A few works gave UCE constructions. Brzuska and Mittelbach [BM14]
gave constructions from auxiliary-input point obfuscation (AIPO) and iO. In a recent paper, under
the exponential DDH assumption, Zhandry [Zha16] built a primitive (called an AI-PRG) which
is equivalent to a UCE for a subset of Scup which is sufficient for instantiating point obfuscators.
(The observation is not made explicit in [Zha16], but the definitions are equivalent.) None of these
results is sufficiently strong to instantiate our Feistel-based construction of psPRPs.

Farshim and Mittelbach [FM16] also recently proposed an interactive extension of the UCE
framework, called ICE. We believe our framework can be extended along similar lines, and leave
this for future work.

The cryptanalysis community has studied block-cipher security under known keys, albeit with a
different focus. For example, Knuden and Rijmen [KR07] gave attacks against Feistel networks and
reduced-round versions of AES that find input-output pairs with specific properties (given the key)
in time faster than it should be possible if the block cipher were a random permutation. Several such
attacks were later given for a number of block ciphers. We are not aware of these attacks however
invalidating psPRP security. Andreeva, Bogdanov, and Mennink [ABM14] gave formal models for
known-key security in ideal models based on a weak form of indifferentiability, where construction
queries are to the construction under a known random key. These are however unrelated.

Outline. Section 2 proposes a general framework for public-seed pseudorandom notions, and Sec-
tion 3 puts this to use to provide general reduction theorems between pairs of such primitives, and
defines in particular CP-sequential indifferentiability. UCE constructions from psPRPs are given
in Section 4, whereas Section 5 presents our main result on building psPRPs via the Feistel con-
struction. Heuristic constructions are presented in Section 6, and finally we apply psPRPs to the
analysis of garbling schemes in Section 7.

Notational preliminaries. Throughout this paper, we denote by Funcs(X,Y) the set of func-
tions X → Y , and in particular use the shorthand Funcs(m,n) whenever X = {0, 1}m and
Y = {0, 1}n. We also denote by Perms(X) the set of permutations on the set X, and analogously,
Perms(n) denotes the special case where X = {0, 1}n. We say that a function f : N → R≥0 is
negligible if for all c ∈ N, there exists a λ0 such that f(λ) ≤ λ−c for all λ ≥ λ0.

Our security definitions and proofs will often use games, as formalized by Bellare and Rog-
away [BR06]. Typically, our games will have boolean outputs – that is, either true or false – and

4 Again, recall that IO-based impossibility for Scup and Scrs do not apply because we are in ideal models.

5

we use the shorthand Pr [G] to denote the probability that a certain game outputs the value true,
or occasionally 1 (when the output is binary, rather than boolean).

2 Public-seed Pseudorandomness

We present a generalization of the UCE notion [BHK13], which we term public-seed pseudoran-
domness. We apply this notion to define psPRPs as a special case, but the general treatment will
be useful to capture transformations between UCEs and psPRPs in Section 3 via one single set of
theorems.

2.1 Ideal Primitives and their Implementations

We begin by formally defining ideal primitives using notation inspired by [GT15,BBT16].

Ideal primitives. An ideal primitive is a pair I = (Σ, T), where Σ = {Σλ}λ∈N is a family of sets
of functions (such that all functions in Σλ have the same domain and range), and T = {Tλ}λ∈N is
a family of probability distributions, where Tλ’s range is a subset of Σλ for all λ ∈ N. The ideal
primitive I, once the security parameter λ is fixed, should be thought of as an oracle that initially
samples a function I as its initial state according to Tλ from Σλ. We denote this sampling as I←$ Iλ.
Then, I provides access to I via queries, that is, on input x it returns I(x).5

Examples. We give a few examples of ideal primitives using the above notation. In particular, let
κ,m, n : N→ N be functions.

Example 1. The random function Rm,n = (ΣR, T R) is such that for λ ∈ N,ΣR
λ = Funcs(m(λ), n(λ)),

and T R
λ is the uniform distribution on ΣR

λ . We also define R∗,n to be the same for Funcs(∗, n(λ)),
that is, when the domain is extended to arbitrary length input strings.6

Example 2. The random permutation Pn = (ΣP, T P) is such that for all λ ∈ N,

ΣP
λ =

{
P : {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∃π ∈ Perms(n(λ)) : P (+, x) = π(x), P (-, x) = π−1(x)
}
,

and moreover, T P
λ is the uniform distribution on ΣP

λ .

Example 3. The ideal cipher ICκ,n = (ΣIC, T IC) is such that

ΣIC
λ =

{
E : {0, 1}κ(λ) × {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∀k ∈ {0, 1}κ(λ)∃πk ∈ Perms(n(λ)) : E(k, +, x) = πk(x), E(k, -, x) = π−1k (x)
}
,

and T IC
λ is the uniform distribution on ΣIC

λ .

5 The reader may wonder whether defining Σ is necessary, but this will allow us to enforce a specific format on valid
implementations below.

6 Note that this requires some care, because Σλ is now uncountable, and thus sampling from it requires a precise
definition. We will not go into formal details, similar to many other papers, but it is clear that this can easily be
done.

6

MAIN psPRS,DF,I (λ):

(1n, t)←$S(1λ, ε)
b←$ {0, 1}
k1, . . . , kn ←$F.Kg(1λ)
f1, . . . , fn ←$ Iλ
L←$SO(1λ, t)
b′ ←$D(1λ, k1, . . . , kn, L)
return b′ = b

ORACLE O(i,x):
if b = 1 then

return F.Eval(1λ, ki,x)
else

return fi(x)

Fig. 2: Game psPR used to define pspr-security for a primitive F that is Σ-compatible with I. Here,
S is the source and D is the distinguisher. Recall that the notation f ←$ Iλ indicates picking a
function from Σλ using Tλ.

Efficiency considerations. Usually, for an ideal primitive I = (Σ, T), the bit-size of the ele-
ments of Σλ grows exponentially in λ, and thus one would not implement a primitive I by sampling
I from Σλ, but rather using techniques such as lazy sampling. An implementation of a primitive I

is a stateful randomized PPT algorithm A such that A(1λ, ·) behaves as I
$← Iλ for all λ ∈ N. We

say that I is efficiently implementable if such an A exists. All the above examples – Rm,n,R∗,n,Pn,
and ICκ,n – are efficiently implementable as long as m,n, κ are polynomially bounded functions.

Σ-compatible function families. A function family F = (Kg,Eval) consists of a key (or seed)
generation algorithm F.Kg and an evaluation algorithm F.Eval. In particular, F.Kg is a randomized
algorithm that on input the unary representation of the security parameter λ returns a key k,
and we let [F.Kg(1λ)] denote the set of all possible outputs of F.Kg(1λ). Moreover, F.Eval is a
deterministic algorithm that takes three inputs; the security parameter in unary form 1λ, a key
k ∈ [F.Kg(1λ)] and a query x such that F.Eval(1λ, k, ·) implements a function that maps queries x
to F.Eval(1λ, k,x). We say that F is efficient if both Kg and Eval are polynomial-time algorithms.

Definition 1 (Σ-compatibility). A function family F is Σ-compatible with I = (Σ, T) if
F.Eval(1λ, k, ·) ∈ Σλ for all λ ∈ N and k ∈ [F.Kg(1λ)].

2.2 Public-seed Pseudorandomness, psPRPs, and Sources

We now define a general notion of public-seed pseudorandom implementations of ideal primitives.

The general definition. Let F = (Kg,Eval) be a function family that is Σ-compatible with an
ideal primitive I = (Σ, T). Let S be an adversary called the source and D an adversary called the
distinguisher. We associate to them, F and I, the game psPRS,DF,I (λ) depicted in Fig. 2. The source
initially chooses the number of keys n. Then, in the second stage, it is given access to an oracle
O and we require any query (i,x) made to this oracle be valid, that is, x is a valid query for any
fi ∈ Σλ and i ∈ [n], for n output by the first stage of the source. When the challenge bit b = 1
(“real”) the oracle responds via F.Eval under the key ki (F.Eval(1λ, ki, ·)) that is chosen by the
game and not given to the source. When b = 0 (“ideal”) it responds via fi where fi←$ Iλ. After
its interaction with the oracle O, the source S communicates the leakage L ∈ {0, 1}∗ to D. The
distinguisher is given access to the keys k1, . . . , kn and must now guess b′ ∈ {0, 1} for b. The game
returns true iff b′ = b and we describe the pspr-advantage of (S,D) for λ ∈ N as

Adv
pspr[I]
F,S,D (λ) = 2 Pr

[
psPRS,DF,I (λ)

]
− 1 . (1)

7

MAIN PredPI,S(λ):

done← false;Q← ∅; (1n, t)←$S(1λ, ε)
f1, . . . , fn ←$ Iλ
L←$SO(1λ, t); done← true
Q′ ←$PO(1λ, 1n, L)
return (Q ∩Q′ 6= ∅)

ORACLE O(i,x):
if ¬done then Q← Q ∪ {x}
return fi(x)

MAIN ResetRI,S(λ):

done← false; (1n, t)←$S(1λ, ε)
f0
1 , f

1
1 , . . . , f

0
n, f

1
n ←$ Iλ

L←$SO(1λ, t); done← true
b←$ {0, 1}; b′ ←$RO(1λ, 1n, L)
return b′ = b

ORACLE O(i,x):

if ¬done then return f0
i (x)

else return fbi (x)

Fig. 3: Games Pred and Reset are used to define the unpredictability and reset-security of the source
S respectively against the ideal primitive I. Here, S is the source, P is the predictor and R is the
reset adversary.

In the following, we are going to use the shorthands UCE[m,n] for pspr[Rm,n], UCE[n] for pspr[R∗,n],
and psPRP[n] for pspr[Pn].

Note that our security game captures the multi-key version of the security notions, also con-
sidered in past works on UCE, as it is not known to be implied by the single-key version, which is
recovered by having the source initially output n = 1.

Restricting sources. One would want to define F as secure if Adv
pspr[I]
F,S,D (λ) is negligible in λ for

all polynomial time sources S and distinguishers D. However, as shown already in the special case
of UCEs [BHK13], this is impossible, as one can always easily construct (at least for non-trivial I’s)
a simple source S which leaks the evaluation of O on a given point, and D can check consistency
given k.

Therefore to obtain meaningful and non-empty security definitions we restrict the considered
sources to some class S, without restricting the distinguisher class. Consequently, we denote by

psPR[I,S] the security notion that asks Adv
pspr[I]
F,S,D (λ) to be negligible for all polynomial time dis-

tinguishers D and all sources S ∈ S. Following [BHK13], we also use psPR[I,S] to denote the set
of F’s which are psPR[I,S]-secure. Note that obviously, if S1 ⊆ S2, then psPR[I,S2] ⊆ psPR[I,S1]
where S1 and S2 are source classes for the ideal primitive I. We will use the shorthands psPRP[n,S]
for psPR[Pn,S] and UCE[m,n,S] for psPR[Rm,n,S], where m = ∗ if the domain is unbounded.

Below, we discuss two important classes of restrictions, which are fundamental for the remainder
of this paper – unpredictable and reset-secure sources.

Unpredictable sources.Let S be a source. Consider the game PredPI,S(λ) of Fig. 3 associated to
S and an adversary P called the predictor. Given the leakage, the latter outputs a set Q′. It wins
if this set contains any O-query of the source. For λ ∈ N we let

Adv
pred[I]
S,P (λ) = Pr

[
PredPI,S(λ)

]
. (2)

We say that P is a computational predictor if it is polynomial time, and it is a statistical predictor
if there exists polynomials q, q′ such that for all λ ∈ N, predictor P makes at most q(λ) oracle
queries and outputs a set Q′ of size at most q′(λ) in game PredPI,S(λ). We stress that in this case the
predictor need not be polynomial time, even though it makes a polynomial number of queries. We

say S is computationally unpredictable if Adv
pred[I]
S,P (λ) is negligible for all computational predictors

8

MAIN CP[I→ J]AM,Sim(λ):

b←$ {0, 1}; f ←$ Iλ; g←$Jλ
st←$AFunc

1 (1λ)
b′ ←$APrim

2 (1λ, st)
return b′ = b

ORACLE Func(x):
if b = 1 then

return Mf (x)
else

return g(x)

ORACLE Prim(u):
if b = 1 then

return f(u)
else

return Simg(u)

Fig. 4: Game CP used to define cpi-security for a construction M implementing the primitive J using
primitive I. Here, Sim is the simulator and A = (A1, A2) is the two-stage distinguisher.

P . We say S is statistically unpredictable if Adv
pred[I]
S,P (λ) is negligible for all statistical predictors

P . We let Scup be the class of all polynomial time, computationally unpredictable sources and
Ssup ⊆ Scup be the class of all polynomial time statistically unpredictable sources.7

Reset-secure sources. Let S be a source. Consider the game ResetRI,S(λ) of Fig. 3 associated
to S and an adversary R called the reset adversary. The latter wins if given the leakage L it can
distinguish between f0 used by the source S and an independent f1 where f0, f1←$ Iλ. For λ ∈ N
we let

Adv
reset[I]
S,R (λ) = 2 Pr

[
ResetRI,S(λ)

]
− 1 . (3)

We say that R is a computational reset adversary if it is polynomial time, and it is a statistical
reset adversary if there exists a polynomial q such that for all λ ∈ N, reset adversary R makes
at most q(λ) oracle queries in game ResetRI,S(λ). We stress that in this case the reset adversary

need not be polynomial time. We say S is computationally reset-secure if Adv
reset[I]
S,R (λ) is negligible

for all computational reset adversaries R. We say S is statistically reset-secure if Adv
reset[I]
S,R (λ) is

negligible for all statistical reset adversaries R. We let Scrs be the class of all polynomial time,
computationally reset-secure sources and Ssrs ⊆ Scrs the class of all polynomial time statistically
reset-secure sources.

Relationships. For the case of psPRPs, we mention the following fact, which is somewhat less
obvious than in the UCE case, and in particular only holds if the permutation’s domain grows with
the security parameter.

Proposition 1. For all n ∈ ω(log λ), we have psPRP[n,S?rs] ⊆ psPRP[n,S?up] where ? ∈ {c, s}.

Proof (Sketch). In the reset secure game, consider the event that R queries its oracle O on input
(i, σ, x) which was queried by S already as an O(i, σ, x) query, or it was the answer to a query
O(i, σ, y). Here (like elsewhere in the paper), we use the notational convention + = - and - = +.
The key point here is proving that as long as this bad event does not happen, the b = 0 and b = 1
case are hard to distinguish. A difference with the UCE case is that due to the permutation property,
they will not be perfectly indistinguishable, but a fairly standard (yet somewhat tedious) birthday
argument suffices to show that indistinguishability still holds as long as the overall number of O
queries (of S and R) is below 2n(λ)/2, which is super-polynomial for n(λ) = ω(log λ). ut

7 We note that computational unpredictability is only meaningful for sufficiently restricted classes of sources or in
ideal models, as otherwise security against Scup is not achievable assuming IO, using essentially the same attack
as [BFM14].

9

3 Reductions and Indifferentiability

We present general theorems that we will use to obtain reductions between psPRPs and UCEs.
Our general notation for public-seed pseudorandom primitives allows us to capture the reductions
through two general theorems.

CP-sequential indifferentiability. Indifferentiability was introduced in [MRH04] by Maurer,
Renner, and Holenstein to formalize reductions between ideal primitives. Following their general
treatment, it captures the fact that a (key-less) construction M using primitive I (which can be
queried by the adversary directly) is as good as another primitive J by requiring the existence of a
simulator that can simulate I consistently by querying J.

Central to this paper is a weakening of indifferentiability that we refer to as CP-sequential
indifferentiability, where the distinguisher A makes all of its construction queries to MI (or J)
before moving to making primitive queries to I (or SimJ, where Sim is the simulator). Note that
this remains a non-trivial security goal, since Sim does not learn the construction queries made by
A, but needs to simulate correctly nonetheless. However, the hope is that because A has committed
to its queries before starting its interaction with Sim, the simulation task will be significantly easier.
(We will see that this is indeed the case.)

More concretely, the notion is concerned with constructions which implement J from I, and
need to at least satisfy the following syntactical requirement.

Definition 2 ((I→ J)-compatibility). Let I = (I.Σ, I.T) and J = (J.Σ,J.T) be ideal primitives.
A construction M is called (I → J)-compatible if for every λ ∈ N, and every f ∈ I.Σλ, the
construction M implements a function x 7→ Mf (1λ, x) which is in J.Σλ.

The game CP is described in Fig. 4. For ideal primitives I,J, a two-stage adversary A = (A1, A2),
an (I→ J)-compatible construction M, and simulator Sim, as well as security parameter λ ∈ N, we
define

Adv
cpi[I→J]
M,Sim,A(λ) = 2 · Pr

[
CP[I→ J]AM,Sim(λ)

]
− 1 . (4)

We remark that the CP-sequential indifferentiability notion is the exact dual of sequential indif-
ferentiability as introduced by Mandal, Patarin, and Seurin [MPS12], which postpones construction
queries to the end. As we will show below in Section 4.2, there are CP-indifferentiable constructions
which are not sequentially indifferentiable in the sense of [MPS12].

Reductions.We show that CP-sequential indifferentiability yields a reduction between public-seed
pseudorandomness notions. A special case was shown in [BHK14] by Bellare, Hoang, and Keelvedhi
for domain extension of UCEs. Our result goes beyond in that: (1) It is more general, as it deals
with arbitrary ideal primitives, (2) It only relies on CP-sequential indifferentiability, as opposed
to full indifferentiability, and (3) The reduction of [BHK14] only considered reset-secure sources,
whereas we show that under certain conditions on the construction, the reduction also applies to
unpredictable sources. Nonetheless, our proofs follow the same approach of [BHK14], and the main
contribution is conceptual.

We let F = (F.Kg,F.Eval) be a function family which is Σ-compatible with an ideal primitive I.
Further, let M be an (I → J)-compatible construction. Then, overloading notation, we define the
new function family M[F] = (M.Kg,M.Eval), where M.Kg = F.Kg, and for every k ∈ [M.Kg(1λ)], we
let

M.Eval(1λ, k, x) = MO(1λ, x) , (5)

where O(z) = F.Eval(1λ, k, z).

10

GAME EXTS,PM,I,Ext(λ) :

done← false
QI, QM ← ∅
(1n, st)←$S(1λ, ε)
f1, . . . , fn ←$ Iλ
L←$SOM(1λ, 1n, st)
done← true
Q←$PO(1λ, 1n, L); Q∗ ← ExtO(Q)
return ((Q ∩QI 6= ∅) ∧ (Q∗ ∩QM = ∅))

ORACLE O(i, x) :

if ¬done then QI
∪← {x}

return fi(x)

ORACLE OM(i, x) :

if ¬done then QM
∪← {x}

y ← MO(i,·)(x)
return y

Fig. 5: Game EXTS,PM,I,Ext(λ) in the definition of query extractability.

Reset-secure sources.The following is our general reduction theorem for the case of reset-secure
sources. Its proof follows similar lines as the one in [BHK14] and is in Appendix A.2.

Theorem 1 (Composition theorem, reset-secure case). Let M, F, I, and J be as above. Fix
any simulator Sim. Then, for every source-distinguisher pair (S,D), where S requests at most N(λ)
keys, there exists a source-distinguisher pair (S,D), and a further distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) . (6)

Here, in particular: The complexities of D and D are the same. Moreover, if S, D, and M are
polynomial time, and I, J are efficiently implementable, then A, S and D are also polynomial-time.

Moreover, for every reset adversary R, there exists a reset adversary R′ and a distinguisher B
such that

Adv
reset[I]

S,R
(λ) ≤ Adv

reset[J]
S,R′ (λ) + 3N(λ) · Advcpi[I→J]

M,Sim,B(λ) , (7)

where R′ makes a polynomial number of query / runs in polynomial time if R and Sim make a
polynomial number of queries / run in polynomial time, and I,J are efficiently implementable. �

Query extractable constructions. Next, we show that under strong conditions on the con-
struction M, Theorem 1 extends to the case of unpredictability.

In particular, we consider constructions which we term query extractable. Roughly, what such
constructions guarantee is that every query made by M to an underlying ideal primitive I can be
assigned to a (small) set of possible inputs to M that would result in this query during evaluation.
Possibly, this set of inputs may be found by making some additional queries to I. We define this
formally through the game EXTS,PM,I,Ext(λ) in Fig. 5. It involves a source S and a predictor P , as
well as an extractor Ext. Here, S selects an integer n, which results in n instances f1, . . . , fn of I
being spawned, and then makes queries to n instances of Mfi , gives some leakage to the predictor
P , and the predictor makes further query to the I-instances, until it outputs a set Q. Then, we run
the extractor Ext on Q, and the extractor can also make additional queries to the I-instances, and
outputs an additional set Q∗. We are interested in the event that Q contains one of queries made
to the fi’s by M in the first stage of the game, yet Q∗ does not contain any of S’s queries to Mfi

for some i. In particular, we are interested in

Adv
ext[I]
M,S,P,Ext(λ) = Pr

[
EXTS,PM,I,Ext(λ)

]
.

11

We say that M is query extractable with respect to I if there exists a polynomial time Ext such that

Adv
ext[I]
M,S,P,Ext(λ) is negligible for all PPT P and S. We say it is perfectly query extractable if the

advantage is 0, rather than simply negligible.
The next theorem provides an alternative to Theorem 1 for the case of unpredictable sources

whenever M guarantees query extractability. The proof of theorem is in Appendix A.3.

Theorem 2 (Composition theorem, unpredictable case). Let M, F, I, and J be as before.
Fix any simulator Sim. Then, for every source-distinguisher pair (S,D), where S requests at most
N(λ) keys, there exists a source-distinguisher pair (S,D), and a further distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) . (8)

Here, in particular: The complexities of D and D are the same. Moreover, if S, D, and M are
polynomial time, and I, J are efficiently implementable, then A, S and D are also polynomial-time.

Moreover, for every predictor P and extractor Ext, there exists a predictor adversary P ′ and a
distinguisher B such that

Adv
pred[I]

S,P
(λ) ≤ Adv

pred[J]
S,P ′ (λ) + Adv

ext[I]
M,S,P,Ext(λ) +N(λ) · Advcpi[I→J]

M,Sim,B(λ) , (9)

where P ′ makes a polynomial number of query / runs in polynomial time if P , Sim and Ext make a
polynomial number of queries / run in polynomial time, and I,J are efficiently implementable. �

4 From psPRPs to UCEs

We consider the problem of building UCEs from psPRPs. On the one hand, we want to show that
all applications of UCEs can be recovered modularly by instantiating the underlying UCE with a
psPRP-based construction. Second, we want to show that practical permutation-based designs can
be instantiated by assuming the underlying permutation (when equipped with a seed) is a psPRP.

4.1 Reset-secure Sources and Sponges

The case of reset-secure sources follows by a simple application of Theorem 1: A number of con-
structions from permutations have been proved indifferentiable from a random oracle, and all of
these yield a construction of a UCE for S?rs when the underlying permutation is a psPRP for S?rs,
where ? ∈ {c, s}.8

Sponges. A particular instantiation worth mentioning is the sponge construction by Bertoni et
al. [BDPV08], which underlies KECCAK/SHA-3. In particular, let Spongen,r be the (Pn → R∗,r)-

compatible construction which operates as follows, on input 1λ, M ∈ {0, 1}∗, and given oracle
access to a permutation ρ : {0, 1}n(λ) → {0, 1}n(λ). The message M is split into r-bit blocks
M [1], . . . ,M [`], and the computation keeps a state Si ‖Ti, where Si ∈ {0, 1}r and Ti ∈ {0, 1}n−r.
Then, Spongeρn,r(1

λ,M) = S`[1..r], where

S0 ‖T0 ← 0n , Si ‖Ti ← ρ((Si−1 ⊕M [i]) ‖Ti−1) for i = 1, . . . , ` .

Then, the following theorem follows directly from Theorem 1 and the indifferentiability analysis
of [BDPV08]. (We state here only the asymptotic version, but concrete parameters can be obtained
from these theorems.)

8 One caveat is that some of these constructions use a few independent random permutations, whereas Theorem 1
assumes only one permutation is used. We point out in passing that Theorem 1 can easily be adapted to this case.

12

Theorem 3 (UCE-security for Sponges). For ? ∈ {c, s} and n(λ) polynomially bounded in λ,
if F ∈ psPRP[n,S?rs], then Spongen,r[F] ∈ UCE[∗, r,S?rs] whenever n(λ)− r(λ) = ω(log λ). �

Heuristic instantiation.We wish to say this validates SHA-3 as being a good UCE. One caveat
of Theorem 3 is that the actual sponge construction (as used in SHA-3) uses a seedless permutation
π. We propose the following assumption on such a permutation π that – if true – implies a simple
way to modify an actual Sponge construction to be a secure UCE using Theorem 3. In particular,
we suggest using the Even-Mansour [EM97] paradigm to add a seed to π. Given a family of per-
mutations Π = {πλ}λ∈N, where πλ ∈ Perms(n(λ)), define then EM[Π] = (EM.Kg,EM.Eval) where
EM.Kg outputs a random n(λ)-bit string s on input 1λ, and

EM.Eval(1λ, s, (+, x)) = s⊕ πλ(x⊕ s) , EM.Eval(1λ, s, (-, y)) = s⊕ π−1λ (y ⊕ s)

for all s, x ∈ {0, 1}n(λ). Now, if Π is such that EM[Π] is psPRP[n,Ssrs]-secure, then Sponge[EM[Π]]
is UCE[∗, r,Ssrs]-secure by Theorem 3. We discuss the conjecture that EM is psPRP[n,Ssrs]-secure
further below in Section 6.

The attractive feature of Sponge[EM[Π]] is that it can be implemented in a (near) black-box
way from Sponge[Π], that is, the original sponge construction run with fixed oracle Π, by setting
(1) The initial state S0 ‖T0 to the seed s (rather than 0n(λ)), and (2) xoring the first r bits s[1 . . . r]
of the seed s to the output. The other additions of the seed s to the inner states are unnecessary,
as they cancel out. (A similar observation was made by Chang et al [CDH+12] in the context of
keying sponges to obtain PRFs.)

4.2 Unpredictable Sources

Many UCE applications only require (statistical) unpredictability. In this section, we see that for
this weaker target a significantly simpler construction can be used. In particular, we will first build a
UCE[n, r,S?up]-secure compression function from a psPRP[n,S?up]-secure permutation, where n(λ)−
r(λ) = ω(log λ) and ? ∈ {c, s}. Combined with existing domain extension techniques [BHK14], this
can be enhanced to a variable-input-length UCE for the same class of sources.

The chop construction. Let r, n : N → N be polynomially bounded functions of the security
parameter λ, where r(λ) ≤ n(λ) for all λ ∈ N. We consider the following construction Chop[n, r]
which is (Pn → Rn,r)-compatible. On input 1λ, it expects a permutation π : {0, 1}n → {0, 1}n for
n = n(λ), and given additionally x ∈ {0, 1}n(λ), it returns

Chop[n, r]π(1λ, x) = π(x)[1 . . . r(λ)] , (10)

that is, the first r = r(λ) bits of π(x). It is not hard to see that the construction is (perfectly)
query extractable using the extractor Ext which given oracle access to O and a set Q of queries of
the form (+, x) and (-, y), returns a set consisting of all x such that (+, x) ∈ Q, and moreover adds
x′ to the set obtained by querying O(i, -, y) for every i ∈ [n] and (-, y) ∈ Q.

CP-sequential indifferentiability. The following theorem establishes CP-sequential indiffer-
entiability of the Chop construction. We refer the reader to Appendix B for the proof but give some
intuition about it after the theorem.

Theorem 4 (CP-indifferentiability of Chop). Let r, n : N→ N be such that r(λ) ≤ n(λ) for all
λ ∈ N. Let P = Pn and R = Rn,r be the random permutation and random function, respectively.

13

Then, there exists a simulator Sim such that for all distinguishers A making at most q construction
and p primitive queries,

Adv
cpi[P→R]
Chop[n,r],Sim,A(λ) ≤ (q + p)2

2n
+
p · q
2n−r

. (11)

Here, Sim makes at most one oracle query upon each invocation, and otherwise runs in time poly-
nomial in the number of queries answered. �

The dependence on r is necessary, as otherwise the construction becomes invertible and cannot be
CP-sequentially indifferentiable. Also, note that we cannot expect full indifferentiability to hold for
the Chop construction, and in fact, not even sequential indifferentiability in the sense of [MPS12].
Indeed, a distinguisher A can simply first query Prim(-, y), obtaining x, and then query Func(x),
that yields y′. Then, A just checks that the first r bits of y equals y′, and if so outputs 1, and
otherwise outputs 0. Note that in the real world, A always outputs 1, by the definition of Chop.
However, in the ideal world, an arbitrary simulator Sim needs, on input y, to return an x for which
the random oracle (to which it access) returns the first r bits of y. This is however infeasible if
n− r = ω(log λ), unless the simulator can make roughly 2r queries.

The proof in Appendix B shows this problem vanishes for CP-sequential indifferentiability.
Indeed, our simulator will respond to queries Sim(-, y) with a random (and inconsistent) x. The
key point is that due to the random choice, it is unlikely that the distinguisher has already issued a
prior query Func(x). Moreover, it is also unlikely (in the real world) that the distinguisher, after a
query Func(x), makes an inverse query on π(x). The combination of these two facts will be enough
to imply the statement.

UCE security. We can now combine Theorem 4 with the fact that the Chop construction is
(perfectly) query extractable, and use Theorem 2:

Corollary 1. For all n, r such that n(λ) − r(λ) = ω(log λ), if F is psPRP[n,S?up]-secure, then
Chop[F] is UCE[n, r,S?up]-secure, where ? ∈ {c, s}.

The construction of [BHK14] can be used to obtain variable-input-length UCE: It first hashes
the arbitrary-long input down to an n(λ)-bit long input using an almost-universal hash function,
and then applies Chop[F] to the resulting value.

5 Building psPRPs from UCEs

This section presents our main result on building psPRPs from UCEs, namely that the five-round
Feistel construction, when its round functions are instantiated from a UCE[S?rs]-secure function
family (for ? ∈ {c, s}), yields a psPRP[S?rs]-secure permutation family.

CP-indifferentiability of Feistel. Let n : N→ N be a (polynomially bounded) function. We
define the following construction Ψ5, which, for security parameter λ, implements an invertible
permutation on 2n(λ)-bit strings, and makes calls to an oracle f : [5] × {0, 1}n(λ) → {0, 1}n(λ). In

particular, on input 1λ and X = X0 ‖X1, where X0, X1 ∈ {0, 1}n(λ), running Ψf5 (1λ, (+, X)) outputs
X5 ‖X6, where

Xi+1 ← Xi−1 ⊕ f(i,Xi) for all i = 1, . . . , 5 . (12)

Symmetrically, upon an inverse query, Ψf5 (1λ, (-, Y = X5 ‖X6)) simply computes the values back-
wards, and outputs X0 ‖X1. Construction Ψ5 is clearly (R5

n,n → P2n)-compatible, where we use

14

the notation Rk
n,n to denote the k-fold combination of independent random functions which takes

queries of the form (i, x) that are answered by evaluating on x the i-th function.

The following theorem establishes CP-indifferentiability for Ψ5. We discuss below its conse-
quences, and give a detailed description of our simulation strategy. The full analysis of the sim-
ulation strategy – which employes the randomness-mapping technique of [HKT11] – is found in
Appendix C.

Theorem 5 (CP-indifferentiability of Feistel). Let R = R5
n,n and P = P2n. Then, there exists

a simulator Sim (described in Fig. 6) such that for all distinguisher A making at most q(λ) queries,

Adv
cpi[R→P]
Ψ5,Sim,A

(λ) ≤ 360q(λ)6

2n(λ)
. (13)

Here, Sim makes at most 2q(λ)2 queries, and otherwise runs in time polynomial in the number of
queries answered, and n. �

This, together with Theorem 1, gives us immediately the following corollary: Given a keyed
function family F = (F.Kg,F.Eval), where for all λ ∈ N, k ∈ [F.Kg(1λ)], F.Eval(1λ, k, ·) is a function
from n(λ)+3 bits to n(λ) bits, interpreted as a function [5]×{0, 1}n(λ) → {0, 1}n(λ), then define the
keyed function family Ψ5[F] = (Ψ.Kg, Ψ.Eval) obtained by instantiating the round function using F.

Corollary 2. For any polynomially bounded n = ω(log λ), if F ∈ UCE[n + 3,S?rs], then Ψ5[F] ∈
psPRP[2n,S?rs], where ? ∈ {c, s}. �

Remarks. Theorem 5 is interesting in its own right, as part of the line of works on (full-fledged)
indifferentiability of Feistel constructions. Coron et al. [CHK+16] show that six rounds are nec-
essary for achieving indifferentiability, and proofs of indifferentiability have been given for 14,
10, and 8 rounds, respectively [HKT11,CHK+16,DSKT16,DS16]. Thus, our result shows that CP-
indifferentiability is a strictly weaker goal in terms of round-complexity of the Feistel construction.
(Also for sequential indifferentiability as in [MPS12], six rounds are necessary.) As we will see in
the next paragraph, our simulation strategy departs substantially from earlier proofs.

Two obvious problems remain open. First off, we know four rounds are necessary (as they
are needed for indistinguishability alone [LR88]), but we were unable to make any progress on
whether CP-sequential indifferentiability (or psPRP security) is achievable. The second is the case
of unpredictable sources. We note that a heavily unbalanced Feistel construction (where each round
function outputs one bit) would be query extractable, as the input of the round function leaves
little uncertainty on the inner state, and the extractor can evaluate the round functions for other
rounds to infer the input/output of the construction. Thus, if we could prove CP-indifferentiabilty,
we could combine this with Theorem 2. Unfortunately, such a proof appears beyond our current
understanding.

Simulator description. We explain now our simulation strategy, which is described formally in
Fig. 6. We note that our approach inherits the chain-completion technique from previous proofs,
but it will differ substantially in how and when chains are completed.

Recall that in the ideal case, in the first stage of the CP-indifferentiability game, A1 makes
queries to Func implementing a random permutation, and then passes the control of the game
to A2 which interacts with Sim. Our Sim maintains tables Gk for k ∈ [5] to simulate the round
functions. We denote by Gk[X] = ⊥ that the table entry for X is undefined, and we assume

15

PROCEDURE Sim(k,X):
1: if Gk[X] = ⊥ then
2: if k = 2 then
3: Finner(k,X)
4: foreach (X1, X2) ∈ G1 × {X} do
5: if (X1, X2, 1) /∈ CompletedChains then
6: X0 ← Finner(1, X1)⊕X2

7: (X5, X6)← Func(+, X0||X1)
8: C ← (X1, X2, 1)
9: if G5[X5] 6= ⊥ then // Immediate Completion

10: Complete(C, (X5, X6))
11: else // Completion is delayed

12: X3 ← Finner(2, X2)⊕X1

13: Chains[3, X3]← (5, X5), Chains[5, X5]
∪← {(C, (X5, X6))}

14: elseif k = 4 then
15: Finner(k,X)
16: foreach (X4, X5) ∈ {X} ×G5 do
17: if (X4, X5, 4) /∈ CompletedChains then
18: X6 ← Finner(4, X4)⊕X5

19: (X0, X1)← Func(-, X5||X6)
20: C ← (X4, X5, 4)
21: if G1[X1] 6= ⊥ then // Immediate Completion

22: Complete(C, (X0, X1))
23: else // Completion is delayed

24: X3 ← Finner(4, X4)⊕X5

25: Chains[3, X3]← (1, X1), Chains[1, X1]
∪← {(C, (X0, X1))}

26: elseif k ∈ {1, 5} then
27: Finner(k,X)
28: foreach (C, (U, V)) ∈ Chains[k,X] do
29: if C /∈ CompletedChains then // Delayed Completion

30: Complete(C, (U, V))
31: elseif Chains[3, X] 6= ⊥ then
32: Sim(Chains[k,X])
33: return Finner(k,X)

Fig. 6: The code for simulator Sim. Sim has access to the Func oracle and maintains data structures
Gk, Chains and CompletedChains as global variables.

all values are initially undefined. Also, we refer to a tuple (Xk, Xk+1, k) as a partial chain where
Gk[Xk] 6= ⊥ and Gk+1[Xk+1] 6= ⊥ for k ∈ {1, 4}, Xk, Xk+1 ∈ {0, 1}n.

For any query (k,X) by A2, Sim checks if Gk[X] = ⊥. If not then the image Gk[X] is returned.
Otherwise, depending on the value of k, Sim takes specific steps as shown in Fig. 6. If k ∈ {2, 4}
then Sim sets Gk[X] to a uniformly random n-bit string by calling the procedure Finner. At this
point, Sim considers newly formed tuples (X1, X2) ∈ G1 × {X} (when k = 2) and detects partial
chains C = (X1, X2, 1). The notation X1 ∈ G1 is equivalent to G1[X1] 6= ⊥. For every partial chain
C that Sim detects, it queries Func on (X0, X1) and gets (X5, X6) where X0 = G1[X1] ⊕ X2 . If
(X0, X1) does not appear in one of the queries/responses by/to A1 then it is unlikely for A2 to
guess the corresponding (X5, X6) pair. Therefore, if G5[X5] 6= ⊥ then Sim assumes that C is a
chain that most likely corresponds to a query by A1. We refer to partial chains that correspond
to the queries by A1 as relevant chains. In this case, Sim immediately completes C by calling the

16

PROCEDURE Finner(i,Xi):
34: if Gi[Xi] = ⊥ then
35: Gi[Xi]←$ {0, 1}n
36: return Gi[Xi]

PROCEDURE ForceVal(X,Y, l):
37: Gl[X]← Y

PROCEDURE Complete(C, (U, V)):
38: (X,Y, i)← C
39: if i = 1 then
40: X1 ← X,X2 ← Y , X3 ← Finner(2, X2)⊕X1

41: (X5, X6)← (U, V)
42: X4 ← Finner(5, X5)⊕X6

43: ForceVal(X3, X4 ⊕X2, 3), ForceVal(X4, X5 ⊕X3, 4)
44: elseif i = 4 then
45: X4 ← X,X5 ← Y , X3 ← Finner(4, X4)⊕X5

46: (X0, X1)← (U, V)
47: X2 ← Finner(1, X1)⊕X0

48: ForceVal(X3, X4 ⊕X2, 3), ForceVal(X2, X1 ⊕X3, 2)

49: CompletedChains
∪← {(X1, X2, 1), (X4, X5, 4)}

Fig. 6: (continued) The code for subroutines used by simulator Sim.

procedure Complete. C is completed by forcing the values of G3[X3] and G4[X4] to be consistent
with the Func query where X3 ← G2[X2]⊕X1 and X4 ← G5[X5]⊕X6.

If G5[X5] = ⊥ then either C is not a relevant chain or C is a relevant chain but A2 has
not queried (5, X5) yet. An aggressive strategy would be to complete C, thereby asking Sim to
complete every partial chain ever detected. The resulting simulation strategy will however end up
potentially managing an exponential number of partial chains, contradicting our goal of efficient
simulation. Hence, Sim delays the completion and only completes C on A2’s query to either (3, X3)
or (5, X5) where X3 = G2[X2] ⊕ X1. The completion is delayed by storing information about
X3 and X5, that fall on the chain C, in the table Chains. In particular, Sim stores a pointer to
(5, X5) at Chains[3, X3]. The inputs ((X1, X2, 1), (X5, X6)) to the Complete call on C are stored
in Chains[5, X5]. As many chains can share the same X5, we allow Chains[5, X5] to be a set. The
idea of delaying the chain completions is unique to our simulation strategy and it translates to an
efficient Sim which consistently completes chains in the eyes of A. Sim works symmetrically when
k = 4.

For queries of the form (k,X) where k ∈ {1, 5}, Sim always assigns Gk[X] to a uniform random
n-bit string by calling Finner. Moreover as discussed earlier, X could be on previously detected
partial chains whose completion was delayed. Therefore after the assignment, Sim picks up all
partial chains C ′ (if any) stored in Chains[k,X] and completes them. This is where Sim captures
a relevant partial chain which was delayed for completion. Finally for queries (3, X), Sim checks
if this X was on a partial chain that was detected but not completed. If Chains[3, X] = ⊥ then
Sim assigns G3[X] a uniform random n-bit string otherwise it follows the pointer to Chains[3, X]
to complete the chain X was on. Since Chains[3, X] just stores a tuple (instead of a set) there can
be at most one chain C that Chains[3, X] can point to at any time. In the execution, Chains[3, X]

17

X1G1

X2G2

X3G3

X4G4

X5G5

X0

X6

forceVal

forceVal

set uniform

set uniform

X2 detect

X4 detect

Fig. 7: The 5-round Feistel where Sim sets G1[X1] and G5[X5] uniformly at random (green). Sim
detects chains at either (X1, X2) or (X4, X5) (blue) and adapts at (X3, X4) and (X2, X3) respectively
(red).

can get overwritten which may lead to inconsistencies in chain completions. However, we show that
there are no overwrites in either tables Gk or the data-structure Chains, except with negligible
probability. This allows Sim to Complete chains consistently in the eyes of A. Furthermore, to avoid
completing the same chains again, Sim maintains a set of all CompletedChains and completes any
chain if it is not in CompletedChains. A pictorial description of Sim is found in Fig. 7.

5.1 Proof of Theorem 5

In this Section, we outline the proof of sequential indifferentiability of the 5-round Feistel network
Ψ5. First, we develop some notation and describe the hybrids used in the proof. The detailed analysis
of the indistinguishability of the hybrids can be found in Appendix C.

For the entire proof we will let n denote the security parameter and we omit it from definitions
of games for ease of notation. To prove our claim, we fix a deterministic distinguisher A = (A1, A2)
that makes at most q queries overall, i.e., we sum the number of queries in its first and second
stage. 9 For ease of description, we further assume that A1 makes qc ≤ q (construction) queries and
denote its queries as (σ,Xi

k, X
i
k+1) for (σ, k) ∈ {(+, 0), (-, 5)} and i ∈ [qc]. We refer to these queries as

relevant queries. From now on, any query described with superscript i must be understood as either
the query by A1 or its response. We also assume that A2 issues primitive queries corresponding to
all construction queries by A1. This can be achieved by allowing A2 run the procedure AllPrimitive
described in Figure 8 at the end and blowing up the number of queries only by a factor of 5.

Our proof considers four games denoted as Gi for i ∈ [4] which are described in Figures 8, 9.
Furthermore we define the quantity ∆(Gi,Gi+1),

∆(Gi,Gi+1) = |Pr [Gi]− Pr [Gi+1]| . (14)

We describe our games next.

9 We may assume A is deterministic without loss of generality, as the advantage of any probabilistic distinguisher
is at most the advantage of the corresponding deterministic distinguisher obtained by optimally fixing its random
tape.

18

MAIN GA1 (n):

P +, P - ← φ
st←$AFunc

1 (1n)
b′ ←$APrim

2 (1n, st)
return b′

ORACLE Prim(k,X):
Y ←$ Sim(k,X)
return Y

ORACLE Func(+, X0||X1):
if P [+, X0, X1] = ⊥ then

(X5, X6)←$ {0, 1}n × {0, 1}n \ P -

P - ∪← {(X5, X6)}, P + ∪← {(X0, X1)}
P [+, X0, X1]← (X5, X6)
P [-, X5, X6]← (X0, X1)

return P [+, X0, X1]

ORACLE Func(-, X5||X6)
if P [-, X5, X6] = ⊥ then

(X0, X1)←$ {0, 1}n × {0, 1}n \ P +

P - ∪← {(X5, X6)}, P + ∪← {(X0, X1)}
P [+, X0, X1]← (X5, X6)
P [-, X5, X6]← (X0, X1)

return P [-, X5, X6]

MAIN GA2 (n):
(f, ρ)←$F ×R
st← AFunc

1 (1n)
b′ ← APrim

2 (1n, st)
AllComplete()
return b′

ORACLE Prim(k,X):
Y ← Sim(f)(k,X)
return Y

ORACLE Func(+, X0||X1)
if P [+, X0, X1] = ⊥ then

(X5, X6)← ρ[+, X0, X1]
P [+, X0, X1]← (X5, X6)
P [-, X5, X6]← (X0, X1)

return P [+, X0, X1]

ORACLE Func(-, X5||X6)
if P [-, X5, X6] = ⊥ then

(X0, X1)← ρ[-, X5, X6]
P [-, X5, X6]← (X0, X1)
P [+, X0, X1]← (X5, X6)

return P [-, X5, X6]

PROCEDURE AllPrimitive():
foreach i ∈ [qc] do

V ← Xi
1, U ← Xi

0

foreach i ∈ [5] do
Y ← Prim(i, V)⊕ U
U ← V , V ← Y

PROCEDURE AllComplete():
foreach (k,X) ∈ Chains.keys() do
if k ∈ {1, 5} then
Finner(k,X)
foreach (C, (U, V)) ∈ Chains[k,X] do

if C /∈ CompletedChains then
Complete(C, (U, V))

Fig. 8: (Top) Game G1 is described on the left along with the Prim and Func oracles. Game G2 is
defined on the right along with the Prim and Func oracles where the randomness f, ρ is sampled
uniformly at the beginning of the game. (Bottom) The procedure AllPrimitive (run by A2) making
primitive queries corresponding to all construction queries by A1. Here, (Xi

0, X
i
1) (passed to A2

through st) is either the ith query by A1 or its response by Func. The procedure AllComplete (run
by Sim) at the end of G2 issues calls to Complete for all incomplete chains whose completion was
delayed. T.keys() returns the set of all keys in the hashtable T .

Game G1: G1 described in Figure 8 is exactly the case when b = 0 in the CP-sequential indifferen-
tiability game of Ψ5. The Func oracle implements a permutation via lazy sampling and Prim oracle
invokes the procedure Sim(k,X) on queries (k,X). In addition, Sim inherits oracle access to Func
from Prim.

Game G2: replacing permutation with a two-sided random function: In this game, we
modify the oracle Func such that now instead of a permutation it acts like a two-sided random

19

function working with pre-sampled randomness ρ. The description of Func for game G2 is given in
Figure 8. Func maintains a table P to simulate the permutation. For a (forward) query (+, X0||X1)
to Func, if P [+, X0, X1] is already defined then the image P [+, X0, X1] is returned as the response.
Otherwise, Func gets a 2n-bit string (X5, X6) from ρ[+, X0, X1] and maps (X0, X1) to (X5, X6) and
vice versa. This is shown in Figure 8. Similarly for a (backward) query (-, X5||X6) to Func such that
P [-, X5, X6] is not defined Func gets a 2n-bit string from ρ[-, X5, X6] and updates P accordingly.
The random table ρ, therefore, contains a 2n-bit string for all (+, X0, X1) and (-, X5, X6).

Moreover, we also sample the randomness f used by Sim at the beginning of the game G2. The
table f contains an n-bit string for all indices (k,X) where k ∈ [5] and X ∈ {0, 1}n. We refer to
the simulator with presampled randomness f as Sim(f). Whenever Sim lazily samples randomness
to assign Gk[X] (line 37 of Figure 6), Sim(f) instead accesses f [k,X]. Sampling f at the beginning
does not change the distribution of the simulation. This is because Sim considers an entry of f at
most once. The code for Sim(f) is shown in Figure 6 alongside the code of Sim.

After A2 has output its guess b′, we allow Sim to run an additional procedure called AllComplete
(described in Figure 8). We refer to the execution of G2 until the point when A2 outputs its guess
as Phase 1 and the remaining execution as Phase 2. The output guess of A2 is independent of Phase
2 as A2 learns nothing about it. Note that in Phase 2, Sim does not make any calls to Func, it just
completes incomplete chains that were delayed. This extension to Phase 2 is necessary to argue
about the indistinguishability of G2 with G3 (defined next).

By F , R we denote the set of all tables f and ρ respectively as described above. We consider
an alternative game Gf,ρ2 where the first step of sampling random tables from game G2 is omitted

and instead we use (f, ρ) as the tables. In other words, game Gf,ρ2 can be thought of as running G2

with the fixed (f, ρ).

Game G3: replacing two-sided random function with Ψ5(h): In G3, we replace the two-
sided random function with the Feistel construction Ψ5(h) i.e. Func now evaluates the Feistel con-
struction to reply to its queries. Like in the previous game, we again sample the randomness h ∈ F
at the beginning of the game. One major difference between G2 and G3 is that in G3 the randomness
h is shared between Prim (and hence Sim) and Func oracles. The game G3 maintains tables Hk which
have the same semantics as Gk. As shown in Figure 9, whenever Func needs to access the value of
the kth round function on X it accesses Hk[X] if it is defined. Otherwise, it sets Hk[X]← h[k,X]
and then accesses Hk[X]. Sim does the same when it needs to set Gk[X]. The entire working of Sim
is the same as in G2 (and G1) except the procedure Finner which is shown in Figure 9. Like in G2,
we allow Sim to run the procedure AllComplete after A2 has output its guess.

We consider an alternative game Gh3 where the first step of the sampling random table h is
omitted from game G3 and instead we use h as the table. In other words, game Gh3 can be thought
of as running G3 with the fixed h.

Game G4: removing the simulator Sim: In this game, we modify Prim such that it behaves like
a random function as in the case of b = 1 in the CP-sequential indifferentiability game of the five-
round Feistel construction. The Func oracle which implements the Feistel five-round construction
has access to Prim for round functions.

From the choice of our games, it follows that Adv
cpi[R→P]
Ψ5,Sim,A

(n) ≤ ∆(G1,G4). Our focus from now
on will be to derive ∆(Gi,Gi+1) for i ∈ [3] and then by the triangle inequality we derive a bound
on ∆(G1,G4). We refer the reader to Appendix C for a detailed analysis.

20

MAIN GA3 (n):
h←$F
st← AFunc

1 (1n)
b′ ← APrim

2 (1n, st)
AllComplete()
return b′

ORACLE Func(+, X0||X1):
if P [+, X0, X1] = ⊥ then

U ← X0, V ← X1

foreach i ∈ [1, 2, 3, 4, 5] do
if Hi[V] = ⊥ then
Hi[V]← h[i,X]

X ← Hi[V]⊕ U
U ← V , V ← X

P [+, X0, X1]← (U, V)
P [-, U, V]← (X0, X1)

return P [+, X0, X1]

ORACLE Prim(k,X):
Y ← Sim(k,X)
return Y

PROCEDURE Finner(k,X):
if Gk[X] = ⊥ then

if Hk[X] = ⊥ then
Hk[X]← h[k,X]

Gk[X]← Hk[X]
return Gk[X]

ORACLE Func(-, X5||X6):
if P [-, X5, X6] = ⊥ then

V ← X5, U ← X6

foreach i ∈ [5, 4, 3, 2, 1] do
if Hi[V] = ⊥ then
Hi[V]← h[i,X]

A← Hi[V]⊕ U
U ← V , V ← A

P [-, X5, X6]← (U, V)
P [+, U, V]← (X5, X6)

return P [-, X5, X6]

MAIN GA4 (n):

st←$AFunc
1 (1n)

b′ ←$APrim
2 (1n, st)

return b′

ORACLE Func(+, X0||X1):
if P [+, X0, X1] = ⊥ then

U ← X0, V ← X1

foreach i ∈ [1, 2, 3, 4, 5] do
X ←$Prim(i, V)⊕ U
U ← V , V ← X

P [+, X0, X1]← (U, V)
P [-, U, V]← (X0, X1)

return P [+, X0, X1]

ORACLE Prim(k,X):
if Gk[X] = ⊥ then

Gk[X]←$ {0, 1}n
return Gk[X]

ORACLE Func(-, X5||X6):
if P [-, X5, X6] = ⊥ then

V ← X5, U ← X6

foreach i ∈ [5, 4, 3, 2, 1] do
X ←$Prim(i, V)⊕ U
U ← V , V ← X

P [-, X5, X6]← (U, V)
P [+, U, V]← (X5, X6)

return P [-, X5, X6]

Fig. 9: (Top) Game G3 with its oracles Prim and Func. The Prim oracle behaves exactly like Sim as
described in Figure 6 except the Finner procedure which is shown here. (Bottom) Game G4 with its
oracle Prim and Func.

6 Ideal-model psPRP Constructions

We discuss two natural approaches to instantiate psPRPs. One is by taking any block cipher, and
using its key as a (now public) seed. The second is by using a key-less permutation (e.g., the one
within SHA-3), and adding the seed through the Even-Mansour [EM97] construction. While the
purpose of our psPRP framework is to remove ideal-model assumptions, the only obvious way to
validate (heuristically) these methods is via ideal-model proofs, and this is what we do here. Also,
note that such ideal-model proofs are useful since, as in the case of UCE, psPRP security can become
a powerful intermediate notion within ideal-model proofs for multi-stage security games [Mit14].

21

PsPRPs from block ciphers.Given a family of block ciphers Eλ : {0, 1}s(λ)×{0, 1}λ → {0, 1}λ,
we consider the construction F = (F.Kg,F.Eval), where F.Kg(1λ) outputs a random k←$ {0, 1}s(λ),
whereas

F.Eval(1λ, (k, +, x)) = E(k, x) , F.Eval(1λ, (k, -, y)) = E−1(k, y) . (15)

The following theorem establishes its security in the ideal cipher model, that is, we assume (without
overloading notation) that all parties (i.e., the source, the distinguisher, and the reset adversary in
the proof) are given access to a randomly chosen block cipher E, which is also used within F. We
refer the reader to Appendix D.1 for the proof which closely follows the proof from [BHK13] that
a random oracle is UCE-secure.

Theorem 6 (Ideal Cipher as a psPRP). Let P be the random permutation with input length
n(λ) = λ. For every source-distinguisher pair S,D, where the source S, in its first stage, outputs
n which is at most N(λ) and makes q Prim queries to its oracle, there exists R (described in the
proof) such that

Adv
psPRP[n]
F,S,D (λ) ≤ Adv

reset[P]
S,R (λ) +

2qN(λ)

2s(λ)
+

2N(λ)2

2s(λ)
. (16)

In particular, if D is polynomial time, then so is R. �

Even-Mansour. We find it practically valuable to assess whether simple constructions can work.
To this end, here, we show that the Even-Mansour construction [EM97] yields a psPRP[Scup]-secure
permutation family in the random permutation model. In particular, we assume we are given a
family of permutations Π = {πλ}λ∈N, where πλ : {0, 1}λ → {0, 1}λ, and consider the construction
EM = (EM.Kg,EM.Eval) as defined in Section 4.1. Similar to the above, the following theorem
implicitly assumes all parties are given oracle access to a random permutation which is used to
sample the permutation inside EM.

Below, we give a few remarks on why the above approach to show psPRP[Scrs] security does not
extend to the case of Even-Mansour.

Theorem 7 (Even-Mansour as a psPRP). Let P be the random permutation with input length
n(λ) = λ. For every source-distinguisher pair S,D, where the source S, in its first stage, outputs
n which is at most N(λ) and where S and D jointly make at most q queries to their oracles, there
exists P (described in the proof) such that

Adv
psPRP[n]
EM,S,D (λ) ≤ Adv

pred[P]
S,P (λ) +

3q2

2λ
+

2N(λ)q2

2λ
. (17)

In particular, if D runs in polynomial time, then so does P . �

The proof of Theorem 7 is in Appendix D.2. It resembles the original indistinguishability proof
from [EM97], which bounds the advantage via the probability of an intersection query, that is, a
direct query (by the source or by the distinguisher) to the random permutation that overlaps with
one of the queries to the random permutation made internally by oracle O invoked by the source.
Bounding the probability that S makes an intersection query proceeds as in [EM97] (exploiting lack
of knowledge of the seed), whereas bounding the probability that D makes such a query requires a
reduction to unpredictability.

22

Why not reset-secure sources? We would like to extend Theorem 7 to Scrs, as this would
provide validation for the assumption from Section 4.1. While we conjecture this to be true, the
statement seems to evade a simple proof. The proof approach behind Theorem 6 fails in particular,
as it heavily exploits the property that for each distinct seed, the construction F queries a disjoint
portion of the domain of the ideal cipher, which is not true for EM.

7 Efficient Garbling from psPRPs

As an application of the psPRP framework, we study the security of the efficient garbling schemes
of Bellare, Hoang, Keelveedhi, and Rogaway [BHKR13], and in particular, their simplest scheme
(called Ga). It follows Yao’s general garbling paradigm [Yao86], but proposes a particular gadget
to garble individual gates that only relies on evaluating the underlying block cipher on a fixed key.
In terms of efficiency, this has been shown to be advantageous, as it avoids higher re-keying costs.
However, its security has only been proved in the ideal-cipher model, and recent work by Gueron
et al. [GLNP15] has debated this. Here, we show that a minor variant of Ga (which still largely
benefits from the lack of re-keying) is secure assuming the underlying block cipher is psPRP[Ssup]-
secure. While this assumption is undoubtedly strong, it makes it clear what is expected from the
permutation. In particular, the main concern of [GLNP15] is the existence of fixed-key distinguishers
(as in [KR07]), but these do not seem to affect psPRP-security, while they may invalidate the
permutation being ideal.

Simple circuit description. For representing circuits we adopt the SCD notation of [BHR12].
A circuit is a 6-tuple f = (n,m, q,W1,W2, G) where n ≥ 2 is the number of inputs, m ≥ 1 is
the number of outputs, q ≥ 1 is the number of gates, and n + q is the number of wires. We
let Inputs = [1, . . . , n], Wires = [1, . . . , n + q], OutputWires = [n + q − m + 1, . . . , n + q] and
Gates = [n + 1, . . . , n + q]. Then W1 : Gates → Wires \ OutputWires is a function to identify each
gate’s first incoming wire and W2 : Gates → Wires \ OutputWires to identify each gate’s second
incoming wire. Finally G : Gates× {0, 1}2 → {0, 1} is a function that determines the functionality
of each gate i.e. Gg is a table storing the output of gate g with input i and j at Gg[i, j]. We require
that W1(g) < W2(g) < g for all gates g.

Following [BHKR13], our definitions will be parameterized by the side information about the
circuit obtained from its garbled counterpart. We consider the topology side information φtopo
which maps f to its topology φtopo(f) = (n,m, q,W1,W2). Another example is φxor, which maps
f to a circuit φxor(f) = (n,m, q,W1,W2, G

′) which obscures the functionality of non-xor gates.
As shown in [BHR12] and [BHKR13], an important property is that φtopo and φxor are efficiently
invertible, i.e., there exists an efficient algorithm which given φ(f) and y, outputs (f ′, x′) such that
φ(f) = φ(f ′) and y = ev(f ′, x′).

Garbling schemes and their security. To describe a garbling scheme we use the notation
from [BHR12]. A garbling scheme is a tuple of algorithms G = (Gb,En,De,Ev, ev). The algorithm
Gb is probabilistic and others are determinisitic. Gb takes as inputs a circuit f = (n,m, q,W1,W2, G)
represented in the SCD notation and a security parameter 1λ and returns a tuple of strings (F, e, d)
where F is the garbled circuit, e is the input encoding information and d is the output decoding
information. En(e, ·) : {0, 1}n → {0, 1}∗ transforms the n-bit input x to the garbled input X.
Ev(F, ·) : {0, 1}∗ → {0, 1}∗ runs the garbled circuit F on garbled input X and returns the garbled
output Y . De(d, ·) : {0, 1}∗ → {0, 1}m ∪ {⊥} decodes the garbled output Y to return y ∈ {0, 1}m.
The algorithm ev is the canonical circuit-evaluation function where ev(f, x) is the m-bit output one

23

MAIN PrvIndAG,φ(1λ)

b←$ {0, 1}
b′ ←$AGarble(1λ)
return (b′ = b)

PROCEDURE Garble(f0, f1, x0, x1)
if φ(f0) 6= φ(f1) then return ⊥
if {x0, x1} * {0, 1}f0.n then return ⊥
if ev(f0, x0) 6= ev(f1, x1) then return ⊥
(F, e, d)←$Gb(1λ, fb), X ← En(e, xb)
return (F,X, d)

Fig. 10: PrvIndAG,φ Game for G with adversary A.

gets by feeding x to f . Finally, we require that G is correct, that is, if f ∈ {0, 1}∗, λ ∈ N, x ∈ {0, 1}n
and (F, e, d) ∈ [Gb(1λ, f)], then De(d,Ev(F,En(e, x))) = ev(f, x). We require that all algorithms
run in time polynomial in the security parameter λ.

In this work, we are only concerned with indistinguishability-based privacy, as defined in Game
PrvIndAG,φ in Fig. 10. Since both φtopo and φxor are efficiently invertible, [BHR12] show that it
is sufficient to focus on this target, since simulation-based security is implied. We say that G is
prvind-secure over side information function φ if for all PPT adversaries A,

Adv
prvind[φ]
G,A (λ) = 2 Pr

[
PrvIndAG,φ(λ)

]
− 1 (18)

is negligible (in λ). Also, it is not hard to see (by a simple hybrid argument) that it is sufficient to
prove this for adversaries which make one single query to their oracle.

Garbling scheme Ga[P]. Our garbling scheme resembles heavily that of [BHKR13]. The only
modification is that we assume it uses a function family P meant to be psPRP[Ssup]-secure (which
could be instantiated from a block cipher, by letting the key take the role of the seed.). During
the garbling procedure, a fresh seed for P is chosen and made part of the garbled circuit. Clearly,
re-keying costs are still largely avoided (especially for large circuits), even though re-keying is
necessary when garbling multiple circuits.

Concretely, the garbling scheme Ga[P] (Fig. 11) is a tuple of algorithms Ga[P] = (Gb,En,De,Ev, ev)
where P ∈ psPRP[k(λ),Ssup] for some polynomial k(λ). Algorithm Gb transforms the input circuit
f to a tuple of strings (F, e, d) where the seed s for the permutation P sampled independently for
each input f is now part of F . Though the Ga scheme of [BHKR13] comes in several variants, where
each variant is defined by the dual-key cipher used, we focus on a specific dual-key cipher (namely
A1 in [BHKR13]) that leads to the most efficient implementation of Ga.

In the following theorem we prove the prvind-security of Ga[P] and later discuss about the more
efficient schemes GaX and GaXR from [BHKR13].

Theorem 8 (Garbling from psPRPs). Let P ∈ psPRP[k(λ),Ssup] then Ga[P] is prvind-secure
over φtopo. �

Proof. We start with an overview of the proof, and details are given further below. Let us assume
that Ga[P] is not prvind-secure then there exists a PPT adversary A that issues circuits with at
most q(λ) gates and achieves a non-negligible advantage ε(λ) in the PrvIndAGa[P],φ(λ) 10 game. Using
A we construct a pair (S,D) (Fig. 12) breaking the psPRP security of P, where S is a statistically
unpredictable source. Without loss of generality, we can assume that A queries its oracle exactly
once.
10 We drop the subscript topo from φ for ease of notation.

24

PROCEDURE En(e, x)

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

x1, . . . , xn ← x
X ← (Xx1

1 , . . . , Xxn
n)

return X

PROCEDURE Ev(F,X)
(n,m, q,W1,W2, T, s)← F
(X1, . . . , Xn)← X

foreach g ∈ [n+ 1, . . . , n+ q] do
w1 ←W1(g), w2 ←W2(g)
α← lsb(Xw1), β ← lsb(Xw2)
K ← Xw1 ⊕Xw2 ⊕ g
Xg ← T [g, α, β]⊕ P.Eval(s,K)⊕K

return (Xn+q−m+1, . . . , Xn+q)

PROCEDURE De(d, Y)
(d1, . . . , dm)← d
(Y1, . . . , Ym)← Y
foreach i ∈ [1, . . . ,m] do

yi ← lsb(Yi)⊕ di
return y ← y1, . . . , ym

PROCEDURE Gb(1λ, f)

s←$P.Kg(1λ)
(n,m, q,A′, B′, G)← f

foreach i ∈ [1, . . . , n+ q] do
t←$ {0, 1}
X0
i ←$ {0, 1}k−1t

X1
i ←$ {0, 1}k−1t

foreach g ∈ [n+ 1, . . . , n+ q] do
w1 ←W1(g), w2 ←W2(g)
foreach (i, j) ∈ {0, 1}2 do
A← Xi

w1
, α← lsb(A)

B ← Xj
w2
, β ← lsb(B)

K ← Xi
w1
⊕Xj

w2
⊕ g

T [g, α, β]← P.Eval(s,K)⊕K ⊕XGg [i,j]
g

F ← (n,m, q,W1,W2, T, s)
e← (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)

d← (lsb(X0
n+1−m+1), . . . , lsb(X0

n+q))
return (F, e, d)

Fig. 11: Scheme Ga[P].

Let c be the challenge bit in the psPR game for P, and let Perm be the oracle called by S.
We allow S to sample the challenge bit b for the PrvIndAGa[P],φ game. Further, for syntactic reasons

we decompose A into (A0, A1) where A0 on input 1λ outputs (f0, x0, f1, x1) (inputs for Garble)
and forwards a state st to A1. The result of Garble i.e. (F,X, d) is forwarded to A1 to guess the
challenge bit b in the PrvIndAGa[P],φ game. The source S nearly acts as Gb on input fb. To satisfy
unpredictability, the leakage L must give no information about the queries made by S. Therefore,
S refrains from compiling the rows in the garbled table T which can be opened by A. S outputs
this partially garbled circuit F - as leakage in addition to (b, d, st). Moreover, since (S,D) must
perfectly simulate the PrvIndAGa[P],φ game for A, leakage also contains the vector X+ which is the set
of all visible tokens (one for each wire). Given s and L, D completes the garbled circuit and invokes
A1 with appropriate inputs. D then outputs b′ ⊕ b where b′ was the guess of A in the PrvIndAGa[P],φ
game.

It is easy to see that when c = 1, (S,D) simulate the game PrvIndAGa[P],φ for A. Furthermore,
when c = 0 the leakage L can be transformed to be independent of the bit b by modifying Perm to
act like a random function. This allows rows in the garbled table to be independent of the tokens

X
Gg [i,j]
g which might depend on bit b. Therefore, in this modified game A can do no better than

guessing.

To prove that S is statistically unpredictable we need to show that any (possibly unbounded)
predictor P making at most p(λ) number of queries to the oracle Perm is unlikely to predict a
query made by S given L = (F -, X+, b, d, st). The idea is to swiftly transition to a game where L is
independent of the queries made by S to Perm. This then reduces P to merely guess the queries.
To achieve this, we take a similar path as the psPRP game of P (c = 0). We transition to a game

25

SOURCE SPerm(1λ):
b←$ {0, 1}
(f0, x0, f1, x1, st)← A0(1λ)
(n,m, q,W1,W2)← φ(fb)
G← fb.G
foreach i ∈ [1, . . . , n+ q] do

vi ← ev(fb, xb, i); ti ←$ {0, 1}
Xvi
i ←$ {0, 1}k−1ti

Xvi
i ←$ {0, 1}k−1ti

foreach g ∈ [n+ 1, . . . , n+ q] do
foreach (i, j) ∈ {0, 1}2 do
w1 ←W1(g), w2 ←W2(g)
A← Xi

w1
, α← lsb(A)

B ← Xj
w2

, β ← lsb(B)
K ← A⊕B ⊕ g
if i 6= vw1 ∨ j 6= vw2 then

T [g, α, β]← Perm(K)⊕K ⊕XGg [i,j]
g

F - ← (n,m, q,W1,W2, T)
X+ ← (Xv1

1 , . . . , X
vn+q

n+q)
return (F -, X+, d, b, st)

DISTINGUISHER D(1λ, s, L):

(F -, X+, d, b, st)← L
(n,m, q,W1,W2, T)← F -

X1, . . . , Xn+q ← X+

for g ∈ [n+ 1, . . . , n+ q] do
w1 ←W1(g), w2 ←W2(g)
α← lsb(Xw1), β ← lsb(Xw2)
K ← Xw1 ⊕Xw2 ⊕ g
T [g, α, β]← P.Eval(s,K)⊕K ⊕Xg

F ← (n,m, q,W1,W2, T, s)
X ← (X1, . . . , Xn)
b′ ← A1(1λ, st, F,X, d)
return (b′ ⊕ b)

Fig. 12: (S,D) in the psPR game of P where A0’s inputs are honest.

G1 where F - is independent of bit b. However, unlike the psPRP case, P and S share the same
oracle Perm (to which P can also make inverse queries), and therefore it is non-trivial to argue
about the independence of L and queries of S as we desire. Therefore, we make a final transition
to a game G2 where Perm returns random strings for queries by S and refrains from storing any
information about the queries made by S. The resulting leakage can be viewed as being constructed
by S without making any queries to Perm. Then we exploit the fact X+ information theoretically
hides X- and hence queries by S are hidden from any P making only polynomially many queries
to Perm. (We also note that this argument is implicitly contained in the original security proof in
the ideal-cipher model.)

We now proceed with more details about the proof. Following up on what discussed above, it is easy
to see that when S interacts with P (c = 1), A is exactly playing the PrvIndAGa[P],φ game. Therefore,

Pr[D ⇒ 0 | c = 1] =
1

2
Pr[A1 ⇒ 1 | b = 1 ∧ c = 1] +

1

2
Pr[A1 ⇒ 0 | b = 0 ∧ c = 1]

=
1

2
Adv

prvind[φ]
Ga[P],A (λ) +

1

2
.

(19)

Let us now consider the case when c = 0 in the psPRP game of P i.e. S interacts with the random
permutation making forward queries of the form (+,K). We are concerned with Pr [D ⇒ 0 | c = 0].
This quantity is precisely captured by Pr [G0] described in Figure 13 where to answer a forward
query (+,K), Perm samples a random string R and sets R⊕K as TP [+,K].11 If (+,K) was already
queried before then G0 sets bad to true and restores the value of R to be consistent. Moreover, if

11 Note that the above method of maintaining a permutation might seem a bit strange, but it is easy to see that it
is equivalent to sampling a random string U as the image of K and then setting R← U ⊕K.

26

ORACLE Perm(+,K): // G0 ,G1

R←$ {0, 1}λ
if (+,K) ∈ TP then

bad← true; R← TP [+,K]⊕K
elseif (-, R⊕K) ∈ TP then

bad← true
TP [+,K]←$ {0, 1}n \ P -

R← TP [+,K]⊕K
TP [+,K]← R⊕K; TP [-, R⊕K]← K

P + ∪← {K}; P - ∪← {R⊕K}
return TP [+,K]

MAIN G0,G1:
P + ← {}; P - ← {}
L← SPerm(1λ)
c′ ← D(1λ, s, L)
return c′

Fig. 13: In Game G0, Perm behaves like a random permutation and sets bad to true only if S issues
a query it had earlier queried or if Perm’s choice of R is such that R ⊕ K was already sent as a
reply. In Game G1, Perm replies with uniform random string R ⊕K. The leakage generated by S
in Game G1 is therefore independent of the bit b. Note that since inverse queries are not made by
S we do not describe the simulation of Perm(-, ·).

(-, R ⊕ K) was already chosen as a reply then G0 again sets bad to true and picks a value of R
to be consistent with a permutation. It is easy to see that Perm in G0 behaves as a permutation
implemented via lazy sampling. Hence, we have argued that Pr [D ⇒ 0 | c = 0] = Pr [G0].

We introduce game G1 described in Figure 13, where we modify the Perm oracle to not restore
the value of R when bad is set to true. It is easy to see that G0 and G1 are identical until either
game sets bad. However in Game G1, the leakage L is independent of the bit b in the PrvIndAGa[P],φ
game. This is because the entries T [g, α, β] constructed by S are now completely independent of

the token X
Gg [i,j]
g because of the uniform random replies by Perm, i.e, in particular

T [g, α, β] = Perm(+,K)⊕K ⊕XGg [i,j]
g

= R⊕K ⊕K ⊕XGg [i,j]
g .

(20)

We can easily reformulate G1
12 to reflect this independence but avoid describing it here. There-

fore, Pr [G1] = 0.5. Also note that since inverse queries are not made by S we do not describe the
simulation of Perm(-, ·). Then,

Pr[D ⇒ 0 | c = 0] = Pr [G0]

≤ |Pr [G0]− Pr [G1]|+ Pr [G1]

= Pr [G1 sets bad] +
1

2
.

(21)

Let’s bound the probablility of bad being set to true. The game G1 sets bad if either the query
(+,K) is such that it was previously queried by S or if R⊕K was already sent as a reply by Perm.
Since S issues exactly 3q queries to Perm (q is the number of gates in circuits given by A0), by the
union bound over all queries we have that Pr [(-, R⊕K) ∈ TP] is at most 9q2/2k.

12 A reformulation similar to Fig.14 in [BHKR13] works.

27

Next, let us consider the probability of bad being set due to S’s query (+,K) ∈ TP . Let us
consider an element (+,K∗) in TP . Then necessarily K∗ = A∗ ⊕ B∗ ⊕ g∗. Let K = A ⊕ B ⊕ g. If
A∗ = A and B∗ = B then necessarily g 6= g∗. Hence K∗ 6= K. Therefore it must be the case that
either A 6= A∗ or B 6= B∗. Without loss of generality, let A 6= A∗. Furthermore, all but the last
bit of A is independent of B,A∗, B∗ (A[1, . . . , k − 1] given A∗, B, B∗ is still uniform). Therefore
Pr [K = K∗] ≤ 2

2k
. By the union bound over all entries in TP and over all queries by S, we have

Pr [(+,K) ∈ TP] ≤ 2
2k
· 9q2. By the union bound over the two events which set bad to true,

Pr[G1 sets bad] ≤ 27q2

2k
. (22)

Therefore,

Adv
psPRP[k]
P,S,D (λ) = Pr[D ⇒ 0 | c = 1]− Pr[D ⇒ 0 | c = 0]

≥ 1

2
Adv

prvind[φ]
Ga[P],A (λ) +

1

2
− 27q2

2k
− 1

2

=
1

2
Adv

prvind[φ]
Ga[P],A (λ)− 27q2

2k

(23)

This contradicts the psPR security of P as long as S is a statistically unpredictable source. To
prove that S is statistically unpredictable we need to show that any (possibly unbounded) predictor
P making at most p(λ) number of queries to the oracle Perm is unlikely to predict a query made
by S even if it is allowed to output a set Q′ of size at most p′(λ) given L = (F -, X+, b, d, st).

The Game G0 (Figure 14) is exactly the PredPP,S(λ) where Perm implements the random per-
mutation by lazy sampling. We modify the Game G0 similar to the case of the psPRP game when
c = 0 (described above). The games G0 and G1 are identical until either game sets bad to true.
Therefore by Equation 22 we have Pr [G1 sets bad].

We know that L is independent of the bit b and may want to compute the success probability
of P assuming that L gives no information about S’s queries to P . However, unlike the psPRP case
here P has access to the Perm oracle used by S to output the leakage L. It is not clear how to prove
that L gives no information about the queries when both S and P are using the same oracle.

To handle this, we transition to a game G2 where until done is false the Perm oracle replies
randomly like G1 but does not store the mapping. However it maintains a flag bad2 which is set
to true if any of P ’s queries intersect with S’s. It is easy to see that G1 and G2 are identical until
bad2 is set to true. Note that in G2, S still accesses Perm to construct the leakage but since Perm
does not store the map, we can conclude that P learns no information about the queries made by
S except one bit of each invisible token inferred from X+. This allows us to look at G2 where P
plays a guessing game where it is allowed to query the Perm oracle p times and has to guess one of
the 3q queries and can output p′ guesses.

Pr[G2] ≤ p′(λ) · p(λ) · 3q
[

2

2k−1 − p

]
. (24)

The factor 2 in the numerator is due to the union bound over both types of queries (+, ·) and
(-, ·) and the term k− 1 in the denominator is to incorporate the one bit leakage of the tokens not
visible to P . Then using p ≤ 2k−2,

28

MAIN G0(λ),G1(λ),G2(λ):

P + ← {}; P - ← {}
Bad+ ← {}; Bad- ← {}
done← false
Q← {}
L←$SO(1λ)
done← true
Q′ ←$PO(1λ, L)
return (Q ∩Q′ 6= φ)

ORACLE Perm(+,K): // G0 ,G1

if ¬done then
R←$ {0, 1}k
if (+,K) ∈ TP then

bad← true; R← TP [+,K]⊕K
elseif (-, R⊕K) ∈ TP then

bad← true

TP [+,K]←$ {0, 1}k \ P -

R← TP [+,K]⊕K

TP [+,K]← R⊕K; P + ∪← {K}
TP [-, R⊕K]← K; P - ∪← {R⊕K}
return TP [+,K]

else
if (+,K) /∈ TP then
TP [+,K]←$ {0, 1}k \ P -

TP [-, TP [+,K]]← {K}
P + ∪← {K}; P - ∪← {TP [+,K]}

return TP [+,K]

ORACLE Perm(-,K): // G0 ,G1

if (-,K) /∈ TP then
TP [-,K]←$ {0, 1}k \ P +

TP [+, TP [-,K]]← K

P - ∪← {K}; P + ∪← {TP [-,K]}
return TP [-,K]

ORACLE Perm(+,K): // G2

if ¬done then
R←$ {0, 1}k

Bad+
∪← {K}

Bad-
∪← {R⊕K}

return TP [+,K]
else

if K ∈ Bad+ then bad2 ← true
if (+,K) /∈ TP then
TP [+,K]←$ {0, 1}k \ P -

TP [-, TP [+,K]]← {K}
P + ∪← {K}, P - ∪← {TP [+,K]}

return TP [+,K]

ORACLE Perm(-,K): // G2

if K ∈ Bad- then bad2 ← true
if (-,K) /∈ TP then

TP [-,K]←$ {0, 1}k \ P +

TP [+, TP [-,K]]← K

P - ∪← {K}, P + ∪← {TP [-,K]}
return TP [-,K]

Fig. 14: Game G0 is the unpredictability game. In Game G1, Perm when interacting with S replies
randomly but mimics a permutation when interacting with the predictor P . In G2 the leakage is
independent of the queries made by S.

Pr[G2] ≤ p′(λ) · p(λ) · 3q
[

2

2k−2

]
= 24 · p′(λ) · p(λ) · q

2k
.

(25)

It remains to argue that Pr [G2 sets bad2] ≤ 24pq
2k

. Then we will have,

Adv
pred[P]
S,P (λ) ≤ 27q2

2k
+

24pq

2k
+

24 · pp′q
2k

. (26)

Hence, S is statistically unpredictable.

The game G2 sets bad2 if P ’s query (σ,K) ∈ Badσ where σ ∈ {+, -}. Consider any K ∈ Bad+

which has a corresponding R ⊕K ∈ Bad-. Here, K = A ⊕ B ⊕ g where at least one of A or B is
invisible to P . Without loss of generality, let A be invisible. Then given L, all but the last bit of A

29

is uniformly random and the conditional probability that K = α is at most 1/2k−1 for any string
α ∈ {0, 1}k. Consider a query (+, u) by P ,

Pr [u hits K] ≤ 1

2k−1 − p
, (27)

where p are the number of queries by P to the permutation. Similar analysis holds for queries
(-,K). By the union bound over the S’s queries and P ’s queries, the probability that G2 sets bad2,

Pr [G2 sets bad2] ≤
6pq

2k−1 − p

≤ 24pq

2k
.

(28)

where the last inequality follows from p ≤ 2k−2. ut

Related schemes. Along with Ga, [BHKR13] propose another scheme GaX which achieves faster
garbling and evaluation times using the free-xor technique [KS08]. We consider a variant GaX[P]
of GaX where (like Ga[P]) the permutation is replaced by a psPRP[Ssup]-secure permutation P and
the seed for P is sampled freshly for every new instantiation of Gb. The security proof of GaX[P]
almost readily follows from the security proof of GaX from [BHKR13] with slight modifications as
done in the proof of Ga[P].

The third scheme proposed by [BHKR13], called GaXR, further improves over GaX in the size
of the garbled table due to the use of row reduction technique at the cost of slower garbling and
evaluation times. This means that for every gate, GaXR serves only three rows in the garbled table.
Here, we note that adapting GaXR to be proved secure under a suitable psPRP assumption does
not appear to have a simple and clear solution, and we leave this as an open problem.

Acknowledgments

We wish to thank John Retterer-Moore for his involvement in an earlier stage of this project. We
also thank the EUROCRYPT ’17 anonymous reviewers for their insightful feedback. This research
was partially supported by NSF grants CNS-1423566, CNS-1528178, CNS-1553758 (CAREER),
and IIS-152804, and by a Hellman Fellowship.

References

ABD+13. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P. Steinberger. On the
indifferentiability of key-alternating ciphers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 531–550. Springer, Heidelberg, August 2013.

ABM14. Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards understanding the known-key security
of block ciphers. In Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 348–366. Springer,
Heidelberg, March 2014.

ADMA15. Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of keyed sponge con-
structions using a modular proof approach. In Gregor Leander, editor, FSE 2015, volume 9054 of LNCS,
pages 364–384. Springer, Heidelberg, March 2015.

AJN15. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX8 and NORX16: Authenticated
encryption for low-end systems. Cryptology ePrint Archive, Report 2015/1154, 2015. http://eprint.

iacr.org/2015/1154.

30

http://eprint.iacr.org/2015/1154
http://eprint.iacr.org/2015/1154

BBT16. Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based PRFs: AMAC and its multi-
user security. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume
9665 of LNCS, pages 566–595. Springer, Heidelberg, May 2016.

BDPV08. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indifferentiability of the
sponge construction. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197.
Springer, Heidelberg, April 2008.

BDPV10. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge-based pseudo-random
number generators. In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010, volume 6225
of LNCS, pages 33–47. Springer, Heidelberg, August 2010.

BFM14. Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfuscation and UCEs:
The case of computationally unpredictable sources. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 188–205. Springer, Heidelberg, August 2014.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001.

BH15. Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast deterministic and hedged
public-key encryption in the standard model. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 627–656. Springer, Heidelberg, April 2015.

BHK13. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via UCEs. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 398–415.
Springer, Heidelberg, August 2013.

BHK14. Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Cryptography from compression functions: The
UCE bridge to the ROM. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 169–187. Springer, Heidelberg, August 2014.

BHKR13. Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a fixed-
key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages 478–492. IEEE Computer
Society Press, May 2013.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press, October 2012.

BM14. Christina Brzuska and Arno Mittelbach. Using indistinguishability obfuscation via UCEs. In Palash
Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 122–141.
Springer, Heidelberg, December 2014.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–
426. Springer, Heidelberg, May / June 2006.

BS16. Mihir Bellare and Igors Stepanovs. Point-function obfuscation: A framework and generic constructions.
In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 565–594.
Springer, Heidelberg, January 2016.

BST16. Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Contention in cryptoland: Obfuscation, leakage and
UCE. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages
542–564. Springer, Heidelberg, January 2016.

CDH+12. Donghoon Chang, Morris Dworkin, Seokhie Hong, John Kelsey, and Mridul Nandi. A keyed sponge
construction with pseudorandomness in the standard model. In Proceedings of the Third SHA-3 Candidate
Conference, 2012.

CDMP05. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard revis-
ited: How to construct a hash function. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 430–448. Springer, Heidelberg, August 2005.

CHK+16. Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin, Yannick Seurin, and Stefano
Tessaro. How to build an ideal cipher: The indifferentiability of the Feistel construction. Journal of
Cryptology, 29(1):61–114, January 2016.

DGG+15. Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Ristenpart. A formal
treatment of backdoored pseudorandom generators. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 101–126. Springer, Heidelberg, April 2015.

DS16. Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-round feistel networks. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 95–120. Springer,
Heidelberg, August 2016.

31

DSKT16. Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 10-round feistel is indifferentiable
from an ideal cipher. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 649–678. Springer, Heidelberg, May 2016.

EM97. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom permutation.
Journal of Cryptology, 10(3):151–162, 1997.

FM16. Pooya Farshim and Arno Mittelbach. Modeling random oracles under unpredictable queries. In Thomas
Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 453–473. Springer, Heidelberg, March 2016.

GLNP15. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under standard
assumptions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15, pages 567–
578. ACM Press, October 2015.

GPT15. Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security of truncation: Tight
bounds for keyed sponges and truncated CBC. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 368–387. Springer, Heidelberg, August 2015.

GT15. Peter Gazi and Stefano Tessaro. Secret-key cryptography from ideal primitives: A systematic overview. In
2015 IEEE Information Theory Workshop, ITW 2015, Jerusalem, Israel, April 26 - May 1, 2015, pages
1–5. IEEE, 2015.

GT16. Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs and KDFs. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 87–116.
Springer, Heidelberg, May 2016.

HKT11. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random oracle model
and the ideal cipher model, revisited. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 89–98. ACM Press, June 2011.

KR07. Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block ciphers. In Kaoru Kuro-
sawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 315–324. Springer, Heidelberg, December
2007.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg,
July 2008.

LR88. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing, 17(2), 1988.

MH14. Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via UCE. In Hugo Krawczyk,
editor, PKC 2014, volume 8383 of LNCS, pages 56–76. Springer, Heidelberg, March 2014.

Mit14. Arno Mittelbach. Salvaging indifferentiability in a multi-stage setting. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 603–621. Springer, Heidelberg, May
2014.

MMH+14. Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Preneel, and Ingrid Ver-
bauwhede. Chaskey: An efficient MAC algorithm for 32-bit microcontrollers. In Antoine Joux and
Amr M. Youssef, editors, SAC 2014, volume 8781 of LNCS, pages 306–323. Springer, Heidelberg, August
2014.

MPS12. Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the public indifferentiability and correlation
intractability of the 6-round Feistel construction. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 285–302. Springer, Heidelberg, March 2012.

MRH04. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 21–39. Springer, Heidelberg, February 2004.

RS08. Phillip Rogaway and John P. Steinberger. Security/efficiency tradeoffs for permutation-based hashing. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 220–236. Springer, Heidelberg,
April 2008.

RSS11. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Limitations of
the indifferentiability framework. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 487–506. Springer, Heidelberg, May 2011.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

Zha16. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg, August 2016.

32

A Proofs for Section 3

A.1 Multi-user Indifferentiability

It will also be notationally convenient, for our proofs below, to define a multi-user version of the
CP-indifferentiability game, where an additional stage A0 first chooses the number of instances it
intends to attack. This is formalized by the game muCP at the bottom of Fig. 15, for which we

define analogously the quantity Adv
m−cpi[I→J]
M,Sim,A (λ). Then, the following lemma follows by a simple

hybrid argument, and its proof is omitted.

MAIN muCP[I→ J]AM,Sim(λ):

(1n, st0)←$A0(1λ); b←$ {0, 1}
f1, . . . , fn ←$ Iλ
g1, . . . , gn ←$Jλ
st1 ←$AFunc

1 (1λ, st0)
b′ ←$APrim

2 (1λ, st1)
return b′ = b

ORACLE Func(i,x):
if b = 1 then

return Mfi(x)
else

return gi(x)

ORACLE Prim(i,u):
if b = 1 then

return fi(u)
else

return Simgi(u)

Fig. 15: Game muCP used to define the m−cpi-security for M. Here, Sim is the simulator and
A = (A0, A1, A2) is the two-stage distinguisher with an additional A0 stage to choose the number
of instances.

Lemma 1 (Single-user to multi-user CP-indifferentiability). Let M be a (I→ J)-compatible
construction. For all distinguishers A = (A0, A1, A2), such that on input 1λ the output of A0 is
bounded by N(λ), there exists a distinguisher A′ = (A′1, A

′
2) (given explicitly in the proof) such that

for all λ ∈ N,

Adv
m−cpi[I→J]
M,Sim,A (λ) ≤ N(λ) · Advcpi[I→J]

M,Sim,A′(λ) , (29)

In particular, if A is PPT, I, J are efficiently implementable, and M is also polynomial-time, then
A′ is polynomial time. �

A.2 Proof of Theorem 1

Proof (Theorem 1). The proof follows the lines of [BHK14]. Consider a source-distinguisher pair
S,D using at most N(λ) keys in the game psPRS,DM[F],J(λ) for M[F].

As the first step, we construct a new source-distinguisher pair (S,D) for the game psPRS,DF,I (λ).

In particular, we first let D = D (note that the seed for M[F] is a seed for F, so this is a syntactically
correct distinguisher). Moreover, S, is described on the left of Fig. 16, and works as follows: given
access to its oracle O, S simply runs S with a simulated oracle O′. A query (i,x) for i ∈ [n] made
by S to O′ is answered by running construction M, where each oracle query z made by M is in
turn answered by O(i, z). Finally, when S outputs leakage L ∈ {0, 1}∗, S simply makes L its own
output.

We can then fairly easily show that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) + Adv

m−cpi[I→J]
M,Sim,A′ (λ) ,

33

SOURCE S(1λ, ε):

(1n, st)
$← S(1λ, ε)

return (1n, st)

SOURCE S
O

(1λ, st):
// st 6= ε

L
$← SO

′
(1λ, st)

return L

ORACLE O′(i, x):

y ← MO(i,·)(x)
return y

ADV. A′0(1λ):

(1n, st)
$← S(1λ, ε)

return (1n, (1n, st))

ADV. A′1(1λ, (1n, st)):

L
$← SFunc(1λ, st)

return (1n, L)

ADV. A′2(1λ, (1n, L)):

k1, . . . , kn
$← F.Kg(1λ)

b′
$← D(1λ, L, k1, . . . , kn)

return b′

ADV. R′O(1λ, 1n, L):

b′
$← RO

′
(1λ, 1n, L)

return (1n, (1n, st))

ORACLE O′(i, x):

y
$← Sim

O(i,·)
i (x)

return y

Fig. 16: Pseudocode descriptions for the proof of Theorem 1. ORACLE Func is as described in
Fig. 15 for the muCP game of M. Due to space constraints we use ADV. instead of ADVERSARY.

for an adversary A′ we specify in Figure 16 (and explain shortly) and any simulator Sim. Indeed,

note that the only difference between psPRS,DF,I (λ) and psPRS,DM[F],J(λ) is that in the ideal case, S

accesses independent instances of J, whereas in the former S (simulated within S) has access
to independent instances of MI, i.e., each instance has M query an independent instance of I.
Therefore, it is sufficient to consider the multi-user CP-indifferentiability adversary A′ as described
in Figure 16.

Further, using Lemma 1, we can build from A′ an adversary A such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) ,

given A′ always outputs (in its first stage) n such that n ≤ N(λ) on input 1λ.

Relating reset-security. It remains to relate the reset-security of S and S, which is the core
of the proof. In particular, fix an arbitrary R for the game ResetR

I,S
(λ). Then, we are going to build

R′ for ResetR
′

J,S(λ) as follows. (A more formal description is on the right of Figure 16.) R′ runs R
with the given leakage L, however rather than giving R direct access to its oracle O, R is run with
a simulated oracle O′. To do this, R′ runs N(λ) independent instances of the simulator Sim – call
them Sim1, . . . ,SimN(λ). A query O′(i, x) is then answered by querying x to Simi, where each of
Sim’s queries y is answered as O(i, y).

To continue with our analysis, we denote as ResetR
I,S

(λ, c) and ResetR
′

J,S(λ, c) for c ∈ {0, 1}, the

games obtained from the original games by fixing the challenge b to c, and the game output is the

34

ADV. C
(1)
0 (1λ):

(1n, st)←$S(1λ, ε)
return (1n, (1n, st))

ADV. C
(1)
1 (1λ, (1n, st)):

L
$← SFunc(1λ, st)

return (1n, L)

ADV. C
(1)
2 (1λ, (1n, L)):

f1, . . . , fn
$← Iλ

b′ ← RO
′
(1n, L)

return b′

ORACLE O′(i, x):

y
$← fi(x)

return y

ADV. C
(2)
0 (1λ):

(1n, st)←$S(1λ, ε)
return (1n, (1n, st))

ADV. C
(2)
1 (1λ, (1n, st)):

g1, . . . , gn
$← Jλ

L
$← SO

′′
(1λ, st)

return (1n, L)

ADV. C
(2)
2 (1λ, (1n, L)):

b′ ← RPrim(1n, L)
return b′

ORACLE O′′(i, x):

y
$← gi(x)

return y

ADV. C
(2)
0 (1λ):

(1n, st)←$S(1λ, ε)
return (1n, (1n, st))

ADV. C
(2)
1 (1λ, (1n, st)):

L
$← SFunc(1λ, st)

return (1n, L)

ADV. C
(2)
2 (1λ, (1n, L)):

b′ ← RPrim(1n, L)
return 1− b′

Fig. 17: Pseudocode descriptions for the proof of Theorem 1. ORACLES Func and Prim are as
described in Figure 15 for the muCP game of M. Due to space constraints we use ADV. instead of
ADVERSARY.

adversary’s output bit b′. Then, by a standard argument,

Adv
reset[I]

S,R
(λ) = Pr

[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

I,S
(λ, 0)

]
= Pr

[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

′
J,S(λ, 1)

]
+ Pr

[
ResetR

′
J,S(λ, 1)

]
− Pr

[
ResetR

′
J,S(λ, 0)

]
+ Pr

[
ResetR

′
J,S(λ, 0)

]
− Pr

[
ResetR

I,S
(λ, 0)

]
= Pr

[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

′
J,S(λ, 1)

]
+ Adv

reset[J]
S,R′ (λ) + Pr

[
ResetR

′
J,S(λ, 0)

]
− Pr

[
ResetR

I,S
(λ, 0)

]
(30)

We are now going to build a new (multi-user) CP-sequential indifferentiability adversary C such
that

Adv
m−cpi[I→J]

M,Sim,C
(λ) =

1

3

[
Pr
[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

′
J,S(λ, 1)

]
+ Pr

[
ResetR

′
J,S(λ, 0)

]
− Pr

[
ResetR

I,S
(λ, 0)

]]
. (31)

The adversary C ′ proceeds as follows. Initially, it selects i
$← {1, 2, 3} uniformly at random, and

then runs C(i). The adversaries C(1), C(2), and C(3) are described in Figure 17. Then, clearly

Adv
m−cpi[I→J]
M,Sim,C′ (λ) =

1

3

3∑
i=1

Adv
m−cpi[I→J]

M,Sim,C(i) (λ)

35

MAIN G0(λ),G1(λ):
done← false
QI ← ∅
(1n, t)←$S(1λ, ε)
f1, . . . , fn ←$ Iλ
g1, . . . , gn ←$Jλ
L←$SFunc(1λ, t)
done← true
Q←$P Prim(1λ, 1n, L)
Q∗ ←$ExtPrim(Q)
return (QM ∩Q∗ 6= ∅)

ORACLE Func(i, x): // G0

QM
∪← {x}

y ← MPrim(i,·)(x)
return y

ORACLE Prim(i, x): // G0

if ¬done then QI
∪← {x}

return fi(x)

ORACLE Func(i, x): // G1

QM
∪← {x}

y ← gi(x)
return y

ORACLE Prim(i, x): // G1

if ¬done then QI
∪← {x}

return Simgi
i (x)

Fig. 18: Games used in the proof of Theorem 2.

To expand this expression, let us first introduce a hybrid experiment Reset
R
I,S(λ) where in the

first stage, S interacts with independent copies of J, and in the second stage, R interacts with
independent copies of I. Then,

Adv
m−cpi[I→J]

M,Sim,C(1) (λ) = Pr
[
ResetR

I,S
(λ, 1)

]
− Pr

[
Reset

R
I,S(λ)

]
.

Further,

Adv
m−cpi[I→J]

M,Sim,C(2) (λ) = Pr
[
Reset

R
I,S(λ)

]
− Pr

[
ResetR

′
J,S(λ, 1)

]
.

Finally, it is not hard to see that

Adv
m−cpi[I→J]

M,Sim,C(3) (λ) = Pr
[
ResetR

′
J,S(λ, 0)

]
− Pr

[
ResetR

I,S
(λ, 0)

]
.

Note that in C(3) the flipping of the bits is necessary because the execution of ResetR
′

J,S(λ, 0) corre-

sponds to the ideal world in the indifferentiability experiment, whereas ResetR
I,S

(λ, 0) corresponds

to the real world, and thus we have to switch signs. To conclude the proof, we can apply Lemma 1
to obtain, from C ′, an attacker against the single-user CP-indifferentiability of C. ut

A.3 Proof of Theorem 2

Proof (Theorem 2). Note that (8) is established exactly as in the proof of Theorem 1; the definitions
of S and D are identical, and the statement is independent of the specific properties of the source.

Therefore, the rest of this proof relates the unpredictability of S with that of S. In particular,
given P , we construct P ′ as follows. On input 1λ, 1n and L, P ′ runs P (1λ, 1n, L), but answers its
oracle calls (i, x) with SimO(i,·)(x), i.e., using the simulator Sim. When finally P outputs Q, P ′ runs
ExtO(Q), and outputs its output Q∗.

To establish (9), we consider two games, G0 and G1, as depicted in Figure 18. Game G0 is
the same as game PredP

I,S
(λ), except that the winning condition is set when Q∗ extracted by Ext

contains one of the queries to Func made by S, rather than one of the Prim queries made by M
while evaluating S’s queries. Therefore, the fact that Pr [A] ≤ Pr [B] + Pr [A ∧ ¬B] for all events
A,B yields

Adv
pred[I]

S,P
(λ) = Pr [QI ∩Q 6= ∅]

≤ Pr [QM ∩Q∗ 6= ∅] + Pr [(QI ∩Q 6= ∅) ∧ (QM ∩Q∗ = ∅)]

≤ Pr [G0] + Adv
ext[I]
M,S,P,Ext(λ) .

36

PROCEDURE Sim(+, x):
if TP [+, x] = ⊥ then

y
$← Func(x)

z
$← {0, 1}n−r

TP [+, x]← y ‖ z
TP [-, y ‖ z]← x

return TP [+, x]

PROCEDURE Sim(-, y):
if TP [-, y] = ⊥ then

x
$← {0, 1}n

TP [-, y]← x
TP [+, x]← y

return TP [-, y]

Fig. 19: Simulator Sim for the proof of Theorem 4. The simulator has access to an oracle Func which
takes n-bit inputs and returns r-bit inputs.

Game G1 simply modifies oracle Func to reply to queries (i, x) using gi, where g1, . . . , gn
$← Jλ.

Similarly, it runs n copies of the simulator Sim – call them Sim1, . . . ,Simn – and queries Prim(i, x)
are answered by Simgi

i . it is now straightforward to build a distinguisher B′ for the multi-user
CP-sequential indifferentiability game such that

Adv
m−cpi[I→J]
M,Sim,B′ (λ) = Pr [G0]− Pr [G1] .

This is because B′ can easily keep track of all sets QM and QI and simulate the rest of G0 or
G1 using the given oracles Func and Prim. The final distinguisher B can be obtained from B′ by
applying Lemma 1. ut

B Proof of Theorem 4

We start with the description of our simulator Sim. We define our simulator formally in Figure 19
but give an overview of the simulation strategy next.

Simulator description. The simulator Sim provides the interface for forward queries (+, x) and
backward queries (-, y). The simulator has access to an oracle Func, which implements a random
function that maps n-bits to r-bits. In order to mimic the permutation, the simulator internally
maintains a table TP that has entries (+, x) and (-, y). Now, queries are handled as follows

Forward queries. This case is straightforward. Whenever (+, x) is queried, Sim checks if TP [+, x] =
y 6= ⊥ is defined, and answers with y if it is. Otherwise, it queries Func on input x and gets
an r-bit uniform random string y. It additionally generates a random (n− r)-bit string z. The
concatenation y ‖ z is the n-bit string that acts as a response to the original query (+, x). The
table TP is updated to contain TP [+, x] = y ‖ z and TP [-, y ‖ z] = x.

Backward queries. The difficulty stems from dealing with an inversion query (-, y). Indeed, here,
the simulator has no sense with which x it needs to be consistent with, but our strategy will
decide to simply ignore any possible contraint, and simply respond with a random value x.
This may not look like a sound strategy as the distinguisher A can have knowledge possibly
from construction queries (A knows that Chop(x) is not a substring of y) that could help it in
distinguishing the simulated world from the real world.

The main sequence of games. We are going to prove the theorem using a sequence of games
G0(λ),G1(λ), . . . ,G5(λ) (and often omit the security parameter λ for ease of notation). These games
are detailed in Figures 20 and 21.

37

MAIN Gi(λ):

P +, P− ← ∅
st←$AFunc

1 (1λ)
b′ ←$APrim

2 (1λ, st)
return b′

ORACLE Func(x):

y
$← Prim(+, x)

return y[1 . . . r]

ORACLE Prim(σ, x):
// G0(λ)
if TP [σ, x] = ⊥ then

y
$← {0, 1}n \ Pσ

TP [σ, x]← y
TP [σ, y]← x

Pσ
∪← {y}; Pσ ∪← {x}

return TP [σ, x]

ORACLE Prim(σ, x):

// G1(λ) , G2(λ)

if TP [σ, x] = ⊥ then

y
$← {0, 1}n

if y ∈ Pσ then
bad1 ← true

y
$← {0, 1}n \ Pσ

TP [σ, x]← y
TP [σ, y]← x

Pσ
∪← {y}; Pσ ∪← {x}

return TP [σ, x]

Fig. 20: Games G0(λ), G1(λ), and G2(λ) in the proof of Theorem 4 where Func and MAIN remain
same through all three games.

It is easy to verify that G0 represents the interaction of A in the real world, i.e., Func queries
are answered by the Chop construction (which makes a call to Prim), and Prim itself behaves like
a proper random permutation, implemented using lazy sampling. This game is slightly modified
in game G1, where this lazy sampling first samples a random value y from all of {0, 1}n, and then
checks whether it collides with a value that was already used, and if so, the value y is resampled
with proper restrictions. Furthermore, if such re-sampling occurs, a flag bad1 is set. Clearly, this
does not modify the behavior of the game in the eyes of the distinguisher, as the final distribution
of the sampled y is still uniform of the set of possible values. Thus, we have just argued that
Pr [G0] = Pr [G1].

Then, G2 modifies G1 further by removing this re-sampling. In particular, note that this means
that values may be overwritten in TP , creating inconsistent entries,13 but this will be only after the
flag bad1 has been set. In fact, the games G1 and G2 are identical until the flag bad1 is set, which
means in particular that

Pr [G0]− Pr [G2] = Pr [G1]− Pr [G2] ≤ Pr [G2 sets bad1] . (32)

It is not hard to upper bound the probability Pr [G2 sets bad1]. We note in particular that Prim
samples a new y at most q+ p times (recall Prim is also called within the initial q Func calls by A),
and therefore, by the union bound,

Pr [G2 sets bad1] ≤
(q + p)2

2n
. (33)

Game G3.The next transitions will now modify the games further into the actual ideal world game
where A interacts with a random oracle and the simulator Sim. First off, in G3 (Fig. 21), we are
going to modify the behavior of Func queries. In particular, rather than invoking Prim, Func is going
to perform the same actions Prim would have executed directly. In particular, Func keeps a table
TF of the values it returned. And upon being invoked on x, it is going to set TP [+, x] to a random
y ‖ z, and set TP [-, y ‖ z] = x, and return only the y part, to which TF [x] is also set. Moreover, a
forward query (+, x) to Prim will now be processed by calling Func(x) directly whenever TP [+, x] is
undefined.
13 For example, we may have TP [+, x] = y and TP [-, y] = x, and a later query for x′ 6= x ends up setting TP [+, x′] = y

and TP [-, y] = x′, while still TP [+, x] = y.

38

Note that moving from G2 to G3 does not change the behavior of the experiment – this is because
the very same instructions are executed in any execution, with the only difference that Func does
not check whether TP [+, x] is defined before setting it to a random value, but only checks for TF [x]
being defined. However, it cannot be that TF [x] = ⊥ but TP [+, x] 6= ⊥ because A makes all its Func
queries before its Prim queries, and otherwise Func is only later called within Prim after it has been
confirmed that TP [+, x] = ⊥. Therefore, Pr [G2] = Pr [G3].

A few syntactical properties will soon be important in game G3. The game also maintains a set
Y as part of its global state. At any point in time, Y contains those y ‖ z that have been generated
within Func queries which however have not been returned by forward Prim queries by A2. Should
A2 make a backward query (-, y ‖ z) for y ‖ z ∈ Y , the game is going to set a flag bad2 to true.
Second, it will be convenient to think of the completions z ∈ {0, 1}n−r as being kept in a table
TC [x] which is globally accessible through the procedure Complete.

Game G4.The final game will simply shift away the task of correctly setting TP [+, x] and TP [-, y ‖ z]
away from Func, and place it back into Prim. Clearly, this modifies the game, however we will
observe that as long as bad2 does not occur, games G3 and G4 behave identically. Indeed, assume
that all random coins are fixed for a second, and during the resulting execution, game G3 sets
TP [+, x] = y ‖ z and TP [-, y ‖ z] = x within Func(x), whereas G4 does not. Clearly, this makes no
difference if the call is within Prim(+, x), so we can assume without loss of generality this happens
within one of A1’s direct calls to Func. Now, the only way this difference is noticed if later A2 issues
a call Prim(-, y ‖ z), and Prim(+, x) was never invoked, as this will result in TP [-, y ‖ z] 6= ⊥ in G3,
but TP [-, y ‖ z] = ⊥ in G4. This however means exactly that y ‖ z ∈ Y , which implies bad2 being
set to true. Therefore,

Pr [G3]− Pr [G4] ≤ Pr [G4 sets bad2] . (34)

Also, we see that the behavior of G4 is identical to that of the ideal-world experiment where A
interacts with a random Func and the simulator Sim. Therefore,

Adv
cpi[P→R]
Chop,Sim,A(λ) = Pr [G0]− Pr [G4]

= Pr [G1]− Pr [G2] + Pr [G3]− Pr [G4]

≤ (q + p)2

2n
+ Pr [G4 sets bad2] .

(35)

Bounding the bad probability. It is easier to reason about bad2 being set to true by considering
the following alternative to game G4, which we call G5 (Figure 22). G5 looks identical (in the eyes
of A) to G4, but keeps a different flag bad3. While the semantics of bad2 in G4 and bad3 in G5 are
very different, we will explain below that the probability that bad2 is set in G4 during the whole
execution equals the probability that bad3 is set in an execution in G5.

The main idea is that we want to postpone the sampling of TC [x] inside Complete(x) to the
latest possible point, and make the bad event only depend on this sampling. To this end, Func will
not call Complete any more, but rather G5 keeps track (in a set Q) of the Func queries made by A1.
A call to Complete(x) is then made only within a call Prim(+, x). In which case, we check whether
an earlier query Prim(-, y ‖ z) would have provoked the bad event. As there are x ∈ Q which may
never be queried to Prim, the game iterates over these at the end. Thus, we have argued above
that Pr [G4 sets bad2] = Pr [G5 sets bad3]. Note that every time Complete is called in G5, it returns
a fresh random (n− r)-bit string. Then, bad3 is set to true if, for the given y, we have y ‖ z ∈ Q−.

39

ORACLE Func(x):
if TF [x] = ⊥ then

y
$← {0, 1}r

TF [x]← y

z
$← Complete(x)

TP [+, x]← y ‖ z

TP [-, y ‖ z]← x

Y
∪← {y ‖ z}

return TF [x]

PROCEDURE Complete(x):
if TC [x] = ⊥ then

TC [x]
$← {0, 1}n−r

return TC [x]

ORACLE Prim(+, x):

// G3

if TP [+, x] = ⊥ then
y ← Func(x)
Y ← Y \ TP [+, x]
return TP [+, x]

ORACLE Prim(-, y):

// G3 , G4

if y ∈ Y then
bad2 ← true

if TP [-, y] = ⊥ then

x
$← {0, 1}n

TP [-, y]← x
TP [+, x]← y

return TP [-, y]

ORACLE Prim(+, x):
// G4

if TP [+, x] = ⊥ then
y ← Func(x)

z
$← Complete(x)

TP [+, x]← y ‖ z
TP [-, y ‖ z]← x
Y ← Y \ TP [+, x]
return TP [+, x]

Fig. 21: Games G3(λ) and G4(λ) in the proof of Theorem 4 where MAIN is as described in Figure 20.

Given there are q chances for this to occur, and that |Q−| ≤ p, the union bound yields

Pr [G4 sets bad2] = Pr [G5 sets bad3] ≤
q · p
2n−r

, (36)

hence concluding the proof. ut

C Proof of Theorem 5

In Section 5.1, we described the hybrids G1,G2,G3 and G4 that will be used to establish the se-
quential indifferentiability of Ψ5. Next, we prove that each of the adjacent hybrids Gj and Gj+1 are
indistinguishable, thereby concluding the proof of Theorem 5.

C.1 Indistinguishability of G1 and G2

In this section, we derive a bound for ∆(G1,G2) by invoking a standard argument about replacing a
permutation with a two-sided random function. We will consider (Sim, A) as a coupled distinguisher
D that makes q′ queries to the permutation/two-sided random function and therefore has advantage
q′2/22n in distinguishing the random permutation from the two-sided random function. In Lemma 2,
we will prove Sim’s query complexity and thereby establish ∆(G1,G2) in Lemma 3.

Lemma 2. At any point in G2, |Gk| ≤ q + 2q2 and |P | ≤ qc + 2q2 where k ∈ [5] and |Gk| and |P |
is the size of the respective tables. �

Proof. In Phase 1 of the game G2, for every element that gets added to G1 and G5 there exists a
query by A2 to Prim. This is because elements get added to G1 (in Phase 1) either due to a query
(1, X1) by A2 such that G1[X1] = ⊥ or due to a query (3, X3) by A2 such that Chains[3, X3] =
(1, X1) and G3[X3] = ⊥ (lines 31-32 in Figure 6). Therefore, |G1| ≤ q and |G5| ≤ q at any point in
Phase 1.

40

MAIN G5(λ):

Q,Q− ← ∅
bad3 ← false; done← false
st←$AFunc

1 (1λ)
done← true
b′ ←$APrim

2 (1λ, st)
for all x ∈ Q do

z
$← Complete(x)

if TF [x] ‖ z ∈ Q− then
bad3 ← true

return b′

ORACLE Func(x):

if ¬done then Q
∪← {x}

if TF [x] = ⊥ then

y
$← {0, 1}r

TF [x]← y
return TF [x]

ORACLE Prim(+, x):
if TP [+, x] = ⊥ then
y ← Func(x)

z
$← Complete(x)

if (x ∈ Q) ∧ (y ‖ z ∈ Q−) then
Q← Q \ {x}
bad3 ← true
TP [+, x]← y ‖ z
TP [-, y ‖ z]← x

return TP [+, x]

ORACLE Prim(-, y):

Q−
∪← {y}

if TP [-, y] = ⊥ then

x
$← {0, 1}n

TP [-, y]← x
TP [+, x]← y

return TP [-, y]

Fig. 22: Game G5(λ) in the proof of Theorem 4.

Now, we bound the size of the table P . Sim issues queries to Func only when A2 queries
Prim(k,X) where k ∈ {2, 4} and Gk[X] = ⊥. Since queries to Func are only issued in Phase 1
and |G1| ≤ q, then for every query (2, X) by A2 there are at most q queries to Func. Over q queries
by A2, there are at most q2 queries to Func by Sim. Following the same analysis for Prim queries of
the form (4, ·), Sim issues at most 2q2 queries to Func in G2.

Therefore, |P | ≤ qc + 2q2 ≤ 3q2 where the inequality is due to qc ≤ q.
Next we bound |Gk| and |Chains[j]| where k ∈ [5] and j ∈ {1, 3, 5} where

Chains[l] =
⋃

(l,X):Chains[l,X]6=⊥

Chains[l,X] where l ∈ {1, 5} ,

Chains[3] =
⋃

(3,X):Chains[3,X]

{Chains[3, X]} .
(37)

At any point in G2 elements get added to Chains[l] only after a Func query and a Func query can
add at most one element in Chains[j]. Hence it is easy to see that |Chains[j]| ≤ 2q2. In G2, for any
call to Complete (immediate or delayed) there is exactly one Func query by Sim. As proved earlier,
there are at most 2q2 calls to Complete and each call adds (via ForceVal) at most one element in
|Gk|. In Phase 1, elements get added to Gk either due to a query to Prim by A2 or due to ForceVal
calls inside Complete. Moreover in Phase 2, elements also get added to Gk due to ForceVal inside
Complete or due to Finner calls just before calling Complete. Therefore, we have that |Gk| ≤ q+ 2q2

because there are at most 2q2 calls to Complete. ut

By Lemma 2 we have the following lemma.

Lemma 3. ∆(G1,G2) ≤ 9q4/22n. �

Proof. Let D = (Sim, A) be a distinguisher that makes at most 3q2 (≥ qc + 2q2) to the oracle Func.
By a standard argument, the lemma holds. ut

41

C.2 Indistinguishability of G2 and G3

In this section, we prove the indistinguishability of games G2 and G3 by defining a map τ that maps
(f, ρ) to h such that the output distribution of A in G2 is not very different from that in G3. Infact,
we prove that for certain pairs (f, ρ) the image h = τ(f, ρ) is such that the output distributions of
both games are identical. We refer to such pairs as good and the absence of certain bad events in
Gf,ρ2 makes (f, ρ) a good pair. We define these events next and later in Lemma 10 show that most
pairs (f, ρ) are good.

Definition of good pairs

For the following definitions, consider the game G2 using a pair (f, ρ) ∈ F × R. i.e. Gf,ρ2 . We are
going to define a few bad events that occur when executing G2 with randomness fixed to such a
pair (f, ρ). We say that a pair (f, ρ) is good if no such event occurs in an execution, and otherwise
it is bad.

Definition 3. The event BadP occurs in an execution of Gf,ρ2 if one the following holds,

1. Immediately after a call (X5, X6)← ρ[+, X0, X1] either G5[X5] 6= ⊥ or P [-, X5, X6] 6= ⊥.
2. Immediately after a call (X0, X1)← ρ[-, X5, X6] either G1[X1] 6= ⊥ or P [+, X0, X1] 6= ⊥.

Definition 4. The event BadOutside14 occurs in an execution of Gf,ρ2 if one of the following holds,

1. Immediately after an assignment G1[X] ← f [1, X] there exist X2 and (+, X0, X1) such that
G2[X2] 6= ⊥, P [+, X0, X1] 6= ⊥ and G1[X] = X2 ⊕X0.

2. Immediately after an assignment G5[X] ← f [5, X] there exist X4 and (-, X5, X6) such that
G4[X4] 6= ⊥, P [-, X5, X6] 6= ⊥ and G5[X] = X4 ⊕X6.

Definition 5. The event BadGutShot occurs in an execution of Gf,ρ2 if one of the following holds,

1. Immediately after an assignment G2[X]← f [2, X] there exist X1 and X3 such that G1[X1] 6= ⊥,
G3[X3] 6= ⊥ and G2[X] = X1 ⊕X3.

2. Immediately after an assignment G2[X] ← f [2, X] there exist X1 and X3 such that G1[X1] 6=
⊥,Chains[3, X3] 6= ⊥ and G2[X] = X1 ⊕X3.

3. Immediately after an assignment G4[X]← f [4, X] there exist X5 and X3 such that G5[X5] 6= ⊥,
G3[X3] 6= ⊥ and G4[X] = X5 ⊕X3.

4. Immediately after an assignment G4[X] ← f [4, X] there exist X5 and X3 such that G5[X5] 6=
⊥,Chains[3, X3] 6= ⊥ and G4[X] = X5 ⊕X3.

Let the i-th query issued by A1 be (σ,Xi
k, X

i
k+1) where (σ, k) ∈ {(+, 0), (-, 5)}. Before the control

of G2 is passed to A2, the tuples (Xi
0, X

i
1, X

i
5, X

i
6) corresponding to the the ith query by A1 are

defined. Since (f, ρ) is sampled at the beginning of G2 and Sim always replies to queries (1, X) and
(5, X) using the values f [1, X] and f [5, X], respectively, we can further define

Xi
2 = f [1, Xi

1]⊕Xi
0 ,

Xi
4 = f [5, Xi

5]⊕Xi
6 .

(38)

The following events are assuming (Xi
0, X

i
1, X

i
2, X

i
4, X

i
5, X

i
6) are defined for i ∈ [qc]. We call such

tuples relevant chains or relevant tuples.

14 The names of the events BadOutside and BadGutShot are adopted from straight draws in the card game of Poker.

42

Definition 6. The event BadlyCollide occurs in an execution of Gf,ρ2 if one of the following holds,

1. Xi1
2 = Xi2

2 for i1 6= i2 ∈ [qc].

2. Xi1
4 = Xi2

4 for i1 6= i2 ∈ [qc].

Definition 7. The event BadP2 occurs in an execution of Gf,ρ2 if one the following holds,

1. Immediately after a call (X5, X6)← ρ[+, X0, X1] where (X0, X1) 6= (Xi
0, X

i
1) for all i ∈ [qc] there

exists i1 ∈ [qc] such that X5 = Xi1
5 .

2. Immediately after a call (X0, X1)← ρ[-, X5, X6] where (X5, X6) 6= (Xi
5, X

i
6) for all i ∈ [qc] there

exists i1 ∈ [qc] such that X1 = Xi1
1 .

Definition 8. The event BadOutside2 occurs in an execution of Gf,ρ2 if one of the following holds,

1. Immediately after an assignment G1[X] ← f [1, X] where X 6= Xi
1 for all i ∈ [qc] there exist

((X4, X5, 4), (X0, X)) ∈ Chains[1, X] and i1 ∈ [qc] such that Xi1
2 = G1[X]⊕X0.

2. Immediately after an assignment G5[X] ← f [5, X] where X 6= Xi
5 for all i ∈ [qc] there exist

((X1, X2, 1), (X,X6)) ∈ Chains[5, X] and i1 ∈ [qc] such that Xi1
4 = G5[X]⊕X6.

Most pairs (f, ρ) are good

We next show that most pairs (f, ρ) ∈ F ×R are good, i.e., that a randomly sampled (f, ρ) pair is
good except with small probability.

For all the following proofs we consider the occurrence of any of the bad events defined above
at any point in the execution of G2. Also, in order to simplify the calculation of the probability
that (f, ρ) is not good, we will often alternate viewing G2 as lazily sampling (f, ρ) (occasionally
only partially), rather than pre-sampling it. (This will obviously not affect the probability, as the
experiments are equivalent.) For the following calculations, it will be convenient to first observe the
following: from Lemma 2 we know that |P | ≤ t(q), |Gi| ≤ t(q) for all i ∈ [5] and |Chains[l]| ≤ t(q)
where l ∈ {1, 3, 5} and t(q) = 3q2. (We will occasionally write t rather than t(q).)

Lemma 4. Pr [BadP] ≤ 2t2/2n. �

Proof. For any query to (X5, X6) ← ρ[+, X0, X1], BadP occurs if either P [-, X5, X6] 6= ⊥ which
happens with probability t/22n or if G5[X5] 6= ⊥ which happens with probability t/2n. Since
|P | ≤ t at any point in G2, there can be at most t such calls and hence by the union bound we have
the lemma. ut

Lemma 5. Pr [BadOutside] ≤ 2t3/2n. �

Proof. For any assignment of the form G1[X]← f [1, X], BadOutside occurs if there exists X2 and
(+, X0, X1) such that G2[X2] 6= ⊥, P [+, X0, X1] 6= ⊥ and G1[X] = X2 ⊕ X0. Since |P | ≤ t and
|G2| ≤ t, there are at most t2 such pairs for which BadOutside happens with probability 1/2n. The
symmetric argument holds for assignments of the form G5[X]← f [5, X].

Since |G1|, |G5| ≤ t at any point in G2, there can be at most 2t such assignments and hence by
the union bound we have the lemma. ut

Lemma 6. Pr [BadGutShot] ≤ 4t3/2n. �

43

Proof. For any assignment of the form G2[X] ← f [2, X], BadGutShot occurs if there exists X1

and X3 such that G1[X1] 6= ⊥, G3[X3] 6= ⊥ (Chains[3, X3] 6= ⊥) and G1[X] = X2 ⊕ X0. Since
|Chains[3]| ≤ t, |G3| ≤ t and |G1| ≤ t, there are at most 2t2 such pairs for which BadGutShot
happens with probability 1/2n. Since |G2|, |G4| ≤ t at any point in G2, there can be at most 2t such
assignments and hence by the union bound we have the lemma. ut

Lemma 7. Pr [BadlyCollide] ≤ 2q2/2n. �

Proof. To find the probability of BadlyCollide, we visualize the game G2 in the following way. At
the beginning of the game, we just sample ρ←$R and run the game with A1. After A1 is done
with all its qc queries, we define Xi

2 and Xi
4 as follows:

Xi
2 ← ri ⊕Xi

0

Xi
4 ← si ⊕Xi

6,
(39)

where ri, si←$ {0, 1}n for i ∈ [qc]. Note that the distribution of Xi
2 as defined above is the same as

defined in Equation 38.

It is easy to see that the probability of collision among the Xi
2 values is at most q2/2n. Similarly,

probability of collision among the Xi
4 values is at most q2/2n. Hence by the union bound the lemma

holds. ut

For the following proofs, we will visualize G2 as sampling randomness lazily until A1 is done
with its queries. At this point, we can define the respective relevant tuples (Xi

0, X
i
1, X

i
2, X

i
4, X

i
5, X

i
6).

Now the control is passed to A2 where we sample randomness lazily again. Note that BadP2 and
BadOutside2 are defined for calls/assignments not involving the relevant tuples. Hence resorting
to lazy sampling in the second stage of the game does not change the output distribution in this
variant of G2.

Lemma 8. Pr [BadP2] ≤ tq/2n. �

Proof. For any query to (X5, X6)← ρ[+, X0, X1] where (X0, X1) 6= (Xi
0, X

i
1) for all i ∈ [qc], BadP2

occurs if there exists i1 ∈ [qc] such that X5 = Xi1
5 . This happens with probability at most q/2n.

Since |P | ≤ t at any point in G2, there can be at most t such calls to ρ and hence by the union
bound we have the lemma. ut

Lemma 9. Pr [BadOutside2] ≤ 2qt2/2n. �

Proof. For any assignment of the form G1[X]← f [1, X] where X 6= Xi
1 for all i ∈ [qc], BadOutside2

occurs if there exists ((X4, X5, 4), (X0, X)) ∈ Chains[1, X] and i1 ∈ [qc] such that G1[X] = Xi1
2 ⊕X0.

Since |Chains[1]| ≤ t at any point in G2, the above happens with probability tq/2n. Similar reasoning
holds for assignment of the form G5[X]← f [5, X] where X 6= Xi1

5 .

Since |G1|, |G5| ≤ t at any point in G2, there can be at most 2t such assignments and hence by
the union bound we have the lemma. ut

Using the union bound with all the above lemmas, and combining this with Lemma 2, we obtain
the following final lemma giving us an overall bound on the probability that (f, ρ) is bad.

Lemma 10. Pr [(f, ρ)←$F ×R : (f, ρ) is bad] ≤ 13t3/2n ≤ 351q6/2n. �

44

Properties of good executions

By Lemma 10, we know that most pairs (f, ρ) are good, and now we want to focus on executions

in Gf,ρ2 for such good pairs (so-called “good executions”). This then allows us to define a map τ

that maps (f, ρ) to h such that the executions of Gf,ρ2 and Gh3 are identical. To formalize this, we
first define a notion of a transcript of such an execution.

Transcript of Game Gi: We define the transcripts of an execution of Gi as a sequence of tuples
T1, T2, . . . recording each access to the tables P and G made during this execution. In particular,
each Tj is one of the following:

1. Tj = (Yj , kj , Xj) where kj ∈ [5] such that Finner was called on input (kj , Xj) and Yj was the
value returned by Finner.

2. Tj = (Yj , kj , Xj) where kj ∈ {2, 3, 4} such that ForceVal was called on input (Xj , Yj , kj).

3. Tj = (σ,Xj
k, X

j
k+1, X

j
k′ , X

j
k′+1), where (σ, k, k′) ∈ {(+, 0, 5), (-, 5, 0)} such that Func was called

on input (σ,Xj
k||X

j
k+1) and (Xj

k′ , X
j
k′+1) was the value returned by Func.

The subtranscript T [1 : j] which is the sequence T1, . . . , Tj . Next we describe a few properties
of the execution and its transcript corresponding to a good pair (f, ρ).

Some notational conventions. In the following proofs we make references to line numbers. If
not specified then it must be assumed that the line numbers are w.r.t. the Sim’s pseduocode shown
in Figure 6. Also, for ease of notation, we use x ∈ T and T [x] 6= ⊥ interchangeably but both denote
that the key x is in the table T . For eg: X ∈ Gk implies Gk[X] 6= ⊥.

No Chains overwrites. Our first case is going to deal entering values in Chains[3, X] for some
X. We show that this value is never overwritten during a good execution.

Lemma 11. For any assignment of the form Chains[3, X] ← (k,Xk) in Gf,ρ2 (lines 13,25 in Fig-
ure 6), Chains[3, X] = ⊥ just before the assignment. �

Proof. Consider an assignment Chains[3, X]← (5, X5). This occurs only on a query (2, X2) by A2

such that G2[X2] = ⊥ just before the query. To reply to (2, X2), Sim assigns G2[X2]← f [2, X2] and
considers all tuples in G1 × {X2}. For each of these tuples (X1, X2) it either schedules the partial
chain (X1, X2, 1) for immediate completion (line 9-10) or delays its completion (lines 11-13). The
assignment to Chains[3, X] can only occur when the chain’s completion gets delayed (lines 11,23).

Now consider X = G2[X2] ⊕ X1, since (f, ρ) is a good pair and the event BadGutShot does
not occur Chains[3, X] = ⊥. Otherwise on assignment G2[X2] ← f [2, X2] there would exist X1

and X such that G1[X1] 6= ⊥, Chains[3, X] 6= ⊥ where X = G2[X2] ⊕ X1. The other assignment
Chains[3, X]← (1, X1) is symmetrically handled. Hence the lemma holds. ut

No overwrites in Gk. Next we prove that in Gf,ρ2 where (f, ρ) is a good pair, there are no over-
writes in Gk. In particular, this will mean that whenever Sim is attempting to force a value (via
ForceVal) it can do so without making anything inconsistent.

Lemma 12. For any call to ForceVal(X, ·, l) in Gf,ρ2 , we have Gl[X] = ⊥ just before the call. �

Proof. A call to ForceVal is triggered only from inside Complete (lines 43,48). Moreover, Sim calls the
procedure Complete only when it is attempting to complete a partial chain which was not completed

45

before. If the lemma fails to hold then there exists a call to Complete during which it fails. Consider
such a call to Complete and let C be the corresponding partial chain that is being completed.
Furthermore, note that C /∈ CompletedChains just before the Complete call. We analyse the case
when the partial chain C is of the form (X1, X2, 1). The other instance when C = (X4, X5, 4) can
be handled symmetrically, and is omitted.

Therefore, let us assume that during the completion of C = (X1, X2, 1), the lemma fails to hold
for one of the ForceVal calls. There are two cases in which Complete can get called on C = (X1, X2, 1)
and we analyse them next.

- Case A: Complete(C = (X1, X2, 1), ·) was called from line 10 of Figure 6. We refer to such call
to Complete as an immediate chain completion. Immediate chain completions happen only in
Phase 1 (before Sim runs AllComplete), as they are triggered due to a Prim query by A2.

Note that just before the call to Complete((X1, X2, 1), ·) there must have been a query (2, X2)
to Prim by A2 such that G2[X2] = ⊥ before the query. To respond to (2, X2) query of A2, Sim
assigns G2[X2]← f [2, X2]. After the assignment, Sim iterates through every tuple in G1×{X2}
(line 4 of Figure 6) to either schedule an immediate completion of C (lines 9-10) or delay its
completion (lines 11-13). Since this call to Complete was made from line 10, we must have
G1[X1] 6= ⊥, G5[X5] 6= ⊥ where (X5, X6) = P [+, X0, X1], X0 = G2[X2]⊕X1. Furthermore, let
X3 = G2[X2] ⊕ X1 and X4 = G5[X5] ⊕ X6 where G2[X2] is assigned to f [2, X2] just before
this call to Complete. To complete the chain C, Complete will force G3[X3] and G4[X4] through
ForceVal(X3, ·, 3) and ForceVal(X4, ·, 4) respectively. If the lemma fails to hold for C then either
G3[X3] 6= ⊥ or G4[X4] 6= ⊥ before their respective ForceVal calls.

First, we argue that G3[X3] = ⊥ before the call ForceVal(X3, ·, 3). This is because the pair (f, ρ)
is good and the event BadGutShot does not occur on assignment G2[X2] ← f [2, X2]. Further-
more, Chains[3, X3] = ⊥ by the same argument. This ensures that by forcing G3[X3] to a value
(inside ForceVal) we are not making any previously completed chains inconsistent (G3[X3] = ⊥)
nor running into the risk of making this chain completion inconsistent due to a future delayed
chain completion (Chains[3, X3] = ⊥).

Therefore, if the lemma fails to hold for C, then it must be that G4[X4] 6= ⊥ before the call to
ForceVal(X4, ·, 4). Note that in order to complete the chain C, Sim queries Func with (+, X0||X1)
(line 7). It can either be that (+, X0||X1) was a fresh query, that is, P [+, X0, X1] = ⊥ before Sim’s
query to Func or that it was already in the table P before Sim’s query. Furthermore, a tuple
gets added to the table P either when Sim makes a query to Func or A1 makes a query to Func.
Assuming, G4[X4] 6= ⊥, we are going to analyse when/how the tuple (+, X0, X1), corresponding
to query by Sim (to Func in line 7), was added to the table P and arrive at a contradiction to
either the goodness of the pair (f, ρ) or that (X1, X2, 1) /∈ CompletedChains.

• Case A.1: (+, X0, X1) gets added to P due to the Func query in line 7. In this case, the query
(+, X0||X1) to Func is such that P [+, X0, X1] = ⊥. Therefore, to reply to (+, X0||X1), Func
accesses ρ[+, X0, X1] (as P [+, X0, X1] = ⊥) to get (X5, X6) and returns it. However, since
we are considering an immediate chain completion, we know that G5[X5] 6= ⊥. This means
the event BadP occurs when ρ[+, X0, X1] is accessed, which is a contradiction as (f, ρ) is a
good pair. Therefore, (+, X0, X1) ∈ P even before Func was called in line 7.

46

• Case A.2: (+, X0, X1) was added to P because of an earlier query to Func by Sim. Sim’s queries
to Func are distinct therefore if (+, X0, X1) got added to P due to a Sim query then Sim must
have previously queried Func(-, X5||X6). This could only happen on a query (4, X4) by A2

where X4 = G5[X5]⊕X6. Sim assigns G4[X4]← f [4, X4]. After the assignment, Sim would
have iterated through all tuples in {X4}×G5 (line 16). It would also consider (X4, X5) and
make the Func(-, X5, X6) query.
If X1 ∈ G1 at this point, this chain (X4, X5, 4) would have been immediately completed
(line 21-22) and hence C = (X1, X2, 1) would already be completed even before the query
(2, X2) by A2 which is a contradiction as C /∈ CompletedChains.
IfX1 /∈ G1 at this point then (X4, X5, 4)’s completion is delayed (line 23-25) where Chains[3, X3]←
(1, X1) and ((X4, X5, 4), (X0, X1)) gets inserted in Chains[1, X1]. But as G1[X1] 6= ⊥ before
the A2’s query (2, X2) and we are still in Phase 1, it can only be the case that A2 queried
(1, X1) to Prim or (3, X ′3) to Prim such that Chains[3, X ′3] = (1, X1) and G3[X

′
3] = ⊥

whichever earlier. Here, X ′3 corresponds to one of the chains C ′ such that (C ′, (U ′, V ′)) ∈
Chains[1, X1]

15. In either case, Complete gets called on (X4, X5, 4) and hence (X1, X2, 1)
would be completed even before the query (2, X2) by A2 which is again contradiction to
C /∈ CompletedChains. Therefore, the tuple (+, X0, X1) corresponding to the query by Sim
(to Func) can only get added to P due to a query (to Func) by A1.

Infact, recall that a (2, X2) query by A2 can trigger more than one immediate chain comple-
tions as Sim loops over all newly formed partial chains C ′ = (X ′1, X2, 1) where X ′1 ∈ G1. It
follows from the arguments made in cases A.1 and A.2 that all of Sim’s queries (+, X ′0||X ′1)
are such that the tuple (+, X ′0, X

′
1) was added to P due to a query by A1.

• Case A.3: (+, X0, X1) was added to P due to a query by A1. The only remaining case for
the tuple (+, X0, X1) is that it was added to P due to a query by A1. Therefore, the tuple
(X0, X1, X3, X4, X5, X6) falls on a relevant chain, that is, there exists i ∈ [qc] such that
Xj = Xi

j for j ∈ {0, 1, 2, 4, 5, 6}, thereby making C a relevant partial chain. As stated above,
a (2, X2) query by A2 can trigger immediate completion of more than one partial chains. As
discussed at the end of the case A.2, all these partial chains are relevant chains.
Recall that if the lemma fails to hold for C, then G4[X

i
4] 6= ⊥ before the ForceVal(Xi

4, ·, 4)
call. Note that an element X gets added to a table G4 either due to ForceVal call (issued by
Sim from inside a call to Complete) or due to a direct query (4, X) by A2. Assuming that
G4[X

i
4] 6= ⊥ before the ForceVal call (i.e., Xi

4 is in the table P), we are going to analyse
when/how Xi

4 was added to G4 and arrive at a contradiction to either the goodness of the
pair (f, ρ) or that (X1, X2, 1) /∈ CompletedChains.

∗ Case A.3.1: Xi
4 was added due to one of the Complete calls due to (2, X2). A query to (2, X2)

by A2 may trigger multiple calls to Complete. However, we just observed that all these
calls must correspond to relevant chains. Therefore, if Xi

4 gets added to G4 due to a
Complete call triggered by the query (2, X2) on some chain C ′ 6= C, this would imply
that two relevant chains C and C ′ share their X4s and the event BadlyCollide occurs.
This contradicts the fact that (f, ρ) is a good pair.

15 By Lemma 11 there are no overwrites in Chains[3, X]. This ensures that a Prim query to (3, X ′3) such that
G3[X ′3] = ⊥ will lead to a call to Sim(5, X5) (line 32). We will use this argument in the future without repeating
this explanation.

47

∗ Case A.3.2: Xi
4 was added due to a Complete call before A2’s query (2, X2). Let us as-

sume that it was due to a call to Complete on some (X ′1, X
′
2, 1) 6= (X1, X2, 1). Again

as (f, ρ) is a good pair, (X ′1, X
′
2, 1) cannot be a relevant chain (relevant chains donot

share X2s). Hence, when Sim queries (+, X ′0||X ′1) where X ′0 = G1[X
′
1]⊕X ′2, Func replies to

(+, X ′0||X ′1) by accessing ρ[+, X ′0, X
′
1]. Then, (f, ρ) being good, the events BadP and BadP2

do not occur. This ensures that X ′5 /∈ G5 and also that X ′5 6= Xi1
5 for all i1 ∈ [qc]. Since

X ′5 /∈ G5, chain (X ′1, X
′
2, 1)’s completion gets delayed (lines 11-13). We are inside the call

to Complete on (X ′1, X
′
2, 1) and Sim must be executing lines 27-30 for (5, X ′5).G5[X

′
5] is as-

signed to f [5, X ′5] and then Complete is called on C ′ where (C ′, (X ′5, X
′
6)) ∈ Chains[5, X ′5].

If G5[X
′
5]⊕X ′6 = Xi

4 (as we have assumed) then BadOutside2 will occur on assignment
G5[X

′
5] where X5 6= Xi1

5 , which is a contradiction as (f, ρ) is a good pair.

∗ Case A.3.3: Xi
4 gets added to G4 due to a query (4, Xi

4) by A2. The only remaining case

in which Xi
4 can get added to G4 is if A2 makes a Prim query (4, Xi

4). Note that such
a query (4, Xi

4) (if at all) must occur before (2, X2). Furthermore, when A2 queries
(4, Xi

4), X
i
5 must already be in G5. Otherwise, BadOutside occurs on the assignment

G5[X
i
5]← f [5, Xi

5]. This leaves us with the state that Xi
5 ∈ G5 when A2 queries (4, Xi

4)
and G4[X

i
4] = ⊥ just before A2’s query (4, Xi

4). We have already argued for a similar case
in Case A.2 where we derive a contradiction to (X1, X2, 1) /∈ CompletedChains before
the query (2, X2) by A2.

Therefore, in all the cases where G4[X
i
4] 6= ⊥ before the ForceVal(Xi

4, ·, 4) leads to a contra-
diction.

Therefore, if the lemma fails to hold for C then it must be the case that the Complete called on
C is from line 30. We analyse this case next.

- Case B: Complete(C = (X1, X2, 1), ·) was called from line 30 of Figure 6. We refer such a call to
Complete as delayed chain completion. Delayed chain completions can happen in either of the
Phases in G2.

When C’s completion was delayed (lines 11-13), Chains[3, X3] = (5, X5) and (X1, X2, 1) ∈
Chains[5, X5] where X3 = G2[X2]⊕X1 and (X5, X6) = P [+, X0, X1] and X0 = G1[X1]⊕X2.
To complete the chain C, Complete will force G3[X3] and G4[X4] (X4 is not yet defined) through
ForceVal(X3, ·, 3) and ForceVal(X4, ·, 4) respectively. If the lemma fails to hold for C then either
G3[X3] 6= ⊥ or G4[X4] 6= ⊥ before their respective ForceVal calls.

First, we argue that before the call ForceVal(X3, ·, 3), G3[X3] = ⊥. Prior to this (delayed)
call to Complete, Chains[3, X3] = (5, X5) (because there are no overwrites in Chains[3, ·] by
Lemma 11). Such a (delayed) call to Complete is triggered on an A2 query to either (5, X5)
or (3, X ′3) or within AllComplete procedure in the Phase 2 such that Chains[3, X ′3] = (5, X5),
whichever earlier. Here X ′3 corresponds to any chain C ′ such that (C ′, ·) ∈ Chains[5, X5]. Let us
consider the earliest point in the execution when either A2 queries (5, X5) or (3, X ′3) or there
is a call to AllComplete such that Chains[3, X ′3] = (5, X5). We assume that Chains[3, X ′3] was
assigned to (5, X5) due to a Func query on some (X ′0, X

′
1) where G1[X

′
1] 6= ⊥, G2[X

′
2] 6= ⊥,

X ′0 = G1[X
′
1]⊕X ′2 and X ′3 = G2[X

′
2]⊕X ′1. The other case when Func query is on some (X ′5, X

′
6)

is symmetrically handled.

48

We claim that for all X ′3 such that Chains[3, X ′3] = (5, X5), G3[X
′
3] 6= ⊥. The claim may not

hold because X ′3 got added to G3 during a Complete call on some chain C ′′ by Sim. Note
that C ′′ can be of the form (X ′′1 , X

′′
2 , 1) or (X ′′4 , X

′′
5 , 4) as Complete calls on either can lead to

ForceVal(X ′3, ·, 3). We refute the case when C ′′ = (X ′′1 , X
′′
2 , 1) and the other case can be similarly

handled. More concretely for C ′′ it is the case that G2[X
′′
2]⊕X ′′1 = X ′3. The chain C ′′ could be

considered for completion only on a query (2, X ′′2) by A2. At this point G1[X
′′
1] 6= ⊥ and G2[X

′′
2]

was assigned to f [2, X ′′2]. If A2 issues (2, X ′′2) after (2, X ′2) and G2[X
′′
2]⊕X ′′1 = G2[X

′
2]⊕X ′1 = X ′3

then the event BadGutShot is triggered on assignment G2[X
′′
2]← f [2, X ′′2]. Similarly, if A2 issues

(2, X ′′2) earlier then BadGutShot is triggered on the assignment G2[X
′
2]← f [1, X ′2]. Since (f, ρ)

is a good pair, our claim holds for all X ′3. Hence G3[X3] = ⊥ before its ForceVal call.

Now, the partial chain C can either be a relevant chain or a non-relevant chain. Below, we
analyse both cases separately.

• Case B.1: C = (X1, X2, 1) is a non-relevant chain. If C is not a relevant chain then X5 6= Xi
5

for all i ∈ [qc]. Otherwise the event BadP2 would have occured on the Func query (+, X0||X1)
made by Sim to schedule the delayed completion of C, where X0 = G1[X1]⊕X2. Since this is
a non-relevant chain’s delayed completion, G5[X5] gets assigned to f [5, X5] (line 27) just be-
fore the Complete call. Then for all (C ′, (X5, X

′
6)) ∈ Chains[5, X5] we must have G4[X

′
4] = ⊥

where X ′4 = G5[X5] ⊕ X ′6. Otherwise there would exist (-, X5, X
′
6) ∈ P and X5 ∈ G5 im-

mediately after the assignment G5[X5]← f [5, X5] such that G4[X
′
4] 6= ⊥, which contradicts

the goodness of the pair (f, ρ). Since for every X ′4, G4[X
′
4] = ⊥, therefore G4[X4] = ⊥ as well.

Therefore, if the lemma fails to hold for C, then it can only be that the Complete call (for
the lemma does not hold) was a delayed completion of a relevant chain C. We analyse this
case next.

• Case B.2: C = (X1, X2, 1) is a relevant chain. If C is a relevant chain then (X5 = Xi
5 ∃

i ∈ [qc]) Chains[5, Xi
5] only consists of tuples (C ′, (Xi

5, X
′
6)) such that the partial chain C ′

is relevant. Otherwise, if there exist a non-relevant partial chain C ′ then the event BadP2
would have occured on the Func query made by Sim to schedule the completion of C ′. Now,
since all C ′ are relevant chains then X ′4 = G5[X

i
5]⊕X ′6 (G5[X

i
5] is defined before the control

is transferred to A2) for every chain C ′ in Chains[5, Xi
5] are distinct, as BadlyCollide does

not occur.

Therefore, if the lemma fails to hold for C, then G4[X
i
4] 6= ⊥ before the ForceVal(Xi

4, ·, 4) call
whereXi

4 = G5[X
i
5]⊕Xi

6. We, infact, argue something stronger, that is, for all (C ′, (Xi
5, X

′
6)) ∈

Chains[5, Xi
5], that G4[X

′
4] = ⊥ where X ′4 = G5[X

i
5]⊕X ′6. Let us assume that G4[X

′
4] 6= ⊥

before the corresponding call to Complete on C ′. As seen in case A.3, X ′4 can get added
to G4 either during a chain completion performed by Sim or a direct query (4.X ′4) by A2.
Similar to the argument presented in case A.3.3. (for direct query) and the fact that (f, ρ)
is a good pair (relevant chains cannot share X4s), if G4[X

′
4] 6= ⊥ then X ′4 got added to

G4 during the completion of some non-relevant chain C ′′ = (X ′′1 , X
′′
2 , 1). Furthermore, the

corresponding X ′′5 (of chain C ′′) is such that X ′′5 6= Xi
5 as the event BadP2 does not occur

in a good execution. Therefore during the completion of chain C ′′, G5[X
′′
5] is assigned to

f [5, X ′′5] and if G5[X
′′
5] ⊕X ′′6 = X ′4 then the event BadOutside2 would occur, contradicting

that (f, ρ) is a good pair. Therefore, we conclude that G4[X
′
4] = ⊥ for every X ′4 (as described

49

PROCEDURE isTrue(T):
foreach (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T do

if ¬Check(σ,Xk, Xk+1, Xk′ , Xk′+1) then return false
return true

PROCEDURE Check(σ,Xk, Xk+1, Xk′ , Xk′+1)
if σ = + then

U ← Xk, V ← Xk+1

for i ∈ [1, 2, 3, 4, 5] do
if (Y, i, V) /∈ T then return false
A← Y ⊕ U , U ← V , V ← A

if (U, V) 6= (Xk′ , Xk′+1) then return false

else
V ← Xk, U ← Xk+1

for i ∈ [5, 4, 3, 2, 1] do
if (Y, i, V) /∈ T then return false
A← Y ⊕ U , U ← V , V ← A

if (U, V) 6= (Xk′ , Xk′+1) then return false

return true

Fig. 23: The predicate isTrue defined on the transcript T .

above). Hence, G4[X4] = ⊥ before the call ForceVal(X4, ·, 4) during the delayed completion
of C = (X1, X2, 1).

Therefore even for a delayed chain completion of C = (X1, X2, 1), the calls to ForceVal(Xl, ·, l)
are such that Gl[Xl] = ⊥ before the call.

We have now analysed all the cases for that call to Complete on C for which we assumed the
lemma fails to hold. Since, we have arrived at a contradiction in each of these cases, the lemma
indeed holds. ut

Next, we define a predicate isTrue on the transcript (described in Figure 23) which captures that
all queries made to Func (σ,Xk, Xk+1, Xk′ , Xk′+1) are such that (Xk′ , Xk′+1) look like the result of
a Feistel Ψ5 evaluation on (σ,Xk, Xk+1) given the transcript T of the execution. We prove that the
isTrue returns true on a transcript T corresponding to an execution with a good pair (f, ρ).

Lemma 13. For all (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T that correspond to Func queries by A1,
Check(σ,Xk, Xk+1, Xk′ , Xk′+1) returns true at the end of the execution for (σ, k, k′) ∈ {(+, 0, 5), (-, 5, 0)}.
�

Proof. Consider any tuple (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T which corresponds to the query by A1. We
prove the lemma for (σ, k, k′) = (+, 0, 5), that is, tuples of the form (+, X0, X1, X5, X6). The other
case of (σ, k, k′) = (+, 0, 5) can be handled symmetrically, and is omitted.

Since A2 makes all primitive queries corresponding to the construction queries by A1, then there
exists at least one occurence of (Y1, 1, X1) and (Y5, 5, X5) in T . Consider the first occurrences of
both the tuples, furthermore consider the earliest of the two.

Let us w.l.o.g. assume that the earlier tuple in the sequence T is (Y1, 1, X1). Since this is the
earliest call to Finner(1, X1), inside Finner, G1[X1] gets assigned to f [1, X1]. This defines X2 =

50

G1[X1] ⊕ X0 such that G2[X2] = ⊥ (otherwise on the assignment G1[X1] ← f [1, X1] the event
BadOutside occurs in an execution with a good pair (f, ρ)). Hence the tuple (Y2, 2, X2) hasn’t
occured in T at this point. Since A2 makes all primitive queries there is at least one occurrence of
(Y2, 2, X2) in T .

At this point there are two cases possible: one where (Y5, 5, X5) is the earliest tuple after
(Y1, 1, X1) in T and the other where (Y2, 2, X2) is the earliest tuple after (Y1, 1, X1) in T . We
consider both these cases and show that Check returns true.

- Case A: (Y5, 5, X5) is earlier. Since this is also the earliest call to Finner(5, X5), we have the as-
signment G5[X5]← f [5, X5]. This defines X4 = G5[X5]⊕X6 such that G4[X4] = ⊥ (otherwise
on the assignment G5[X5] ← f [5, X5] the event BadOutside would occur (in an execution with
a good pair (f, ρ))). Hence the tuple (·, 4, X4) hasn’t occured in T yet. Since A2 makes all
primitive queries, there exists at least one ocurrence of (Y4, 4, X4) in T . Finally, we consider the
earlier of (Y2, 2, X2) and (Y4, 4, X4). We analyse the case when (Y2, 2, X2) is the earlier tuple in
T . The other case when (Y4, 4, X2) occurs earlier than (Y2, 2, X2) is symmetrical, and is omitted.

We claim (prove below) that the tuple (·, 2, X2) corresponds to a call to Finner on (2, X2). More-
over it was due to a query (2, X2) by A2 to Prim. And since this is the earliest occurrence
of (·, 2, X2), G2[X2] = ⊥ before the call to Finner. To respond to A2’s query, Sim (lines 3-7 in
Figure 6) issues a call to Finner where G2[X2] is assigned to f [2, X2]. After the call to Finner, Sim
considers all possible tuples in G1 × {X2} (line 4) and makes appropriate Func queries. There-
fore, it issues Func(+, X0||X1) and gets (X5, X6). Since G5[X5] 6= ⊥ (as the tuple (Y5, 5, X5)
has already occurred in T), Complete is called on input ((X1, X2, 1), (X5, X6)) (lines 9-10 in
Figure 6). It is easy to see that after Complete returns, Check on (+, X0, X1, X5, X6) is returns
true. From Lemma 12 we know that there are no overwrites in Gk. Hence, Check will return
true even at the end of the execution.

Now, we get back to proving our claim that (·, 2, X2) corresponds to a call to Finner. Moreover
this was because A2 queries (2, X2). Let us assume that (·, 2, X2) does not correspond to a call
to Finner. Therefore, it corresponds to a call to ForceVal(X2, ·, 2). Since ForceVal is called only
from inside Complete, there exists a partial chain C ′ = (X ′4, X

′
5, 4) during whose completion the

ForceVal call was made. Since (f, ρ) is a good pair, all relevant chains have distinct X2s (as the
event BadlyCollide does not occur). Since (X1, X2, 1) is a relevant chain (because we are only
concerned with relevant chains in this proof) then C ′ cannot be a relevant chain.
Since C ′ is not a relevant chain, Sim at some point must have queried Func(-, X ′5, X

′
6) to get

(X ′0, X
′
1). The query is answered by Func using ρ. Since (f, ρ) is a good pair it is the case

that G1[X
′
1] = ⊥ (BadP) and X ′1 6= Xi

1 for i ∈ [qc] (BadP2). Moreover G1[X
′
1] = ⊥ ensures that

(X ′4, X
′
5, 4) is delayed for completion. Currently we are inside the call to Complete on (X ′4, X

′
5, 4).

Hence, G1[X
′
1] ← f [1, X ′1] and if G1[X

′
1] ⊕ X ′0 = X2 we would trigger the event BadOutside2

which contradicts that the pair (f, ρ) is good. Hence (Y2, 2, X2) cannot correspond to a call to
ForceVal(X2, ·, 2).
Therefore for Case A, we have proved that the lemma holds.

- Case B: (Y2, 2, X2) is earlier. By the exact same argument as above, we know that (Y2, 2, X2)

corresponds to a call to Finner and this was due to the query (2, X2) by A2. Since this is the
earliest call Finner(2, X2), inside the call to Finner, G2[X2] is assigned to f [2, X2] and then Sim

51

considers all tuples (lines 4-7) in G1 × {X2} and makes appropriate queries to Func. Since
(Y2, 2, X2) is the earlier query we know that G5[X5] = ⊥ at this point. Therefore (X1, X2, 1) is
delayed for completion (lines 11-13). Moreover, Chains[3, X3] = (5, X5) where X3 = G2[X2]⊕X1

and ((X1, X2, 1)), (X5, X6)) ∈ Chains[5, X5]. Since A2 issues all primitive queries then there
exists at least one occurence of (Y3, 3, X3) in T . Like before, we will consider the earlier of the
two (Y3, 3, X3) and (Y5, 5, X5). Unlike before, the cases here are not symmetrically and hence
we explicitly consider them in the following:
• Case B.1: (Y5, 5, X5) is earlier. Since this is the earliest occurence of (Y5, 5, X5) in T or equiv-

alently the earliest call to Finner on (5, X5), G5[X5] = ⊥. This call to Finner could be because
of a direct query (5, X5) by A2 to Prim or due to a direct query (3, X ′3) by A2 to Prim
such that Chains[3, X ′3] = (5, X5). It cannot be the case that (Y5, 5, X5) was due to a call
to Finner by Sim from inside AllComplete. This is because A2 makes all primitives queries
and hence it would query (5, X5) before Sim gets to run AllComplete. In either case, Sim is
going to execute lines 27-30 on (5, X5). Hence, Complete is called on ((X1, X2, 1), (X5, X6))
in Chains[5, X5]. It is easy to see that after Complete returns, Check on (+, X0, X1, X5, X6)
returns true. From Lemma 12 we know that there are no overwrites in Gk. Hence, Check
will return true even at the end of the execution.

• Case B.2: (Y3, 3, X3) is earlier. The tuple (Y3, 3, X3) occurs in T either due to a Finner query
(3, X3) or due to a ForceVal call. We consider these two cases separately below:

∗ Case B.2.1: (Y3, 3, X3) corresponds to a ForceVal call. A call to ForceVal occurs only from
inside Complete. Let us assume that Complete was called on (C ′, (U, V)). Furthermore,
we let C ′ = (X ′1, X

′
2, 1) and (U, V) = (X ′5, X

′
6) (the other case is symmterical). Therefore,

the chain C ′ would have been considered by Sim for completion on a query (2, X ′2) by A2.
Infact this must correspond to an Finner call to (2, X ′2) and hence the tuple (Y ′2 , 2, X

′
2)

occurs in T .
If (Y ′2 , 2, X

′
2) occurs later in the sequence T than (Y2, 2, X2) and G2[X

′
2] ⊕ X ′1 = X3

then on assignment G2[X
′
2] ← f [2, X ′2] there exists X ′1 ∈ G1 and (3, X3) ∈ Chains such

that X3 = G2[X
′
2]⊕X ′1. Since this (f, ρ) is a good pair, the event BadGutShot does not

occur. Therefore, (Y ′2 , 2, X
′
2) occurs before (Y2, 2, X2) in T . If (Y ′2 , 2, X

′
2) occurs earlier

then depending on whether X ′5 ∈ G5, either X ′3 gets added to G3 or Chains[3, X ′3] ←
(5, X5) 6= ⊥ where X ′3 ← G2[X

′
2] ⊕ X ′1. Finally, moving ahead in the T to the point

where (Y2, 2, X2) occurs and G2[X2] ← f [2, X2] if X3 = X ′3 where X3 ← G2[X2] ⊕ X1

we would trigger BadGutShot.
Since the pair (f, ρ), the tuple (Y3, 3, X3) in T cannot correspond to a call to ForceVal.
The only other case, that is, (Y3, 3, X3) corresponding to Finner call is discussed next.

∗ Case B.2.2: (Y3, 3, X3) corresponds to Finner query. The only case where the tuple (Y3, 3, X3)

may correspond to an Finner query is due to a direct query (3, X3) by A2. However, as
Chains[3, X3] = (5, X5), on a direct query (3, X3) Sim executes lines 31-32 and ends up
calling itself on (5, X5). Therefore, the tuple (Y5, 5, X5) occurs earlier than (Y3, 3, X3)
which is a contradiction. Hence, the tuple (Y3, 3, X3) cannot correspond to Finner query
as well.

Therefore, the tuple (Y3, 3, X3) (in an execution with a good pair (f, ρ)) cannot occur in T
before (Y5, 5, X5). And the other case is already analysed in case B.1.

52

Therefore for case B, we have proved that the lemma holds.

ut

Lemma 14. For all (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T , Check(σ,Xk, Xk+1, Xk′ , Xk′+1) returns true at
the end of the execution where (σ, k, k′) ∈ {(+, 0, 5), (-, 5, 0)}. Moreover, isTrue(T) = true. �

Proof. In Lemma 13 we have already argued about the tuple (σ,Xk, Xk+1, Xk′ , Xk′+1) that corre-
spond to queries by A1. Therefore, we will focus only on tuples that correspond to queries by Sim
to Func. Moreover, when proving Lemma 13 we have seen that for every tuple corresponding to A1

there is a tuple in T corresponding to the Func query made by Sim.
Therefore, we focus on tuples (σ,Xk, Xk+1, Xk′ , Xk′+1) which correspond to non-relevant chains.

We prove the lemma for (σ, k, k′) = (+, 0, 5), that is, tuples of the form (+, X0, X1, X5, X6). Since
this tuple corresponds to a non-relevant chain, there exists a direct query (2, X2) by A2 (such that
G2[X2] = ⊥) which lead to Sim query Func on (+, X0||X1). Since G2[X2] = ⊥, G2[X2] is assigned to
f [2, X2] on A2 and then Sim would have considered all tuples in G1×{X2} and issued appropriate
queries to Func. Since (X1, X2, 1) is not a relevant chain, Func replies to (+, X0||X1) using ρ and
hence G5[X5] = ⊥. This chain is then delayed for completion. Moreover, Chains[3, X3] = (5, X5)
and ((X1, X2, 1), (X5, X6)) is added to the set Chains[5, X5] and G3[X3] = ⊥.

Since Sim runs AllComplete in Phase 2, we know that at the end of the execution, G3[X3] 6= ⊥
and G5[X5] 6= ⊥. However, X3 (resp., X5) might get added to the table G3 (resp. G5) in Phase 1
as well. We analyse each of these possibilities below and show that there is a call to Complete on
(X1, X2, 1).

- Case A: Either G3[X3] 6= ⊥ or G5[X5] 6= ⊥ at the end of Phase 1. If at the end of Phase 1 ei-
ther X3 ∈ G3 or X5 ∈ G5 then there must occur a tuple (Y3, 3, X3) or (Y5, 5, X5) in T . Consider
the first occurrences of the two tuple and moreover consider the earlier among them.

• Case A.1: (Y5, 5, X5) is earlier. This tuple corresponds to a call to Finner on (5, X5). This
could either be due to a direct query (5, X5) by A2 or due to a direct query (3, X ′3) by A2

such that Chains[3, X ′3]← (5, X5). In any case, Sim will be executing lines 27-30 and there
is a call to Complete on ((X1, X2, 1), (X5, X6)).

• Case A.2: (Y3, 3, X3) is earlier. This tuple may correspond to an Finner call to (3, X3) which
is a result of a query (3, X3) by A2. In this case, Sim executes lines 31-32 and ends up calling
itself on (5, X5). We know by Lemma 11 that there are no overwrites in Chains[3, X3] and
hence it calls to precisely this (5, X5). Therefore by the above argument there is a call to
Complete. This tuple cannot correspond to a call to ForceVal(X3, Y3, 3) (an earlier argument
made in Case B.2.1 of Lemma 13 suffices, we will trigger the event BadGutShot).

- Case B: G3[X3] = ⊥ and G5[X5] = ⊥ at the end of Phase 1. If at the end of Phase 1, G3[X3] =
⊥ and G5[X5] = ⊥. Then in Phase 2, Sim runs AllComplete and hence there occurs a call to
Complete on (X1, X2, 1) as ((X1, X2, 1), (X5, X6)) ∈ Chains[5, X5].

Therefore in all cases, we have proved that there is a call to Complete. It is easy to see that after
Complete returns, Check on (+, X0, X1, X5, X6) is going to return true. From Lemma 12 we know
that there are no overwrites in Gk. Hence, Check will return true even at the end of the execution.

ut

53

The randomness-mapping argument

After proving the properties of good executions, that is, executions of Gf,ρ2 with a good pair (f, ρ),

we are ready to define the map τ that maps (f, ρ) to h such that the executions Gf,ρ2 and Gh3 are
identical. This allows us to show the indistinguishability of G2 and G3 (proved in Lemma 17).

The map τ :

Definition 9. For (f, ρ) ∈ F ×R, h← τ(f, ρ) is defined as follows:

1. Set h = f and run Gf,ρ2 with A = (A1, A2).
2. If for some (k,X) there is a ForceVal(X,Y, k) call then set h[k,X]← Y for the first such call.

In the following lemma we finally prove that for a good pair (f, ρ) the transcript of Gf,ρ2 is
identical to the transcript of Gh3 where h = τ(f, ρ).

Lemma 15. T (Gf,ρ2) = T (G
h=τ(f,ρ)
3). Hence Pr

[
Gf,ρ2

]
= Pr

[
Gh3
]
. �

Proof. Let for ease of notation T2 = T (Gf,ρ2) and T3 = T (Gh3) and let T2j (T3j) denote the jth tuple
in the sequence T2 (T3).

The first tuple in both transcripts is going to correspond to the query by A1. We analyse when
T21 = (+, X0, X1, X5, X6) and the other case is symmetric. A1 queries Func(+, X0||X1) which returns
(X5, X6) by accesing ρ[+, X0, X1]. Since (f, ρ) is good and isTrue(T2) is true (Lemma 14), we know
that (X5, X6, X0, X1) obey the following relation:

X2 = G1[X1]⊕X0; X3 = G2[X2]⊕X1; X4 = G3[X3]⊕X2;

X5 = G4[X4]⊕X3; X6 = G5[X5]⊕X4;

Since A is deterministic, it must be the case that T31 = (+, X0, X1, X
′
5, X

′
6). Func performs the

following computations on (X0, X1) to return (X ′5, X
′
6).

X ′2 = H1[X1]⊕X0; X
′
3 = H2[X

′
2]⊕X1; X4 = H ′3[X

′
3]⊕X ′2;

X ′5 = H4[X
′
4]⊕X ′3; X ′6 = H5[X

′
5]⊕X ′4;

Since (f, ρ) is good and by Lemma 12 there are no overwrites in the tables Gk (in G2), the
image h of the map is such that Gk[X] = h[k,X]. Since there are no overwrites in Hk, it is also the
case that Hk[X] = h[k,X]. Therefore, (X ′5, X

′
6) = (X5, X6) and T21 = T31.

Let us assume that T2i = T3i for i ∈ [j − 1]. We next argue about the equality of the jth
tuple. Since the transcripts are identical till (j − 1), it must be the case that the jth tuple in both
transcripts have the same format i.e. both of them correspond to either Finner,Func or ForceVal.

- Case A: T2j = (Y, k,X) and it corresponds to ForceVal(X,Y, k). As transcripts are equivalent

till (j − 1), and the view of Sim is identical till now it must be the case that if T2j corresponds
to a ForceVal call then T2j = T3j .

- Case B: T2j = (Y, k,X) and it corresponds to an Finner call on (k,X). If this is not the first oc-

currence of the tuple (·, k,X) then the state of tablesGk is identical in both games (as transcripts
are identical until this point). Therefore, T2j = T3j . Hence, let us consider that this is the first
occurrence of the tuple (Y, k,X) in T2. Since the transcripts are identical until this point so is
the view of Sim, then T3j = (Y ′, k,X). As this is the first occurrence of (Y, k,X) in T2 we have
Y = f [k,X] = Gk[X]. Similarly in T3 we have Y ′ = h[k,X]. By definition of the map τ , Y = Y ′.

54

- Case C: T2j = (σ,Xk, Xk+1, Xk′ , Xk′+1). If Func replies to (σ,Xk, Xk+1) without accessing ρ
then it must be the case that T2j = T3j . If Func replies using ρ, then by the same argument of
the equality of T21 and T31, we have that T2j = T3j .

Therefore, T2 = T3. Consider the last tuple in T2 after which A2 outputs the bit b′. Let it be the
mth tuple. Since T2[1 . . .m] = T3[1 . . .m], A2 in Gh3 necessarily outputs the same guess b′. Hence

the output distributions of Gf,ρ2 and Gh3 are identical. ut

Next, we consider a key combinatorial property of the map τ restricted to the set GOOD ⊆ F×R.

GOOD = {(f, ρ) ∈ F ×R : (f, ρ) is a good pair} .

Lemma 16. τ : GOOD→ F is |R|-regular. �

Proof. Let h ∈ F have at least one good pre-image (fh, ρh). In the game Gfh,ρh2 , both A1 and Sim
issue queries to Func. Some of these calls to Func may access the randomness ρh. Let α be the
number of such calls to Func that access ρh. Therefore, from the entire table ρh only α indices are
accessed during the entire execution. Let these α indices be {I1, . . . , Iα}.

For every chain completed by Sim there exists a unique query to Func which accesses the
randomness ρh. If the completed chain is relevant then Func query (that accesses ρh) is by A1.
For non-relevant chains that are completed the Func query (that accesses ρh) is by Sim. Moreover,
because the Sim at the end executes the AllComplete function and the predicate isTrue on the
transcript T of the execution is true (Lemma 14), Sim completes chains corresponding to all its
Func queries. This implies that there are exactly α chains that are completed during the execution
of Gfh,ρh2 . Therefore, there were exactly 2α calls to ForceVal. Since there are no overwrites in an
execution (Lemma 12) with a good pair, there are 2α indices in f that are not carried over to h
(in the definition of τ). These correspond to all the ForceVal(X, ·, k) calls. Let these 2α indices be
{J1, . . . , J2α}.

Consider a FRh ⊆ F ×R such that every element (f, ρ) ∈ FRh are as follows:

f [x] = fh[x] ∀x ∈ [5]× {0, 1}n \ {J1, . . . , J2α}
ρ[X] = ρh[X] ∀X ∈ {I1, . . . , Iα}.

(40)

We claim that |FRh| = |R|. To show that τ is |R|-regular, we need to show that FRh ⊆ GOOD
and that τ(f, ρ) 6= h where (f, ρ) /∈ FR. Since (f, ρ) ∈ FRh agree with (fh, ρh) on all indices that
are accessed (which define the goodness of the pair), therefore if (fh, ρh) is a good pair then so
is (f, ρ). Consider (f, ρ) /∈ FR, then either f disagrees with fh on an index other than Ji or ρ
disagrees with ρh on an index Ij . It is easy to see that in either case there exists an index L such
that h[L] 6= τ(f, ρ)[L]. ut

55

We are now ready to consider ∆(G2,G3).

Pr [G2] = Pr
[
(f, ρ)←$F ×R : Gf,ρ2

]
=

∑
(f,ρ)∈GOOD

Pr [(f, ρ)] · Pr
[
Gf,ρ2

]
+

∑
(f,ρ)∈GOOD

Pr [(f, ρ)] · Pr
[
Gf,ρ2

]
≤

∑
(f,ρ)∈GOOD

Pr[(f, ρ)] · Pr
[
Gf,ρ2

]
+ Pr

[
(f, ρ)←$F ×R : (f, ρ) ∈ GOOD

]
=

∑
(f,ρ)∈GOOD

Pr[(f, ρ)] · Pr
[
G
h=τ(f,ρ)
3

]
+ Pr

[
(f, ρ)←$F ×R : (f, ρ) ∈ GOOD

]
,

(41)

where the last equality is due to Lemma 15.

Pr [G2] ≤
1

|F| × |R|
∑

(f,ρ)∈GOOD

Pr
[
G
h=τ(f,ρ)
3

]
+ Pr

[
(f, ρ)←$F ×R : (f, ρ) ∈ GOOD

]

=
1

|F| × |R|
· |R| ·

∑
h∈τ(GOOD)

Pr
[
Gh3

]
+ Pr

[
(f, ρ)←$F ×R : (f, ρ) ∈ GOOD

]
,

(42)

where the last equality is due to Lemma 16.

Pr [G2] ≤
1

|F|
·

∑
h∈τ(GOOD)

Pr
[
Gh3

]
+ Pr

[
(f, ρ)←$F ×R : (f, ρ) ∈ GOOD

]
=

∑
h∈τ(GOOD)

Pr[h] · Pr
[
Gh3

]
+ Pr

[
(f, ρ)←$F ×R : (f, ρ) ∈ GOOD

]
≤ Pr[G3] + Pr

[
(f, ρ)←$F ×R : (f, ρ) ∈ GOOD

]
(43)

Lemma 17. ∆(G2,G3) ≤ 351q6/2n. �

Proof. From Equation 43 and Lemma 10 the lemma holds. ut

C.3 Indistinguishability of G3 and G4

Lemma 18. In G3, Prim always replies with h[k,X] for any query (k,X). �

Proof. Sim in Gh3 responds to (k,X) with Gk[X]. During the execution, Sim sets Gk[X] ← Hk[X]
for all k ∈ {1, 5}. Therefore for such assignments the lemma holds as Hk[X] = h[k,X] throughout
the execution of G3. For k ∈ {2, 3, 4} there are two cases: (a) Gk[X] is assigned to Hk[X] or (b)
Gk[X] is forced to a value Y in a call to ForceVal(X,Y, k). For the case (a) the lemma holds by the
same argument as k ∈ {1, 5}. For case (b) some analysis is in order. A call to ForceVal occurs only
when Complete gets called on some partial chain C. This is true for both type of calls to Complete
i.e. direct or immediate. We will consider the case when C = (X1, X2, 1) and hence argue about
k ∈ {3, 4}. The other case C = (X4, X5, 4) can be symmetrically handled.

56

For Complete(X1, X2, 1) there was a query to Func i.e. Func(+, X0||X1) where X0 = G1[X1]⊕X2.
To answer this query Func evalutes the Feistel construction forward by accessing H (hence h).
Then it must be the case that both calls to ForceVal(X,Y, k) it holds that Y = h[k,X]. Therefore
Gk[X] = Hk[X] = h[k,X] for all (k,X) such that Gk[X] 6= ⊥. Hence the lemma holds.

ut

Lemma 19. ∆(G3,G4) = 0. �

Proof. Due to Lemma 18 the lemma holds. ut

From Lemmas 3,17,19 we have that ∆(G1,G4) ≤ 360q6/2n where Sim makes at most 2q2 queries.

D Proofs for Section 6

Proof (Theorem 6). The proof proceeds via a sequence of five games G0(λ), . . . ,G4(λ), which are all
described in Figure 24. In all games, the oracle Prim models the ideal cipher, where for convenience
the canonical way of efficiently simulating such cipher is relegated into InnerPrim. We start the
initial game, G0(λ), which models the real-world interaction of S,D in the ideal cipher model
for the psPRP game psPRS,DF,P (λ), i.e., when the source S interacts with F.Eval(ki, ·, ·). The only

difference is that the keys (like in all subsequent games) are sampled from D(2s(λ), n), which is the
set of all vectors of n distinct s(λ)-bit strings.

Then, Game G1(λ) introduces a modified oracle O, which behaves as a family of independent
permutations, i.e., O(i, ·, ·) replies corresponding to forward and backward queries to a fresh random
permutation. However, we also modify the game so that ideal-cipher queries Prim(ki, ·, ·) are going
to be answered by O(i, ·, ·). Note that this is not affecting the behavior of the experiment at all, we
have just modified the location where the permutation implemented by Prim(ki, ·, ·) and O(i, ·, ·) is
managed. Therefore, we have just argued that

Pr [G0(λ)] = Pr [G1(λ)] . (44)

In G1(λ), we are also going to add a bad flag which does not affect the behavior of the game, but
is set when the source S makes a Prim-query of the form (ki, ?, ?), for i ∈ [n]. (In contrast, note
that D can easily make such a query, thus the bad flag is set only as long as done is false, which
indicates the control flow has not been passed on to D yet.)

D.1 Proof of Theorem 6

One first key transition happens in G2(λ). The main difference is that we are going to now decouple
the ideal cipher from the oracle O as long as done is false. In the case the bad flag is set while
answering Prim(ki, σ, x), we are not going to respond any more using O(i, σ, x) as in G2(λ). Rather,
we are going to create an independent entry in the table TE, and use that one for our response.
Clearly, this modification in behavior is only noticed if the source S provokes bad to be set, as
otherwise G1(λ) and G2(λ) are equivalent until bad. Thus,

Pr [G1(λ)]− Pr [G2(λ)] ≤ Pr [G1(λ) sets bad] = Pr [G2(λ) sets bad] . (45)

57

MAIN Gi(λ):
done← false
(1n, t)←$SPrim(1λ, ε)
k1, . . . , kn ←$D(2s(λ), n)
L←$SO,Prim(1λ)
done← true
b′ ←$DPrim(1λ, k1, . . . , kn, L)
return b′

ORACLE O(i, σ, x):
// G0(λ)
return Prim(ki, σ, x)

ORACLE O(i, σ, x):
// G1(λ) – G4(λ)
if TP[i, σ, x] = ⊥ then

y
$← {0, 1}λ \ Pσi

TP[i, σ, x]← y
TP[i, σ, TP[k, σ, x]]← x

Pσi
∪← {y}; Pσi

∪← {x}
return TP[i, σ, x]

ORACLE Prim(k, σ, x):
// G0(λ)
return InnerPrim(k, σ, x)

ORACLE Prim(k, σ, x):
// G1(λ)
if ∃i ∈ [n]: k = ki then
if ¬done then
bad← true

return O(i, σ, x)
return InnerPrim(k, σ, x)

ORACLE Prim(k, σ, x):
// G2(λ)
if ∃i ∈ [n]: k = ki then
if ¬done then
bad← true

else return O(i, σ, x)
return InnerPrim(k, σ, x)

ORACLE Prim(k, σ, x): // G3(λ)
if ∃i ∈ [n]: k = ki then
if ¬done then
bad← true

else return O′(i, σ, x)
return InnerPrim(k, σ, x)

ORACLE Prim(k, σ, x):
// G4(λ)
if ∃i ∈ [n]: k = ki then
if ¬done then
bad← true

return O′(i, σ, x)
return InnerPrim(k, σ, x)

PROC. InnerPrim(k, σ, x):
// G0(λ) - G4(λ)
if TE[k, σ, x] = ⊥ then

y
$← {0, 1}λ \ Eσk

TE[k, σ, x]← y
TE[k, σ, TE[k, σ, x]]← x

Eσk
∪← {y}; Eσk

∪← {x}
return TE[ki, σ, x]

Fig. 24: Description of games from the proof of Theorem 6. Here, + = - and - = +, for notational
convenience. The MAIN procedure remains the same throughout G0(λ), . . . ,G4(λ). Also, O′ denotes
an oracle behaving identical to O, but using independent randomness and tables.

It is easiest to bound Pr [G2(λ) sets bad], as in this experiment, the source S’s view up to its output
is independent of k1, . . . , kn, and thus by a standard argument, the probability any of its q queries
hits one of these keys is at most N(λ)q/2s(λ), i.e.,

Pr [G2(λ) sets bad] ≤ N(λ)q

2s(λ)
. (46)

Now, the two final games G3(λ) and G4(λ) are obtained from G2(λ) and G1(λ), respectively, by
replacing calls to O within Prim queries with calls to O′, an independent copy of O, which keeps its
own table TP′ . It is in particular easy to see that G4(λ) behaves as the ideal-world case (b = 0) in
the psPRP game psPRS,DF,P (λ), since S only interacts with O (which is random) and Prim behaves
consistently with an independent ideal cipher, except that keys are sampled distinct. Also, by a
similar argument to the one above, G3 and G4 are identical until bad, and the probability of setting
bad can be bounded similarly, and thus

Pr [G3(λ)]− Pr [G4(λ)] ≤ Pr [G3(λ) sets bad] = Pr [G4(λ) sets bad] ≤ N(λ)q

2s(λ)
. (47)

58

Thus, combining (44), (45), (46), and (47),

Adv
pspr[P]
F,S,D (λ) ≤ 2N(λ)2

2s(λ)
+ Pr [G0(λ)]− Pr [G4(λ)]

≤ 2N(λ)2

2s(λ)
+

2N(λ)q

2s(λ)
+ Pr [G2(λ)]− Pr [G3(λ)] .

(48)

We are going to show now the existence of a reset adversary R for the source S (in the ideal cipher
model, i.e., with access to an oracle Prim implementing an ideal cipher), such that

Pr [G2(λ)]− Pr [G3(λ)] = Adv
reset[P]
S,R (λ) . (49)

The adversary R is straightforward: Given leakage L ∈ {0, 1}∗ from S, inputs 1λ, 1n, and oracle
access to O (i.e., this is the oracle O from the reset-security game) and Prim, R initially generates

random keys k1, . . . , kn
$← D(2s(λ), n). Then, it runs D on input 1λ, k1, . . . , kn, and L, and whenever

D makes a Prim query (k, σ, x),R answers it with its own Prim oracle if k /∈ {k1, . . . , kn}, and answers
it as O(i, σ, x) otherwise. Then, (49) easily follows by inspection, since the simulated experiments
are identical. (In particular, it is crucial to observe that O′ in G3(λ) is only used after done is set
to true!) ut

D.2 Proof of Theorem 7

Proof (Theorem 7). The proof proceeds via a sequence of five games G0, . . . ,G4, which are all
described in Figure 25. In all games, the oracle Prim models the random permutation accessed by S
and D. The initial game G0(λ) which models the real-world interaction of S,D in the ideal cipher
model for the psPRP game psPRS,DEM,P(λ), i.e., when the source S interacts with EM.Eval(ki, ·, ·).

Then, Game G1 solely modifies how Prim queries are answered, in particular dropping the
permutation requirement. Note that here it is possible that for example a forward query Prim(+, x)
returns a y which was already returned earlier for a different query Prim(+, x′), or it was queried
as Prim(−, y), and returned x′. In this case, the table value is overwritten, and the next Prim(−, y)
query will return x, instead of x′. Still, by a standard argument, it is not hard to see

Pr [G0(λ)]− Pr [G1(λ)] ≤ q2

2λ
, (50)

where remember that q is the overall number of queries in the whole game, to either O or Prim, by
S and D.

Then, Game G2(λ) modifies the oracle Prim to keep an own table TP . In particular, TP [i, σ, x]
contains the value returned upon query O(i, σ, x). However, this will be implemented in a way that
things are kept consistent, in particular:

- If TP [i, σ, x] 6= ⊥ and Tπ[σ, x⊕ ki] are defined, then they are equal.
- If O(i, σ, x) and O(i′, σ, x′) are both queried such that x ⊕ ki = x′ ⊕ ki′ , then TP [i, σ, x] ⊕
TP [i′, σ, x′] = ki ⊕ kj .

This ensures in particular that G2 and G1 behave identically, and thus Pr [G1(λ)] = Pr [G2(λ)]. In
G2, we also introduce a flag bad which is set to true whenever the code needs to take care of setting
Tπ and TP consistently.

59

MAIN Gi(λ):
done← false
(1n, t)←$SPrim(1λ, ε)

k1, . . . , kn
$← {0, 1}λ

L←$SO,Prim(1λ)
done← true
b′ ←$DPrim(1λ, k1, . . . , kn, L)
return b′

ORACLE O(i, σ, x): // G2(λ)
if TP [i, σ, x] = ⊥ then
if Tπ[σ, x⊕ ki] 6= ⊥ then
bad← true
TP [i, σ, x]← Tπ[σ, x⊕ ki]⊕ ki
TP [i, σ, TP [i, σ, x]]← x
else
if ∃i : TP [σ, x⊕ ki ⊕ kj] 6= ⊥ then
bad← true
y ← TP [σ, x⊕ ki ⊕ kj]⊕ ki ⊕ kj
else y

$← {0, 1}λ
TP [i, σ, x]← y
TP [i, σ, y]← x

return TP [i, σ, x]

ORACLE O(i, σ, x): // G3(λ)
if TP [i, σ, x] = ⊥ then
if Tπ[σ, x⊕ ki] 6= ⊥ then
bad← true
if ∃i : TP [σ, x⊕ ki ⊕ kj] 6= ⊥ then
bad← true
y

$← {0, 1}λ
TP [i, σ, x]← y
TP [i, σ, y]← x

return TP [i, σ, x]

ORACLE O(i, σ, x): // G4(λ)
if TP [i, σ, x] = ⊥ then
TP [i, σ, x]← y \ Pσi
TP [i, σ, y]← x

Pσi
∪← {x}; Pσi

∪← {y}
return TP [i, σ, x]

ORACLE O(i, σ, x):
// G0(λ), G1(λ)
return ki ⊕ Prim(σ, x⊕ ki)

ORACLE Prim(σ, x):
// G0(λ),G4(λ)
if Tπ[σ, x] = ⊥ then

y
$← {0, 1}λ \Πσ

Tπ[σ, x]← y
Tπ[σ, y]← x

Pσ
∪← {x}; Pσ ∪← {y}

return Tπ[σ, x]

ORACLE Prim(σ, x): // G1(λ)
if Tπ[σ, x] = ⊥ then

y
$← {0, 1}λ

Tπ[σ, x]← y
Tπ[σ, y]← x

return Tπ[σ, x]

ORACLE Prim(σ, x): // G2(λ)
if Tπ[σ, x] = ⊥ then
if ∃i : Tπ[σ, x⊕ ki] 6= ⊥ then bad← true
Tπ[σ, x]← TP [i, σ, x⊕ ki]⊕ ki
Tπ[σ, Tπ[σ, x]]← x
else
y

$← {0, 1}λ
Tπ[σ, x]← y
Tπ[σ, y]← x

return Tπ[σ, x]

ORACLE Prim(σ, x): // G3(λ)
if Tπ[σ, x] = ⊥ then
if ∃i : Tπ[σ, x⊕ ki] 6= ⊥ then bad← true

y
$← {0, 1}λ

Tπ[σ, x]← y
Tπ[σ, y]← x

return Tπ[σ, x]

Fig. 25: Description of games from the proof of Theorem 7. Here, + = - and - = +, for notational
convenience. The MAIN procedure remains the same throughout G0(λ), . . . ,G4(λ).

60

Game G3 is identical to G2, except that the game does not attempt to keep TP and Tπ consistent.
Whenever there is need for setting values consistently, however, the game still sets the flag bad to
true. Therefore, G2 and G3 are equivalent until bad, and thus

Pr [G2(λ)]− Pr [G3(λ)] ≤ Pr [G3(λ) sets bad] . (51)

We will return to analyzing Pr [G2(λ) sets bad] later. We first conclude the sequence of games with
Game G4, which re-introduces the permutation contraint in TP and Tπ, thus making the resulting
game identical to the ideal-world execution of Game psPRS,DEM,P(λ). Also, again by a simple collision
argument, it is not hard to see that

Pr [G3(λ)]− Pr [G4(λ)] ≤ q2

2λ
. (52)

Therefore, we can combine (50), (51), and (52), and see that

Adv
pspr[P]
EM,S,D(λ) = Pr [G0(λ)]− Pr [G4(λ)] ≤ 2q2

2λ
+ Pr [G3(λ) sets bad] . (53)

Upper bounding the probability of setting bad. We consider now game G3, and in partic-
ular differentiate between provoking bad while S queries O or Prim, and provoking bad as a result
of one of D’s Prim queries. We refer to the first event as Bad1, to the latter as Bad2.

For Bad1, let us look at the experiment up to the point where S terminates with its leakage
output L. In particular, in G3 the distribution of the outputs of S queries does not depend on the
keys k1, . . . , kn, and on bad being set. Therefore, we can just assume that all queries have been
made by S, and then check what is the probability that bad would have been set as a result of
these queries when we sample k1, . . . , kn at the end of S’s execution.

Concretely, for every one of the (at most q) Prim queries (σ, x), the probability that (i, σ, x⊕ki)
for i ∈ [n] is set in TP is at most N(λ)q/2λ. Moreover, we need to establish the probability that
for an O query (i, σ, x), there exists j such that TP is already defined on (j, σ, x⊕ ki ⊕ kj). Again,
this probability can easily be upper bounded by N(λ)q/2λ. The union bound yields

Pr [Bad1] ≤
2N(λ)q2

2λ
.

Now, we move to Bad2, and this is where we finally make use of the unpredictability of the source.
In particular, we consider a game G5 (Figure 26), which is equivalent to G4, but just takes into
account the analogue of the event Bad2 happening through a corresponding flag bad2: Again, by a
simple collision argument, it is not hard to see that

Pr [Bad2] ≤ Pr [G5(λ) sets bad2] +
q2

2λ
.

Finally, we upper bound Pr [G5(λ) sets bad2] with Adv
pred[P]
S,P (λ) for a suitable predictor P . The

predictor is based on the simple observation that in order for bad2 to be set to true, D needs
to issue a query (σ, x), returning y, such that for some i, either O(i, σ, x ⊕ ki) or O(i, σ, y ⊕ ki)
was queried by S. Therefore, P , on input 1λ, n, and L, first generates keys k1, . . . , kn, and run
D(1λ, k1, . . . , kn, L), answering D’s Prim queries with P ’s own Prim oracle. Also, at the end of the

61

MAIN G5(λ):
done← false
(1n, t)←$SPrim(1λ, ε)

k1, . . . , kn
$← {0, 1}λ

L←$SO,Prim(1λ)
done← true
b′ ←$DPrim(1λ, k1, . . . , kn, L)
return b′

ORACLE O(i, σ, x):
if TP [i, σ, x] = ⊥ then
TP [i, σ, x]← y \ Pσi
TP [i, σ, y]← x

Pσi
∪← {x}; Pσi

∪← {y}
return TP [i, σ, x]

ORACLE Prim(σ, x):
if Tπ[σ, x] = ⊥ then
if ∃i : TP [i, σ, x⊕ ki] 6= ⊥ then
bad2 ← true

y
$← {0, 1}λ \Πσ

Tπ[σ, x]← y
Tπ[σ, y]← x

Πσ ∪← {x}; Πσ ∪← {y}
return Tπ[σ, x]

Fig. 26: Game G5(λ) used in the proof of Theorem 7.

execution, consider the set T of all (x, y)’s such that D queried either (+, x) obtaining y, or (−, y)
obtaining x. Then, P concludes by outputting

Q′ = {(+, x⊕ ki), (−, y ⊕ ki) : i ∈ [n], (x, y) ∈ T} .

By the above observation, note that Adv
pred[P]
S,P (λ) = Pr [G5(λ) sets bad2]. ut

62

	Public-Seed Pseudorandom Permutations

