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Abstract. Proofs of liabilities are used for applications, function like banks
or Bitcoin exchanges, to prove the sums of money in their dataset that
they should owe. The Maxwell protocol, a cryptographic proof of liabili-
ties scheme which relies on a data structure well known as the summation
Merkle tree, utilizes a Merkle approach to prove liabilities in the decentral-
ized setting, i.e., clients independently verify they are in the dataset with
no trusted auditor. In this paper, we go into the Maxwell protocol and the
summation Merkle tree. We formalize the Maxwell protocol and show it
is not secure. We present an attack with which the proved liabilities using
the Maxwell protocol are less than the actual value. This attack can have
significant consequences: A Bitcoin exchange controlling a total of n client
accounts can present valid liabilities proofs including only one account bal-
ance in its dataset. We suggest two improvements to the Maxwell protocol
and the summation Merkle tree, and present a formal proof for the im-
provement that is closest in spirit to the Maxwell protocol. Moreover, we
show the DAM scheme, a micropayment scheme of Zerocash which adopts
the Maxwell protocol as a tool to disincentivize double/multiple spending,
is vulnerable to an multi-spending attack. We show the Provisions scheme,
which adopts the Maxwell protocol to extend its privacy-preserving proof
of liabilities scheme, is also infected by a similar attack.

Keywords: summation Merkle tree, proof of liabilities, Maxwell protocol,
Bitcoin exchanges, the DAM scheme, the Provisions scheme

1 Introduction

Currency exchanges, as a crucial part of the digital currency ecosystem, provide
conversion between currencies, fast deposit and withdrawal of funds, and other
easy-to-use services to clients of dencentralized cryptocurrencies [7,13,14,15,18].
Holding a large amount of money, exchanges are attractive to hackers to commit
crimes. Besides, internal theft, technical mistake, and investment failure can also
result in catastrophic losses with clients permanently losing their assets. One of
the most notorious events in exchanges’ history is the bankruptcy of the first and
for a long time largest Bitcoin exchange – Mt.Gox, following the loss of over 500
million USD worth of bitcoins owned by its clients in 2014 [8].

While such losses can never be fully mitigated, it’s sensible for clients to ask ex-
changes to provide proofs of liabilities, i.e., proofs showing the sums of money that
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exchanges should owe and client deposits are included in the sums. When cooperat-
ing with proofs of reserves, which are proofs of the money that exchanges actually
own, it shows the financial status of exchanges if they periodically announce proofs.
Hence, clients can timely withdraw their deposits when it is necessary.

A cryptographic proof of liabilities in the decentralized setting was first pro-
posed by Greg Maxwell in 2013. Known as the Maxwell protocol [24], it relies on
a data structure called the summation Merkle tree which is well known by the
Bitcoin community. On a summation Merkle tree, each node stores a balance and
a hash. A leaf node consists of the balance of a distinct account in the exchange’s
dataset and a hash of this account information. An internal node stores a sum of
its child node balances, and a hash of its child hashes and the sum. In a bottom-up
order, the summation Merkle tree is filled up. The root node stores the sum of all
leaf node balances, i.e., the liabilities of the exchange. In the Maxwell protocol, an
exchange establishes a summation Merkle tree and publishes the root node. The
liabilities proof for a client, whose account is in the dataset, is an authentication
path of the leaf node associated with the client account. Each client independently
checks the validity of the received proof by reconstructing a path and verifying the
equality between the computed root node and the published root node.

Proofs of liabilities may also consist of an auditor, as done by exchanges like
Uphold, OKCoin, Kraken, etc. A simple approach is to give the auditor all data
needed and announce the audit result, as done by Uphold [19]. This can be im-
proved by allowing clients to independently verify they were included in the dataset
used by the auditor, as done by OKCoin [4] and Kraken [11]. In particular, Krak-
en’s proof of liabilities is motivated by the Maxwell protocol, but it requires an
auditor to check the established Merkle tree. The involved auditor must be trusted
and competent. However, there is no universally trusted auditor, and an auditor
may collude with exchanges or compromise confidential client information. For
proofs of liabilities with no auditor, Vaultoro [20] publishes an account list with
anonymous client IDs and allow its clients to verify their accounts in the list. In
addition to the Maxwell protocol, another approach with no auditor, drawn from
the Provisions [6], employs heavier cryptography like zero-knowledge proofs and
Pedersen commitments to obtain a privacy-preserving proof of liabilities scheme.

Compared to the these approaches, the Maxwell protocol which relies on the
summation Merkle tree has the advantages of simplicity, efficiency, account-privacy
and decentralization. The data structure of the underlying summation Merkle tree
is simple and clear. For a dataset of size n, it only incurs an O(log n) computation
overhead per-verification. This is an alluring property for typically lightweight
client. To protect account privacy, a leaf node only includes a hash result of an
account information. A unique nonce is included when computing a hash result,
and hence a client cannot link the received leaf node to other’s accounts. Also, a
client cannot link two received leaf nodes from different proofs because the account
order in leaf nodes is a random permutation of the account order in the dataset.
The Maxwell protocol is a decentralized proof of liabilities scheme that requires
no auditor. Thus, the weaknesses of introducing an auditor can be avoided.

Conventional wisdom has asserted that the Maxwell protocol and the sum-
mation Merkle tree are secure against malfeasance by exchanges. There were no
known techniques by which an exchange could earn benefits by deviating from
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the protocol. Because they were believed to be secure, they are used to design or
extend schemes [3,6].

In this paper, we show that the conventional wisdom is wrong: the Maxwell
protocol, as well as the summation Merkle tree, is not secure. We go into and
formalize the Maxwell protocol and the summation Merkle tree. We present an
attack that exchanges can trick their clients that their deposits have been summed
up into the published liabilities, whereas it only contains a small portion of the
total amounts. We show that the lower bound of successfully verified liabilities is
the maximum of all account balances in the exchange’s dataset. This lower bound
shows that for an exchange controlling a total of n client accounts can present
valid liabilities proofs including only one account balance in its dataset.

The key idea behind our attack is that an exchange may provide inconsistent
proofs to the sibling leaf nodes. Because the integrity of the nodes on a received
proof cannot be verified, the exchange can modify node balances in a proof without
being discovered. Verifications, using a published root whose balance has been
modified, will pass without breaking the collision resistance of hash functions. We
suggest two improvements to the Maxwell protocol and the summation Merkle
tree that can resist this attack, and we give a formal proof for the one that is
closest in spirit to the Maxwell protocol.

Our attack has impact on several existing schemes. We show that the scheme in
[3], which is a decentralized anonymous micropayments scheme based on Zerocash
[18], suffers from multi-spending attacks due to the usage of the Maxwell proto-
col as a tool to disincentivize double/multiple spending. We show the Provisions
scheme [6], which adopts the Maxwell protocol to extend its privacy-preserving
proof of liabilities scheme in its full paper [5], is also infected by a similar attack.

In summary, the contributions of this work are:

• We formalize the Maxwell protocol and the summation Merkle tree.
• We present an attack that breaks the security goal of the Maxwell protocol.
• We suggest two improvements to repair this problem, and give a formal security

proof for the one that is closest in spirit to the Maxwell protocol.
• We present a multi-spending attack against the DAM scheme which uses the

Maxwell protocol to disincentivize double/multiple spending.
• We present an attack against the extended version of the Provisions scheme

that breaks the security goal of its proof of liabilities scheme.

We formalize the Maxwell protocol in Sect. 2. Our attack is formalized in Sect.
3. together with the improvements. Sect. 4 and 5 show the attacks on the Provisions
and the DAM schemes. Sect. 6 concludes this paper.

2 The Maxwell Protocol

In this section, we present an algorithm depicting the complete process of
the Maxwell protocol for proving liabilities, as shown in Algorithm 1. A proof
of liabilities is used when an exchange, for example, holding a number of client
deposits, wants to prove to its clients that their deposits have been accumulated in
the total liabilities of this exchange. If every client has completed the verification,
as long as the exchange showing that it controls an equal amount of money as its
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presented liabilities, even if all clients apply for a withdrawal simultaneously, the
exchange will not have insufficient money to support these requests.

When making a proof of liabilities, an exchange first generates a list L of size
n = 2s, where s is a positive integer. Each row of L consists of a client account
information which contains the account balance v, the login ID, a nonce uniquely
generated with the client and some other auxiliary data.

Algorithm 1 The Maxwell protocol

Input: n = 2s: number of client accounts; L: all account information list; H: a
collision resistant hash function

Output: A result of the verification for a proof of liabilities

1: procedure FORMTREE B Done by the exchange
2: Nodes← empty B Create an empty binary tree with 2n−1 nodes
3: L̃ ← RandPermutate(L) B Permutate the rows of the input list randomly
4: for i = n, i < 2n, i← i+ 1 do B For each leaf node
5: Nodes[i].v ← L̃[i].v, Nodes[i].h← H(L̃[i].v||L̃[i].ID||L̃[i].nonce)
6: end for
7: for j = n− 1, j > 0, j ← j− 1 do B For each internal node
8: Nodes[j].v ← Nodes[2j].v + Nodes[2j + 1].v
9: Nodes[j].h← H(Nodes[j].v||Nodes[2j].h||Nodes[2j + 1].h)

10: end for
11: for i = 1, i < 2n, i← i + 1 do
12: if i is odd then Nodes[i].t = 1 B Identify a node’s position that “1”

indicates the node is a right child
13: else Nodes[i].t = 0 B “0” indicates the node is a left child
14: end if
15: end for
16: Publish Nodes[1]
17: end procedure
18:
19: procedure VERIFYPROOF B Done by clients
20: ANodes← Receive() B Receive a liabilities proof from the exchange
21: Node′ ← GetAccountInfo() B Reconstruct the account associated leaf node
22: for i = 1, i < log2 n + 1, i← i + 1 do
23: if ANodes[i].v < 0 then return FALSE
24: end if
25: Node′.v ← Node′.v + ANodes[i].v
26: if ANodes[i].t = 0 then Node′.h← H(Node′.v||ANodes[i].h||Node′.h)
27: else Node′.h← H(Node′.v||Node′.h||ANodes[i].h)
28: end if
29: end for
30: if Node′ = Nodes[1] then return TRUE
31: else return FALSE
32: end if

33: end procedure

The exchange invokes the procedure FORMTREE to establish a binary tree
with n leaves, a.k.a, the summation Merkle tree. The height of the tree is log2 n+1
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and the tree includes 2n− 1 nodes in total. Every node consists of (v, h) where v
is a balance value and h is a hash result under a collision-resistant hash function
H. Every node holds a tag to identify its position, i.e., whether it is a left or right
child of its parent on the tree. Using the RandPermutate() function, each leaf node
is randomly targeted to a distinct account in L. A leaf node contains an account
balance v and also the hash h of v concatenating with the account login ID and
the account nonce. Each internal node contains a balance equals to the sum of its
child balances, and also a hash of its balance and its child hashes.

All the 2n−1 nodes on the summation Merkle tree are filled up in a bottom-up
order, and hence the balance of the root node is the summation of all leaf node
balances, i.e. the summation of all client account balances in L. The exchange
publishes the root node for subsequent validation.

As a client, who has deposited in an exchange, can invoke the procedure VERI-
FYPROOF to check the validity of a proof of liabilities received from the exchange.
The received proof, i.e. the output from the function Receive(), is an authentica-
tion path of the leaf node associated with the client account. It is used to help the
client to reconstruct a path, where the leaf node of the reconstructed path consists
of the client requested account balance v and the hash h, obtained from the func-
tion GetAccountInfo(). The client compares the computed root of the reconstructed
path with the published root. If they are equal, this verification passes.

For a better understanding, we illustrate a summation Merkle tree with n = 4
in Fig.1, i.e., there are four accounts named A, B, C, D in exchange’s list L. The
proof (i.e., the authentication path) for the left-most leaf node associated client

account (i.e., account D) is written in gray background .

Hash
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Balance
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Hash

7 Av v

7 7 A A( || ID || )h H v nonce

Balance

Hash

2 4 5=v v v
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3 6 7=v v v
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Balance

Balance

Balance

Fig. 1. A summation Merkle tree with 4 leaf nodes.

3 Attack and Improvements

We present an attack on the Maxwell protocol as well as the summation Merkle
tree. Our attack results in exchanges to trick most of their clients that their ac-
count balances have been summed up into the published liabilities, whereas it only
contains a small portion of the total amounts. We give out a lower bound of the
amount of money that a valid proof of liabilities can reach using our attack on
the Maxwell protocol, without the notice of any client in theory. Furthermore, we
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propose two improvements to repair this problem and present a formal security
proof for the improvement that is closest in spirit to the Maxwell protocol.

Definition 1. For a decentralized proof of liabilities scheme that clients indepen-
dently verify they are in the dataset, we call the scheme a secure proof of liabilities
scheme if the claimed liabilities are no less than the sum of the amount of money
in the dataset when no verification fails.

Threat Model. We consider the threat model that an adversary (i.e., an ex-
change) holding n = 2s client accounts1, where s is a positive integer, privately
maintains and updates a list that stores all his client account information. Each
entry of the list stores an account information and every account balance is at least
zero. When the adversary making a proof of liabilities, he communicates with each
client privately to agree on a fresh nonce and adds the nonce into the associated
entry of his list. Each client receives a proof from the adversary separately. For the
consideration of privacy, no client will share his account information or received
proof with others.

3.1 Our Attack

Following the Maxwell protocol, a proof of liabilities received by a client con-
sists of an authentication path on a summation Merkle tree. A proof is created
by an exchange using the summation Merkle tree established by the exchange.
Because the list used to establish the tree is preserved and updated by the ex-
change privately, the summation Merkle tree is completely private except for the
root node that being published. Therefore, a client cannot verify the integrity of
nodes on the received authentication path, and hence the integrity of those nodes
cannot be guaranteed. An adversary can modify the contents of nodes on an au-
thentication path before sending it to a client, especially change the node balances.
To pass client verifications, the adversary changes the balances of internal nodes,
including the root node balance, when establishing a summation Merkle tree. As
long as each client’s computed root equals to the root published by the exchange,
the attack will not be discovered.

Our attack employs the above observation result and breaks the cumulative
relation between an internal node and its children, which leads to the liabilities
value published by the adversary is less than the actual one. This breaks the
security goal for a secure proof of liabilities scheme as defined in Definition 1.

We first depict our attack in the case that no client owns two accounts in an
exchange. we show the procesure done by the adversary in Algorithm 2. Clients
follow the same verification procedure as in the Maxwell protocol. The idea behind
our attack is that an adversary provides to its clients with authentication paths
on which the node balances are inconsistent with, or more specifically less than,
the values they actually contain. Meanwhile, the adversary remains the sum of

1 When n 6= 2s for any positive integer s, an exchange can add some dummy accounts
into L to resolve this. The balance of each dummy account could be a small positive
number. This ensures that the added dummy accounts will not affect the published
liabilities of the exchange.
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sibling node balances and node hashes unchanged. Thereby, verifications can still
pass without breaking the collision resistance of hash functions.

When establishing a tree, the adversary invokes the procedure FORMTREE
and operates in a tricky way that instead of letting an internal node balance be the
sum of its child balances, the adversary sets the balance v of each internal node to
be a value no less than the maximum of its child balances2, i.e., max{vl, vr} ≤ v ≤
vl + vr, as shown by the function ChooseValue() in Algorithm 2, and meanwhile
keeps the node hash unchanged, i.e., h = H(v||hl||hr).

Algorithm 2 Our attack on the Maxwell protocol

Input: n = 2s: number of client accounts; L: all account information list; H: a
collision resistant hash function

Output: A liabilities proof for a client

1: procedure FORMTREE
2: Nodes← empty B Create an empty binary tree with 2n−1 nodes
3: L̃ ← RandPermutate(L)
4: for i = n, i < 2n, i← i+ 1 do B For each leaf node
5: Nodes[i].v ← L̃[i].v, Nodes[i].h← H(L̃[i].v||L̃[i].ID||L̃[i].nonce)
6: end for
7: for j = n− 1, j > 0, j ← j− 1 do B For each internal node
8: k ← ChooseValue([max{Nodes[2j].v, Nodes[2j+1].v}, Nodes[2j].v+Nodes[2j+

1].v]) B Choose a value from the input interval
9: Nodes[j].v ← k

10: Nodes[j].h← H(Nodes[j].v||Nodes[2j].h||Nodes[2j + 1].h)
11: end for
12: for i = 1, i < 2n, i← i + 1 do
13: if i is odd then Nodes[i].t = 1 B Identify a node’s position that

“1” indicates the node is a right child
14: else Nodes[i].t = 0 B “0” indicates the node is a left child
15: end if
16: end for
17: Publish Nodes[1]
18: end procedure
19:
20: procedure CREATEPROOF B Send the proof to a client
21: Node′ ← GetAccountInfo()
22: ANodes← GetAuthPath(Nodes, Node′)
23: PNodes← GetPath(Nodes, Node′)
24: for i = 1, i < log2 n + 1, i← i + 1 do
25: ANodes[i].v ← PNodes[i+1].v−PNodes[i].v B Change the balances of nodes

on the authentication path
26: end for
27: return ANodes

28: end procedure

2 The adversary has no motivation to choose v s.t. v > vl + vr which will increase its
apparent liabilities.
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The adversary creates a liabilities proof for each client by firstly reconstructing
the associated leaf node, as shown by the GetAccountInfo() function. The adversary
extracts the authentication path and the path of the reconstructed leaf node from
the established tree, by invoking the GetAuthPath() and GetPath() functions sep-
arately. Before sending the authentication path to a client, the adversary changes
the balance of each node on the authentication path to be the difference between
its parent and sibling node balances.

We go through a simple scenario with n = 4 that four accounts A,B,C,D
are included as an example to our attack. The established tree from executing
FORMTREE is shown in Fig.2.

Without loss of generality, when C, whose account is targeted to the left-
most leaf node on the tree in Fig.2, doing a verification, C downloads the root
node (v′1, h

′
1) published by the adversary, and receives a liabilities proof ANodes =

{(vr5 = v′2 − v4, hr5 = h5), (vr3 = v′1 − v′2, hr3 = h′3)} which is the authentication
path of C’s leaf node. C reconstructs the path of his leaf node in a bottom-up
order. C uses his account information to obtain his leaf node (v4, h4). By the use
of ANodes[1] = (vr5, h

r
5), which is the first node on ANodes, C computes and obtains

(ṽ′2, h̃
′
2) that: {

ṽ′2 = v4 + vr5 = v′2
h̃′2 = H(ṽ′2||h4||hr5) = h′2.

Similarly, using ANodes[2] = (vr3, h
r
3), C computes and obtains (ṽ′1, h̃

′
1) that:{

ṽ′1 = ṽ′2 + vr3 = v′1
h̃′1 = H(ṽ′1||h̃′1||hr3) = h′1.

Balance

Hash

' ' ' ' ' '

1 2 3 1 2 3: max{ , }v v v v v v  

' ' ' '

1 1 2 3( || || )h H v h h

Balance

Hash

' '

2 4 5 2 4 5: max{ , }v v v v v v  

' '

2 2 4 5( || || )h H v h h Hash

' '

3 6 7 3 6 7: max{ , }v v v v v v  

' '

3 3 6 7( || || )h H v h h

Balance

Balance

Hash

4 C=v v

 4 4 C C( || ID || )h H v nonce Hash

5 B=v v

5 5 B B( || ID || )h H v nonce

Balance

Hash

6 D=v v

6 6 D D( || ID || )h H v nonce

Balance

Hash

7 Av v

7 7 A A( || ID || )h H v nonce

Balance

Fig. 2. A tree with 4 leaf nodes, resulting from running procedure FORMTREE.

Due to (ṽ′1, h̃
′
1) = (v′1, h

′
1), the procedure VERIFYPROOF will return TRUE.

It is easy to check that each client verification will return the same result. However,
the published liabilities v′1 only covers a part of the total amount of all balances
in L.

In the case that a client owns multiple accounts in an exchange, the client can
reconstruct several paths during a proof of liabilities. These paths will certainly
intersect at some internal nodes, which means that the client can obtain two pairs
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of the child nodes for each intersection node. Although the verification procedure
VERIFYPROOF will not check the consistency of different paths, the client may
discover an attack if the exchange still provides inconsistent authentication paths.

Our attack is still feasible in this case. The results in [1,10,12,17] showed that
it’s possible to associate many cryptocurrency accounts with each other. Also,
large centralized services such as exchanges and wallet services are capable of
identifying and tracking user activity using techniques like cookies [23] and local
storage [21]. Once the accounts are linked, the adversary can converge each group
of linked accounts under a minimal subtree and keeps all the nodes on a subtree
unchanged. The adversary modifies the remaining nodes on the summation Merkle
tree and creates a proof for each client accordingly. As long as no client holds all
accounts in L, our attack is still feasible on the Maxwell protocol. However, if there
is a client holding all accounts in an exchange, there is no need for the exchange
to make a proof of liabilities.

Following the above analysis, we can easily come to Theorem 1 which gives
a lower bound of the amount that a valid proof of liabilities can reach with our
attack on the Maxwell protocol, without the notice of any client in theory.

Theorem 1 (Lower Bound of the Liabilities). When using the Maxwell pro-
tocol to prove liabilities, the lower bound of the liabilities an exchange can claim,
without the notice of any client, is the maximum value of all its account balances.

Once an internal node balance value is less than the maximum value of its child
balances, there must be an authentication path containing a node whose balance is
a negative number. This makes the procedure VERIFYPROOF to return FALSE.
We remark that, in reality, it is wise for the adversary not to touch the lower
bound. Otherwise, it may lead to a notice of clients with large deposits, especially
for the one with the largest deposit who will discover that the claimed liabilities
equal to his account balance.

3.2 Improving the Maxwell Protocol

Ideally, a robust proof of liabilities would be designed to resist attacks like the
aforementioned one and satisfy Definition 1. Since our attack yields such proof
of liabilities are away from the original intention, the Maxwell protocol should be
amended. We suggest two solutions to address this problem, if adopted, can resist
our attack.

Solution 1. A natural solution is to add an additional proof when an exchange
sending the proof of liabilities to its clients, in order to prove the integrity of nodes
on an authentication path, i.e., to prove that these node hashes are commitments
to their balances. Also, the verification process includes a step to check the validity
of the additional proof.

This can be easily handled by sending the complete input data of the hash
function of each node on an authentication path, but this can result in a priva-
cy leakage. A smarter way is to adopt Zero-Knowledge Proof (ZKP) technology.
Let R be a fixed NP-hard relation with the corresponding language L = {h :
∃x, s.t. (x, h) ∈ R}. We denote the zero-knowledge proof of the preimage of the
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hash function H by π = ZK.Prove{(x) : h = H(v||x)}. Receiving a proof π, a client
can invoke the verification algorithm of ZKP to check its validity. However, the
introduction of ZKP would lose the simplicity of the original Maxwell protocol.
Readers who are interested in the realization of this zero-knowledge proof can refer
to [9] for details.

Solution 2. A better solution which is closest in spirit to the original Maxwell pro-
tocol is to modify the input format of the hash function for internal nodes including
both its child balances unsummed, i.e., h = H(vl||vr||hl||hr). Correspondingly, the
input format of the hash function when doing a verification should be modified to
include an internal node both child balances unsummed too.

We present Theorem 2 with a formal proof to state that this solution can help
the Maxwell protocol to achieve the security requirement defined in Definition
1.We first give and proof a lemma. In the following proofs, we let nk = (vk, hk)
indicate the node at position k that on the established tree, and nki = (vki , h

k
i )

indicate the node at position k that computed or received by a client Ci.

Lemma 1. If the Maxwell protocol adopting the modification in Solution 2, every
intersection node of two successfully verified paths remains the same as the one
on the established summation Merkle tree, assuming the collision resistance of the
hash functions.

Proof. Suppose there exists at least one intersection node not satisfying this lem-
ma. Let t be an unique identifier for the position of such an intersection node with
the maximum height, then there exists two paths associates with client Ci and
client Cj respectively, s.t., nti 6= ntj or nti = ntj 6= nt, where nti and ntj are the
nodes at position t computed by Ci and Cj respectively.

Let p (resp. s) be an unique identifier for the position of the parent (resp.
sibling) node of the node at position t. According to the definition of the node at
position t, the node at position p is an intersection node of Ci and Cj ’s paths such
that npi = npj = np, where npi and npj are the nodes at position p computed by
Ci and Cj respectively. Let nsi and nsj be the nodes at position s on the received
authentication paths of Ci and Cj respectively. Because npi = npj = np, we have

hpi = hpj = hp, thus H(vti ||vsi ||hti||hsi ) = H(vtj ||vsj ||htj ||hsj) = H(vt||vs||ht||hs).
Due to nti 6= ntj or nti = ntj 6= nt, we have (vti , h

t
i) 6= (vtj , h

t
j) or (vtj , h

t
j) 6=

(vt, ht). Let x1 = vti ||vsi ||hti||hsi , x2 = vtj ||vsj ||htj ||hsj and x3 = vt||vs||ht||hs. We have
x1 6= x2 or x2 6= x3, but H(x1) = H(x2) = H(x3). It conflicts with the assumption
of the collision resistant of the hash function H. Hence, we proved this lemma. ut

Theorem 2. The Maxwell protocol is a secure proof of liabilities scheme when
adopting the modification in Solution 2, assuming the collision resistance of hash
functions.

Proof. Suppose there exists at least one node on the established summation Merkle
tree of the modified Maxwell protocol whose balance is less than the sum of its
child balances, and no verification of the proof of liabilities fails. Let t be an unique
identifier for the position of such a node with the minimum height. Because an
adversary has no motivation to create an internal node whose balance is larger
than its child balances. If this node do exist, when the balances are summed up
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in a bottom-up order to the root node, the root balance can be less than the sum
of all the leaf balances. Therefore, the claimed liabilities are less than the sum
of all account balances in the adversary’s list. This makes the modified Maxwell
protocol not a secure proof of liabilities scheme.

Let nt = (vt, ht) be the node at position t on the established tree. Let further l
(resp. r) be an unique identifier for the position of nt’s left (resp. right) child node.
Thus, we have vt < vl + vr, where vl (resp. vr) is the balance of node at position
l (resp. r) on the tree. For client Ci (resp. Cj) whose path goes through the node
at position l (resp. r), he reconstructs this node nli (resp. nrj) and receives a node

n̂ri (resp. n̂lj) at position r (resp. l) on his authentication path.
When the node at position l is a leaf node, Ci reconstructs this node using his

account information. Thus, nli = nl. When the nodes at position l is an internal
node, it must be an intersection node of two paths. According to Lemma 1, nli = nl

is also satisfied. Hence, we have vli = vl. Similarly, we have nrj = nr and vrj = vr.
Because the node at position t is an intersection node of Ci and Cj ’s paths,

according to Lemma 1, we have nti = ntj = nt, where nti and ntj are the nodes at
position t computed by Ci and Cj respectively.

When Ci reconstructs nti, he computes vti = vli+ v̂ri , and hti = H(vli||v̂ri ||hli||ĥri ).
Because vti = vt < vl + vr and vli = vl, we have v̂ri 6= vr. Similarly, we have

htj = H(v̂lj ||vrj ||ĥlj ||hrj), vrj = vr and v̂lj 6= vl when Cj reconstructs ntj . Therefore,

we can construct x1 = vli||v̂ri ||hli||ĥri and x2 = v̂lj ||vrj ||ĥlj ||hrj with x1 6= x2, but
H(x1) = H(x2). This conflicts with the assumption of the collision resistant of the
hash function H. Hence, we proved Theorem 2. ut

4 Attack Instance One: The Provisions Scheme

The Provisions [6] is a privacy-preserving proofs of solvency scheme, which
consists of a privacy-preserving proofs of liabilities scheme and a privacy-preserving
proofs of reserves scheme. Compared to the Maxwell protocol, the Provisions proof
of liabilities enable to convince clients that their balances have been summed up
in the liabilities of the exchange without revealing the total asset of this exchange
or any other account balance.

Each time the exchange making a proof of liabilities, it publishes a list that
each entry consists of an account information 〈CID, z, π〉. CID = H(ID||n) is a
hash result of the account login ID and a nonce n, where n is chosen by the
exchange. z = gvhr is a Pedersen commitment to the account balance v, where
r represents the string that can be used to open/reveal the commitment and is
chosen by the exchange. π is a knowledge proof showing that z is well-formed. Due
to the homomorphism of the Pedersen commitment scheme, the commitment to
the total liabilities of the exchange is the product of all entries’ commitments.

When a client verifies a liabilities proof, he downloads the list. He checks the
entry associates with his account, using his account information and the received
nonce n and string r from the exchange. He also checks the validity of other entries
by verifying each entry’s knowledge proof. Finally, the client compares the product
of all entries’ commitments with the one published by the exchange, and returns
TRUE if they are equal.
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To reduce the computation overhead of per-verification from O(n) to O(log n)
(where n is the size of the list), the authors presented an extension to the Provisions
proof of liabilites in their full paper [5]. They rearrange the account information
into the summation Merkle tree of the Maxwell protocol. Each leaf node contains
(CIDi, zi) for some client i, and each internal node contains a commitment to the
sum of its child balances together with a hash of its children.

Similar to the Maxwell protocol that instead of publishing a list, an exchange
publishes the root node of the tree. A verification in this extension only incurs an
O(log n) computation overhead instead of checking all n entries of a list.

Our attack still holds on this modified version of the summation Merkle tree
used in the Provisions scheme. An adversary A (i.e., an exchange) establishes
a binary tree, similar to Fig.3. Each internal node stores a commitment to the
maximum of its child balances, and also a hash of its children. All leaf nodes
remains unchanged. Although an internal node commitment does not equal to the
product of its child commitments, A can establish such a tree because the r of
each commitment z is chosen by A and A knows all its client account balances.

Com

Hash

1
C Cv r

z g h

 1 C CCID (ID || )H nonce

Com

Hash

B B

2

v r
z g h

 2 B BCID (ID || )H nonce

Com

Hash

A A
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v r
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
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


 12 34( || || )h H z h h

Fig. 3. An established tree when n = 4, resulting from an adversary conducting an attack
on the extension of the Provisions proof of liabilities.

When creating a proof for some client i,A finds out the leaf node that associates
with i’s account and extracts its authentication path. Before sending a proof to
client i, A modifies the commitments of nodes on this authentication path and
remains other parts unchanged. A modified commitment is a commitment to the
difference between its parent node committed value and its sibling node committed
value. It is easy to check that when client i follows the procedure VERIFYPROOF
to verify a received proof, it will return TRUE. Therefore, the extension of the
Provisions proof of liabilities is not a secure proofs of liabilities scheme.

5 Attack Instance Two: The DAM Scheme

5.1 Scheme Overview

The DAM scheme [3] is a lottery-based micropayment scheme for the decen-
tralized cryptocurrency – Zerocash [18]. Considering “micro” sums of money of
the payment, micropayments have relatively high transaction costs to incentivize
blockchain miners to behave honestly. With this in mind, the DAM scheme uses
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the idea of probabilistic payments to deal with this problem that instead of send-
ing a transaction of value v, the user sends a lottery ticket whose expected payout
is v. When the lottery ticket’s winning probability is p, for 1/p transactions on
average, there is only one transaction with value v/p will result in a money transfer
recorded on the blockchain.

In the DAM scheme, every time a user is making a transaction with a mer-
chant, the user sends a lottery ticket to the merchant. Considering a malicious
user, he may issue the same lottery ticket to several merchants or even to him-
self, that multiple of them might win but only one will be able to cash in this
ticket, known as double/multiple spending attack. In most micropayment applica-
tions, like streaming services, they often require fast responses, and these in turn
result in merchants checking the validity of payments offline. Because not all dou-
ble/multiple spending can be detected timely, double/multiple spending cannot
be prevented in offline payments.

Given this, the DAM scheme uses the “detect-and-punish” approach to disin-
centivize double spending. If a user double spends, his behavior can be detected
and he will lose some money as a punishment, for example, his deposit will be
frozen. Therefore, every lottery ticket should be bound to a single deposit of the
user. When making a transaction using this ticket, the user also sends a unique
2-out-of-n secret share of the deposit. In case of the ticket is used twice, the secret
of the deposit can be recovered and the deposit with this unique secret will be
frozen, which renders a punishment on the user.

The “detect-and-punish” approach is effective only if the disadvantage of being
punished outweigh the advantage of double spending. Hence, the size of a deposit
should be larger than the additional utility gained by double spending. The DAM
scheme associates with each deposit a “receiver address set R”, which consists of
the information of merchants that the deposit is allowed to engage in payments
with. Each element of R contains (apk,w,d), where apk is a merchant Zerocash
address, w is the cumulative value of transactions that can be accepted by the
merchant within a time period (e.g., a day), and d represents other auxiliary data
of the merchant. They are publicly available. Because the cumulative maximum
value of transactions that can be accepted by merchants in R using the deposit,
within a time period, is

∑n
i=1 wi, if there are n merchants included in R. To make

this approach effective, the value of a deposit should be at least
∑n
i=1 wi.

The DAM scheme deals with this problem by adopting the Maxwell protocol
to establish a summation Merkle tree, as described in their full paper [2]. On the
established tree, each leaf node consists of a element of R, and each internal node
stores the sum of its child values together with a hash over its children.

5.2 Multi-Spending Attack

By establishing a summation Merkle tree, the DAM scheme is going to achieve
two purposes: (1) to provide an efficient set membership proof, i.e., the user will
only be able to transact with those merchants for whom he can produce a valid
authentication path, and (2) to provide a deposit validity proof, i.e., the value of
the deposit is enough to disincentivize double spending.

The full paper [2] of the DAM scheme also provides a proof via induction to
show that the root of a summation Merkle tree contains a value at least as large
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as
∑n
i=1 wi, i.e., the Maxwell protocol is secure. Due to this, the authors believed

that (2) can be achieved. We put the proof from [2] below:

“We proceed via induction on n. The case for n = 1 is trivial. Assume that the
hypothesis is true for n = k. Then we prove that if the k + 1th path is valid, then
the sum at the root is

∑k+1
i=1 wi.

Let the k+ 1th path intersect a previous path pi at an internal vertex v, and let
the values of the two paths at v be different. Since both paths are valid, the hashes
at v must be equal. But these two facts cannot be reconciled unless the collision
resistance of the hash function is broken. Since we assume collision resistance,
this means that the values of v in both pi and pk+1 must be equal. This means that
v ≥ wi + wk+1. Propagating this sum up the tree, we obtain that the sum at the

root must be at least as large as
∑k+1
i=1 wi”

However, our attack in Section 3.1 is a counterexample to the above claimed
result, and hence the proof is defective. The result in the above proof that the
intersection node of any two paths must be equal is correct, which Lemma 1 of
this paper comes to the same result. The problem is, this result cannot deduce
that the value of the intersection node is no less than the sum of its children.

We mention that the summation Merkle tree established in the DAM scheme is
slightly different from the one in the Maxwell protocol as described in Algorithm
1. In the DAM scheme, a leaf node contains a full content of an element of R,
i.e. (apki, wi,di) for some i, rather than only containing wi and a hash result over
(apki, wi,di). Our attack still holds under this difference with a few minor changes:
When an adversaryA, as a user, mounting an attack, he sets each leaf node consists
of an element of R and the value of each internal node of height two equals to the
sum of its child values. For the rest of internal nodes, A follows the instructions in
FORMTREE. Therefore, the root value equals to the maximum sum of two sibling
leaf node values. When A creates a proof for some merchant i, he follows the
procedure CREATEPROOF in Algorithm 2 to obtain a modified authentication
path of the leaf node that associates with i’s information, but remains the content
of the leaf node on the authentication path unchanged. It is easy to check that
when merchant i invokes the procedure VERIFYPROOF to verify a received proof,
the procedure will return TRUE.

The reason for the changes comes from the fact that every merchant infor-
mation (apk,w,d), is available to everyone, and hence a merchant can verify the
integrity of a received leaf node. This renders that a valid proof cannot include a
modified leaf node, thus all parent nodes of leaf nodes, i.e., the internal nodes of
height two, should remain unchanged.

An adversary establishes a modified summation Merkle tree described above,
whose root value equals to the maximum sum of two sibling leaf node values.
He makes transactions to several merchants simultaneously, and multi-spends the
same lottery ticket to these merchants. Because all of the merchants having re-
ceived proofs of liabilities can pass the verifications, they will believe in the validity
of the bound deposit and provide services to the adversary. However, multiple mer-
chants may win the lottery ticket and only one will be able to cash in the lottery
ticket. Of course, the adversary will lose the deposit, he can also gain additional
utility by mounting a multi-spending attack.
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Next, let’s calculate the additional utility an adversary A can obtain from a
multi-spending attack. Only if this value is larger than zero, A has the motivation
to mount such an attack. We remark that for an honest user, he only needs to
pay for the d winners when conducting k micropayments (k ≥ d), rather than all
k micropayments because a lottery ticket is essentially probabilistic. Therefore,
in our multi-spending attack, for the merchant r who wins the lottery ticket and
gets paid, as well as other k − d merchants who do not win, A is honest. For the
remaining d − 1 merchants who won the lottery but didn’t get paid, A is evil.
Thus, A’s additional utility comes from those d− 1 merchants.

Let I be a set containing all d winners’ indexes, r be the index of the merchant
who actually cash in the ticket, and V be the value of A’s deposit. Then A’s
additional utility (AU) is,

AU =
∑

i∈I\{r}

wi − V (1)

Next, we analyze the condition that A can benefit from multi-spending. For
simplicity, we assume a flat model where ∀(i 6= j) ∧ (wi, wj ∈ R), wi = wj = w.
We have,

V = max{wi + wj : ∀wi, wj ∈ R ∧ i 6= j} = 2w (2)∑
i∈I\{r}

wi = (d− 1)w (3)

According to Eq. (1)-(3), when d − 1 > 2, i.e., d > 3, AU > 0. In this condition,
A has the motivation to mount a multi-spending attack.

Now, we are interested in the probability that more than λ (=3) merchants
can win the lottery ticket. Suppose the probability that each merchant can win is
p, and there are k merchants in total. To calculate the probability of a successful
attack, we use the cumulative binomial distribution [22] where X is the random
variable that represents the number of the winning merchants:

P [X > λ] = 1− P [X ≤ λ] = 1−
λ∑
j=0

(
k
j

)
pj(1− p)k−j (4)

Table 1. Expected probability of a successful attack.

p|k 20 30 40 50
0.1 0.133 0.353 0.577 0.750
0.2 0.589 0.877 0.972 0.994

Table 1 displays the evaluation results of Eq. (4) for various window sizes k
both in p = 0.13 and p = 0.2. From a security perspective, the result in Table 1
suggests that the multi-spending attack is a big threat to the DAM scheme.

3 The value p is not specified in the DAM scheme. Here, we adopt p according to another
micropayment scheme [16] using the same idea of probabilistic payments.
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6 Conclusion

Proofs of liabilities are used for exchanges holding a large amount of client
deposits to prove the sums of money they should own. Our results show that
the Merkle approach to prove liabilities is vulnerable. We formalized the Maxwell
protocol and its data structure – the summation Merkle tree. We presented an
attack on the Maxwell protocol that enables an exchange controlling a total of
n client accounts can provide valid liabilities proofs including only one account
balance. We further gave a lower bound of the amount that a verifiable proof
of liabilities can reach without the notice of any client in theory. To repair this
problem, we suggested two improvements and presented a security proof to the
improvement that is closest in spirit to the Maxwell protocol. Furthermore, we
showed that our attack can be carried over to two use cases of the Maxwell protocol
and the underlying summation Merkle tree: the DAM scheme and the Provisions
scheme. For both applications, we suggest to use one of our improvements to fix
the attacks.
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