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Abstract

This paper proposes two closely related asymmetric key (or a public
key) schemes for key exchange whose security is based on the notion of
ideal secrecy. In the first scheme, the private key consists of two singular
matrices, a polar code matrix and a random permutation matrix all over
the binary field. The sender transmits addition of two messages over
a public channel using the public key of the receiver. The receiver can
decrypt individual messages using the private key. An adversary, without
the knowledge of the private key, can only compute multiple equiprobable
solutions in a space of sufficiently large size related to the dimension of
the kernel of the singular matrices. This achieves security in the sense of
ideal secrecy. The next scheme extends over general matrices. The two
schemes are cryptanalyzed against various attacks.
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1 Introduction
Symmetric key cryptography arose to satisfy the major need of the civilisa-
tion, that of confidentiality of information. It served at least in principle, two
functions, that of confidentiality and data integrity of communicating large
quantity (bulk) of information or data over an insecure channel tapped by a
passive adversary. However, a symmetric key cryptographic scheme presumes
a secure channel for key exchange for its own functioning. This requirement
was fulfilled by several ingenious asymmetric (public) key schemes. The well
known Diffie Hellman key exchange protocol in 1976 was followed by RSA [1]
and Rabin [2] based on integer factorisation problem, El-Gammal[3] based on
discrete logarithm problem, Paillier [4], McEliece [5] and NTRU [6]. These have
lead to an assurance of security of information transaction over internet and
have provided a practically feasible infrastructure for secure E-commerce since
the 1990s. Public key cryptography has now provided the functionalities of
small scale encryption, key exchange over public channels and authentication
(signature) of entities. These in turn have shown a vast scope of application to
practice of information storage, communication and transaction affecting the
civilisation from secure personal level transactions over internet, E-commerce,
secure networks for communication to conduct of elections affecting the nations
and democracies.

Unfortunately, despite several new and powerful proposals in asymmetric key
cryptography after the original schemes, it turns out that a very small number
of public key proposals have survived to offer security for practical use. Security
of most of these primitives have been based on computational hardness of the
schemes. Although Shannon’s original paper [7] proposed the concept of perfect
secrecy proving perfect secrecy of the one time pad, this concept did not percolate
into public key schemes which were dominated by computational hardness (or
complexity) for security measure in contrast to information theoretic security. For
security all of these public key schemes utilize unproved computational hardness
of one of the problems such as the Elliptic curve discrete log computation,
prime factorization or sometimes proved hypotheses such as NP completeness
of a computational problem, square root computation modulo numbers without
prime factorization and shortest vector problem in Lattices. In recent times
information theoretic security has turned out to be the basis of secrecy capacity
for wiretapped channels [8], [9] and forms an alternative to the traditional public
key cryptography.

1.1 Public key scheme based on ideal secrecy
The purpose of this paper is to propose two related asymmetric (hereafter called
public) key schemes whose security is not based purely on computational hardness
but is based also on the notion of ideal secrecy which seems to have appeared
first in a paper by Geffe [10]. This shift to ideal secrecy offers a new direction to
search for public key primitives. In this paper we provide concrete realizations
of such schemes. The notion of ideal secrecy is briefly equivalent to guessing
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a correct string in a large set. This can be explained as follows. If a function
having the trapdoor information (private key) has a large and equiprobably
number of arguments (inputs) which give rise to the same output without using
the key, then even if the problem of constructing the input given the output is
not computationally hard guessing the correct input is secured by the knowledge
of the trapdoor. We say that function provides an ideal secrecy if the size of
the set of inputs where guess is equiprobable is large enough. In the special
cases of primitives when this set is itself as large as the key space, this secrecy is
analogous to perfect secrecy [10].

From the point of view of computational security, the ideal secrecy can be
systematically explored in terms of one way functions (OWFs) which form the
basic foundation of both symmetric as well as public key cryptography. Our
notion of security of the proposed public key scheme re-interprets this notion of
one way-ness in terms of ideal secrecy. This differentiation is explained next.

1.1.1 One way, trapdoor one way and one way functions based on
ideal secrecy

Both the symmetric and public key primitives depend on functions with practi-
cally feasible computation, called one way function (OWF) and trapdoor one way
function (TOWF). Public key schemes based on computational hardness for secu-
rity have required three types of functions as follows. For asymmetric encryption
traditionally one requires three functions F : U × X → Y, H : Y ×R → X and
G : R → U where U denotes the set of public keys while R is the set of private
keys. The functions F , H and G are required to have following properties.

1. F (u, ·) : X → Y is a OWF for every u = G(r) for any r in R.

2. H(r, ·) : Y → X is a TOWF with trapdoor r.

3. G(·) : R → U is a OWF.

Here the OWFs are considered in the sense of computational hardness described
at the start of Section 2.1 on the following page. In the asymmetric scheme we
consider a notion of asymmetric encryption based on ideal OWFs as follows.

An asymmetric encryption based on ideal secrecy is defined by three functions
F : U × X → Y, H : R× X → X and G : R → U such that, for u = G(r) for
any r in R the function F (u, .) : X → Y is an ideal OWF, H(r, .) : Y → X is an
ideal TOWF while G is a OWF. The definitions of an ideal OWF (IOWF) and
an ideal TWOF (ITWOF) are given in the next section. This briefly presents
the nature of the public key scheme we develop in this paper and its difference
with respect to traditional schemes based on computational security.

1.2 Previous work on public key primitives
The literature has two kinds of public key primitives. One is used for encryption
and the second is for key exchange. Although if you have a public key scheme
available you can exchange something securely over a public channel, but there is
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no need to exchange information beforehand if you want to encrypt information
by public key and send. At the same time, if you have a key exchange scheme
over a public channel, since you are able to exchange a key securely you can
also do encryption. Both solve the problems of key exchange and encryption
over a public channel. Originally, Diffie Hellman [11] was proposed as exchange
of key over public channel and RSA [1] and [2] was proposed as encryption
scheme over a public channel. After RSA, El-Gammal [3] scheme was proposed
to show that encryption could be done using Diffie-Hellman key exchange. All
the three schemes are later used for development of signature, which solved the
problem of authentication of entities. After elliptic curve based Diffie Hellman
scheme (ECC) came on the scene several possibilities of protocols and signature
schemes based on public key exchange using pairing were proposed and form
foundation of public key cryptography. The literature on ECC is too vast but
comprehensively available in [12], [13]. Other successful public key cryptographic
schemes are McEliece [5] and NTRU [6]. All of these schemes offer security on
the computational hardness of certain problems such as elliptic curve discrete
log, prime factorization, shortest vector in a lattice [6] or NP-completeness of
decoding [5]. The central theme of the cryptographic scheme we propose in this
paper is to construct ITWOFs with properties stated above required for public
key schemes. We first construct the public key primitive based on polar code
matrix and study its security. Then propose a primitive using general matrices.

2 Definitions of ideal secrecy, OWF, TOWF
In this section we discuss definitions of OWF and TOWF and their variants
based on ideal secrecy. Let UB , RB be public and private keys of an entity Bob.
In a public key cryptography, suppose Alice wants to send a message m to Bob.
Consider public private key pair being related by a function G,

UB = G(RB)

where G is required to be a OWF. The encrypted ciphertext c of the message m
is,

c = E(UB ,m)

Hence E also has to be a OWF of m since UB is known to public. The decryption
function with trapdoor RB and ciphertext c is

m = D(RB , c)

Here D has to be a TOWF with trapdoor RB. The ideal secrecy variants of
such a scheme can be considered with the help of ideal OWF and ideal TWOF
which are defined next.

2.1 Definitions of IOWF and ITOWF
Traditionally a OWF is a function F : X → Y between sets X , Y which allows
"easy" (i.e. in practically feasible time) computation of y in Y given any member
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x in X but given y in Y computation of an x in X such that y = F (x) is
"difficult" (i.e. there is no known algorithm to compute x in practically feasible
time). A OWF with the variant of ideal secrecy is defined as follows.

Definition 2.1 (Ideal One Way Function) A function F : X → Y from a set X
to Y is said to be Ideal One Way Function (IOWF) of order n if

1. Computation of y = F (x) for any x in X is "easy".

2. Given y there is a set Sy ⊂ X of size at least n such that any known
algorithm results into computation of an equiprobable number of x in Sy

which satisfy y = F (x).

To define a decryption function using private key, traditionally one needs
the concept of a Trapdoor One Way Function (TOWF) where the trapdoor
represents the private key. A function F : T × X → Y with T the set of keys or
trapdoors is called a TOWF if for each t in T the function Ft : X → Y where
Ft(x) = F (t, x) is a OWF and given a pair (x, y) in X × Y such that y = Ft(x)
for some t, computation of t such that y = F (t, x) is not known to be feasible.
From the notion of IOWF above we can define a notion of Ideal TOWF (ITWOF)
as follows.

Definition 2.2 (Ideal Trapdoor One Way Function) A function F : T ×X → Y
is said to be an Ideal TOWF (ITOWF) of order n with trapdoor set T if

1. for any t in T the function Ft : X → Y where y = Ft(x) = F (t, x) is an
IOWF of order n.

2. Given the pair (x, y) computation of t in T such that y = F (t, x) is not
known to be feasible.

Using these ideal variants of OWF, TOWF we construct a public key exchange
scheme in next section using the algebraic properties of the polar code matrix.

3 Key exchange based on the public key primi-
tive using polar code matrix

In this section, we discuss properties of polar code matrix and present an IOWF
and an ITOWF for a public key scheme with examples. Polar codes, introduced
by Arıkan in [14], are the linear block error correction codes with provable
capacity-achieving capability over certain types of discrete memoryless channels,
and uses only N

2 logN XOR operations at each encoding/decoding of a length-N
polar code. In this paper, we only focus on the polar code matrix. Given a polar
code, denoted by (N,K,A), where N = 2n and K denote the code length and
the message length, n is an integer, and A is the set of information bit indices
with cardinality |A| = K, the polar code matrix is defined as

G , F⊗n
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where G is an n fold Kronecker product of

F =

[
1 1
0 1

]
(1)

which is a 2 × 2 binary kernel matrix of a polar code. We have the following
property of the tensor product.

Proposition 3.1 Let A, B, C and D are matrices of size m× n, p× q, n× k
and q × r respectively. Then

(A⊗B)(C⊗D) = (AC)⊗ (BD)

See [15] for this identity is known as mixed-product property. The next
proposition is also well known in [16].

Proposition 3.2

F⊗nF⊗n = IN (2)

where the operation between the matrices is binary matrix multiplication operation
modular 2 and IN denotes an identity matrix of size N ×N .

Proof. For n = 1, it is straightforward, i.e., F · F = I2. For n ≥ 2, we prove it
by induction using the following recursion. Suppose Proposition 3.2 holds for all
values of n up to k, where k ≥ 1. When n = k + 1, we obtain

F⊗nF⊗n = (F⊗ F⊗k)(F⊗ F⊗k)

= (FF)⊗ (F⊗kF⊗k) (3)
= I2 ⊗ I2k

= I2n

Eq. (3) is due the identity in Proposition 3.1.

Proposition 3.3 The multiplication of any binary vector v of length n and G
can be treated as a non-systematic polar encoder with the input vector v, which
has the exact N

2 logN XOR operations [17].

The row (or column) index set of a polar code generator matrix G = F⊗n,
where F is shown in Eq. (1), is IN , {1, 2, ..., N}. Consider the set of indices
A , {i1, ..., iK} ⊂ IN , (i1 < i2 < ... < iK), and Ac , IN \ A = {iK+1, ..., iN},
(iK+1 < iK+2 < ... < iN ). Then G has submatrices GA and GAc , according to
the sets {A} and {Ac} as row indices. Similarly, using the sets {A} and {Ac}
as column indices, the matrix G has submatrices HA and HAc . Hence there is
a row permutation Q such that

QG =

[
GA
GAc

]
(4)

GQT =
[
HA HAc

]
(5)

We have the following property.
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Property 3.4

GAHA = IK (6)
GAHAc = 0K×(N−K) (7)
GAcHA = 0(N−K)×K (8)
GAcHAc = IN−K (9)

Proof. From the definitions of GA, GAc , HA and HAc . There is a permutation
matrix Q of size N ×N , such that

QF⊗n =

[
GA
GAc

]
= G

F⊗nQT =
[
HA HAc

]
= H

and
GH = QF⊗nF⊗nQT = I

Hence the proof follows F⊗nF⊗n = I and Q being a permutation matrix.

Based on the polar code matrix properties in Section 3 on page 5, we present
the following asymmetric key cryptosystem.

3.1 Public Key Exchange Scheme Based On Polar Codes
Consider Alice initiating a key exchange session with Bob whose private and
public keys are defined as follows.

3.1.1 Private and public keys

Recall the row index set IN = {1, . . . , N} and the set {A} ⊂ IN . Let S1 and
S2 be K ×K and (N −K)× (N −K) singular matrices respectively with ranks
r1, r2 and P be the N ×N binary permutation matrix. Define

1A(i) ,

{
1 if i ∈ A
0 if i ∈ Ac

We then define the private key T priv , {1A,S1,S2,P} and the public key

T pub , {Gpub
A = S1GAP,G

pub
Ac = S2GAcP} (10)

As discussed earlier for public key primitive we require an IOWF for encryption
and an ITOWF for decryption which are constructed below.
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3.1.2 Encryption and decryption

Alice has two randomly generated input vectors x1 of length K-bits and x2 of
length N −K-bits and the public key T pub, the encryption of x1, x2 is given by

c = x1G
pub
A + x2G

pub
Ac (11)

Given the private key T priv, the cipher-text c, Bob decrypts as

cPTHA = (x1S1GAP+ x2S2GAcP)PTHA

= (x1S1GA + x2S2GAc)HA

= x1S1 (12)

The simplification to Eq. (12) is due to PPT = I and Eq. (7) on page 7 in
Property 3.4 on page 7 . Then finally Bob multiplies by GAP in Eq. (12) to get
x1S1GAP = x1G

pub
A , which is the shared common information between Alice

and Bob.

3.2 OWF, IOWF, ITOWF based on polar code matrix
We now describe one wayness of various functions above based on polar code
matrix.

1. Public private key pair function

Gpub
A = S1GAP

Gpub
Ac = S2GAcP

2. Encryption function

c = x1G
pub
A + x2G

pub
Ac

3. Decryption function Computing x1G
pub
A , x2G

pub
A

x1G
pub
A = cPTHAGAP

x2G
pub
Ac = cPTHAcGAcP

Gpub
A is of size K ×N and rank r1 and Gpub

Ac is of size (N −K)×N and rank r2.
S1 of rank r1 and of size K ×K. S2 of rank r2 and of size (N −K)× (N −K)
respectively. GA and GAc are matrices of size K ×N and (N −K)×N and P
is a permutation matrix of size N ×N .

3.2.1 Encryption function is IOWF

Consider x = {x1, x2} ∈ X is a N -bit random input vector of which x1, x2 are
K-bit and N −K-bit vectors respectively. u = {G1,G2} where G1 is of rank r1
and of size K ×N and G2 is of rank r2 and of size N −K ×N .
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Theorem 3.5 The encryption function F : U × X → Y, defined as

y = F (u, x) , x1G1 + x2G2

where y ∈ Y is a N -bit output vector, is an IOWF of order 2N−r1−r2

Proof. For the function F to be an IOWF, we need to show that given y ∈ Y,
computing for x ∈ X results in a set Sy ∈ X × E of order n all of which are
equiprobable. So, given y and public keys G1 and G2

y =
[
x1 x2

] [G1

G2

]
=
[
x1 x2

]
Gpub

The rank of matrix G1 is r1 and the rank of matrix G2 is r2. Hence rank
Gpub = r1 + r2. Hence the underdetermined system of linear equations above
has N − r1 − r2 free variables. So the number of solutions of x = {x1, x2} ∈ X
is 2N−r1−r2 . So the encryption function F (u, x) is IOWF of order 2N−r1−r2 .

3.2.2 Decryption function is ITOWF

Consider a trapdoor t = {1A,S1,S2,P} and we have

Theorem 3.6 The decryption function F : T × Y →M, defined as,

F (r, y) , m = {m1,m2}

m1 = x1G
pub
A = yPTHAGAP

m2 = x2G
pub
Ac = yPTHAcGAcP

m = {m1,m2} denotes a string of which m1 and m2 are symbols of size N , is a
ITOWF of order 2N−r1−r2 with private key T as trapdoor.

Proof. For the function F to be an ITOWF of order n, we need to show

1. it is an IOWF of order n for each private key parameters t

2. given y and x, computation of t is not known to be feasible.

For the function F to be IOWF, we need to show that, given m, computing y
results in the set Sm ∈ Y of order n. For arbitrarily chosen A,P we obtain

m = yPTHAGAP

= yR

where R = PTHAGAP. The rank of P, HA and GA are N , K and K and are
all part of private key. For any chosen R, of rank less than K, is product of
these matrices. We can see from the above equation this is of the form Ax = b,
where A is not of full rank. Hence the least number of free variables in above
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equation is N − (r1 + r2) and number of solutions for y are at least 2N−(r1+r2).
Hence, for any chosen R, the function F is a IOWF of order 2N−(r1+r2).

For the second part

m = yPTHAGAP

= yR

To solve for the private keys T from the above equation requires solving a
quadratic system of equations. This is an expected hard problem when the
number of variables is sufficiently. There is no known polynomial time algorithm
for solving such systems. Hence the the function F is an ITOWF of order
2N−(r1+r2).

3.2.3 Public private key pair function is OWF

Consider t = {1A,S1,S2,P}. S1 is of rank r1 and of size K × K. S2 is of
rank r2 and of size (N −K) × N . GA, GAc are matrices of size K × N and
(N −K)× (N −K) respectively, as defined Section 3 on page 5. P is a random
permutation matrix of size N ×N . We use this notation to propose the below
theorem

Theorem 3.7 The function G : T → U , G(t) = u, defined as

G(t) , u = {Gpub
1 ,Gpub

2 }

Gpub
1 = S1GAP

Gpub
2 = S2GAcP

where u = {Gpub
1 ,Gpub

2 }. Gpub
1 , Gpub

2 are matrices of size K × N and (N −
K)× (N −K) respectively, is a OWF.

Proof. To prove that it is OWF, given Gpub
1 , we need to show that computation

of t = {A,P} is not known to be feasible. Consider the following equation[
Gpub

1

Gpub
2

]
=

[
S1 0
0 S2

]
QF⊗nP

this is a quadratic system of equations with additional constraint of Q, P being
permutation for solving such systems. This is an expected hard problem for
sufficiently large number of variables and no general polynomial time algorithm
is known for solving suhc systems.

3.3 Example
Let GF (p) be the finite field where all the computations are performed, where
p = 2. Let

S1 =


1 0 1 0
0 1 0 1
1 1 1 1
1 0 1 0


10



and

S2 =


1 0 0 1
0 0 1 1
1 0 1 0
1 0 0 1


with dimension of kernel of S2,S1 being 2 each. Let

P =



0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


be a randomly generated permutation matrix. A = {2, 4, 6, 7} be the indices for
the matrix G.

GA =


1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


and

GAc =


1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0


.

1. Private Key
T priv = {S1,S2,P,A}

2. Public Key

T pub =
{
Gpub
A =


0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1

 ,

Gpub
Ac =


1 1 0 1 1 1 1 1
1 0 0 0 1 1 0 0
0 1 0 1 0 0 1 1
1 1 0 1 1 1 1 1

}
3. Input x = {x1, x1} randomly generated vectors

x1 =
[
0 0 1 1

]
, x2 =

[
1 1 0 1

]
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4. Encryption Eq. (11) on page 8

c =
[
1 0 0 0 1 1 0 0

]
5. Decryption Eq. (12) on page 8

c̃ = cPTHA =
[
0 1 0 1

]
6. we multiply by c̃GAP to obtain the shared information between the users

x1G1 =
[
0 0 0 0 1 0 1 0

]
3.4 Cryptanalysis
For any cryptosystem, cryptanalysis is carried out to test its security against
standard attacks.

1. Brute force attack: Searching key space for private key with the known
public key as input.

2. Chosen cipher text attack: If the decryption of chosen ciphertext is available
to the attacker, the attacker tries to find the private key used in the
decryption.

3.4.1 Brute force attack

In the brute force attack the attacker has Kpriv to retrieve the private keys.
In the proposed cryptosystem the private key is T priv = {1A,S1,S2,P}. By
stirling’s approximation, for N,K > 1, the first part of the private key 1A has(

N

K

)
≈ 2{N∗H(K/N)}

where
H

(
K

N

)
,
K

N
log

N

K
+

(
1− K

N

)
log

1

(1− K
N )

is the binary entropy function. For the permutation matrix P of size N × N
yields N ! ≈

√
2πN

(
N
e

)N possible combinations. For a singular matrix of rank r
and size K ×K they are

∏r−1
i=0 (2

K − 2i)2r(K − r) combinations. As a result,
search of the secret key is not feasible in polynomial time.

3.4.2 Chosen ciphertext attack (CCA)

In CCA, the adversary uses the knowledge of decryption function and provides
chosen ciphertexts to be deciphered to get plaintexts and use the ciphertext and
plaintext pair to retrieve information about the secret key or future plaintext.
From decryption function Eq. (12) on page 8 we get

cPTHAGAP = x1
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So, the adversary can deduce equations in the parameters of P and indices A
and Ac. These result into a quadtaric system of equations in parameters of P
and G. For suffciently large N and N −K this is an expected hard problem.

3.5 Construction of the Scheme
The construction requires generation of the secret key parameters T priv =
{S1,S2,P,A}. Let the the initial seed be denoted by T used to generate the
secret key T priv.

The indices A and the permutation matrix P can be generated using the
RC4 key expansion algorithm, using the initial seed T . An RC4 key scheduling
algorithm is is a permutation where in it permutes the indices of the N size array.
For generation of a singular matrix S of size m ×m and rank r, we have the
following steps The algorithm 1 can be used generate matrices S1 and S2 of sizes

1. Consider identity matrix Ir of size r × r

2. Construct a matrix L =

[
Ir 0r×m−r

0m−r×r 0m−r×m−r

]
;

3. Generate two random permutations Q1, Q2 of size m×m using the
initial seed T as an input to RC4 key expansion algorithm

4. Matrix S , Q1LQ2

Algorithm 1: Steps to generate matrix S of rank r

K ×K and (N −K)× (N −K) of ranks r1 and r2 respectively. For example to
achieve an ideal secrecy of order 2128, we can choose N = 512, r1 = r2 = 192
and K = 256.

4 Public key primitive based on general matrices
This section extends the scheme of previous section based on polar code matrices
to a public key primitive using matrices over finite fields. Let F be a finite
field. Consider two matrices V1 = [αT

1 . . . α
T
K ]T , V2 = [αT

K+1 . . . α
T
N ]T , where

α1, . . . , αN are linearly independent vectors in Fn and let there exist a matrix
V3 such that V2V3 = 0 and V1V3 is non-singular. We shall show why such a
matrix exists. Let S1, S2 be two matrices, with entries in F, with rank of S1,
S2 be r1 and r2 respectively, are two matrices to hide rows of V1, V2. Let P be
some random permutation matrix of size N ×N

4.1 Private Key And Public Keys
Matrices V1, V2, S1 , S2, P, of sizesK×N , (N−K)×N , K×K, (N−K)×(N−
K), N ×N respectively, form part of private key, with above following properties.
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There exists a matrix V3 such that V2V3 = 0 and V1V3 is non-singular

T priv = {V1,V2,S1,S2,P} (13)

Let Gpub
1 = S1V1P and Gpub

2 = S2V2P. Then the public key is

T pub = {Gpub
1 ,Gpub

2 } (14)

The existence of matrix V3 is given by

V3 = V−1E (15)

where E =

[
IK

0(N−K)×N

]
.

4.2 Public Key Exchange Scheme
Let x1, of length of K, x2, of length of (N −K), be two randomly chosen texts
by the transmitter. For the users to share common information, given the public
key of the receiver, T pub, the encryption function by transmitter, based on the
IOWF described above, is as follows

c = x1G
pub
1 + x2G

pub
2 (16)

After receiving c, the receiver computes/decrypts using the ITOWF function as
described above, using the secret key, T priv, as following,

cPTV3 = x1S1V1PPTV3 + x2S2V2PPTV3

= x1S1V1V3 + 0

cPTV3 = x1S1V1V3 = x1S1 (17)

x1S1 is obtained and the receiver computes the vector x1S1V1P = x1G
pub
1 ,

which is the common information between the receiver and transmitter. The
above equations can rewritten as below

c = [x1 x2]

[
S1V1P
S2V2P

]
= [x1 x2]

[
Gpub

1

Gpub
2

]
To make the inversion non-unique and result in multiple solutions of large set,
the row spans of Gpub

1 and Gpub
2 to have an intersection of dimension d, which

can be achieved using the singularity of S1, S2. The number of solutions of the
equation is pd for the field of Fp. We show in the next subsection that this
degree of ideal secrecy is achievable in the proofs of IOWFs. Then in the a later
subsection discuss a realisation or construction of the public key primitive for
specific d in terms of matrices.
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4.3 Development Of OWF, IOWF, ITOWF
Similar to OWF for public private key pair, IOWF for encryption and ITOWF for
decryption based on polar codes, we develop the same for generalised matrices.

1. Public private key pair function

Gpub
1 = S1V1P

Gpub
2 = S2V2P

2. Encryption function

c = x1G
pub
1 + x2G

pub
2

3. Decryption function

x1G
pub
1 = cPTV3V1P

where c is N -bits vector, x = {x1, x2} where x1, x2 are of K-bit and (N −K)-
bit random vector respectively. Gpub

1 , Gpub
2 are matrices of size K × N and

(N −K)×N respectively. S1 of rank r1 and of size K ×K. S2 of rank r2 and
of size (N −K)× (N −K) respectively. V1 and V2 are matrices of size K ×N
and (N −K)×N and P is a permutation matrix of size N ×N .

4.3.1 Encryption function is IOWF

Consider x = {x1, x2} ∈ X is a N symbols random input vector of which x1, x2
are K symbol and (N −K) symbol vectors respectively. u = {G1,G2} where G1

is of rank r1 and of size K ×N and G2 is of rank r2 and of size (N −K)×N .

Theorem 4.1 The encryption function F : U × X → Y, defined as

y = F (u, x) , x1G1 + x2G2

where y ∈ Y is a N symbol output vector, is an IOWF of order pN−r1−r2

Proof. For the function F to be an IOWF, we need to show that given y ∈ Y,
computing for x ∈ X results in a set Sy ∈ X × E of order n all of which are
equiprobable. So, given y and public keys G1 and G2

y =
[
x1 x2

] [G1

G2

]
=
[
x1 x2

]
Gpub

The rank of matrix G1 is r1 and the rank of matrix G2 is r2. Hence rank
G ≤ r1 + r2. Hence the underdetermined system of linear equations above
has at least N − r1 − r2 free variables. So the number of solutions of x = {x1,
x2} ∈ X is at least pN−r1−r2 . So the encryption function F (u, x) is IOWF of
order pN−r1−r2 .

15



4.3.2 Decryption function is ITOWF

Consider a trapdoor t = {S1,S2,V1,V2,P} where S1 is of rank r1 and of size
K × K and S2 is of rank r2 and of size (N − K) × (N − K). x = {x1, x2}
denotes a random string of which x1, x2 are K symbols and N −K symbols
respectively. y is vector string of N symbols vector. P is a random permutation
matrix of size N ×N . With this notation we have

Theorem 4.2 The function F : T × Y →M, defined as,

F (t, y) ,M = xG1 = yPTV3V1P

where m denotes a vector string of N symbols, is a ITOWF of order pN−K with
the private key T = PTV3V1P as trapdoor.

Proof. For the function F to be an ITOWF of order n, we need to show the
following

1. is an IOWF of order n for each private key parameters t

2. given y and x, computation of t is not known to be feasible.

For the function F to be IOWF, we need to show that, given m, computing y
results in the set Sm ∈ Y of order n. For a arbitrarily chosen V1,P we get the
following equations

m = yPTV3V1P = yR

The rank of P, V1 and V3 are N , K and K and are all part of private key. For
any chosen R, of rank less than K, is product of these matrices. We can see
from the above equation this is of the form Ax = b, where A is not of full rank.
Hence the least number of free variables in above equation is N −K and number
of solutions for y are at least pN−K . Hence, for any chosen R, the function F is
a IOWF of order pN−K .

For the second part of the group, we form the equations as

m = yPTV3V1P = yR

This equation is a quadratic system in private key parameters along with con-
straint equations for P to be permutation and relations between V1 and V3.
With sufficiently large N and the difference N − K this is an expected hard
problem as no known general algorithm is known for solving quadratic systems.
Hence the function F is a ITOWF of order pN−K .

4.3.3 Public private key pair function is OWF

Consider t = {S1,S2,V1,V2,P}. S1 is of rank r1 and of size K × K. S2 is
of rank r2 and of size N − K × N . V1, V2 are matrices of size K × N and
N −K ×N respectively. P is a random permutation matrix of size N ×N . We
use this notation to propose the below theorem

16



Theorem 4.3 The function G : T → U , defined as,

G(t) , u = {Gpub
1 ,Gpub

2 }

Gpub
1 = S1V1P

Gpub
2 = S2V2P

Gpub
1 , Gpub

2 are matrices of size K ×N and N −K ×N −K respectively, is a
OWF.

Proof. To prove that it is IOWF, given Gpub
1 , we need to show that computation

of r = {S1,S2,V1,V2,P} is not known to be feasible. Consider the following
equation [

Gpub
1

Gpub
2

]
=

[
S1 0
0 S2

]
QF⊗nP

this is a quadratic system of equations in parameters of the private key with a
additional constraints of Q, P being permutation matrices. With N and N −K
sufficiently large this is an expected hard problem and no general algorithm is
known for solving quadratic systems.

4.4 Example
Let GF (p) be the finite field where all the computations are performed, where
p = 7. Let

S1 =


1 0 1 0
0 1 0 1
1 1 1 1
1 0 1 0


and

S2 =


1 0 0 1
0 0 1 1
1 0 1 0
1 0 0 1


with rank of S2 = 2 and rank of S1 = 3 . Let

P =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


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be a randomly generated permutation matrix. We choose N linearly independent
vectors in FN to form the matrix V, a full rank matrix, which is partitioned as

V =

[
V1

V2

]
. The matrix V1 is of size K ×N and V2 is of size (N −K)×N .

V1 =


2 2 2 3 5 4 3 5
5 1 2 3 1 1 4 1
1 3 5 5 1 3 3 2
1 1 6 3 3 4 5 1


and

V2 =


0 0 6 3 1 1 3 5
5 2 1 0 3 6 6 5
4 6 5 1 1 3 2 0
4 2 0 2 3 2 0 4


Then there exists a matrix V3 satisfying V1V3 = IK and V2V3 = 0(N−K)×N .

Then the existence of matrixV3 is given byV3 = V−1E, whereE =

[
IK

0(N−K)×N

]
.

Using matrix V and above conditions we compute the matrix V3

V3 =



0 5 2 5
2 2 0 4
5 6 1 0
0 4 5 0
6 3 2 1
0 4 2 2
3 5 1 6
5 0 0 0


1. Private Key

T priv = {S1,S2,P,V1,V2}

2. Public Key

T pub =
{
Gpub

1 =


6 1 6 0 3 5 0 0
4 6 2 5 6 2 2 1
3 0 1 5 2 0 2 1
6 1 6 0 3 5 0 0

 ,

Gpub
2 =


4 5 3 3 4 2 2 6
4 3 2 5 1 1 4 5
2 4 5 4 4 6 5 4
4 5 3 3 4 2 2 6

}
3. Input x = {x1, x2} randomly generated vectors

x1 =
[
2 1 5 6

]
, x2 =

[
3 6 1 4

]
18



4. Encryption Eq. (16) on page 14

c =
[
2 1 2 1 1 5 6 5

]
5. Decryption Eq. (17) on page 14,

c̃ = cPTV3 =
[
6 6 6 6

]
6. we multiply by c̃V1P to obtain the shared information between the users

c̃V1P = x1G1 =
[
4 0 6 2 5 0 5 6

]
Let the matrix G =

[
Gpub

1

Gpub
2

]

G =



6 1 6 0 3 5 0 0
4 6 2 5 6 2 2 1
3 0 1 5 2 0 2 1
6 1 6 0 3 5 0 0
4 5 3 3 4 2 2 6
4 3 2 5 1 1 4 5
2 4 5 4 4 6 5 4
4 5 3 3 4 2 2 6



The echelon form matrix G =



1 0 0 0 0 3 4 3
0 1 0 0 0 0 2 4
0 0 1 0 0 1 3 4
0 0 0 1 0 1 0 0
0 0 0 0 1 3 4 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. The above echelon

form shows the Gpub
1 and Gpub

2 have an intersection of d = 3 resulting in 73

solutions to solve the ciphertext plaintext equation.

4.5 Cryptanalysis
We again consider the two attacks as discussed above.

4.5.1 Brute force attack

In the brute force attack the adversary performs an exhaustive search of the
key space, T priv, to retrieve the keys. For the attack to be unsuccessful, the key
space has to be sufficiently large. In the proposed cryptosystem the private key
T priv = {V1,V2,S1,S2,P}. For the permutation matrix P of size N ×N yields
N ! ≈

√
2πN

(
N
e

)N possible combinations. For a singular matrices of rank r and
size K ×K they are

∏r−1
i=0 (p

K − pi)pr(K − r) combinations. Since V1,V2 form
N linearly independent vectors they are

∏N−1
i=0 (pN − pi). As a result, search of

the secret key is not feasible in polynomial time.
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4.5.2 Chosen ciphertext attack (CCA)

Here the adversary can provide ciphertexts c for decryption. With many such
chosen ciphertexts, from decryption function Eq. (17) on page 14 we get

cPTV3V1P = x1

So, the adversary can get equations in parameters of the private key

PTV3V1P

However again these can be organised as a system of quadratic equations in
private key parameters which is an expected hard problem with sufficiently large
N and N −K. Hence the scheme is secure against CCA.

4.6 Construction of the Scheme
The construction requires generation of the secret key parameters T priv =
{S1,S2,V1,V2,P} and show existence of V3. Let the initial seed be denoted
by T used to generate the secret key T priv. Refer to Eq. (15) on page 14
for construction of matrices V1, V2 and V3. The matrices S1 and S2 can be
constructed using the algorithm 1 in Section 3.5 on page 13. For a choice of N ,
K and d the rank(S1) = r1 is the floor of (N − d)/2 and the rank(S2) = r2 is
N − d− r1. For example to achieve an ideal secrecy of order 2128 ≈ 555, we can
choose N = 128, r1 = 36 and r2 = 37 and K = 64

5 Conclusion
A key exchange scheme over a public channel is proposed using the polar code
matrix and also its extension over matrices over finite fields. The schemes are
shown to be secured in terms of the notions of ideal secrecy as well as hardness
of computation of a large system of quadratic equations. The encryption and
decryption are computationally efficient. Ideal secrecy based public key schemes
are not previously known. Due to simplicity of computation in encryption and
decryption involving only linear algebra the scheme is believed to be practically
useful for key exchange as well as small scale encryption. Applications of the
scheme for construction of signatures may involve new problems which shall be
explored in future work.
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