
Chimeric Ledgers:
Translating and Unifying

UTXO-based and Account-based
Cryptocurrencies

Joachim Zahnentferner
Input Output HK

Hong Kong
Email: chimeric.ledgers@protonmail.com

Abstract

Cryptocurrencies are historically divided in two
broad groups with respect to the style of transactions
that they accept. In the account-based style, each
address is seen as an account with a balance, and
transactions are transfers of value from one account
to another. In the UTXO-based style, transactions
inductively spend outputs generated by previous trans-
actions and create new unspent outputs, and there is no
intrinsic notion of account associated with an address.
Each style has advantages and disadvantages. This
paper formally defines: the two styles; translations
that allow to simulate one style by the other; new
transaction types that allow both styles of transactions
to co-exist on the same ledger; and a new transaction
type that combines features from both styles.

1. Introduction

The rising popularity of various cryptocurrencies
has created a demand for transferring assets from one
cryptocurrency to another. Currently the most common
solution is to use online exchanges, but it requires
trusting the chosen exchanges. Trust on a centralized
exchange not only goes against the usual descen-
tralization principles of cryptocurrencies but also has
already proven to be risky, as there have been many
cases of exchanges that have been hacked and lost
large amounts of assets. Alternative descentralized
solutions, such as descentralized exchanges [1], cross-
chain transactions [2], [3] and side-chains [4], [5]
promise a future where assets can be more freely and
trustlessly moved between distinct cryptocurrencies, or

even between various chains of a multi-layered/multi-
chain cryptocurrency [6], [7].

However, for this future to eventually become a
reality, a clearer and formal understanding of the dif-
ferences between various cryptocurrencies is desirable.
Intuitively, moving assets between cryptocurrencies
with incompatible security properties, monetary poli-
cies or accounting behaviours could be problematic.

The main goal of this paper is to clarify, formalize
and define translations between the two transaction
accounting systems used by cryptocurrencies nowa-
days. The first one, known as UTXO-based (because it
tracks unspent transaction outputs), was introduced by
Bitcoin [8], whereas the second one, called account-
based, is used by Ethereum [9], [10].

There have been many informal discussions com-
paring both accounting approaches, often presenting
reasons to choose one instead of the other (e.g. [11]–
[15]). This paper takes a neutral stance on this debate.
Assuming that each approach has its own advantages
and disadvantages, it is likely that they will co-exist
in the foreseeable future. This paper aims to facilitate
their co-existence, and its main proposal is the notion
of chimeric ledger, which can contain both UTXO-
based and account-based transactions.

The contributions of this paper are:

• formal abstract and minimalistic definitions for
UTXO-based cryptocurrencies (Sec. 3).

• formal abstract and minimalistic definitions for
account-based cryptocurrencies (Sec. 4).
• translations between both approaches (Sec. 5).
• definitions of new transaction types that allow

users to convert their funds between the UTXO-

based and account-based styles of accounting,
enabling chimeric ledgers (Sec. 7).
• definition of a new transaction type, combining

features of UTXO-based transaction and account-
based transaction (Sec. 8).

It should be noted that this paper discusses account-
ing aspects only, intentionally leaving cryptographic
authorization and monetary policy concerns aside. The
rationale for this decision is to provide an independent
accounting foundation on top of which a wide range
of monetary policies and authorizations schemes could
be defined in future work. A reference implementation
in Scala of all concepts defined here is available
(https://gofile.io/?c=hSGlkW). It is recommended to
read the implementation together with the paper.

2. Preliminaries

A blockchain is, as the name suggests, an im-
mutable chain of blocks of data. Blocks are contin-
uously appended to the chain by mutually distrusting
peers. When peers disagree with each other (e.g. on
which block to append), a fork occurs, leading to
competing versions of the chain that differ from each
other on their most recent blocks. Forks are quickly
corrected, because peers follow a consensus protocol
to decide which competing version they should keep.

Cryptocurrencies are blockchain systems where the
block data are transactions transferring values between
addresses. In such systems, the blockchain functions as
a descentralized ledger, maintained by peers reliably
without a central trusted authority. Peers are responsi-
ble for validating and grouping available unprocessed
transactions into a new block and then trying to append
the new block to the chain according to the consensus
protocol. Typically, there is an economic incentive for
this work: if a peer manages to append a block, it
receives all the fees allocated by the transactions in
the block and possibly an additional subsidy of newly
forged money. The forging of new money depends on
the monetary policy of the cryptocurrency.

In the formalism presented here, the technical
details of the underlying blockchain are disregarded,
because only the ledger of transactions (i.e. the data
stored in the blockchain) is of interest. In particular,
it does not matter whether the ledger is stored in a
single chain or in multiple chains (e.g. a main chain
and various sidechains). Furthermore, as the focus is
on the accounting aspects only, the formalism abstracts
away features of cryptocurrencies such as signatures,

scripts and smart contracts. In particular, it does not
matter whether the transactions transfer value directly
(as in Bitcoin) or call smart contracts that indirectly
execute the transfers of value (e.g. as in ERC20 tokens
[16] running on Ethereum). For convenience, a ledger
is assumed to be simply a list of transactions. Never-
theless, the formalism described here is still applicable
to cryptocurrencies that store transactions in graphs
(e.g. IOTA [17]), as long as the graph nodes can be
topologically sorted into a list (as is the case if there
are no circular dependencies between transactions). It
is possible and perhaps helpful, though not necessary,
to associate a state to a ledger and think of any
transaction as a state transition function. The following
sections define various subtypes of Transaction.

Definition 1. A ledger is a list of valid transactions:

Ledger
def
= List[Transaction]

Notations: A record data type with fields ϕ1, . . . , ϕn

of types T1, . . . , Tn is denoted (ϕ1 : T1, . . . , ϕn : Tn).
If t is a value of a record data type T and ϕ is the name
of a field of T , then t.ϕ denotes the value of ϕ for t. A
list λ of type List[T] is either the empty list [] or a list
e :: λ′ with head e of type T and tail λ′ of type List[T].
[e1, . . . , en] is an abbreviation for e1 : : . . . : :en : : [].
λ(i) denotes the i-th element of λ (with the head being
the 0-th element, by convention). The concatenation of
two lists λ1 and λ2 is denoted λ1 : : :λ2. The length
of a list λ is denoted |λ|. A list of integers from
n to m, including n and m, is denoted [n..m]. The
standard equality symbol (=) is used to state that two
values are equal. The definitional equality symbol (def

=)
is used to define the new constant or function symbol
on the left term. The explanatory equality symbol (.=)
is used to explain an introduced value: a sentence such
as “the value v

.
= (n,m) is . . . ” should be read as

“the value v, which is of the form (n,m), is . . . ”. To
ease readability, integer values representing amounts
of money are preceded by $ and values representing
addresses are preceded by @. An anonymous function
that takes a tuple as argument may be denoted as
(a1, . . . , an) ⇒ For instance, the k-th projection
of a tuple may be denoted (a1, . . . , an) ⇒ ak. The
cryptographic collision-resistant hash of an object c is
denoted c#. The assignment of a value c to a variable
v is denoted v ← c.

https://gofile.io/?c=hSGlkW

3. UTXO-Based Cryptocurrencies

In a time where bank accounts are ubiquitous in
financially advanced societies, it is intuitive and natural
to imagine transactions as transfers of value between
accounts. This, however, is not how Bitcoin’s UTXO-
based transactions work. To intuitively understand
UTXO-based transactions, which are formally defined
in Definition 2, it is helpful to think of them in terms
of cash transactions1, where a buyer pays with coins
and notes of various denominations, with a few key
improvements enabled by Bitcoin’s digital nature:

• With cash, denominations are fixed (e.g. notes of
$1, $5, $10, $50, $100 and coins of 50c, 10c, 5c,
. . .). In Bitcoin, denominations are arbitrary.
• With cash, the coins and notes remain intact as

they change hands during a transaction. With bit-
coin, the “coins” of arbitrary denominations spent
by a transaction are essentially destroyed (i.e.
spent as inputs) and new “coins” of equal total
value are created (i.e. the new unspent outputs).
• With cash, if the buyer doesn’t have coins and

notes with the exact value of the item he wants to
purchase, he/she must pay with a value greater
than the value of the item and then hope that
the seller will give back any surplus (i.e. the
“change”) shortly thereafter in a second trans-
action, instead of running away with it. With
Bitcoin, the buyer can create a “coin” (i.e. an
output) with value equal to the surplus and send
it back to himself/herself in the same transaction
where the payment is made.
• A Bitcoin transaction also has a fee indirectly

paid to whoever includes it in the ledger, and
may (under certain conditions) forge value out of
nothing, whereas cash relies on a centralized mint
to forge new coins and notes.

Definition 2. The datatype for UTXO-based transac-
tions is defined2 as:

UtxoTx
def
= (inputs : Set[Input],

outputs : List[Output],

forge : Value, fee : Value)

1. Bitcoin’s cash-like approach can be appreciated from a his-
torical and ideological point of view, considering that Bitcoin was
created with a strong anti-bank sentiment, as evidenced by Satoshi
Nakamoto’s famous message (“The Times 3 January 2009 Chancel-
lor on brink of second bailout for banks”) in Bitcoin’s first block.

2. Normally, a transaction would also include signatures or au-
thorization scripts that determine whether the inputs are allowed to
spend the outputs to which they refer. For the reasons discussed in
Sec. 2, such authorization details are abstracted away here.

The datatype for outputs is:

Output
def
= (address : Address, value : Value)

where value is the value3 of the output and address
is the address that owns it. The datatype for inputs is:

Input
def
= (id : Id, index : Int)

where id is the id4 of a previous transaction to
which this input refers, and index indicates which of
the referred transaction’s outputs should be spent.

The transaction output to which an input refers in a
ledger can be retrieved with the functions of Definition
3. Because the input may refer to a transaction (or its
output) that cannot be found in the ledger, all these
functions have return (monadic) types of the form
Option[X] for some X , whose values may be either
none or some(x) for any x of type X .

Definition 3. The function tx : Input → Ledger →
Option[UtxoTx], when applied to an input i and a
ledger λ, retrieves a transaction t contained in λ such
that t# = i.id , if such a t exists. The function
out : Input → Ledger → Option[Output] returns
tx(i).get.inputs(i.index), if this exists. And finally,
the function value : Input→ Ledger→ Option[Value],
returns out(i).get.value , if this exists.

UTXO-based cryptocurrencies rely on the notion of
unspent transaction outputs. This is usually imagined
to be a set of all the outputs of all the ledger’s transac-
tions that have not been spent yet. Unfortunately, this is
problematic. As an output is essentially just a pair of an
address and a value, there might be several transactions
having equal outputs. A set would treat all these equal
outputs as the same object. A multi-set would not solve
the problem either, because it would not be clear which
copy of an output belongs to which transaction. An
element of the set of unspent transaction outputs needs
to be a reference to a transaction and an output in this
transaction, and this is essentially what an input is.

3. The types Address and Value are regarded here as aliases for
unbounded unsigned non-negative integers.

4. Values of type Id are typically cryptographic collision-resistant
hashes of the transactions to which they refer. Whenever the number
of potential transactions (which is typically infinite) is larger than
the number of possible values of type Id (which is typically, but
not necessarily, finite), the pigeonhole principle guarantees that at
least two transactions will be mapped to the same id. Nevertheless,
a collision-resistant hash function ensures that it is hard to construct
a transaction that will have the same id as another.

Therefore it is helpful to define unspent transaction
outputs as a set of “spendable” inputs.

Definition 4. The unspent outputs of a transaction can
be computed by applying the following function:

unspentOutputs : UtxoTx→ Set[Input]

unspentOutputs(t)
def
= (map

((o, i)⇒ Input(t#, i))

t.outputs.zipWithIndex

).toSet

where: zipWithIndex augments the outputs with
their respective indexes, the anonymous function maps
an output to a spendable input consisting of the transac-
tion’s hash and the output’s index, and toSet converts
the list to a set.

The outputs spent by a transaction are simply the
transaction’s inputs, and can be computed by applying
the following function:

spentOutputs : UtxoTx→ Set[Input]

spentOutputs(t)
def
= t.inputs

In a ledger containing only UTXO-based transac-
tions, the relevant information for the ledger’s state is
its set of unspent outputs, which can be computed by
starting with an empty set for the empty ledger, and
then updating it for every added transaction by remov-
ing the outputs spent by the transaction and adding the
unspent outputs generated by the transaction.

Definition 5. The set of unspent outputs of a ledger
can be computed by applying the following function:

unspentOutputs : Ledger→ Set[Input]

unspentOutputs([])
def
= ∅

unspentOutputs(t : :λ)
def
= unspentOutputs(λ)

− spentOutputs(t)

+ unspentOutputs(t)

For a UTXO-based transaction to be valid, all its
inputs must refer to unspent outputs in the ledger and
value must be preserved, as described in Definition 6.

Definition 6. A UTXO-based transaction t is valid for
a ledger λ iff the following two conditions hold:

all inputs refer to unspent outputs:

∀i ∈ t.inputs, i ∈ unspentOutputs(λ)

value is preserved:

t.forge+
∑

i∈t.inputs

value(i, λ).get = t.fee+
∑

o∈t.outputs

o.value

The balance of an address in a ledger can be defined
as the sum of the values of outputs that have been paid
to the address and that have not been spent yet. To
simplify the definition, it is useful to firstly consider
the balance of an address in a single transaction.

Definition 7. The UTXO-balance of an address a in
a valid transaction t w.r.t. a ledger5 λ is:

BUTXO : Address→ UtxoTx→ Ledger→ Value

BUTXO(a, t, λ)
def
=

∑
o∈t.outputs
o.address=a

o.value −
∑

i∈t.inputs
o′=out(i,λ).get

o′.address=a

o′.value

Now the balance of an address in a ledger can be
defined inductively, treating each transaction’s balance
for the address as a balance update and overloading
the definition of BUTXO through ad-hoc polymorphism.

Definition 8. The UTXO-balance of an address a in
a ledger λ is:

BUTXO : Address→ Ledger→ Value

BUTXO(a, [])
def
= 0

BUTXO(a, t : :λ)
def
= BUTXO(a, λ) + BUTXO(a, t, λ)

The definitions above are illustrated in Example 1.

Example 1. The following are examples of UTXO-
based transactions:

t1
def
= UtxoTx(∅, [Output(@1, $1000)], $1000, $0)

t2
def
= UtxoTx({Input(t#1 , 0)},

[Output(@2, $800),Output(@1, $200)], $0, $0)

t3
def
= UtxoTx({Input(t#2 , 1)}, [Output(@3, $199)], $0, $1)

t4
def
= UtxoTx({Input(t#3 , 0)}, [Output(@2, $207)], $10, $2)

t5
def
= UtxoTx({Input(t#4 , 0), Input(t

#

2 , 0)},
[Output(@2, 500),Output(@3, 500)], $0, $7)

t6
def
= UtxoTx({Input(t#5 , 0), Input(t

#

5 , 1)},
[Output(@3, 999)], $0, $1)

Transaction t1 forges $1000, creates a $1000 coin and
assigns it to address @1. In transaction t2, @1 spends

5. A ledger needs to be passed as an additional argument, because
the transaction does not know the value of its inputs.

it, giving an $800 coin to @2 and a $200 coin back
to itself. In transaction t3, besides a coin to @3, a fee
or tax of $1 is paid. In t4, @3 spends its $199 coin,
forges $10, pays a $2 fee and creates a $207 coin for
@2. In t5, the $207 and $800 coins of @2 are spent
and two $500 coins are created, one of them owned by
@3 and the other owned by @2. In t6 these two coins
are spent, a new $999 coin for @3 is created and a
$1 fee is paid. Each of these transactions is valid for a
ledger consisting of the previous transactions, in order.
In the final ledger λ .

= [t6, t5, t4, t3, t2, t1], the unspent
outputs are: unspentOutputs(λ)

.
= {Input(t#6 , 0)}.

The balance of @3 is BUTXO(@3, λ)
.
= 999; the balance

of any other address is zero. A total of $1010 has been
forged and a total of $11 has been destroyed in fees.

Remarks about Bitcoin: In Bitcoin’s implementation
[18], forge and fee are implicit. The fee is assumed
to be the total value of inputs minus the total value
of outputs in a transaction with at least one input or
zero otherwise, and the forged amount is supposed
to be equal to the total value of the outputs in a
coinbase transaction without inputs or zero otherwise.
The framework presented here is slightly more flexible
and general, because a transaction may simultaneously
have non-zero fee and forge values and may have non-
zero forge values even with a non-empty set of inputs
(as illustrated in transaction t4 in Example 1).

4. Account-Based Cryptocurrencies

Whereas Bitcoin, with its UTXO-based approach,
aimed to be an account-less electronic cash system,
other cryptocurrencies, such as Ethereum and all ERC-
20 tokens, opted for cash-less account-based systems.
An address is seen as an account, and a transaction
transfers a value from one account to another. Every
transaction also contains a unique nonce to protect
against replay attacks6. To allow transactions that just
create money and assign it a receiver or that just take
money from a sender and spend it as fee, both the
sender and the receiver are optional.

Definition 9. The datatype for account-based transac-
tion is defined as:

AccTx
def
= (sender : Option[Address],

receiver : Option[Address],

value : Value, forge : Value, fee : Value,

nonce : Int)

6. Without a unique id, nothing would prevent the receiver of an
authorized transaction from including it multiple times in the ledger.

with the following requirement7:

value is preserved:

t.forge +
∑

s∈s.sender

(t.value + t.fee − t.forge)

=

t.fee+
∑

r∈t.receiver

t.value

The balance of an address in a transaction is what
the address receives (if it is the receiver) minus what
it spends (if it is the sender).

Definition 10. The account-balance of an address a
in a transaction t is:

BACC : Address→ UtxoTx→ Value

BACC(a, t)
def
= received− spent

where :

received = if (a ∈ t.receiver) t.value else 0

spent = if (a ∈ t.sender) t.value + t.fee − t.forge
else 0

As before, the balance of an address in a ledger
can be defined inductively, treating each transaction’s
balance for the address as a balance update.

Definition 11. The account-balance of an address a
in a ledger λ is:

BACC : Address→ Ledger→ Value

BACC(a, [])
def
= 0

BACC(a, t : :λ)
def
= BACC(a, λ) + BACC(a, t, λ)

Definition 12. An account-based transaction t is valid
for a ledger λ iff the following two conditions hold:

sender has enough money:

∀s ∈ t.sender ,BACC(s, λ) ≥ t.value + t.fee − t.forge

transaction is unique: ∀t′ ∈ λ, t′ 6= t

The definitions above are illustrated in Example 2.

7. It trivially holds when both sender and receiver are defined.

Example 2. The following are examples of account-
based transactions:

t1
def
= (none, some(@1), $1000, $1000, $0, 0)

t2
def
= (some(@1), some(@2), $800, $0, $0, 0)

t3
def
= (some(@1), some(@3), $199, $0, $1, 0)

t4
def
= (some(@3), some(@2), $207, $10, $2, 0)])

t5
def
= (some(@2), some(@3), $500, $0, $7, 0)])

t6
def
= (some(@2), some(@3), $499, $0, $1, 0)])

The transactions listed above achieve the same
effects as the transactions in Example 1. In the final
ledger λ .

= [t6, t5, t4, t3, t2, t1], BACC(@3, λ)
.
= 999.

Remarks about Ethereum: Note that Ethereum has
a more strict condition for the transaction’s nonce.
Whereas here it is only required that there be no
t′ ∈ Λ′ such that t′ = t, Ethereum requires that
t.nonce = t∗.nonce + 1, if t∗ is the most recent
transaction in Λ′ such that t∗.sender = t.sender .
The weaker condition used here is sufficient to prevent
replays and allows transactions to be processed in any
order. Ethereum’s condition, on the other hand, gives
users control over the order in which their transac-
tions should be executed and can be more efficiently
checked, as it only requires a comparison with the
most recent transaction from the same sender already
in the ledger. The weaker condition is adopted here,
because it is more general and hence encompasses
also potential account-based cryptocurrencies that are
less strict than Ethereum. In Ethereum, ethers can
be transferred either directly through an externally
created message or through a message created during
the execution of a contract. Ethereum uses the word
“transaction” only for the former.

Remarks about ERC-20 Tokens: In ERC-20 tokens,
value is transferred by sending an Ethereum transaction
that calls the ‘transfer‘ function of the token’s contract.
Although the Ethereum transaction that wraps the func-
tion call has a fee and a nonce, the transfer function
itself has no fee, forge or nonce arguments. Therefore,
the notion of ERC-20 transfer is mostly less general
than this paper’s notion of account-based transaction.
However, because an ERC-20 transfer pays fees in a
different currency (i.e. ethers), the definitions discussed
here would have to be generalized (straightforwardly)
to a multi-currency scenario to fully simulate ERC-20.

5. Translations

As illustrated by examples 1 and 2, it is possible to
have UTXO-based and account-based transactions that
have the same effect. The following two subsections
describe how to translate transactions from one style to
another in general. The translations produce equivalent
transactions in the sense of Definition 13.

Definition 13. A list8 of transactions ` .
= [tn, . . . , t1]

on a ledger λ is equivalent to a list of transactions
`′
.
= [t′m, . . . , t

′
1] on a ledger λ′ iff the following hold:

equal forged amounts: equal fees:∑
t∈`

t.forge =
∑
t′∈`′

t′.forge
∑
t∈`

t.fee =
∑
t′∈`′

t′.fee

balance effects are equal:

∀a,B(a, ` : : :λ)− B(a, λ) = B(a, `′ : : :λ′)− B(a, λ′)

where B(a, λ) def
= BACC(a, λ) + BUTXO(a, λ).

5.1. From Account-Based to UTXO-Based

If t is an account-based transaction, let T ACC

UTXO(t, λ′)
be a UTXO-translation of t for a target ledger λ′
(assumed to be such that BUTXO(s, λ′) ≥ t.value +
t.fee−t.forge, if t’s sender is s) constructed as follows:

1) Let spent def
= t.value+t.fee−t.forge, if t.sender =

some(s), and spent def
= 0, otherwise.

2) Construct a subset I of inputs from
unspentOutputs(λ′) such that ∀i ∈
I, out(i).get.address = t.sender .get and∑

i∈I out(i).get.value ≥ spent
3) If t.receiver = some(r) for some address r,

construct an output Output(r, t.value).
4) If t.sender = some(s) for some address s,

construct an output Output(s, change), where
change = spent− t.value.

5) Let O be a list of outputs containing the outputs
constructed in the previous two steps.

6) Let T ACC

UTXO(t, λ′)
def
= UtxoTx(I,O, t.forge, t.fee).

The following proposition can be proven easily
by analyzing the fours cases depending on whether
t.receiver and t.sender are defined.

Proposition 1. [T ACC

UTXO(t, λ′)] on λ′ is equivalent to [t]
on ledger λ, for any account-based transaction t and

8. Sec. 5.2 clarifies why the definition compares lists of transac-
tions instead of single transactions.

ledgers λ and λ′ such that BACC(s, λ) ≥ spent and
BUTXO(s, λ′) ≥ spent, where spent = t.value + t.fee−
t.forge, if t.sender = some(s) .

In general, many translations are possible, because
there may be many choices of I in step 2.

The translation described above assumes that each
address in the source ledger λ is mapped to the same
single address in the target ledger λ′ (and it may
even be the case that λ′ = λ). It is straightforward
to generalize this translation to the case where each
address in the source ledger is mapped to a set of
addresses in the target ledger. In step 2 it would be
necessary to search for inputs that belong to any of
the addresses in the set to which the sender of t is
mapped. And in steps 3 and 4, it would be necessary
to distribute the value and the change among the
addresses in the sets to which the receiver and the
sender of t are mapped, respectively, thereby creating
a list of outputs instead of a single output in each step.
The distribution leads to more degrees of freedom and
hence to a greater number of possible translations.

5.2. From UTXO-Based to Account-Based

Translating in the other direction is more difficult.

Proposition 2. For an arbitrary UTXO-based trans-
action t on a source ledger λ, there is generally no
account-based transaction t′ and target ledger λ′ such
that [t] on λ is equivalent to [t′] on λ′.

Proof: Consider the ledger λ of Example 1 and a
new transaction

t7
def
= UtxoTx({Input(t#6 , 0)},

[Output(@1, $499),Output(@2, $499)], $0, $1)

which has a single sender (@3) and two different
receivers (@1 and @2). Any account-based transaction
t′ has at most one receiver. Therefore, t′ could transfer
money to @1 or @2, but not to both.

Whenever a UTXO-based transaction has more
than one sender or more than one receiver, it can-
not be translated into a single equivalent account-
based transaction. But it can be translated into a
list of account-based transactions. One way to ap-
proach this problem is to see it as constraint sat-
isfaction problem: if a UTXO-based transaction t
in a ledger λ has n senders and m receivers, an
account-based transaction t′(s,r) may be created for

each pair of sender and receiver (s, r) in such a
way that

∑
s,r
t′(s,r).fee = t.fee,

∑
s,r
t′(s,r)forge =

t.forge,
∑

s
t′(s,r).value =

∑
o∈t.outputs,o.address=r o.value

and
∑

r
(t′(s,r).value + t′(s,r).fee − t′(s,r).forge) =∑

i∈t.inputs,out(i).get.address=s out(i).get.value. This ap-
proach is very general: all possible equivalent non-
redundant9 account-based transaction sequences can be
generated as solutions to this constraint satisfaction
problem. However, it can lead to n×m transactions.

Fortunately, the problem is loosely constrained, and
it is in fact always possible to solve the problem with
at most n + m transactions and at least max(n,m)
transactions. To obtain a solution that is optimal on
the number of transactions, the constraint satisfaction
problem could be turned into an optimization prob-
lem, but solving the optimization problem would be
computationally expensive. Instead, the proposal below
describes a heuristic translation that is guaranteed to
be within these bounds and to run in O(n + m),
although it is not guaranteed to obtain the smallest
possible number of transactions. During its execution,
the translation optimistically expects that it will gen-
erate exactly max(n∗,m∗) account-based transactions
(where n∗ and m∗ are the numbers of senders and
receivers that remain to be considered), and tries (but
doesn’t always perfectly succeed) to distribute the
remaining fee and the remaining forged value evenly
across the generated transactions.

If t is a valid UTXO-based transaction for a source
ledger λ, let T UTXO

ACC
(t, λ) be an account-translation of

t for the source ledger λ constructed as follows:

1) Initialize ss as the list of senders of t (i.e. those
addresses a such that BUTXO(a, t, λ) < 0).

2) Initialize rs as the list of receivers of t (i.e. those
addresses a such that BUTXO(a, t, λ) > 0).

3) Initialize remForge ← t.forge (the remaining
forge) and remFee ← t.fee (the remaining fee).

4) For every s ∈ ss , initialize remSpend(s) ←
−BUTXO(s, t, λ), where remSpend is a map storing
the remaining amount each sender should spend.

5) For every r ∈ rs , initialize remReceive(s) ←
BUTXO(s, t, λ), where remReceive is a map storing
the remaining amount each receiver should receive.

6) Initialize result ← []
7) While ss is non-empty or rs is non-empty, execute

one of the following cases:
A) If both ss and rs are non-empty, let s and r be

their heads and st and rt their tails and do:

9. A sequence of transactions is redundant iff there is more than
one transaction from the same sender to the same receiver.

1. expectNumTrans ← max(|ss|, |rs|)10

2. fee← remFee/expectNumTrans
3. forge← remForge/expectNumTrans
4. v ← remSpend(s)− fee+ forge
5. if v = remReceive(r), do ss ← st and

rs ← rt;
else if v < remReceive(r), do fee ← fee ∗
(v/remReceive(r)) and forge ← forge ∗
(v/remReceive(r)) (reducing the fee and forge
in order to heuristically account for the larger
than expected number of transactions) and
do ss ← st (leaving rs unchanged); oth-
erwise (if v > remReceive)), do fee ←
fee ∗ (remReceive(r)/v), forge ← forge ∗
(remReceive(r)/v) (reducing the fee and forge
in order to heuristically account for the larger
than expected number of transactions), v ←
remReceive(r) and rs ← rt (leaving ss un-
changed).

6. Add the following transaction to result :
AccTx(some(s), some(r), v, forge, fee, 0)

B) If ss is empty, let r be the head and rt the tail
of rs and do:

1. v ← remReceive(r); fee ← remFee/|rs|;
forge← v + fee

2. Add the following transaction to result :
AccTx(none, some(r), v, forge, fee, 0)

3. rs ← rt

C) If rs is empty, let s be the head and st the tail
of ss and do:

1. v ← 0; fee← remFee/|ss|;
forge← fee− remSpend(s)

2. Add the following transaction to result :
AccTx(some(s), none, $0, forge, fee, 0)

3. ss ← st

and then update the state as follows: remForge ←
remForge − forge; remFee ← remFee − fee;
remSpend(s)← remSpend(s)−(v+fee−forge)
and remReceive(r)← remReceive(s)−v (if s and
r are defined, respectively).

8) Let T UTXO
ACC

(t, λ)
def
= result

All account-based transactions generated by the
translation have nonces set to zero by default. Before
using them on a target ledger, it may be necessary to
increment their nonces. Alternatively, the target ledger
could be passed as an extra argument to T UTXO

ACC
, which

would then inspect the target ledger and create trans-
actions with nonces that guarantee uniqueness. The

10. For a pessimistic variant of this optimistic translation, it suf-
fices to modify step 7.A.1 so that expectNumTrans ← |ss|+ |rs|.

translation assumes the target ledger has a permissive
monetary policy that does not restrict forging, and
tries to distribute t.forge evenly across all generated
transactions. If this is not the case, the translation
should be modified to adhere to the monetary policy.
To simplify the presentation, it has been assumed
that an address in the source ledger (of the UTXO-
based transaction) corresponds to the same address
in the target ledger (of the account-based transactions
obtained by translation). It would be straightforward to
generalize the translation to the case where an address
in the source ledger is mapped to another address (or
even to a set of addresses) in the target ledger. The
following propositions hold.

Proposition 3. T UTXO
ACC

(t, λ) on λ′ is equivalent to [t]
on ledger λ, for any UTXO-based transaction t and
ledgers λ and λ′ such that BACC(s, λ

′) ≥ BUTXO(s, t, λ)
for every sender address in t.

Proposition 4. T UTXO
ACC

(t, λ) can be computed in O(n+
m) and in Ω(max(n,m)), where n is the number of
senders and m is the number of receivers of t, and
the number of generated transactions g is such that
max(n,m) ≤ g ≤ n+m.

Proof: Note that, for every iteration of the while
loop, one address is removed from either ss or rs , and
sometimes (when v = remReceive(r) in step 7.A.5)
both ss and rs have an address removed. Therefore, if
n = |ss| and m = |rs| at the beginning, there will be
at least max(n,m) and at most n+m iterations of the
while loop. Since all steps in each iteration can be done
in constant time w.r.t. n and m, the running-time is in
O(n + m) and in Ω(max(n,m)). As every iteration
generates a transaction, the total number of generated
transactions is between max(n,m) and n+m.

6. Comparison and Unification

Despite the accounting equivalence implied by the
translations, Proposition 2 and the translation of Sec.
5.2 show that it is generally necessary to create several
account-based transactions to simulate the effect of
a single UTXO-based transaction. This is important:
while all the value transfers in a single UTXO-based
transaction are processed atomically and simultane-
ously, the corresponding account-based transactions
are not guaranteed to be so. Theoretically, there may
be a wide time gap between their executions.

Moreover, whereas a single UTXO-based transac-
tion with multiple inputs and outputs does not need

to match senders with receivers, the corresponding
sequence of account-based transaction must do so,
arbitrarily, even though this information may be irrele-
vant. A consequence of this fact is that a single UTXO-
based transaction with multiple inputs and outputs
can be (linearly) more concise than the corresponding
sequence of account-based transactions.

On the other hand, account-based transactions are
clearly simpler and more concise for transfers between
two addresses, because the change’s value and destina-
tion do not need to be explicitly stated. Furthermore,
value preservation is something that depends only on
the transaction itself (and is even trivial when both
sender and receiver are defined), whereas checking
value preservation with UTXO requires searching the
values of the unspent outputs referred by the inputs and
hence does not depend only on the transaction itself.

Algebraically, the operation of composition of two
UTXO-based transactions is easily definable (i.e. as
long as the two transactions do not spend the same
unspent output, there is another UTXO-based transac-
tion that has the same effect as the two transactions
combined), whereas account-based transactions can
only be composed into a single new account-based
transaction if they involve the same addresses.

There are two trivial solutions for the problem of
lack of atomicity in the account-based style. Firstly, a
new “wrapper” transaction type could be defined, to
contain a list of account-based transactions that ought
to be executed atomically. Secondly, the account-based
transaction type AccTx could be modified to include an
optional pointer to another account-based transaction,
and the notion of ledger could be modified to only
allow the simultaneous inclusion of such chains of
account-based transactions. However, a better solution,
that unifies ideas from both styles and combines their
above mentioned advantages, is proposed below.

Definition 14. The hybrid transaction type is:

HybridTx
def
= (inputs : Map[Address,Value],

outputs : Map[Address,Value],

forge : Value, fee : Value,nonce : Int)

requiring value preservation.

The inputs and outputs are simply maps from
addresses to values that they spend or receive through
the transaction. The transaction updates the account
balances of these addresses as expected. To be valid,
senders of a hybrid transaction must have a positive
balance on the ledger and the transaction must be
unique.

7. Chimeric Ledgers

Definition 1 already allows a ledger to contain
transactions of various types. However, for UTXO- and
account-based transactions to co-exist meaningfully,
users should be able to convert their UTXO balances
into account balances and vice versa. The conversion
can be enabled through new transaction types.

Definition 15. The type for deposit transactions is:

DepTx
def
= (inputs : Set[Input], depositor : Address,

forge : Value, fee : Value)

The type for withdrawal transactions is:

WithTx
def
= (withdrawer : Address, outputs : List[Output],

forge : Value, fee : Value,nonce : Int)

Through the analogy that sees UTXO-based trans-
actions as cash-like transfers and account-based trans-
actions as bank account transfers, it can be said that
a deposit transaction takes coins and notes of various
denominations (i.e. the inputs) and deposits them in the
depositor’s account. The inputs are considered spent,
and the account balance of the depositor’s address
is increased by an amount equal to what has been
spent minus the fee and plus any forged amount. A
withdrawal transaction does the opposite. It reduces
the account balance of the withdrawer’s address by an
amount equal to the total value of the withdrawn coins
and notes (i.e. the generated outputs) plus the fee and
minus the forged amount.

8. Discussion

Related Work: The definitions in Sec. 3 are inspired
by similar definitions in [19], [20] and [21]. In contrast
to those works, the framework described here has
explicit fees and forged values and focuses only on
accounting. The definitions in Sec. 4 aim to be a sim-
plification and generalization, again focusing only on
accounting, of similar definitions in [10] and [16]. The
work in [22] presents a formal graph-based framework
that can be instantiated to both UTXO and account-
based transactions.

Hybrid transactions combine the best of both styles.
They have the atomicity and algebraic elegance of
UTXO-based transactions and the simplicity and lo-
cality of account-based transactions.

With a chimeric ledger, the dilemma of choos-
ing between UTXO and account-based styles can be
avoided. Instead, both transaction styles are offered,
and users may choose whatever they prefer. If there
is any difference between the two styles (e.g. storage
space, processing time, privacy, suitability for smart
contracts, . . .), the free market would naturally price
each transaction style differently.

The new deposit and withdrawal transaction types
may be helpful to describe the transfer of assets
between a main chain and a sidechain when each
chain uses a different accounting style. Furthermore,
they could also be useful in scenario where account-
based smart contracts needed to be executed in a
mostly UTXO-based ledger: a contract could receive
funds through a deposit transaction and pay out
funds through withdrawal transaction. Alternatively,
the translations defined in Sec. 5 could be used to allow
smart contracts to operate directly with UTXO under
the surface, although with an account-based semantics
in the programming language level.

The minimalistic abstract and general models pre-
sented in sections 3 and 4 can be (and have already
been) used for test-driven development of software
wallets. Planned future work includes extending these
models to the multi-asset case, and developing mone-
tary policy layers on top of these models.

Acknowledgments: the author is grateful to Alexander
Chepurnoy, Duncan Coutts, Edsko de Vries, Philipp
Kant and Philip Wadler for fruitful discussions on
drafts of this paper.

References

[1] “Bisq: The peer-to-peer bitcoin exchange.” [Online].
Available: https://github.com/bisq-network/docs/blob/
master/exchange/whitepaper.adoc

[2] “Atomic cross-chain trading,” Bitcoin-Wiki.
[Online]. Available: en.bitcoin.it/wiki/Atomic_
cross-chain_trading

[3] M. Herlihy, “Atomic cross-chain swaps,” CoRR, vol.
abs/1801.09515, 2018.

[4] A. Back, M. Corallo, L. Dashjr, M. Friedenbach,
G. Maxwell, A. Miller, A. Poelstra, J. Timoón,
and P. Wuille, “Enabling blockchain innovations
with pegged sidechains,” 2014. [Online]. Available:
https://www.blockstream.com/sidechains.pdf

[5] A. Kiayias, N. Lamprou, and A. Stouka, “Proofs
of proofs of work with sublinear complexity,” in
Financial Cryptography and Data Security - FC 2016
International Workshops, 2016, pp. 61–78.

[6] “Cardano.” [Online]. Available: whycardano.com/

[7] “Chainweb: A proof-of-work parallel-chain ar-
chitecture for massive throughput (draft v15),”
2018. [Online]. Available: http://kadena.io/docs/
chainweb-v15.pdf

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008.

[9] V. Buterin, “Ethereum: A next generation
smart contract & decentralized application
platform,” Ethereum Project White Paper, 2014.
[Online]. Available: http://www.the-blockchain.
com/docs/Ethereum_white_paper-a_next_generation_
smart_contract_and_decentralized_application_
platform-vitalik-buterin.pdf

[10] G. Wood, “Ethereum: A secure decentralised
generalised transaction ledger,” Ethereum Project
Yellow Paper, 2014. [Online]. Available: https:
//ethereum.github.io/yellowpaper/paper.pdf

[11] V. Buterin, “Thoughts on utxos,”
Medium.com, 2016. [Online]. Avail-
able: https://medium.com/@ConsenSys/
thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53

[12] M. Hearn, “Rationale for and tradeoffs in
adopting a utxo-style model,” Corda Blog, 2016.
[Online]. Available: https://www.corda.net/2016/12/
rationale-tradeoffs-adopting-utxo-style-model/

[13] P. Dai, “Why qtum chose utxo model and the benefits,”
8BTC, 2017. [Online]. Available: http://news.8btc.
com/why-qtum-choose-utxo-model-and-the-benefits

[14] “Design rationale: Blockchain-level protocol:
Account and not utxos,” Ethereum Wiki, 2017.
[Online]. Available: https://github.com/ethereum/wiki/
wiki/Design-Rationale#accounts-and-not-utxos

[15] “Utxo model vs. account/balance
model (forum thread),” StackExchange:
Bitcoin, 2017. [Online]. Available:
https://bitcoin.stackexchange.com/questions/49853/
utxo-model-vs-account-balance-model

[16] F. Vogesteller and V. Buterin, “ERC-20 token
standard,” EIPs, 2015. [Online]. Available: github.
com/ethereum/EIPs/blob/master/EIPS/eip-20.md

[17] S. Popov, “The tangle,” IOTA White Paper, 2017.
[Online]. Available: iota.org/IOTA_Whitepaper.pdf

https://github.com/bisq-network/docs/blob/master/exchange/whitepaper.adoc
https://github.com/bisq-network/docs/blob/master/exchange/whitepaper.adoc
en.bitcoin.it/wiki/Atomic_cross-chain_trading
en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://www.blockstream.com/sidechains.pdf
whycardano.com/
http://kadena.io/docs/chainweb-v15.pdf
http://kadena.io/docs/chainweb-v15.pdf
http://www.the-blockchain.com/docs/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://www.the-blockchain.com/docs/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://www.the-blockchain.com/docs/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://www.the-blockchain.com/docs/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://www.corda.net/2016/12/rationale-tradeoffs-adopting-utxo-style-model/
https://www.corda.net/2016/12/rationale-tradeoffs-adopting-utxo-style-model/
http://news.8btc.com/why-qtum-choose-utxo-model-and-the-benefits
http://news.8btc.com/why-qtum-choose-utxo-model-and-the-benefits
https://github.com/ethereum/wiki/wiki/Design-Rationale#accounts-and-not-utxos
https://github.com/ethereum/wiki/wiki/Design-Rationale#accounts-and-not-utxos
https://bitcoin.stackexchange.com/questions/49853/utxo-model-vs-account-balance-model
https://bitcoin.stackexchange.com/questions/49853/utxo-model-vs-account-balance-model
github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
iota.org/IOTA_Whitepaper.pdf

[18] “Transaction,” Bitcoin Wiki, July 2017. [Online].
Available: https://en.bitcoin.it/wiki/Transaction

[19] B. White, “A theory for lightweight cryptocurrency
ledgers,” 2015. [Online]. Available: https://github.
com/ceilican/ledgertheory/blob/master/lightcrypto.pdf

[20] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino,
“A formal model of bitcoin transactions,” Cryptology
ePrint Archive, 2017. [Online]. Available: https:
//eprint.iacr.org/2017/1124.pdf

[21] A. Chepurnoy, “The blockchain and the scorex
tutorial,” Scorex Foundation, Tech. Rep., 2016. [On-
line]. Available: https://github.com/ScorexFoundation/
ScorexTutorial/blob/master/scorex.pdf

[22] C. Cachin, A. De Caro, P. Moreno-Sanchez, B. Tack-
mann, and M. Vukolić, “The transaction graph for
modeling blockchain semantics,” 2017.

-----BEGIN PGP MESSAGE-----

hQEMA3mYtjIcCbbOAQf/ci71Krwdlkd3ZzsoAkZdMKQYseQxI1YAxqEeshvnqcDJ
aCbKf5YXMdxEjumXW9EvTzjG8PnkLfviN9tpPWxmTujX0JcoiBkZ/CGSeO2msuhd
tC+W9xn5z0+Z7p4HZPRFfiZ4ZmlBow77JFRMcqqf/0G/eZ+7kkigECZzs9bBE4b+
kG3EFl268D69JVu6q1eiyybF6U9D8OmDK4kRA3LuPyzqrE8sfdUDW8U0AuSUIsfY
YW8Jy6TdgikEDq6NzSS6X/jcjBq03XM3HJvA78l2XIooNSFKyoXWcJHTe9J+zXHe
krtnsI8Q/5US/C3FK/fX77k2gIKNgO8lYZQrQztBLNLA7AGYfZvDVc7WGliw8UJn
wPlJR6DUuOLvo1laej70hYHvLqFQFoLjS0KzM77uaftXWpEIc+ETY4eD6mEthBnz
kLraN9ZRhu3u8yunuIpBrSIpX50EXKwOA/aUhTvuR8ZH9GEMVyL3tpqxNbUFbSTp
lXElcCeE7TkcORLpV8E/NzPFk2TlazRl8iHGepLR7vw1DT66H3xN4+qcI2FwtEs8
5rDKq6NDkhPKNC8IsYcdtmNzdy1CK2KbD3lBrEB3io1DvU2sD20a+NEsl8MeMknY
YW5GZ75y8W3YfL5/S0pVB6RqanpyZIHcq2P6wMYojpPhnPc500chOYGdLHeKwlJL
uEC3dE0Mg3LBtkBWQTiNXF/Nk02WS4YmTZJROI7oZnlGuoIZYDkj3r/WaJHTZd7K
7A7BhxJSiDbj5uC2F/cpBduHV6mtdpByv87wXWF1JMNFWcVow0x99gg1j/aCCToE
fjO1/sqpsxoo4jNqr9kREqpVYghoayxNy0fQYfew/aaP0p382gfKEbDeEhNfMV+f
Gq3MDJfGuUmfFyDnGLvr/fZu8o83elb446mwtBj+
=cj7k
-----END PGP MESSAGE-----

https://en.bitcoin.it/wiki/Transaction
https://github.com/ceilican/ledgertheory/blob/master/lightcrypto.pdf
https://github.com/ceilican/ledgertheory/blob/master/lightcrypto.pdf
https://eprint.iacr.org/2017/1124.pdf
https://eprint.iacr.org/2017/1124.pdf
https://github.com/ScorexFoundation/ScorexTutorial/blob/master/scorex.pdf
https://github.com/ScorexFoundation/ScorexTutorial/blob/master/scorex.pdf

	Introduction
	Preliminaries
	UTxO-Based Cryptocurrencies
	Account-Based Cryptocurrencies
	Translations
	 From Account-Based to UTxO-Based
	 From UTxO-Based to Account-Based

	Comparison and Unification
	Chimeric Ledgers
	Discussion
	References

