
PoTS—A Secure Proof of TEE-Stake
for Permissionless Blockchains

Sébastien Andreina, Jens-Matthias Bohli, Wenting Li, Ghassan O. Karame, Giorgia Azzurra Marson
NEC Laboratories Europe, Germany
Email: firstname.surname@neclab.eu

Abstract — Proof-of-Stake (PoS) protocols have been actively
researched for the past few years. PoS finds direct applicability
in permissionless blockchain platforms and emerges as one of
the strongest candidates to replace the largely inefficient Proof
of Work mechanism that is currently plugged in the majority
of existing permissionless blockchain systems. Although a
number of PoS variants have been proposed, these protocols
suffer from a number of security shortcomings. Namely, most
existing PoS variants are either subject to the nothing at stake,
the long range, or the stake grinding attacks which considerably
degrade security in the blockchain. These shortcomings do not
result from a lack of foresight when designing these protocols,
but are inherently due to the ease of manipulating “stake” when
compared to other more established variants, such as “work”.
In this paper, we address these problems and propose a secure
Proof of Stake protocol, PoTS, that leverages Trusted Execution
Environments (TEEs), such as Intel SGX, to ensure that each
miner can generate at most one block per “height” for strictly
increasing heights—thus thwarting the problem of nothing at
stake and a large class of long-range attacks. In combination
with TEEs, PoTS additionally uses cryptographic techniques
to also prevent grinding attacks and protect against posterior
corruption. We show that our protocol is secure, in the sense of
well-established cryptographic notions for blockchain protocols,
down to realistic hardware assumptions on TEE and well-
established cryptographic assumptions. Finally, we evaluate the
performance of our proposal by means of implementation. Our
evaluation results show that PoTS offers a strong tradeoff be-
tween security of performance of the underlying PoS protocol.

I. INTRODUCTION

Blockchain technologies are gaining increasing attention
nowadays motivated by the wide success of the Bitcoin
cryptocurrency. To reach distributed agreement, blockchains
rely on consensus protocols which ensure that all nodes in
the network share a consistent view on a common distributed
ledger. Most existing open blockchain systems rely on
Bitcoin’s Proof of Work (PoW) to reach network consensus in
permissionless systems that do not require the knowledge of
nodes’ identities. However, PoW has been often criticized for
its huge waste of energy. It is estimated that Bitcoin miners
consume, by the end of 2018, as much electricity as Austria,
or equivalently 0.5% of the world’s total consumption [1].

To remedy the limitations of PoW, the community has
turned to Proof of Stake (PoS) protocols in the hope of offering

a more efficient and environment-friendly alternative. Unlike
PoW, PoS leverages virtual and energy-friendly resources such
as the “stake” of a node in the system in order to perform
leader election and maintain consensus in the network.

Nevertheless, although many PoS variants have been pro-
posed [2], [3], [4], [5], [6], [7], [8], PoS is still not widely
deployed in existing blockchains. Namely, in spite of their effi-
ciency, PoS-powered blockchains still account for less than 5%
of the market capitalization of existing digital currencies. This
is mostly due to the fact that most existing PoS protocols are
vulnerable to a number of security threats, such as nothing at
stake [9], long range [10], and stake grinding [11] attacks. The
former attack allows the nodes to mine conflicting blocks with-
out risking their stake, which increases the number of forks in
the system as well as the time to reach consensus in the network.
Long range attacks (commonly referred to as history attacks)
aim at altering the entire history of the blockchain starting from
early blocks (even from the genesis block). This can be achieved
when, e.g., the attacker acquires the private keys of old accounts
which no longer have any stake at the moment, but that have
accrued majority stake at previous block height h; the attacker
can then construct a fork starting from block h leveraging
these accounts. Finally, in stake grinding attacks, adversaries
use their computational resources to increase their probabilities
of being elected as leaders/miners of the upcoming blocks.

To remedy these attacks, several proposals suggest the
reliance on deposit-based PoS [12], [13] and on checkpoints [2],
[5], [7], [8]. Deposit-based PoS essentially requires each
validator to make a deposit in the system; should a validator
generate conflicting blocks their deposit will be withdrawn, thus
alleviating nothing at stake attacks by introducing accountability
in the system. Checkpoints, on the other hand, enforce that
any fork generated prior to a sufficiently deep block (i.e., prior
to a “checkpoint”) is discarded. Although this solution limits
the impact of the long-range attack as the earliest attack point
has to be after the last checkpoint, it does not completely
prevent long range attacks, especially when the victim is a
node that freshly joined the network or that has been offline
for a long time. To combat stake grinding attacks, a number
of PoS proposals utilize a deterministic algorithm to elect
block leaders. This, however, gives rise to another important
problem: the leader of each valid block is predictable in
the network, thus making it vulnerable to planned denial-
of-service attack strategies. Moreover, an adversary can still
perform stake grinding by skipping an opportunity to create

a block if they are able to increase their advantage over future
blocks. These factors explain the reason why none of today’s
large permissionless blockchain platforms rely solely on PoS
protocols in their offerings—in spite of the plethora of PoS
proposals that populate the literature [2], [5], [7], [8], [12], [13].

In this paper, we address the aforementioned problems, and
propose a novel solution—Proof of TEE-Stake (PoTS)—which
addresses the shortcomings of existing PoS protocols by
leveraging functionality from Trusted Execution Environments
(TEEs), such as Intel SGX. PoTS emerges as the first workable
PoS protocol that protects against all the aforementioned
attacks on PoS protocols without hampering the performance
of the underlying consensus protocol.

The security of PoTS relies on TEEs to enforce validators
to sign blocks on strictly increasing heights, fully preventing
nothing at stake attacks and a large class of long-range attacks.
Since the relevant operation of the leader election process are
computed within the TEE, PoTS prevents an adaptive adversary
from corrupting future leaders, as well as malicious validators
from mounting grinding attacks. In doing so, we point out that
PoTS tolerates possible compromise of TEEs (e.g., Spectre
[14] or Foreshadow attacks [15]) as long as the adversary
does not control a significant number of TEE devices. Our
solution additionally deals with stake-bleeding attacks [16]
and posterior-corruption attacks by adapting a cryptographic
technique to achieve forward security—updating signing keys
and deleting old ones—to the blockchain setting. In contrast
to purely cryptographic solutions, our protocol leverages the
ledger functionality of the blockchain itself to allow for an
unlimited number of key updates. Finally, we point out that
our protocol can tolerate compromised TEEs as long as the
adversary does not control a significant number of TEE devices.

We argue that PoTS is technically and economically viable.
Indeed, TEEs are nowadays pervasive on mobile platforms,
PCs, and servers [17]. While the main barriers of wide
adoption of PoS lie in the lack of security given their high
efficiency, PoTS bridges these gaps and establishes a strong
trade-off between the efficiency and the security of PoS. More
importantly, although our solution relies on TEEs, it does not
tax ordinary users (that are not miners) from transacting in
the system with such a requirement. Namely, PoTS does not
require the presence of TEEs for issuing transactions, and
validating the correctness of exchanged transactions/blocks.

This paper extends our previous work in [18]. Here, we
additionally provide a security model, specifying formal
properties for proof-of-stake protocols in the style of recent
work from the cryptographic literature [19], [20], and
considerably revisit the TEE-based protocol from [18] to
meet these properties. Finally, we evaluate an improved
implementation of the proposed scheme, and compare its
performance with state-of-the-art PoS protocols.

We summarize our additional contributions as follows:

Security Model. We present a security model for blockchain
protocols and specify the relevant properties that these
protocols are expected to meet. Our model builds on well-

established results from the cryptographic literature and
addresses several security risks for PoS simultaneously.

Concrete instantiation. We present a secure Proof of Stake
protocol, PoTS, which is resistant against nothing at
stake, long range, and grinding attacks, and analyse its
security in the presented model. Our solution relies on
realistic hardware assumptions for TEEs and on standard
network and cryptographic assumptions.

Prototype Implementation. We implement and evaluate a
prototype based on our instantiation using Intel SGX, and
we show that our solution does not incur any meaningful
overhead compared to Nxt’s protocol, while offering
comparable security to the (slower) Ouroboros Praos
protocol. Our implementation results also show that PoTS
only moderately increments the TCB by approximately
250 Lines of Code (LoC).

The remainder of this paper is organized as follows. In
Section II, we overview existing PoS protocols and discuss
relevant attacks against these protocols. In Section III, we
present a novel security model for (Proof of Stake) blockchain
protocols. We then introduce PoTS in Section IV, and
in Section V we analyse its security based on the model
outlined in Section III. In Section VI, we describe a prototype
implementation and evaluation of our proposal, and we
compare its performance to the PoS schemes Nxt [7] and
Ouroboros Praos [21]. In Section VII, we overview related
work in the area, and we conclude the paper in Section VIII.

II. NOTATION & BACKGROUND

In this section, we introduce the notation that we will use
throughout the paper, recall some background concepts, and
discuss relevant attacks on proof of stake protocols.

A. General notation

For a,b∈N, we use the shortcut [a..b] to denote the set {x∈
N :a≤x≤b}. We write X←x for assigning value x to vari-
able X . We use = instead for the equality operator. An expres-
sion X=x evaluates TRUE if the values of variables X and x
coincide, otherwise FALSE. For a tuple X = (x1,...,xn), we
denote the number of its components (i.e., its length) by |X|=n.

We denote by ‖ the concatenation operator, and write X
‖←x

for the operation of appending a x to a string/list X . If X is a
list, we also denote its length by |X|, and we refer to its last
element by Last(X). If n= |X|, for 1≤ i≤j≤n we denote by
X[i..j] the sublist of X containing from the i-th element up to
the j-th element. We write X�Y to indicate that X is a prefix
of Y , meaning that X =Y [1..n] for some 1≤n≤|Y | using
the above notation. For 0≤k≤n= |X| we write X[1..−k] to
denote the prefix of X obtained by chopping the last k elements
(conventionally X[1..−0]=X and X[1..−n]=∅). Within an
algorithm specification: when writing Parse(X) we mean the
operation that labels the components x1,...,xn of a tuple X ,
implicitly assuming the format of X be known to the algorithm;
the instruction ‘Enforce C’, should the condition C be be
unfulfilled, causes the algorithm to halt with output FALSE.

B. Blockchain protocols

At a high level, the goal of a blockchain protocol is to
allow mutually untrusted parties to agree on a growing number
of transactions, i.e., to instantiate a distributed ledger. In a
permissionless (a.k.a. open) blockchain, anybody can join
the blockchain network, at any time, without the need of
authenticating to a trusted entity. We correspondingly assume
a dynamic set of N ∈N mutually untrusted protocol partys,
where ‘dynamic’ means that the set of parties may change over
time (in particular: N is variable) and that each party may be
online to contribute to the protocol execution, or be offline as
it pleases them. Throughout the paper, we refer to each party,
or blockchain node, with a (unique) handle Pi for i∈ [1..N].
Parties interact with each other by exchanging messages over
a peer-to-peer network in a broadcast fashion. We assume
two abstract subroutines, BCAST and FETCH, providing
application interfaces to send messages over, respectively, to
retrieve incoming messages from the network.

Each node may simply use the ledger functionality by issuing
transactions, or they may actively contribute in the system by
verifying the validity of these transactions—the latter parties
we name validators. To confirm transactions and assign them
an order in the ledger, validators regularly broadcast blocks,
containing a list of verified transactions, which build on top
of each others—hence the term “blockchain”. Apart from the
initial block (dubbed “genesis block”), which is fixed upfront
and emulates a core root of trust, all other blocks are proposed
and agreed upon by the various validators. More concretely,
validators also have to verify blocks, where a block is deemed
as valid if (recursively) it builds on a valid blockchain and
it contains valid transactions. Since all validators may propose
blocks, a selection mechanism is put in place to indicate who
will have the right to generate the next block.

Initialization. To join the system, a new party Pi runs an initial-
ization procedure to create an account and retrieve the current
blockchain. Upon initialization, the party’s local state, that we
denote by statei, encodes all information necessary to run the
protocol. We assume a minimal setup shared by all blockchain
protocols: the state records the account key pair (pk i,sk i) and
a copy BC of (the party’s view on) the current blockchain.

Chain extension, Validation, and Fork Resolution. For the
sake of abstraction, we describe the execution of the protocol
through asynchronous rounds, where each round r corresponds
to the creation of block Br. Throughout the paper, we
conventionally refer to the length of a given blockchain (i.e.,
the number of blocks it contains) also with the term height;
thus, we may use the expressions “block of round r” and
“block at height r” interchangeably. In each round, all (online)
parties compete to produce the next block, and a leader-election
procedure resolves this competition by indicating who has
the “right” to generate the block for that round. Depending on
the protocol type, this prerogative may be assigned based on
various resources (such as computing power in proof-of-work.)
More precisely, the protocol Π that parties execute to maintain

the blockchain consists of three phases: firstly, after retrieving
new blocks and transactions from the network, parties (are
expected to) verify the validity of transactions as well as of
possible alternative chains they received. In the sequel, we
denote the chain-validation procedure by Validate. Should a
party receive multiple valid chains, they run a fork-resolution
algorithm Resolve to establish which one among these chains
should be selected as ‘the current’ one to built upon. Notice
that the possibility of having more than one eligible party
per round is inherent in eventual consensus protocols, which
favors liveness over safety (cf. Section III-A). Finally, the
party attempts to extend the updated chain by generating the
next block; this procedure we name Extend.

For completeness, we provide an abstract specification of a
generic (eventual-consensus) blockchain protocol in Figure 1.

Algorithm InitΠ(Pi):
1 Generate account 〈(sk i,pk i),stakei〉
2 Retrieve blockchain BC
3 T ∗←∅ // Unconfirmed transactions

4 statei←〈BC,(sk i,pk i),stakei,T ∗〉
5 Return statei

Algorithm Π(statei):
6 (C,T)←FETCH
7 C∗←∅
8 For all C∈C:
9 If Validate(C)=TRUE: C∗ ∪←C

10 BC←Resolve(C∗∪BC)
11 If BC changed: verify T ∗ w.r.t. BC
12 For all tx ∈T :
13 If tx is valid w.r.t. BC: T ∗ ∪← tx
14 Select TX from T ∗
15 B←Extend(pk i,sk i,stakei,BC,TX)

16 If B 6=⊥: BC
‖←B ; BCAST(BC)

17 Return

Fig. 1: Abstract specification of a blockchain protocol for
eventual consensus. We denote by C and T (resp. C∗ and T ∗)
the sets of received chains and transactions (resp. valid ones).
We are deliberately vague about how transactions are verified
(because it is a protocol-specific detail that does not play a role
in our treatment). State variables (within 〈〉) are understood
as global ones, i.e., any modification is permanent.

C. Proof-of-stake protocols
Proof-of-Stake (PoS) is an emerging blockchain consensus

protocol that appoints block leaders depending on some
properties of the stake they own. Here, “stake” is a virtual
resource that is tied to a validator in a publicly verifiable
manner. The idea behind PoS security is that as long as the
majority of stake is held by honest parties, the protocol works
correctly, i.e., honest parties do agree on a common ledger.

Formally, each party Pi is associated with the stake stakei
they own in the system—thus parties are also referred to

as stakeholders. We assume an initial stake distribution
S0 =(stake1,...,stakeN), where N=n0 is the initial number
of participants, to be encoded in the genesis block B0; we also
assume the latter to be distributed in a trustworthy manner.

A blockchain BC=(B0,...,BR) induces a stake distribution
SBC =(stake1,...,stakeN) where stakei is the stake balance
of Pi w.r.t. blockchain BC (in this notation, S0 is a special
case of SBC for BC=(B0)). Throughout the paper, we denote
by stakei(BC) the stake of party Pi w.r.t. blockchain BC.

The community currently features a number of PoS variants.
Peercoin [2], Cloakcoin [3], and Novacoin [6] use “coin age”,
i.e., the accumulated time a node holds their stake before
generating a new block, as mining resource. Since hoarding
the coins increases one’s chance to generate a block, relying on
coin age discourages nodes from actively participating in the
consensus process. VeriCoin [4] uses a similar mining resource,
so-called “stake-time”, which also takes into account coin age
but it also incentivizes participation: if a validator does not
generate any block for a long time, their stake-time starts to
degrade. The consensus protocols of Blackcoin [5] and Nxt [7]
rely on the amount of stake owned by validators. BitShares [8]
proposes a so-called “delegated PoS”, where validators vote
for a group of delegates who are in charge of generating blocks
in round-robin fashion, and each validator has voting power
proportional to their stake. Slasher [12] and Casper the Friendly
Finality Gadget (Casper FFG) [13], both proposed by Ethereum,
are instances of deposit-based PoS, meaning that they require
nodes to deposit their stake in order to become validators.

All of the above protocols are not supported by a thorough
security analysis in a precisely specified model. The following
protocols, instead, come with a cryptographic (reductionist)
proof. Ouroboros [22] employs a multi-party computation
protocol to generate unbiased randomness for the leader election
process. This approach requires coordination among the valida-
tors in the network. Algorand [23], [24] is a PoS variant based
on a Byzantine Agreement protocol [25]. In contrast to the
blockchain protocols discussed earlier, which achieve eventual
consensus, Algorand favors safety over liveness and makes
final decisions. Thus, it prevents forks (with high probability)
by design. Snow White [26] is specifically designed to offer
protection in the presence of posterior corruption, meaning
that security holds as long as the majority of the active stake
is not controlled by the adversary. Here, “active” stake refers
to the stake owned at the present by validators who are online.
Neither Algorand nor Ouroboros are secure against posterior
corruption, while Ouroboros Praos [21] improves Ouroboros
by additionally offering this kind of protection. In Section VII,
we discuss in greater detail the security guarantees provided by
these protocol and the assumptions made to prove their security.

D. Attacks against PoS protocols

In what follows, we describe in greater details the nothing
at stake, grinding, and long range attacks, and discuss existing
countermeasures.

Nothing at stake attack. In most existing PoS protocols,
validators have an incentive to work on multiple forks since
generating a block in PoS is no more than generating one
signature. In other words, in order to maximize their benefits,
validators could generate conflicting blocks on all possible forks
with nothing at stake. This behavior, referred to as the nothing
at stake attack [9], slows down the consensus process and, thus
degrades performance. Moreover, it leads to frequent forks,
making the system more vulnerable to double spending attacks.

In terms of countermeasures, Ouroboros [22] introduces a
reward mechanism that specifically incentivizes validators not
to maintain incompatible chains. However, it only discourages
opportunistic adversaries and cannot prevent targeted attacks,
such as double-spending, that would benefit from (temporarily)
forked blockchain. Slasher [12] proposes a punishment
mechanism to discourage dishonest behavior. Specifically, it
requires validators to provide a deposit which is then locked
for a given period; should a validator generate conflicting
blocks at the same height, they will lose the deposit. BitShares
[8] adopts a similar approach to Slasher: any misbehaving
validator loses the ability to generate blocks in the future.

A major drawback of deposit-based countermeasures is that
they freeze a considerable amount of stake in the network. In
addition, they do not prevent targeted double-spending attacks
involving transactions carrying more than the deposit.

Long range attack. Long range attacks [10] refer to the
ability of an attacker to rewrite the blockchain history
starting from a block generated far in the past. Since this
attack requires the majority of voting power, it is inherently
resolved in a proof of work setting under the honest majority
assumption of computing power. In a proof-of-stake setting,
however, long range attacks can be mounted by controlling
accounts that have no stake at the moment, but used to have
a large amount of stake at some point in the past. That is,
an attacker can create forks from past blocks and overtake
the current chain by leveraging “past majority of stake”. It
could do so, for instance, by compromising the private keys
of nodes which no longer have stake at the moment, but were
wealthy and jointly accrued majority of stake in the past.

The most common countermeasure is to use checkpoints
to limit the impact of such attacks. A checkpoint refers to a
round r such that the blockchain prefix BC[0..r] is regarded
as immutable. A number of PoS instantiations [2], [5], [8] rely
on a centralized checkpoint server which periodically defines
the correct chain. Following the checkpoints principle, correct
Nxt nodes do not accept a fork that differs from the local chain
except for the last 720 blocks [7]. Similarly, Snow White [26]
and Ouroboros [22] instruct nodes to reject alternative chains
which differ from the local chain far in the past (how “far”
depending on the specific choice of security parameters).
Ouroboros Praos [21] proposes a mitigation based on key-
evolving cryptography; however, this only prevents long-range
attacks that exploit key compromise, and still assumes check-
points to achieve full security. We emphasize that checkpoints
require nodes to be synchronized, as anybody who recently

joined the network (or re-joins after a long offline period) has
no way to distinguish honest chains from malicious ones.

Stake grinding attack. Blockchain consensus protocols select
the leader for each round proportionally to some mining
resources, depending on the protocol type (e.g., computing
power in the case of proof of work). In the ideal case—if
parties do follow the protocol faithfully—the probability of
being elected leader is proportional to the resource defining
the protocol type, and independent of any other resource.

In some proof of stake protocols, an attacker can leverage
computational resources to increase their chance to generate
a block, violating the above-mentioned principle. This is
commonly referred to as a stake grinding attack [11]. For
instance, consider an eligibility function which depends only
on a validator’s stake, the previous block, and some input
variable that can be (partially) chosen by the validator. Then,
an attacker could, once elected leader, compute multiple
candidate blocks (one for each value of the input variable)
until they find one that lets them become leader again in
the subsequent round. In this way, the attacker could in
principle monopolize the leader election process. While,
strictly speaking, this is not an attack on the consensus
protocol, it may give an unfair advantage to greedy validators.

Nxt [7] attempts to mitigate stake grinding using a determin-
istic algorithm for the leader election process. This measure
leads to a different issue, referred to as “transparent forging”:
here, anybody can predict which validators will become
leaders in the future. Transparent forging opens an additional
attack vector by allowing adversaries to selectively nit-pick
the next leader to compromise. Even worse, an adversary
can still perform stake grinding by skipping opportunities to
create a block in order to increase their advantage over future
blocks [27]. Blackcoin [5] also relies on a deterministic election
process, but aims at mitigating the transparent forging problem
using a “stake modifier”, which periodically introduces entropy
to the leader selection process. This technique, however, only
limits the period in which leaders are predictable, namely
between any two subsequent updates of the stake modifier.

Ouroboros [22] uses multi-party computation to generate
unbiased randomness for the leader election process, and
provably prevents the attack—however, at the expense of
higher communication/synchrony requirements. Stake grinding
attacks do not apply to Bitshares [8] and Casper FFG [13]
PoS protocols. In Bitshares, leaders are not chosen randomly
but selected in a round-robin fashion from a set of delegates.
Casper FFG instead relies on proof-of-work for the leader
election, and uses a PoS layer only to finalize the blocks
generated within a certain time interval.

Table I summarizes the security of existing PoS protocols
against the nothing at stake, long range, and stake grinding
attacks. As one can see, none of these protocols offers full
protection against all of the attacks.

Secure against:Protocol NaS LR Gr
Cloakcoin 7 7 7
Novacoin 7 7 7
Blackcoin 7 ◦ ◦
Peercoin 7 ◦ 7

Nxt 7 ◦ ◦
Slasher ◦ 7 7

Casper FFG ◦ 7 –
Vericoin ◦ 7 7

BitShares ◦ ◦ –
Snow White 7 ◦ 7
Ouroboros 7 ◦ 3

Ouroboros Praos 7 ◦ ◦
Algorand 7 ◦ 3

TABLE I: Resilience of existing PoS protocols against
nothing at stake (NaS), long range (LR), and grinding attacks
(Gr). The symbol ‘◦’ indicates that security is only partially
achieved, while ‘–’ means that the attack does not apply to
the considered protocol.

III. SECURITY MODEL

In this section, we present a formal model for the security
of blockchain protocols, describing the major properties that
a blockchain consensus protocol should target according to
established works in the domain of provable security and
pinpointing how these properties capture the aforementioned
attacks (among others).

A. Blockchain security

Functionality and security properties targeted by blockchain
protocols are typically specified in terms of safety (a.k.a. con-
sistency) and liveness. Conforming with analogous notions for
consensus, safety means that honest parties—who faithfully fol-
low the protocol—agree on the same sequence of transactions,
perhaps with the exception of a few “most recent” ones, while
liveness guarantees that transactions are confirmed relatively
quickly (i.e., progress happens). Both properties are expected to
hold despite limited Byzantine failures and the network being
asynchronous for potentially long periods1, as we expand next.

Following the modeling approach of David et al. [21], we
assume that time is divided in discrete units called slots, and
that the protocol participants have loosely synchronized clocks
that indicate the current slot; in what follows we use the terms
slot and time interchangeably. Our model assumes a partially
synchronous network [29]: messages may be delayed, but for
at most ∆ slots (otherwise, a participant who does not receive
messages within ∆ slots should be considered offline). We
assume that protocol participants have loosely synchronized
clocks and, for the sake of abstraction, we also assume any
potential drift to be insignificant compared to the length of a

1While it is impossible to provably achieve safety and liveness in fully
asynchronous networks [28], blockchain protocols target eventual consistency,
resp liveness, meaning that the chain of some honest party may be inconsistent,
resp. stuck, during asynchronous periods but then it will catch up as soon
as the network obeys a synchronous regime.

time slot. Thus, without loss of generality, all clocks agree on
the current slot. We consider an adversary A who controls the
network and may adaptively corrupt any party of their choosing,
meaning that A obtains the entire state of that party and hence
may fully control them. The number of corruptions is limited,
however, such that the majority of (online) stake remains in hon-
est hands, otherwise the adversary can take over the blockchain
and generate all the blocks, and the corruption model is “mildly
adaptive” (as in [22], [26]), meaning that it takes a short while
for A’s corruption requests to become effective.

We assume that the adversary may obtain all network
messages, delay and modify them, subject to the assumed
cryptographic constraints, i.e., A may not modify integrity-
protected fields generated by uncorrupted participants, find
hash collisions etc, and delivery guarantees, i.e., A may not
delay messages forever.

In the cryptographic literature, consistency/safety and
liveness for blockchain-based distributed ledgers are formalized
in terms of the three properties described below (that we borrow
from [19], [30], [31] and adapt to our syntax). For a secure
blockchain protocol, we require the properties below to hold
in the adversarial model just described, particularly under the
assumption that A does not control the majority of active/online
stake. For ease of presentation, we use the following notation:
if BC denotes the local blockchain maintained by party Pi, we
write BCt for the view of Pi on the blockchain at time-slot t.

The first property, common prefix, is closely related to
consistency and states that the blockchains of honest parties
share a large common prefix, i.e., they may differ only in
(few) trailing blocks.

Definition 1 (Common prefix). Let BCi and BCj be the
blockchains of honest parties Pi and Pj , for i,j∈ [1..N]. Then,
for all slots t and t′, with t≤ t′, it holds BCt

i[0..−s]�BCt′

j ,
where s is called the stability parameter.

The second property, chain growth, guarantees that the
blockchains maintained by (honest) parties are extended rela-
tively quickly, depending on the synchronicity of the network.

Definition 2 (Chain growth). Let BC be the blockchain of
some honest party and `∈N a security parameter. Then, for
every slot t and every T >` it holds |BCt+T −BCt|≥ g ·T ,
where g is called the growth parameter.

The third property, called chain quality, establishes that
if one observes the evolution of a honest blockchain for
sufficiently many rounds, among all the newly added blocks a
relatively large fraction has been contributed by honest parties.

Definition 3 (Chain quality & fairness). Let BC be the
blockchain of some honest party and `∈N a security parameter.
Then for every round r and every T > `, the number of
honestly produced blocks in the subchain BC[r..r+T] is at
least q ·T , where q is called the quality parameter. In the ideal
case, every party (or coalition of parties) holding a fraction ρ
of the overall stake should generate roughly a fraction ρ of
the blocks (ideal chain quality, or fairness).

The common prefix, chain growth, and chain quality
properties of a blockchain protocol imply safety and liveness
of the associated distributed ledger [19], [30]. Specifically,
common prefix implies safety, while chain growth and chain
quality together imply liveness. The chain quality property
also loosely expresses the fairness of a blockchain protocol, in
the sense of guaranteeing that each validator becomes block
leader (and hence obtains the reward associated to the block)
with probability proportional to the owned stake. Given this,
a fair PoS protocol is one achieving an ideal chain quality,
meaning that the fraction of generated blocks is the same as
the fraction of the held relative stake.

We finally note that the above properties capture (the absence
of) nothing at stake, grinding, and long range attacks in the
aforementioned adversarial model. Namely, a long range attack
causes honest parties to revert their blockchains starting from
a block far in the past, hence violating the common prefix
property and, more generally, the safety of the underlying
ledger. A grinding attack allows a dishonest party to generate
more blocks than they should, thus violating the chain quality
property; this attack also has an impact on the liveness
of the associated ledger, because having dishonest parties
generating most blocks may slow down the process of including
transactions into the blockchain. Perhaps surprisingly, the
nothing at stake attack is not captured by the above properties
as it does not violate them directly. However, a large number of
parties mounting the attack may have a negative impact on the
liveness as it significantly slows down the consensus process.

IV. POTS: A SECURE POS PROTOCOL

In this section, we present PoTS—Proof of TEE–Stake—a
novel proof-of-stake protocol that binds voting power to stake
and Trusted Execution Environment (TEE) devices, and meets
security in the strong adversarial model described in the
previous section.

A. PoTS in a nutshell

The core component of PoTS is the use of trusted execution
environments (TEEs) to enforce “sufficiently honest” behavior
of validators, as proposed in [18]. Following this principle,
a strawman solution would be to execute the protocol as a
whole within the trusted application, which is sufficient for
disallowing validators to deviate from the protocol instructions.
This strawman approach, however, suffers from a number of
shortcomings:

Need for trusted hardware: Ordinary users (who do not wish
to become validators) might not be necessarily equipped
with TEE platforms. Embedding the entire PoS protocol
within a TEE would prevent a proper deployment of the
protocol in realistic settings.

Need for registration: To guarantee that TEE platforms run the
correct applications, users typically need to register with
the hardware manufacturer to enable attestation services.
For instance, Intel SGX attestation requires registration
with Intel Attestation Service (IAS) [32]. Clearly, such a
process undermines the system’s ease of deployment.

TCB size: Special care should be taken when deploying
complex applications within TEEs, as exploits and vulner-
abilities of an application itself cannot be prevented by the
trusted hardware. Therefore, one should specifically cater
for a minimal TCB size where only the critical functions
of an application are implemented within TEEs (i.e., so
that the trusted application can be formally verified).

Security in the presence of compromised TEEs: Recent news
reveal that TEEs might as well be compromised [33],
[34], [35], [36], [37], [38]. Should even a single TEE
be compromised, the aforementioned straw-man solution
can no longer offer security. Namely, the strawman
solution would no longer offer protection against posterior-
corruption attacks. This is the case since an adversary can
easily acquire stake majority in the past by transferring
the stake of posterior-TEE-corrupt users.

Security against stake-bleeding attacks: Finally, we note
that using TEEs does not suffice to prevent a minority
coalition of dishonest validators to maintain a private
blockchain, which may eventually take over the honest
one. In a PoS setting, this problem can lead to stake-
bleeding vulnerabilities.

In this paper, we designed our PoS protocol to specifically
address these challenges. In contrast to the strawman solution
mentioned above, PoTS employs TEEs only for the critical
operations of the mining protocol, namely eligibility and block
signing. In doing so, PoTS ensures a small TCB size, resulting
in about 250 LoC. This would be already sufficient to achieve
a decent level of security, as we expand in Section V.

Our solution complements the trusted hardware component
with a cryptographic technique that requires users to frequently
update their account keys in order to prohibit the transfer
of large amounts of stake (in the past) to compromised
accounts, and ultimately prevents the adversary from rewriting
the blockchain history. In particular, PoTS is robust against
posterior-corruption attacks. We emphasize that the latter
technique is also effective in the realistic case an adversary
manages to compromise some TEE platforms and extract
the corresponding cryptographic keys, provided that the stake
associated to the compromised TEEs does not account for the
majority of stake in the network. Furthermore, PoTS employs a
technique that prevents dishonest validators from incorporating
transactions to a privately maintained blockchain (i.e., to
perform stake-bleeding attacks) by letting users add to each
transaction a pointer linking to the most recent blockchain [39].

As a by-product, we stress that the operations computed
within the TEE exclusively affect the mining protocol.
Therefore, only validators need to be equipped with TEEs,
which makes PoTS viable for ordinary users who do not
wish to mine. Moreover, among the validators, only a few
of them need to be registered with the TEE manufacturer.
Namely, PoTS leverages a proxied remote-attestation protocol
to distribute trust among all validators, letting the few
designated validators (proxies) bootstrapping trust among the
manufacturer and the other validators without compromising
the security of the registration process.

B. Building blocks

In the following, we discuss the building blocks and
corresponding assumptions that our protocol uses.

Cryptographic primitives. Similarly to other blockchain
proposals, our protocol uses cryptographic primitives such as
signature schemes and hash functions to protect the integrity of
transactions and blocks and to link blocks to the intended chain.
We assume a cryptographic hash function H : {0,1}∗→{0,1}`
and model it as a random oracle [40] in the sequel. For the
signature scheme, our protocol uses the (Elliptic Curve) Digital
Signature Algorithm (EC)DSA [41], however, its security relies
generically on the unforgeability of the scheme [42]. For ease of
presentation in the protocol specification as well as its analysis,
we assume a generic signature scheme (KeyGen,Sign,Verify)
that offers unforgeability under a chosen-message attack.

Trusted Execution Environments (TEEs). The mining
protocol of PoTS relies on TEEs, which are pervasive
nowadays and supported by many commodity platforms. For
instance, Intel’s SGX is being deployed on PCs and servers,
while mobile platforms are mostly supported by ARM’s
Trustzone. TEEs provide an isolated environment running in
parallel with the rich operating system. They provide standard
cryptographic functionalities and restrict the memory access
from the hosting OS—thus ensuring secure execution for the
code running inside TEE. As a result, the data integrity and
confidentiality of trusted applications deployed inside TEE
are ensured. In the following, we describe the core properties
of TEEs that we leverage for building a secure PoS protocol.

Remote attestation: A TEE is able to provide publicly
verifiable proofs of the integrity of the initial code and
data of the trusted applications. Should a secure-hardware
manufacturer be involved in the remote attestation process,
we assume the manufacturer offers a trusted remote
attestation service (RAS) such as the Intel Attestation
Service. Throughout the paper, we refer to the attestation
evidence that the TEE platform prepares for the RAS
as a quote, denoted by RA_quote. A quote usually
contains a measurement, performed by the TEE and
signed with a dedicated attestation key provisioned by
the manufacturer. Upon receiving RA_quote, the RAS
validates the measurement and any other relevant data
included into the quote, and returns a signed attestation
result RA_result, which can be then publicly verified.
The RAS, however, should not be able to link any of
the quotes and the TEE platforms that generated them,
therefore preserving the users’anonymity.2

Trusted Monotonic Counters: To prevent replay attacks, the
TEE platform provides tamper-resistant counters whose
values cannot be reverted once incremented. Monotonic
counters often rely on the non-volatile memory in the

2The attestation proof preserves the privacy of the platform’s user using
cryptographic primitives such as Direct Anonymous Attestation [43] (DAA)
or Enhanced Privacy ID [44], [45] (EPID) of Intel.

TEE platform, which is usually implemented as flash
memory and only supports a limited number of writes—
resulting in a wear-out of those counters. Therefore, TEE
implementations often throttle the increment operation of
the monotonic counters [46], [47].

Isolation: Data within a TEE application resides in the
protected memory which has guaranteed confidentiality
and integrity; data and code used by the TEE application
cannot be modified by any external processes.

Sealing: In case of lack of secure persistent storage, applica-
tion data is encrypted and authenticated using platform-
specific keys before being passed to the persistent storage
of the untrusted system. The sealed data can only be
decrypted if the integrity of the application and the data
is assured.

The above properties can be assumed to hold as long as
the TEE platform is not compromised (and its cryptographic
keys cannot be accessed). Such assumption is not always
realistic, as demonstrated by a series of attacks on TEEs [33],
[34], [35], [36], [37], [38]. Thus, any security argument that
relies on these properties can be in principle challenged in
the presence of compromised TEEs which no longer offer
the relevant guarantees. We anticipate, and later expand in
the security analysis (cf. Section V), that PoTS retains its
security even in such cases, provided that the adversary cannot
compromise a large number of TEEs, namely not as many
to control stake majority at any point in time.

C. PoTS: protocol specification

We proceed with presenting our PoS proposal in details.

Setup. We require all validators in the network to be equipped
with secure hardware to run trusted code within the TEE.
Since block mining employs a trusted application within
the TEE, validators need to prove to the network that they
are hosting legitimate hardware for block generation, and
that corresponding private keys are hardware-protected and
not accessible from the outside. This can be achieved by
distributing the trusted application as part of the client wallet
application when nodes first join the network. To this end,
a new node initializes the trusted application for block
generation and registers it to the blockchain network.

For ease of presentation, we consider each transaction as
a pair tx =(m,σ), where m is the payload of the transaction
and σ is a signature of m under the account key of the transac-
tion issuer. We later discuss the detailed format of transactions
in PoTS. The initialization and registration procedures are
illustrated in Figure 2, and described below. As previously men-
tioned, the registration procedure assumes a scenario in which
remote attestation requires the assistance of a trusted RAS.

In the rest of this section, we denote the trusted application
by AT , and correspondingly write AT .Proc to indicate any pro-
cedure Proc executed by AT within the TEE. More generally,
P.Proc means that procedure Proc is executed by a party P .

Algorithm AT .Init():
18 (skT ,pkT)←$KeyGen // generate signing key pair

19 rlast←0 // track round of latest EP request

20 requestbs←FALSE // record if BS was requested

21 ctrT←〈rlast,requestbs〉
22 Generate quote RA_quote for AT

23 Return (pkT ,RA_quote)

Algorithm Pi.Register(statei,RA_result):
24 σreg←Sign(sk i,RA_result)
25 txreg←(RA_result,σreg)
26 BCAST(txreg)

Algorithm Pj .Validate(tx
reg):

27 (RA_result,σreg)←Parse(txreg)
28 Extract key pair (pk i,pkT) from RA_result
29 Verify σreg under key pk i

30 Verify RA_result under RAS public key
31 pkT,i←pkT

32 Save 〈pk i,pkT,i〉 for account of Pi

33 Return

Fig. 2: Initialization and registration of the TEE trusted
application for block generation.

TEE initialization and registration. Upon receiving
an initialization request, AT generates a signing key
pair (skT ,pkT) to be used for block generation. The trusted
application also initializes a variable ctrT which record relevant
information about block signing requests, as we will see shortly.
Hence, AT produces an attestation quote RA_quote, which
includes: a hash value H(pk i,pkT) that binds the validator’s
account key pk i and the block verification key pkT generated
by AT , a description/identifier of the trusted application itself,
a measurement produced by TEE for the trusted application,
and a signature of all these values under the attestation key
provisioned on the TEE device. Finally, AT returns the public
key pkT along with the quote. The node can now send the
attestation quote to the RAS; the latter, upon verifying the
quote, provides an attestation result RA_result stating that
the application AT is running on a trusted TEE platform.
Finally, the attestation result is posted to the blockchain
network by the node through a registration transaction txreg.
Therefore, all peers can verify the RAS-signed attestation
result and record the relevant data for the newly joint validator.

Typically, a remote attestation service requires all users to be
registered with that service, which may be not always desirable
in an open network such as a blockchain network. Our solution,
however, relaxes the latter requirement by relying on a few
nodes registered with the RAS who function as proxies and
forward the quotes of all other nodes to the RAS (the latter can
be realized via mechanisms similar to [48]). The proxied attes-
tation protocol works as follows: A new validator Pv initializes
the TEE trusted application included in the blockchain client

implementation, and sends an attestation request to the trusted
application. The attestation request in turns includes the service
provider ID (SPID)3 of a selected proxy node Pp. Hence, the
trusted application generates a quote based on the given SPID,
and validator Pv sends this quote to the proxy node Pp, who
further forwards the quote to the RAS through an authenticated
and confidential channel. After verifying the quote, i.e., whether
the attested trusted application is running on a legitimate TEE
platform, the RAS signs the attestation result and sends it back
to Pp. The latter extracts the attestation result from the reply
of RAS and sends it to Pv . The validator can now prepare the
registration transaction and broadcast it to the network.

Once the registration process is completed, the validator
can participate the mining process.

As we will see in Section V, the security of our protocol
relies on each TEE device supporting at most one enclave
at a time. The remote-attestation procedure of our solution
guarantees this. More concretely, if the TEE is instantiated
with Intel SGX or with TPM, the attestation quote includes
an EPID [44], [45] or a DAA [43] pseudoname, respectively,
which can be configured as linkable by specifically choosing
the basename. Namely, using the linkable mode, all quotes
produced by the same platform must use the same basename,
hence multiple enclaves running on the same platform result
in the same EPID/DAA signature authenticating the quotes.

Chain Extension. Akin to the concept of cryptographic
sortition introduced by Micali [24], cf. Section VII), our
protocol lets each individual validator check privately whether
they are eligible to extend the blockchain in a given round
and, if this is the case, produce a publicly verifiable proof to
provide evidence of this.

The chain extension algorithm Extend consists of three
main steps: (i) it checks whether the validator is eligible to
become leader in the next round, and if so it proceeds with (ii)
preparing the block header, and (iii) signing both the header
and the proof. A block Br consists of validator’s identifier Pir ,
block header hdr, proof of eligibility πr, block signature σr,
and a list of transactions TX . Both the eligibility proof and
the block signature are computed with support of the TEE.
We provide a full specification of the chain extension routine
in Figure 3, and explain it in detail below.

To compute proof of eligibility and block signature, a valida-
tor must issue corresponding requests to the trusted application.
The eligibility proof consists of an “eligibility signature” σep,
which ensure public verifiability, and a timestamp to throttle the
number of eligible validators. To generate the eligibility proof
for round r, the validator submits a request to AT containing
the eligibility signature σepr−1 for the previous block along
with the current round value r (cf. lines 49–54 in Figure 3).

Each validator can only issue requests for strictly increasing
block heights. To ensure this, the trusted application tracks
the round information of each request using a pair of
counters ctrT = (rlast, requestbs), where rlast records

3Registered parties by RAS is assigned a service provider ID and a
correspondent certificate.

Algorithm Extend(pk i,sk i,stakei,BC,TX):
34 Br−1←Last(BC)
35 (∗,hdr−1,πr−1,∗)←Parse(Br−1)
36 (∗,T base

r−1 ,CDr−1)←Parse(hdr−1)
37 (σepr−1,tr−1,∗)←Parse(πr−1)
38 σepr ←AT .SignEP(r,σepr−1)
39 hitr←H(σepr)
40 ∆t←hitr/(T

base
r−1 ·stakei)

41 Repeat:
42 tr←Clock() // local time

43 Until tr≥ tr−1+∆t // Eligible now!

44 Update T base
r and CDr

45 hdr←(r,H(Br−1),H(TX),T base
r ,CDr)

46 σbsr ←AT .SignBS(r,hdr,σ
ep
r ,tr)

47 Br←(Pi,hdr,(σ
ep
r ,tr),σbsr ,TX)

48 Return Br

Algorithm AT .SignEP(r,σepr−1):
49 〈rlast,requestbs〉←ctrT
50 If rlast<r:
51 ctrT←〈r,FALSE〉
52 σepr ←Sign(skT ,"ep"‖r‖σepr−1)
53 Else: σepr ←⊥
54 Return σepr

Algorithm AT .SignBS(r,hdr,σ
ep
r ,tr):

55 〈rlast,requestbs〉←ctrT
56 If r=rlast and requestbs=FALSE:
57 σbsr ←Sign(skT ,"bs"‖r‖hdr ‖σepr ‖ tr)
58 requestbs←TRUE

59 Else: σbsr ←⊥
60 Return σbsr

Fig. 3: Chain extension routine of PoTS. It is executed by
validators and requires a registered TEE.

the latest round for which an eligibility proof request has
been submitted, and requestbs is a boolean flag indicating
whether a corresponding block signature in that round has
been generated. Upon receiving an eligibility proof request,
the trusted application checks whether the submitted round
value r is strictly larger than the counter rlast and, if this is
the case, updates rlast←r and requestbs←FALSE, computes
the new eligibility signature σepr by signing "ep"‖r‖σepr−1,
and returns the resulting σepr ; otherwise, it rejects the request.

The eligibility signature effectively provides a “cryptographic
ticket” for the sortition-based leader election step: the validator
can now use σep to derive their so-called hit for round r, namely
hitr =H(σepr). The hit provides a value in [0,2`−1], which is
unpredictable unless σep is known. The validator Pi is eligible
to generate a block for round r if their hit is smaller than a given
target, which in turns depends on the validator’s stake stakei,
a target-base T base

r−1 value recorded in the latest block (which
can be flexibly adapted to reach a desired block-generation

rate), and the elapsed time since the previous block has been
generated. Note that any validator who waits long enough will
eventually be eligible, and the time validator Pi needs to wait
is given by ∆t=hitr/(T

base
r−1 ·stakei) (cf. line 43).

Thus, once the local clock indicates time tr−1 + ∆t,
where tr−1 is the timestamp recorded in the latest block,
the validator can submit the block signature request to the
TEE (cf. lines 55–60).4 For the block signature request, the
validator provides the prepared block header hdr, the eligibility
signature σepr , and its (local) timestamp tr (cf. line 46).
The trusted application extracts the round r from the block
header hdr and checks it against the counters in ctrT : if
rlast=r (i.e., the rounds match) and requestbs=FALSE (i.e.,
no block signature has been requested for that round), AT

computes the block signature σbsr over "bs"‖r‖hdr ‖σepr ‖ tr.
Upon successful completion of the above operations, the val-

idator broadcasts the candidate block Br =(Pi,hdr,πr,σr,TX),
where πr =(σepr ,tr) and σr =σbsr .

Chain validation and fork resolution. The validation
algorithm Validate verifies that all blocks of the chain were
generated “properly”, according to the protocol specification.
Notice that proofs of eligibility are publicly verifiable since
account public keys and stake information can be retrieved
from the blockchain itself. In Figure 4, we illustrate the details
of the chain validation routine that we explain below.

Algorithm Validate(BC):
61 tnow←Clock()
62 R←|BC|
63 (∗,(∗,tR),∗)←Parse(BR)
64 Enforce tR≤ tnow // no timestamp in the future

65 For r←R down to 1:
66 (Pir ,hdr,πr,σr,TX r)←Parse(Br)
67 (r,h−1

r ,hr,T
base
r ,CDr)←Parse(hdr)

68 stakeir←stakeir (BC[0..r−1])
69 (∗,T base

r−1 ,∗,(σ
ep
r−1,tr−1),∗)←Parse(Br−1)

70 (σepr ,tr)←Parse(πr)
71 Enforce:
72 Verify(pkT,ir ,"bs"‖r‖hdr ‖πr,σr)
73 h−1

r =H(Br−1), hr =H(TX r)
74 Verify(pkT,ir ,"ep"‖r‖σ

ep
r−1,σ

ep
r)

75 H(σepr)≤T base
r−1 ·(tr−tr−1)·stakeir

76 Return TRUE

Fig. 4: Chain validation routine of PoTS. It can be executed
by any initialized node (no TEE is necessary).

Upon retrieving a blockchain BC = (B0,...,BR), a node
verifies the validity of all blocks, going backwards from the
most recent one. To ensure that block leaders were truly eligible,
however, the node must also ensure that the timestamp tR
of the latest block is consistent with the current time tnow ,

4However, someone else may have in the meantime generated the rth

block (or more), thus being eligible does not necessarily translate to actually
becoming the leader for that round.

namely that tR ≤ tnow , meaning otherwise that the last
validator faked the block timestamp (cf. line 64 in Figure 4).5

The block verification closely follows the operations of
the chain extension routine, in reverse order. Namely, for
each block Br, the node verifies the validity of the block
signature σr under the TEE public key pkT,ir of the alleged
block leader Pir (cf. line 72), the hash values hr =H(TX r)
and h−1

r =H(Br−1) (cf. line 73), the consistency of the block
timestamp tr, the validity of the eligibility signature σep

(cf. line 74), and the validity of the eligibility proof w.r.t. the
block leader’s stake when generating the block (cf. line 75).

We emphasize that no trusted hardware is required for chain
validation. That is, a TEE is necessary only for the mining
process.

Should multiple valid chains be detected, the validator
chooses the one with highest cumulative difficulty CDR (i.e.,
the cumulative difficulty of the latest block BR). This process
is similar as the Nxt’s fork resolution [7].

Resuming application. All variables used within AT are
saved in the protected volatile memory of TEE, preventing
the attacker from reading or manipulating their values. To
allow AT resuming these variables after a restart, however,
they should also be saved onto the persistent storage of the
untrusted system in a way that prevents replay attacks. Namely,
AT should detect if it is ever resumed with a saved copy that
is obsolete. It should also prevent rollback attacks [49], e.g.,
that a user deliberately crashes the trusted application to reset
the counter value ctrT to the last saved version. We achieve
this by using TEE monotonic counters and sealing function.
More specifically, in the initialization phase (cf. Figure 2) AT

additionally initializes a TEE monotonic counter to value 1.
Whenever AT terminates normally, the value of the monotonic
counter is saved along with the other variables through the TEE
sealing interface. Then, when the trusted application restarts and
is given a copy of sealed data, AT unseals the data and obtains
the “last” counter value from the copy: If it equals to the reading
of the current monotonic counter, the latter will be advanced;
otherwise, AT terminates abnormally. As a result, in addition
to preventing replay attacks, it is guaranteed that an abnormal
termination of AT will make the application refuse to start until
it is re-initialized. Thus, any malicious validator who crashes
the TEE in order to reset the round counters will have to register
a new AT instance (effectively making the attack worthless).

Transacting in PoTS: key refreshing and chain linking.
Another crucial component of our protocol consists in
generically tweaking the transaction format by introducing two
additional fields to incorporate a key-refreshing mechanism
and a method to link transactions to blockchain branches.

5To be precise, tR > tnow implies that some of the block timestamps
have been faked, not necessarily the latest one, however, it also implies that
the leader of the latest block did not properly check the timestamp of the
second last block, and so forth going backwards, until the block for which the
timestamp has been faked. Regardless of which one of these blocks includes
a fake timestamp, all following blocks are invalid, and hence so is the chain.

The first tweak consists in a novel mechanism to refresh the
account keys of blockchain users which draws inspiration from
forward-secure cryptography [50], i.e., is based on frequent
key updates coupled with secure deletion of old keys. Forward
security specifically aims at limiting the effect of key exposure,
offering the guarantee that data protected in the past—prior to
key exposure—remains secure. We adapt this concept to PoTS
by letting users update their account key-pair upon issuing
each transaction, so that corruption of a user’s account cannot
be exploited to issue transactions far in the past.

The second modification of the transaction format consists
in including to the transaction payload a pointer to the “current”
blockchain (where the pointer could be the hash value of the
last block of the chain), so that each given transaction is valid
only w.r.t. the blockchain it points to. As discussed by Gazi
et al. [39], this technique prevents transferring transactions
to alternative chains maintained by malicious validators, and
it particularly prevents stake-bleeding attacks.
Key refreshing: Whenever a user Pi wishes to issue a

transaction with payload m, they also generate a fresh
signing-key pair (sk ′i,pk

′
i)

6, include the public key pk ′i
in the payload obtaining m′ ← m ‖ pk ′i, sign m′ with
the current signing key sk i obtaining a signature σ′, and
broadcast tx ′= (m′,σ′) to the network. As soon as the
transaction appears in a block, the other users register
public key pk ′i as the updated account key of Pi. The
issuer waits until the transaction is confirmed, i.e., until it
appears in a “sufficiently deep” block of the blockchain
(depending on the stability parameter from Definition 1),
hence it deletes the old signing key sk i.
Our solution leverages the public-ledger functionality
of the blockchain to make the key-update mechanism
more efficient than traditional cryptographic techniques
for forward security, which typically can only support
a fixed numbers of key updates and require storage
of relatively large keys. In particular, PoTS uses the
blockchain itself a medium to communicate the key
updates, and only requires storage of old signing keys
for the transaction-confirmation time.

Chain linking: Whenever Pi wishes to issue a transaction
with payload m, they generate a pointer that links to
the current blockchain, e.g., h′ ← H(BCi), derive an
updated payload m′←m‖h′, and sign m′ instead of m.

Both the key refreshing and the chain linking can be
performed simultaneously as described in the generic method
of Figure 5.

V. SECURITY ANALYSIS

In this section, we analyze the security of our PoS proposal
according to the security model presented in Section III.
Specifically, we isolate the crucial security features offered
by the various components of PoTS and argue that these
features are sufficient to prevent nothing-at-stake, grinding,
and long-range attacks.

6The next account key pair could also be generated in advance to improve
performance.

If Pi wishes to issue a transaction with body m:
1 (pk ′i,sk

′
i)←$KeyGen

2 h′←H(BCi)
3 m′←m‖pk ′i ‖h′
4 σ′←Sign(sk i,m

′)
5 tx ′←(m′,σ′)

Fig. 5: Key refreshing and chain linking of PoTS.

A. Basic protocol: PoTS-mini

For the sake of analysis, we present our protocol as being
built in a modular way, starting from a basic PoS protocol
that meets relevant blockchain properties in a weak adversarial
model and then gradually enhancing such protocol to make it
withstand an increasingly stronger adversary. For the resulting
protocol, PoTS, the blockchain properties are also met in the
“standard” (i.e., Byzantine) adversarial model.

The “basic” protocol, henceforth referred to as PoTS-mini,
deterministically assigns the right to generate a block
depending on public values, namely by comparing the current
validator’s hit (cf. line 39 from Figure 3) with a specified
target, both publicly computable. Chain validation and fork
resolution rules of PoTS-mini are derived in the natural way,
consistently with the leader-election process.

An instantiation of this protocol type is Nxt [7], for which
the hit is derived recursively by hashing the previous hit
concatenated with public, validator-specific information.

It is reasonable to assume that PoTS-mini offers minimal
functionality and security, namely that under the clock synchro-
nization and network assumptions specified in Section III, if
all validators execute the protocol faithfully then the properties
of common prefix, chain growth, and chain quality are met.
Common prefix: Validators agree on the same (long prefix

of the) blockchain since, in each round, either there is
a unique leader or the most-difficult-chain rule resolves
potential forks.

Chain growth: Since the target increases as time passes,
in every round some active validator will eventually
be eligible. By adjusting the value of T base, one can
regulate the block-generation rate, ensuring that the
blockchains of active validators grow in a steady fashion.

Chain quality: The leader election rule weighs validators
depending on their stake, so that each validator has a
chance to become leader proportional to the owned stake.
Thus, the relative number of blocks generated by a given
validator over a sufficiently long period is related to the
validator’s relative stake.

Note that the above assumptions on PoTS-mini do not de-
mand any protection against compromised validators, however,
they are expected to hold against network adversaries. We claim
that such assumptions are reasonable in the network model spec-
ified in Section III, because the network is partially synchronous
and all messages are cryptographically signed, hence the adver-
sary can neither modify messages nor delay them forever. More-

over, we stress that the synchronicity assumption on the network
is necessary for the security of all existing blockchain protocols,
which would otherwise be vulnerable to eclipse attacks [51].

Meeting security in the above mentioned adversarial model
clearly is not sufficient to yield a secure PoS protocol: as it is,
PoTS-mini offers no protection against Byzantine faults and
corruptions of users. Indeed, an adversary may for instance
adaptively corrupt validators who have a high chance to
become leader in the near future, posterior-corrupt a former
quorum of validators and rewrite the blockchain history, as
well as mount more subtle attacks.

In the rest of the section we identify the components that
enhance the security of PoTS-mini, turning it into PoTS, and
argue that our solution retains all the blockchain properties
in the strong adversarial model outlined in Section III.

B. Turning PoTS-mini into PoTS

We now show how to turn PoTS-mini into a full-fledged
secure PoS protocol, PoTS, by (i) letting validators privately
determine their eligibility in a private manner by computing an
eligibility signature, (ii) computing both eligibility signature
and block signature within the TEE, (iii) letting users update
their account keys whenever they issue a new transaction, and
(iv) linking transactions to a specific branch. In the rest of this
section, we isolate the specific (security) properties offered by
each of the above components, and indicate the corresponding
attack strategies they can mitigate.

When designing a TEE-based blockchain protocol, special
care must be taken to protect against rollback attacks [52],
[53], [54]. These attacks aim to replace current application
data—that has been sealed and saved onto untrusted storage
to enable secure resumption of the application—with an
older version of it. In the specific case of PoTS, an attacker
could feed the trusted application with obsolete values, such
as an outdated block height, to enable signing of blocks in
the past. As we will see in the course of this section, PoTS
prevents rollback attacks by employing monotonic counters,
and to further avoid the memory wear out issue of the latter,
it lets the trusted application verify that the unsealed data
is up-to-date by letting the monotonic counter only track the
restarts of the application (c.f. Section IV-C).

Further, it should be noted that any security arguments
based on TEEs rely on the trusted hardware being tamper
proof. However, side-channel attacks on popular TEE
implementations such as Intel SGX [33], [34], [35] and ARM
TrustZone [36], [37], [38], as well as the recent Spectre [55]
and Foreshadow [15] vulnerabilities on TEE-enabled
microprocessors, make this assumption hard to justify in
practice. In the case of PoTS, a successful side-channel attack
would allow a malicious validator to extract the TEE signing
key so that they can work around the checks enforced by the
TEE during the eligibility and signing process. Nevertheless,
we argue that PoTS, in contrast to other TEE-based PoS
proposals (cf. Section VII-B), offers a reasonable level of
security even against an adversary that can compromise some
TEE devices and obtain the corresponding private keys.

We proceed with incorporating the various security
components to PoTS-mini for turning it into PoTS.

Dealing with adaptive corruptions. Since in PoTS-mini the
eligibility of validators is determined from public values,
everybody could predict who will become leader for any round
in the future and, in particular, an adversary could choose the
validators to corrupt according to that. To make future leaders
unpredictable, PoTS uses an unforgeable signature scheme
and lets validators derive their hit by hashing the eligibility
signature, i.e., hitr =H(σepr).7 We formalize this intuition in
the following proposition.

Proposition 1 (Privately computable eligibility). If the
signature scheme in use is unforgeable, the adversary cannot
compute valid eligibility signatures for honest validators.

Proof sketch. Every adversary A, who can derive a valid
eligibility proof σepr for round r and honest (i.e., non corrupt)
validator Pi, can be turned into a successful forger against the
signature scheme, violating the assumed unforgeability.

By Proposition 1 we have that, even if A can corrupt partici-
pants at any time, eligible validators are not visible as such until
they broadcast a new block. That is, the adversary cannot take
advantage of adaptive corruptions for targeting the next leaders.

Dealing with nothing at stake and grinding attacks. Making
leaders unpredictable is not sufficient, on its own, to yield a se-
cure PoS protocol, as it does not discourage dishonest behavior
of validators. In particular, determining validators’eligibility
via signatures introduces a grinding vulnerability, since a
malicious validator could precompute multiple eligibility
signatures for the same block and then present the most
profitable one. Moreover, dishonest validators could compute
several eligibility or block signatures for different, inconsistent
blocks in order to maintain alternative chains (nothing at stake).

To overcome these issues, in PoTS eligibility and block
signatures are computed within the TEE using a tamper-
protected private key which is not known to the validator, in
such a way that the TEE only allows one eligibility request,
respectively, a block signature request, per round. Therefore,
a malicious validator can neither precompute signatures
on competing chains nor generate signatures on their own
(without the TEE), and hence they have no way to compute
the hits in advance on virtual branches for then adapting to the
best chain. The following result formalizes the above intuition.

Proposition 2 (Restricting eligibility and block-signing
requests). If the TEE supports remote attestation, isolation,
sealing, and monotonic counter properties and the signature
scheme is unforgeable, each validator can obtain at most one
eligibility signature and corresponding block signature per
block height, and only for strictly increasing heights.

7Although in PoTS the signature is effectively computed within the TEE,
for the above-mentioned security argument we only rely on the signature
scheme’s unforgeability. The role of the TEE will be clarified next.

Proof sketch. For the assumed unforgeability of the signature
scheme and the isolation property of TEEs, the only way for a
validator to compute an eligibility signature σepr for round r is
by issuing an eligibility-proof request to the trusted application.
Due to the monotonic counter property of TEEs (cf. Sec-
tion IV-B) and the design of PoTS’s block extension routine,
the validator can issue at most one eligibility-proof request per
round (specifically, this is guaranteed by the check in line 50
from Figure 3). Further, any attempt to mount a rollback attack
by powering down the processor or induce abrupt rebooting
would not give any advantage to the validator: the sealing
property of TEEs guarantees that round counters are saved in
encrypted form in the persistent memory of the hosting system
and correctly resumed by the trusted application upon restarting
the TEE. Therefore, the trusted application recognizes incorrect
resumption as suspicious and will force re-initialization of the
device for mining, ultimately making the attack worthless.

By Proposition 2 each validator, when issuing the eligibility
signature request for round r, has to “commit” to a given
chain, namely the one including eligibility signature σepr−1 in
the latest block. In particular, validators can no longer attempt
to extend multiple chains (of the same length) simultaneously,
hence nothing at stake attacks are prevented.

Further, due to the eligibility signature being the only
source of unpredictability in the leader election process, no
validator can bias the randomness of the leader election in
any predictable way: a malicious node can no longer create
the conditions to bias the eligibility process in their favor,
because they cannot establish what the favorable conditions
are prior to obtaining the eligibility signature from the TEE
(moreover, once σepr has been generated for a given round r,
any other eligibility signature request for that round will be
rejected). That is, grinding attacks are prevented, too.

Note that restricting eligibility and block-signature requests
still allows validators to switch among chains, as long as the
new chain is to be preferred. That is, the restriction does not
harm functionality, and this is the case due to the fork-resolution
rule which favors the most difficult chain: “natural” rollbacks
always yield a more difficult chain, while making a block-
signature request for an early round would yield an easier chain,
meaning the validator is seeking for an illegitimate rollback.

We point out that Proposition 2 crucially assumes that all
TEE devices in the system are tamper proof. In fact, an adver-
sary who manages to compromise a TEE and extract the cor-
responding signing key could generate multiple eligibility and
block signatures for every round. In particular, a compromised
TEE allows a validator to maintain multiple, inconsistent chains.
We argue that PoTS considerably hardens security against such
attacks; namely, due to the complexity of side-channel attacks
on TEEs, we can reasonably assume that compromised TEE
devices under adversarial control only comprise a small share
of the overall number of mining devices. Therefore, we can
conclude that even in the presence of some compromised TEEs
which are used to mine on inconsistent chains, the liveness of
the protocol is not significantly threatened (cf. Section III-A).

Note also that obtaining a TEE’s private key allows an
adversary to generate an unlimited number of valid signatures
on any message of their choosing. In particular, the adversary
could grind eligibility signatures. Again, such grinding
vulnerability is limited to the compromised TEE devices,
which we assume to be only a few. Therefore, exploitation of
compromised devices can be detected using statistical methods,
for instance by comparing the expected block-generation rate
of each given validator with the actual number of blocks they
did generate (e.g., as in [56], [57]). In this way, if a validator
presents a significantly higher rate than expected, their blocks
are eventually rejected by the network.

Dealing with posterior-corruptions and long-range attacks.
Enforcing that each validator can generate at most one block
per round, and only for strictly increasing heights, can also
make certain types of long-range attacks hard to mount.
Namely, Proposition 2 implies that a malicious/corrupt
validator cannot produce valid blocks in the past, prior to
the latest block contributed by themselves. That is, each
TEE device only allows to push the blockchain forward (and
not moving backwards to cause a rollback). This means in
particular that the adversary cannot posterior-corrupt a former
quorum of validators and leverage their accounts to generate
an alternative history, because none of their TEEs would allow
to revert the blockchain to any earlier point than the latest
round for which the TEE issued a block signature.

We point out that enforcing block signing within the TEE
does not, however, prevent all types of posterior-corruption
long-range attacks. Indeed, since any restriction on signing
requests only applies to blocks previously signed using a given
TEE, nothing prevents an adversary from exploiting a different
TEE device to generate blocks in the past (for instance,
using an idle TEE that did not yet mine). More precisely,
a posterior-corruption attack against a former quorum of
users/validators would allow the adversary to take over the
majority of stake (in the past), transfer it to the adversary’s
account associated to the idle TEE, and then leverage the
acquired stake to cause an illegitimate rollback.

To also mitigate posterior-corruption attacks of this type,
PoTS lets users frequently refresh their signing keys and
delete expired ones. Namely, each user performs a key refresh
whenever they issue a transaction (cf. Figure 5), and they
delete the previous signing key as soon as the transaction is
confirmed. Therefore, corruption of a user’s account may only
give the adversary access to the most recently “confirmed”
signing key, and to none of the older keys, and hence it limits
the effect of posterior corruption.

Proposition 3 (Preventing posterior-corruption stake transfer).
If users securely delete their old account signing keys, the
adversary cannot issue transactions on behalf of corrupt users
far in the past.

We emphasize that publishing fresh public keys along with
the issued transactions requires users to keep their old key
pairs until the transaction is confirmed in the blockchain, as

otherwise the user would lose their signing capabilities should
the transaction be reverted or lost. During the time interval
necessary to confirm a given transaction, the user is in principle
vulnerable to targeted attacks. While an adversary could in
principle exploit such “vulnerability window” to posterior-
corrupt users holding majority of stake in the past, we argue
that such a scenario is extremely unlikely8. Note also that
forward security crucially relies on the system’s users truly (and
securely) deleting their old private keys.However, some users
might decide to deliberately store expired account keys (e.g.,
in order to sell these keys) or accidentally keep a copy of them.
In PoTS, security against posterior-corruption attacks is guar-
anteed as long as sufficiently many users do delete their keys.
Precisely, PoTS offers security against posterior-corruption
long-range attacks provided that the adversary cannot exploit
corruption of malicious/careless users to control the majority
of stake and transfer all of this stake to their own account. That
is, we only require that users who correctly delete expired keys
reach a honest stake majority at any time (including in the past).

We finally point out that Proposition 2 no longer holds in
the presence of compromised TEEs, opening the possibility
to mount posterior-corruption long-range attacks in this case.
Notice, however, that in order to generate a valid chain that
has higher difficulty than the honest chain, the adversary must
have the majority of voting power, and hence the majority of
stake, in the past.9 By the honest stake-majority assumption,
the only way for the adversary to gather stake-majority in the
past is to posterior-corrupt rich users/validators and transfer
their stake (held in the past) to the account associated to the
compromised TEE. Due to Proposition 3, however, transferring
stake in the past is unfeasible. Thus, the only way for the
adversary to exploit compromised TEEs is to posterior-corrupt
a quorum of validators (holding majority of stake in the past)
and also compromise all of their TEEs, and we can realistically
assume that such attacks are hard to mount in our setting.

Therefore, PoTS fully prevents long-range attacks.

Dealing with stake-bleeding attacks. Finally, PoTS limits the
effect of private mining by letting users link their transactions
to the chain they believe to be the honest one (cf. Figure 5),
so that these transactions can no longer be included into a
different chain. In particular, transactions cannot be misused
to enrich the miners of a private blockchain, and hence
stake-bleeding attacks [39] are prevented, too.

Summary. To summarize, we showed that PoTS is robust
against nothing-at-stake, grinding, and long-range attacks in the
adversarial model from Section III and under the assumptions
that the hash function in use behaves like a random oracle,
the signature scheme is unforgeable, and the majority of
TEE-stake is not compromised (at the TEE level) and provide

8To mount such an attack, indeed, all users of a quorum holding majority of
stake would have to transfer a considerable amount of their stake at the same
time, and the adversary must be able to corrupt all of them instantaneously.

9The adversary in principle could also overtake the honest chain by faking
block timestamps, but this would be detected due to the assumed weak
synchronicity of clocks.

the properties described in Section IV-B. Namely, PoTS retains
its robustness even if the adversary compromises some TEE
devices, as long as the compromised devices only comprise
a small fraction of the validators’set and the stake associated
to those devices never amounts to the majority of stake.

We argue that achieving this level of robustness thwarts
any reasonable option to invalidate the blockchain properties
offered by PoTS-mini. Therefore, PoTS inherits from
PoTS-mini the properties of common prefix, chain growth,
and chain quality, and realizes a secure blockchain protocol.

VI. IMPLEMENTATION & PERFORMANCE EVALUATION

In this section, we evaluate the performance of PoTS and
compare it to a well known PoS protocol Nxt [7] and a
provably secure PoS protocol Ouroboros Praos [21] by means
of implementations.

A. Implementation setup

We implemented the various protocol components of
PoTS, Nxt, and Ouroboros Praos in Golang. In all our
implementations, we use SHA256 as the hash function. For the
building blocks of Ouroboros Praos, we implemented the Key
Evolving Signature (KES) scheme based on [58] using a 2048-
bit modulus, and the Verifiable Random Function (VRF) based
on [59] combined with the bilinear pairing library from [60],
which uses 256-bit keys. In Nxt and PoTS, we use ECDSA [41]
as the signature scheme with a key size of 256 bits.

We instantiate the TEE secure code of PoTS using Intel SGX.
In the sequel, we follow Intel SGX nomenclature and refer
to the code running inside a TEE as an enclave. The enclave
program is written in C and counts up to approximately
250 lines of code overall. It implements the following
interfaces: initialization, which generates the account keys and
provides the remote attestation certificate; eligibility_proof and
sign_block, which compute the eligibility proof and the block
signature respectively; disconnect, which seals the current state
and writes it onto the disk; and load, which restores the state
from the sealed data. Here, we only measure the performance
of eligibility_proof and sign_block which are involved in
the block generation process, as those are the operations
significantly affecting the overall performance of the protocol.

For each of the three implemented protocols, PoTS, Nxt,
and Ouroboros Praos we deploy the validators on a server
equipped with 8-Core Intel Xeon E3-1240 and 32 GB RAM.
We prepare the transaction payload of a block, ranging from
1 KB to 1000 KB, for each validator, and we measure the
time of generating and verifying a block performed by the
validators. We also estimate the overall energy consumption
of creating a block in the network based on the time used for
block generation and the average power consumption rate of
computers. We do this as follows: we assume that every full
node is a potential validator, and hence compute the eligibility
proof for all validators, while we assume only a handful of
them are eligible and compute block signatures only for these.
We therefore estimate the energy consumption of creating a
block as the total amount of time spent on computing eligibility

proofs and generating block signatures on all validators, times
the power consumption of a commodity PC. For comparison,
we compare this result with the running Bitcoin and Ethereum
networks. We estimate the energy consumption of these PoW-
powered blockchains based on the total network hashrateH, the
block time T , and the energy consumption E of the most effi-
cient ASIC mining devices available on the market . Therefore,
we estimate the energy consumed to create a block as H·T ·E .

B. Performance evaluation

Our evaluation results are shown in Figure 6. Figures 6a
and 6b depict the latency incurred in the block generation
and verification procedures, respectively, with respect to
different block sizes. We further inspect the latency of each
sub-operation in the block generation and verification process
in Figures 6c and 6d. Namely, the time to compute the hash of
the transaction payload (Hash), to generate the eligibility proof
(EP) and to prepare a valid block signature (BS). Last but not
least, we show the energy-consumption estimation of each of
the PoS protocols with regards to different difficulty levels
of the network, and compare the result with two PoW-based
blockchains, Bitcoin and Ethereum, in Figure 6e and Figure 6f.

Block Generation: In all three protocols, the block generation
latency increases linearly with the block size as shown in
Figure 6a. The linearity is due to the hash computation over
the transaction payload when preparing the block header;
generating eligibility proof and block signature for the block
header, on the other hand, does not depend on the block size.
As a result, the performance of the three evaluated protocols
only differs in the eligibility proof and block signature
generation as shown in Figure 6c. For instance, for a block
size of 1KB, block generation in Nxt takes 0.08 ms while
PoTS requires 0.42 ms. This additional performance overhead
of 0.34 ms results from CPU switching to SGX mode when
executing the trusted code. We note that such overhead remains
constant, and hence it becomes insignificant for reasonably
high block sizes. For example, with 1 MB block size, Nxt
and PoTS incur respectively 12.5 ms and 12.9 ms of latency.

Meanwhile, Ouroboros Praos requires 34.3 ms and 45.9 ms
when the block size is 1 KB and 1 MB respectively—exhibiting
a significant overhead even with large block sizes. This is due
to the relatively heavy cryptographic operations used in Praos
such as evaluating a VRF or updating the key of the signature
scheme.

Block Verification: The performance of block verification
resembles that of block generation. Namely, the latency grows
linearly with the increase of block size due to the hash
computation over the transaction payload, and the difference
among the three protocols is due to the eligibility proof and
block signature verification process. As shown in Figure 6b,
the time to verify a block with 1KB payload in PoTS is 0.2 ms,
while it is 0.12 ms in Nxt. Since verification only requires public
keys, the TEE enclave is not involved in PoTS to validate blocks.
The slight overhead of 0.08 ms comparing to Nxt is caused by

the difference in eligibility-check algorithms: Nxt performs a
hash computation while PoTS a signature verification. This dif-
ference can be observed in Figure 6d, where the eligibility proof
verification is 0.08 ms higher in PoTS than in Nxt. Similarly,
the difference becomes negligible between Nxt and PoTS as the
block size increases: 11.01 ms and 11.11 ms, respectively, are
incurred for block size of 1MB. Similar to the performance of
block generation, Ouroboros Praos takes significantly longer to
verify a block than Nxt and PoTS due to the VRF verification
on the eligibility proof. As a result, Praos requires 26.9ms for
block size of 1 KB and 37.48ms for block size of 1 MB.

Energy Efficiency of PoS: Figure 6e estimates the energy
required to generate a block for the three considered PoS
protocols, and also reports Bitcoin’s energy consumption for
a comparison. We also show in Figure 6f the exponential
increase in energy consumption of both Bitcoin and Ethereum
networks within the last three years.

Recall that we assume all full nodes compute the eligibility
proof and only a handful10 generate the block signature. For
the sake of comparison, we consider the scale of the Bitcoin
network and assume the number of full nodes as 960011 at
the time of writing. Meanwhile, for block generation we take
the upper bound for the energy consumption of an average
Intel i7 CPU, which is 100 W12.

As shown in Figure 6e, PoTS incurs an negligible
consumption of 5.1×10−5 kWh to create a block with the
efforts of all validators in the network. It is two orders of
magnitude more energy-efficient than Ouroboros Praos, which
yields 4.4×10−3 kWh/block, and slightly less efficient than
Nxt, which requires 1.4×10−6 kWh/block instead. Recall that
while PoW requires more computation when the difficulty of
the network increases (the number of hash computations for
generating a block is exponential to the number of leading
zeros l in the difficulty parameter, as it takes on average 2l

of trials to find the solution), the energy consumption of PoS
protocols is independent of the difficulty.

Figure 6e shows the increase in energy consumption incurred
when generating one block in PoW with respect to the difficulty
parameter. We also marked the current energy consumption
for Bitcoin and Ethereum network in the graph. At the time of
writing, the total hashrate of Bitcoin and Ethereum networks
reach 48.2×106 TH/s and 275 TH/s, targeting 600 s and 15 s
of block time respectively. Equ factor ofipped with the most
efficient devices Antminer S9i for Bitcoin mining (94 J/TH) and
Antminer E3 for Ethereum mining (4 J/MH), it results in energy
consumption of 7.9×106 kWh/block and 4.6×103 kWh/block,
respectively. Finally, in Figure 6f we report the energy con-
sumption of Bitcoin and Ethereum over the last three years
(July 2015–July 2018). Recall that both protocols are PoW-

10We assume only one node is elected for the sake of simplicity.
11According to https://bitnodes.earn.com/dashboard/(accessed 04.09.2018).
12We use the thermal design power (TDP) as an upper bound on the energy

consumption of an Intel CPU. The TDP of Intel i7 is on average 100W
according to https://en.wikipedia.org/wiki/List_of_CPU_power_dissipation_
figures#Intel_Core_i7 (accessed 04.09.2018).

https://bitnodes.earn.com/dashboard/
https://en.wikipedia.org/wiki/List_of_CPU_power_dissipation_figures#Intel_Core_i7
https://en.wikipedia.org/wiki/List_of_CPU_power_dissipation_figures#Intel_Core_i7

0

10

20

30

40

50

0 200 400 600 800 1000

La
te

nc
y

(m
s)

BlockSize (kB)

PoTS−Gen
NxT−Gen

Praos−Gen

(a) Block generation latency

0

10

20

30

40

50

0 200 400 600 800 1000

La
te

nc
y

(m
s)

BlockSize (kB)

PoTS−Verif
NxT−Verif

Praos−Verif

(b) Block verification latency

0.001

0.01

0.1

1

10

100

1000

EP BS Hash

La
te

nc
y

(m
s)

NXT
PoTS
Praos

10 KB

100 KB

1 MB

(c) Block generation latency: close-up

0.001

0.01

0.1

1

10

100

1000

EP BS Hash

La
te

nc
y

(m
s)

NXT
PoTS
Praos

10 KB

100 KB

1 MB

(d) Block verification latency: close-up

1×10−5

1

100000

1×1010

35 45 55 65 75 85

E
ne

rg
y

C
on

su
m

pt
io

n
(K

W
H

/B
lo

ck
)

Number of leading 0’s of the target

NXT
PoTS

PRAOS

1×10−5

1

100000

Bitcoin1×1010

35 45 55 65 75 85

E
ne

rg
y

C
on

su
m

pt
io

n
(K

W
H

/B
lo

ck
)

Number of leading 0’s of the target

Bitcoin now
Ethereum now

(e) Energy consumption vs. difficulty

 1

 10

 100

 1000

 10000

 100000

 1×10
6

01/2016 07/2016 01/2017 07/2017 01/2018 07/2018

E
n

e
rg

y
 p

e
r

b
lo

c
k
 (

K
W

H
/B

lo
c
k
)

Date

Bitcoin

Ethereum

(f) Energy consumption of Bitcoin and
Ethereum over time

Fig. 6: Performance evaluation results for PoTS, Praos, and Nxt protocols. Each data point in our plots is averaged over 100
independent measurements; where appropriate, we include the corresponding 95% confidence interval. EP stands for “eligibility
proof”, BS for “block signature”, and Hash for “hash over the transaction set”.

based, and hence the difficulty is adjusted as the hashrate of the
network increases. As a results, both cryptocurrencies exhibit
an exponential growth in energy consumption, as it is visible in
Figure 6f. This is in sharp contrast with PoS-based blockchains,
for which the energy consumption remains the same over time.

Summary: The results of our performance evaluation demon-
strate that PoTS achieves similar performance as Nxt, and that
both protocols outperform Ouroboros Praos. Regarding block
generation, for small block sizes PoTS is more than 80 times
faster than Ouroboros Praos, and incurs an overhead of about 5
times compared to Nxt. Further, PoTS maintains a speed-up
over Ouroboros Praos by a factor of 3 even for large block
sizes while reaching the same speed of Nxt. Similarly, for block
verification PoTS is more than 130 times faster than Ouroboros

Praos and it takes about double the time required by Nxt for
small block sizes; for large block sizes, it is again 3 times
faster than Ouroboros Praos and as fast as Nxt. In addition, all
the three PoS protocols are considerably more energy efficient
than PoW-based Bitcoin and Ethereum, the difference in power
consumption being between 6 and 12 orders of magnitude.

therefore, and in light of the security analysis presented
in section V, PoTS offers a strong alternative to currently
deployed protocols in terms of performance while guaranteeing
strictly stronger security.

VII. RELATED WORK

In this section, we discuss closely related work on consensus
and proof of stake protocols.

A. Byzantine Fault Tolerant protocols

Byzantine Fault-Tolerant (BFT) consensus protocols focus
on solving the Byzantine General’s Problem [61] in distributed
systems. PBFT [62] is the first practical BFT protocol working
in asynchronous networks. It provides guarantees on safety
and liveness assuming no more than 1

3 of the nodes are faulty.
Namely, all benign nodes would agree on a total order for
the executed requests, and should not be stalled given that the
messages cannot be delayed indefinitely. MinBFT [63] and
CheapBFT [64] guarantee the same properties while incurring
less communication complexity by leveraging monotonic
counters in TEE. By assigning sequence numbers to the
requests via monotonic counters, even faulty nodes cannot send
messages equivocally, thus reducing the communication rounds.
FastBFT [65] further reduces the communication costs by
efficiently aggregating the votes from nodes via secret-sharing
scheme. Nevertheless, these BFT protocols still do not scale
well when the number of nodes exceeds a thousand. Moreover,
all of them assume a static configuration of the network, i.e.,
the network is composed of a fixed number of fully connected
nodes via authenticated links. This restricts BFT protocols
from being adopted by public distributed ledgers.

B. Virtual Mining and Proof of Stake consensus

Proof of Elapsed Time (PoET) [66] is one of the first
public blockchain consensus protocols that leverages TEEs. To
regulate the leader election process, each node relies on the TEE
to wait a random period of time before attempting to generate
the next block. The node who is able to generate a block
first thus becomes the leader. To ensure that nodes truly picks
at random the time interval, and then wait sufficiently long,
the protocol relies on the trusted timestamping functionality
provided by Intel SGX. The security of PoET requires that no
adversary acquires the majority of TEE processors, and that
TEEs cannot being compromised. Based on the same security
assumptions, Proof of Luck (PoL) [67] selects block leaders
based on the highest random number generated by TEE. Nodes
are required to first wait for a period of time before requesting
the TEE to generate the “lucky” number and sign the block.

In contrast to PoET and PoL, which select block leaders
uniformly at random from the set of validators, PoTS weighs
validators depending on their stake. This distinction is reflected
in the modeling assumption to protect against Sybil attacks,
which relies on honest majority of validators (and hence of TEE
devices) in the case of PoET and PoL, while it requires honest
majority of stake for the security of PoTS. While in some sce-
narios it may be reasonable to assume that no adversary controls
the majority of TEE devices, this assumption is hard to justify,
for instance, in a relatively small network. Therefore, we argue
that relying on honest majority of stake may be a safer choice.

Ouroboros [22] relies on a public leader-election function
that randomly selects leaders depending on the recent stake
distribution among validators. Importantly, the randomness for
the leader election is generated via an MPC coin-tossing pro-
tocol, and hence it is provably unbiased as long as sufficiently
many protocol participants are honest. In particular, Ouroboros

provably prevents stake-grinding attacks. The security analysis
of Ouroboros does not explicitly handle posterior corruption,
and mitigates long-range attacks by assuming checkpoints.

Ouroboros Praos [21] (henceforth Praos) is based on a
similar design of Ouroboros, however, it uses a private leader-
election function, which in turns relies on verifiable random
functions (VRFs) [68], to achieve security in the presence of
fully adaptive corruptions. Praos further employs a (forward
secure) key evolving signature scheme for block signing to
also protect against posterior corruption of validators.

Notice that determining eligible validators using a VRF,
as in Praos, is a specific instance of cryptographic sortition,
introduced with Micali’s Algorand protocol [24] to specifically
weaken the effect of adaptive corruptions. Note also that
PoTS’s eligibility function follows a similar principle, i.e., the
eligibility proof is privately computable and publicly verifiable.
Due to the properties of the TEE, however, our solution does
not need a VRF but only an unforgeable signature scheme.
Indeed, while Praos relies on the pseudorandomness and
uniqueness properties of the VRF (i) to ensure unpredictability
of future leaders for all but the owner of the VRF secret
key, and (ii) to make validators “commit” to exactly one
VRF output per proof, PoTS achieves the above properties by
computing the eligibility signature within the TEE, yielding
a significantly more efficient solution 13 (as demonstrated by
our performance analysis from Section VI).

Algorand [23], [24] is a PoS protocol targeting final
consensus realization rather than eventual consensus. It
uses cryptographic sortition (implemented through VRFs) to
designate a committee of validators selected proportionally to
their stake; the committee is then in charge of running a BFT
protocol to agree on the next block. An advantage of Algorand
is that it provides finality, meaning that forks do not occur
(with high probability). On the downside, it requires 2/3 of
the stake being held by honest parties; moreover, the BFT
protocol requires a few rounds of interaction among committee
members, and it may end up generating an empty block,
after a long consensus process, should the block proposer be
malicious. This clearly reduces the block-production rate to a
much lower value than for eventual-consensus PoS protocols.

Snow White [26] is a PoS protocol specifically targeting
robustness under sporadic participation. In contrast, Ouroboros
and Praos require continuous participation, and Algorand
relax this by demanding “lazy” participation—meaning that
validators need to be online when they are expected to serve in a
committee. Our protocol instead is compatible with a sporadic-
participation model, as its security relies on the majority of
online stake being in honest hands. The Snow White protocol
selects a committee from the set of validators depending on
the stake distribution, and then picks the block leader within
the committee by comparing publicly computable hits of the
committee members—where the hits are computed in a way

13The signature is not pseudorandom, however, the randomness for
the leader election is then extracted from it via hashing. In addition, the
committing feature is directly taken care of because the TEE monotonic
counter enforces at most one eligibility-proof request per round.

similar to Nxt [7]. The security analysis relies on checkpoints
to mitigate posterior-corruption long-range attacks, and it does
not consider nothing at stake attacks and grinding attacks.

VIII. CONCLUSION

In this work, we presented PoTS, a robust and efficient proof
of stake protocol that uses Trusted Execution Environments,
along with cryptographic techniques, to enforce sufficiently
honest behavior of validators and offer protection in a strong
corruption model. PoTS is specifically designed to prevent
nothing at stake, grinding, and long-range attacks under realistic
assumptions and, as our security analysis asserts, it retains
its security even if some TEE platforms are compromised.

When comparing the performance of PoTS against two pop-
ular PoS protocols, Nxt and Ouroboros Praos, the former being
very efficient but insecure, the latter offering provably-secure
guarantees, we showed that our solution outperforms Ouroboros
Praos and reaches similar efficiency as Nxt, thus offering an
excellent tradeoff between security and performance.

The modular design of PoTS, highlighted in our security
analysis, motivates a generic methodology leveraging TEEs
to enhance the security of a large class of proof-of-stake
protocols in the sense of thwarting all the above-mentioned
attacks. We believe that such a generic transformation would
turn any sortition-based protocol into a slightly less efficient
one which is robust against nothing at stake, grinding, and
long-range attacks. We therefore hope that our results motivate
further research in this area.

REFERENCES

[1] A. de Vries, “Bitcoin’s Growing Energy Problem,” Joule, vol. 2, no. 5,
pp. 801–805, 2018.

[2] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake,” 2012, accessed June-2017. [Online]. Available:
https://peercoin.net/assets/paper/peercoin-paper.pdf

[3] “Cloak posa v3.0 - a trustless, anonymous transaction
system for cloakcoin,” accessed June-2017. [Online]. Available:
https://bravenewcoin.com/assets/Whitepapers/CloakCoin-posa3wp.pdf

[4] D. Pike, P. Nosker, D. Boehm, D. Grisham, S. Woods, and
J. Marston, “Proof-of-stake-time whitepaper,” accessed June-
2017. [Online]. Available: https://www.vericoin.info/downloads/
VeriCoinPoSTWhitePaper10May2015.pdf

[5] P. Vasin, “Blackcoin’s proof-of-stake protocol
v2,” accessed June-2017. [Online]. Available:
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

[6] “Novacoin - proof of stake,” accessed June-2017. [Online]. Available:
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake

[7] N. Wiki, “Whitepaper:nxt — nxt wiki,” 2016, accessed June-2017.
[Online]. Available: https://nxtwiki.org/mediawiki/index.php?title=
Whitepaper:Nxt

[8] F. Schuh and D. Larimer, “Bitshares 2.0: General
overview,” accessed June-2017. [Online]. Available:
http://docs.bitshares.org/_downloads/bitshares-general.pdf

[9] “Nothing at stake attack ethereum.” [Online]. Available:
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#
what-is-the-nothing-at-stake-problem-and-how-can-it-be-fixed

[10] “Long range attack ethereum.” [On-
line]. Available: https://blog.ethereum.org/2014/05/15/
long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/

[11] “Grinding attack ethereum.” [Online]. Available:
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#
how-does-validator-selection-work-and-what-is-stake-grinding

[12] V. Buterin, “Slasher: A punitive proof-of-stake algorithm,” accessed
June-2017. [Online]. Available: https://blog.ethereum.org/2014/01/15/
slasher-a-punitive-proof-of-stake-algorithm/

[13] V. Zamfir, “Introducing casper “the friendly
ghost”,” accessed June-2017. [Online]. Available:
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

[14] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy, 2019.

[15] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in Proceedings of the 27th USENIX Security Symposium.
USENIX Association, August 2018.

[16] P. Gazi, A. Kiayias, and A. Russell, “Stake-bleeding attacks on
proof-of-stake blockchains,” IACR Cryptology ePrint Archive, vol. 2018,
p. 248, 2018.

[17] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential
of trusted execution environments on mobile devices,” IEEE Security
& Privacy, vol. 12, no. 4, pp. 29–37, 2014.

[18] W. Li, S. Andreina, J. Bohli, and G. Karame, “Securing proof-of-stake
blockchain protocols,” in DPM/CBT@ESORICS, ser. Lecture Notes in
Computer Science, vol. 10436. Springer, 2017, pp. 297–315.

[19] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in EUROCRYPT (2), ser. Lecture
Notes in Computer Science, vol. 9057. Springer, 2015, pp. 281–310.

[20] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proceedings
of the ACM Symposium on Principles of Distributed Computing, PODC
2017, Washington, DC, USA, July 25-27, 2017, E. M. Schiller and A. A.
Schwarzmann, Eds. ACM, 2017, pp. 315–324. [Online]. Available:
http://doi.acm.org/10.1145/3087801.3087809

[21] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
EUROCRYPT (2), ser. Lecture Notes in Computer Science, vol. 10821.
Springer, 2018, pp. 66–98.

[22] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” Cryptology ePrint
Archive, Report 2016/889, 2016. http://eprint. iacr. org/2016/889, Tech.
Rep., 2016.

[23] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies.” [Online]. Available:
https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf

[24] J. Chen and S. Micali, “Algorand: the efficient and democratic ledger,”
arXiv preprint arXiv:1607.01341, 2016.

[25] “Reaching Agreement in the Presence of Faults,”
vol. 27, pp. 228–234, 1980. [Online]. Available:
http://doi.acm.org/10.1145/322186.322188{%}5Cnhttp://dl.acm.
org/ft{_}gateway.cfm?id=322188{&}type=pdf

[26] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs
of stake.” IACR Cryptology ePrint Archive, vol. 2016, p. 919, 2016.

[27] V. Buterin, “Validator ordering and randomness in pos.” [Online].
Available: http://vitalik.ca/files/randomness.html

[28] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of distributed
consensus with one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382,
1985.

[29] C. Dwork, N. A. Lynch, and L. J. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, 1988.

[30] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in EUROCRYPT (2), ser. Lecture Notes in
Computer Science, vol. 10211, 2017, pp. 643–673.

[31] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant
confirmation,” in EUROCRYPT (2), ser. Lecture Notes in Computer
Science, vol. 10821. Springer, 2018, pp. 3–33.

[32] Intel, “Software sealing policies – intel® software guard
extensions developer guide,” 2017. [Online]. Available:
https://software.intel.com/en-us/documentation/sgx-developer-guide

[33] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2421–2434.

[34] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 3–24.

https://peercoin.net/assets/paper/peercoin-paper.pdf
https://bravenewcoin.com/assets/Whitepapers/CloakCoin-posa3wp.pdf
https://www.vericoin.info/downloads/VeriCoinPoSTWhitePaper10May2015.pdf
https://www.vericoin.info/downloads/VeriCoinPoSTWhitePaper10May2015.pdf
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake
https://nxtwiki.org/mediawiki/index.php?title=Whitepaper:Nxt
https://nxtwiki.org/mediawiki/index.php?title=Whitepaper:Nxt
http://docs.bitshares.org/_downloads/bitshares-general.pdf
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#what-is-the-nothing-at-stake-problem-and-how-can-it-be-fixed
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#what-is-the-nothing-at-stake-problem-and-how-can-it-be-fixed
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work/
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#how-does-validator-selection-work-and-what-is-stake-grinding
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs#how-does-validator-selection-work-and-what-is-stake-grinding
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
http://doi.acm.org/10.1145/3087801.3087809
https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf
http://doi.acm.org/10.1145/322186.322188{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=322188{&}type=pdf
http://doi.acm.org/10.1145/322186.322188{%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=322188{&}type=pdf
http://vitalik.ca/files/randomness.html
https://software.intel.com/en-us/documentation/sgx-developer-guide

[35] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside sgx enclaves with branch shadowing,” in
26th USENIX Security Symposium, USENIX Security, 2017, pp. 16–18.

[36] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices.”
IACR Cryptology ePrint Archive, vol. 2016, p. 980, 2016.

[37] B. Kevin, R. Lashermes, J.-L. Lanet, H. Le Bouder, and A. Legay,
“How trustzone could be bypassed: Side-channel attacks on a modern
system-on-chip,” in Wistp’17, International Conference on Information
Security Theory and Practice, 2017.

[38] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Armageddon: Cache attacks on mobile devices.” in USENIX Security
Symposium, 2016, pp. 549–564.

[39] P. Gaži, A. Kiayias, and A. Russell, “Stake-bleeding attacks on proof-of-
stake blockchains,” Cryptology ePrint Archive, Report 2018/248, 2018,
https://eprint.iacr.org/2018/248.

[40] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in ACM Conference on Computer and
Communications Security. ACM, 1993, pp. 62–73.

[41] K. D. W, “Digital signature algorithm,” 1993, uS Patent 5,231,668.
[42] M. Fersch, E. Kiltz, and B. Poettering, “On the provable security

of (EC)DSA signatures,” in ACM Conference on Computer and
Communications Security. ACM, 2016, pp. 1651–1662.

[43] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,”
in Proceedings of the 11th ACM conference on Computer and
communications security. ACM, 2004, pp. 132–145.

[44] E. Brickell and J. Li, “Enhanced privacy id: A direct anonymous
attestation scheme with enhanced revocation capabilities,” in Proceedings
of the 2007 ACM workshop on Privacy in electronic society. ACM,
2007, pp. 21–30.

[45] ——, “Enhanced privacy id from bilinear pairing.” IACR Cryptology
ePrint Archive, vol. 2009, p. 95, 2009.

[46] TCG, “Monotonic counter – tpm main part 1
design principle (specification v1.2),” 2011. [Online].
Available: https://trustedcomputinggroup.org/wp-content/uploads/
TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf

[47] “Create monotonic counter – intel® software guard extensions
sdk.” [Online]. Available: https://software.intel.com/en-us/
sgx-sdk-dev-reference-sgx-create-monotonic-counter

[48] C. Soriente, G. Karame, W. Li, and S. Fedorov, “ReplicaTEE: Enabling
Seamless Replication of SGX Enclaves in the Cloud,” CoRR, 2018.
[Online]. Available: https://arxiv.org/abs/1809.05027

[49] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: rollback protection for trusted
execution,” in 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017., E. Kirda and
T. Ristenpart, Eds. USENIX Association, 2017, pp. 1289–1306.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/matetic

[50] G. Itkis, “Forward security, adaptive cryptography: Time evolution,” 2004.
[51] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks

on bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.,
J. Jung and T. Holz, Eds. USENIX Association, 2015, pp. 129–144.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/heilman

[52] R. Strackx and F. Piessens, “Ariadne: A minimal approach to
state continuity,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp. 875–892.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/strackx

[53] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune,
“Memoir: Practical state continuity for protected modules,” in Security
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 379–394.

[54] R. Strackx, B. Jacobs, and F. Piessens, “Ice: A passive, high-speed,
state-continuity scheme,” in Proceedings of the 30th Annual Computer
Security Applications Conference. ACM, 2014, pp. 106–115.

[55] Wikipedia, “Spectre (security vulnerability).” [Online]. Available:
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

[56] “Documentation - Sawtooth v1.0.5.” [Online]. Available: https://sawtooth.
hyperledger.org/docs/core/releases/latest/architecture/poet.html#z-test

[57] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. van Renesse, “REM:
resource-efficient mining for blockchains,” in USENIX Security
Symposium. USENIX Association, 2017, pp. 1427–1444.

[58] G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing
and verifying,” in Advances in Cryptology — CRYPTO 2001, J. Kilian,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 332–354.

[59] Y. Dodis and A. Yampolskiy, “A verifiable random function with short
proofs and keys,” in Public Key Cryptography - PKC 2005, S. Vaudenay,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 416–431.

[60] “Bilinear pairing library,” https://godoc.org/golang.org/x/crypto/bn256.
[61] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”

ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 4, no. 3, pp. 382–401, 1982.

[62] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173–186.

[63] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2013.

[64] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “Cheapbft: resource-efficient
byzantine fault tolerance,” in Proceedings of the 7th ACM european
conference on Computer Systems. ACM, 2012, pp. 295–308.

[65] J. Liu, W. Li, G. Karame, and N. Asokan, “Scalable byzantine consensus
via hardware-assisted secret sharing,” IEEE Transactions on Computers,
2018.

[66] “Poet 1.0 specification.” [Online]. Available: https://sawtooth.hyperledger.
org/docs/core/releases/latest/architecture/poet.html

[67] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck: an
efficient blockchain consensus protocol,” in SysTEX@Middleware.
ACM, 2016, pp. 2:1–2:6.

[68] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Foundations of Computer Science, 1999. 40th Annual Symposium on.
IEEE, 1999, pp. 120–130.

https://eprint.iacr.org/2018/248
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://arxiv.org/abs/1809.05027
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html#z-test
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html#z-test
https://godoc.org/golang.org/x/crypto/bn256
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html

	Introduction
	Notation & Background
	General notation
	Blockchain protocols
	Proof-of-stake protocols
	Attacks against PoS protocols

	Security Model
	Blockchain security

	PoTS: A secure PoS protocol
	PoTS in a nutshell
	Building blocks
	PoTS: protocol specification

	Security analysis
	Basic protocol: PoTS-mini
	Turning PoTS-mini into PoTS

	Implementation & performance evaluation
	Implementation setup
	Performance evaluation

	Related work
	Byzantine Fault Tolerant protocols
	Virtual Mining and Proof of Stake consensus

	Conclusion
	References

