
Testing the Randomness of Cryptographic
Function Mappings

Alan Kaminsky

ark@cs.rit.edu
Rochester Institute of Technology, Rochester, NY, USA

January 23, 2019

Abstract. A cryptographic function with a fixed-length output, such as
a block cipher, hash function, or message authentication code (MAC),
should behave as a random mapping. The mapping’s randomness can be
evaluated with statistical tests. Statistical test suites typically used to
evaluate cryptographic functions, such as the NIST test suite, are not
well-suited for testing fixed-output-length cryptographic functions. Also,
these test suites employ a frequentist approach, making it difficult to
obtain an overall evaluation of the mapping’s randomness. This paper
describes CryptoStat, a test suite that overcomes the aforementioned
deficiencies. CryptoStat is specifically designed to test the mappings of
fixed-output-length cryptographic functions, and CryptoStat employs a
Bayesian approach that quite naturally yields an overall evaluation of
the mappings’ randomness. Results of applying CryptoStat to reduced-
round and full-round versions of the AES block ciphers and the SHA-
1 and SHA-2 hash functions are reported; the results are analyzed to
determine the algorithms’ randomness margins.

Keywords: Statistical tests, Bayesian model selection, AES block ci-
pher, SHA-1 hash function, SHA-2 hash function

1 Introduction

A cryptographic function, loosely speaking, is supposed to produce random-
looking outputs. The outputs’ randomness can be evaluated using a pseudoran-
dom number generator (PRNG) statistical test suite, which applies a series of
statistical tests to the outputs. Widely used statistical test suites include Diehard
[16], Dieharder [3], ENT [24], TestU01 [15], and the NIST test suite [19, 21].

Although the NIST test suite’s title asserts that it is “for cryptographic
applications,” the NIST test suite is in fact a general-purpose statistical test suite
for evaluating the randomness of binary sequences—in contrast to statistical tests
on sequences of uniformly distributed integers or real numbers, as are typically
found in other test suites. The NIST test suite does not care where the binary
sequences come from, whether from a cryptographic function or some other
source. The official document [19] just describes the 15 statistical tests in the
test suite and discusses how to interpret the test results.

In practice, two problems arise when using the NIST test suite (or any of
the popular statistical test suites) to evaluate a cryptographic function that
produces a fixed-length output, such as a block cipher, hash function, message
authentication code (MAC), or sponge bijection. For brevity, henceforth “block
cipher” will refer to other fixed-output-length cryptographic functions as well.

The first problem stems from the fact that a block cipher is not itself a
PRNG; it does not generate an arbitrarily-long binary sequence. Rather, the
block cipher takes a fixed-length plaintext plus a fixed-length key and maps
these to a fixed-length ciphertext. The mapping is supposed to be random, in
two senses: a given key should map different plaintexts to ciphertexts that look
as though chosen at random, and different keys should map a given plaintext
also to ciphertexts that look as though chosen at random.

To apply the NIST test suite to a block cipher, the block cipher must be
made to behave like a PRNG and generate (typically long) binary sequences.
The official document [19] does not specify how to do this. NIST did publish
a document [22] describing how NIST made the AES finalist candidate block
ciphers generate long binary sequences. One technique was to encrypt a long
string of 0s using the block cipher in cipher block chaining (CBC) mode with
various randomly chosen keys, and to apply the test suite to the resulting ci-
phertext strings. Another technique was similar, except a long string of mostly
0s with a few 1s was encrypted using the block cipher in electronic codebook
(ECB) mode. Several other techniques were used as well; see [22].

However, when the block cipher is turned into a PRNG and the NIST (or
other) test suite is applied, it is the PRNG’s randomness that is being tested,
not the randomness of the block cipher mapping itself. If a nonrandom bias is
detected in the output, it is not clear whether the bias is inherent in the block
cipher or is an artifact of the mode in which the block cipher is employed.

For example, a block cipher operated in output feedback (OFB) mode is
likely to experience a keystream block collision and start repeating the keystream
after encrypting about 2n/2 blocks, where n is the block size (due to the birthday
paradox). This does not happen when the block cipher is operated in, say, counter
mode. Thus, the slight bias in the OFB keystream arises from the use of OFB
mode, not from the block cipher itself; and this bias would be present even if the
block cipher mapping was perfectly random. Note that encrypting a string of 0s
with a block cipher in CBC mode is identical to generating a keystream with a
block cipher in OFB mode; thus, at least one of NIST’s statistical tests on the
AES finalist candidates had a slight inherent bias due to the block cipher mode.

As another example, El-Fotouh and Diepold [6] found that AES would fail
some of the tests in the NIST test suite when operated in certain modes, but
would pass all the tests when operated in other modes. Again, this implies that
the bias is due to the mode of operation, not the block cipher mapping.

To summarize, the NIST test suite is not well suited for evaluating block
ciphers (or other fixed-output-length cryptographic functions). It would be bet-
ter to use statistical tests that evaluated the randomness of the block cipher
mapping directly, without needing to turn the block cipher into a PRNG.

The second problem that arises in practice stems from the fact that the NIST
test suite, like most test suites, takes a frequentist approach to statistical testing.
That is, from the binary sequence being analyzed, each test calculates a statistic
and a p-value. The p-value is the probability that the observed value of the
statistic would occur by chance, even if the binary sequence is actually random.
If the p-value falls below a significance threshold, the test fails (and indicates
nonrandomness), otherwise the test passes.

The NIST test suite consists of 15 statistical tests, some of which have mul-
tiple variations. Each test and variation is applied to multiple binary sequences
produced by the PRNG (block cipher) under test, yielding perhaps several hun-
dred p-values. Usually, some of these tests fail. Does this mean the PRNG is
nonrandom? Not necessarily. If the PRNG is random, the p-values should be
uniformly distributed between 0 and 1, and we would expect a certain fraction
of them to fall below the significance threshold. So the NIST test suite applies
a “second-level” statistical test to the p-values for each “first-level” test to de-
termine whether the test’s p-values are uniformly distributed. Each second-level
test yields a second-level p-value, which might pass or fail. From this morass
of first- and second-level p-values, the analyst must decide whether the binary
sequences, and the block cipher that produced them, are random or nonrandom.

The frequentist approach does not specify a procedure for combining multiple
p-values into a single number that yields an overall random/nonrandom decision.
As an alternative, a Bayesian testing methodology does specify how to combine
multiple test results into a single number, the posterior odds ratio, which in turn
determines whether the block cipher mapping is random or nonrandom. However,
none of the widely used statistical test suites takes a Bayesian approach.

This paper’s novel contributions are threefold:

– Odds ratio tests are described. The odds ratio tests use the methodology of
Bayesian model selection to decide whether a sequence of integers obeys a
specified discrete distribution. Multiple individual odds ratio test results are
easily aggregated together to yield a single overall test result.

– CryptoStat, a randomness test suite for cryptographic functions, is described.
CryptoStat evaluates a function’s input-to-output mapping directly, without
needing to turn the function into a PRNG. CryptoStat performs multiple
odds ratio tests and aggregates the results to yield a clear random/nonrandom
decision.

– CryptoStat is applied to reduced-round and full-round versions of the AES
block cipher variations and the SHA-1 and SHA-2 hash function variations,
and the results are reported. The results reveal each algorithm’s randomness
margin—the number of rounds for which the algorithm produces random
outputs, as a fraction of the full number of rounds.

The rest of the paper is organized as follows. Section 2 summarizes related
work. Section 3 reviews the mathematics of Bayesian inference and describes the
odds ratio tests. Section 4 describes the CryptoStat test suite and the massively
parallel programs that speed up CryptoStat’s calculations; the programs are

designed to run on the many cores of a graphics processing unit (GPU). Section
5 lists and analyzes CryptoStat’s results for AES, SHA-1, and SHA-2.

2 Related Work

Several authors have studied the randomness of block ciphers by turning the
block cipher into a PRNG and applying standard statistical tests to the PRNG.
As already mentioned, NIST turned the AES finalist candidate block ciphers
into PRNGs and applied the NIST test suite [22]. Hellekalek and Wegenkittl
[8] turned AES into a PRNG and applied several tests from the NIST test
suite as well as a new test, the gambling test, to AES. The designers of the
HIGHT [9] and TWIS [17] lightweight block ciphers turned their ciphers into
PRNGs and applied the NIST test suite. Sulak, Doğanaksoy, Ege, and Koçak
[23] treated a block cipher as a PRNG that generates short binary sequences
(128–256 bits); they modified seven of the 15 statistical tests in the NIST test
suite to operate on such short binary sequences, and they applied the modified
tests to the AES finalist candidate block ciphers. The technique has also been
used on cryptographic functions other than block ciphers. Wang and Zhang
turned the SHA-3 candidate BLAKE hash function into a PRNG and applied
the NIST test suite [25].

Some authors (such as [9] and [17]) merely make a vague statement to the
effect that “We applied the NIST test suite, and our cipher passed,” leaving
the impression that the NIST test suite yields an unequivocal yes/no, ran-
dom/nonrandom decision about the block cipher under test. In fact, the NIST
test suite does not yield such a decision (nor do similar test suites). The authors
have not reported the detailed test results and the nuanced analysis of those
results that led them to conclude that their ciphers “passed.”

CryptoStat analyzes the randomness of a cryptographic function’s mapping
directly, without treating the function as a PRNG. Other authors have used
this approach as well. Filiol [7] defined a statistical test based on comparing
a cryptographic function’s algebraic normal form to that of a random Boolean
function, and applied the test to the DES and AES block ciphers as well as
several stream ciphers and hash functions. Katos [13] defined a statistical test to
measure the diffusion of the block cipher’s mapping, but did not apply the test
to any actual block ciphers. Doğanaksoy, Ege, Koçak, and Sulak [4] defined four
statistical tests based on the block cipher mapping—strict avalanche criterion
test, linear span test, collision test, and coverage test—and applied these tests
to the AES finalist candidate block ciphers. The same authors also applied the
methodologies of [23] and [4] to the compression functions of the SHA-3 second-
round candidate hash functions [5].

All of the above works used a frequentist methodology (based on p-values) to
analyze the statistical test results. To my knowledge, CryptoStat is the first to
use a Bayesian methodology (based on odds ratios). The Bayesian methodology
quite naturally combines the results of individual tests into an overall odds ratio,

yielding an unequivocal decision about whether the reduced-round or full-round
cryptographic function is random or nonrandom (refer to Section 3.4).

3 Odds Ratio Tests

Odds ratio tests are an alternative to frequentist statistical tests such as the
chi-square test. A strong point of odds ratio tests is that the results of multiple
independent tests can easily be aggregated to yield a single overall result. Odds
ratio tests use the methodology of Bayesian model selection applied to binomial
distributions. For more information about Bayesian model selection, see [12].

3.1 Bayes Factors and Odds Ratios

Let H denote a hypothesis, or model, describing some process. Let D denote
an experimental data sample, or just sample, observed by running the process.
Let pr(H) be the probability of the model. Let pr(D|H) be the conditional
probability of the sample given the model. Let pr(D) be the probability of the
sample, apart from any particular model. Bayes’s Theorem states that pr(H|D),
the conditional probability of the model given the sample, is

pr(H|D) =
pr(D|H) pr(H)

pr(D)
. (1)

Suppose there are two alternative models H1 and H2 that could describe a
process. After observing sample D, the posterior odds ratio of the two models,
pr(H1|D)/pr(H2|D), is calculated from Equation (1) as

pr(H1|D)

pr(H2|D)
=

pr(D|H1)

pr(D|H2)
· pr(H1)

pr(H2)
,

where the term pr(H1)/pr(H2) is the prior odds ratio of the two models, and the
term pr(D|H1)/pr(D|H2) is the Bayes factor. The odds ratio represents one’s
belief about the relative probabilities of the two models. Given one’s initial belief
before observing any samples (the prior odds ratio), the Bayes factor is used to
update one’s belief after performing an experiment and observing a sample (the
posterior odds ratio). Stated simply, posterior odds ratio = Bayes factor × prior
odds ratio.

Suppose two experiments are performed and two samples, D1 and D2, are ob-
served. Assuming the samples are independent, it is straightforward to calculate
that the posterior odds ratio based on both samples is

pr(H1|D2, D1)

pr(H2|D2, D1)
=

pr(D2|H1)

pr(D2|H2)
· pr(H1|D1)

pr(H2|D1)
(2)

=
pr(D2|H1)

pr(D2|H2)
· pr(D1|H1)

pr(D1|H2)
· pr(H1)

pr(H2)
.

In other words, the posterior odds ratio for the first experiment becomes the
prior odds ratio for the second experiment. Equation (2) can be extended to
any number of independent samples Di; the final posterior odds ratio is just the
initial prior odds ratio multiplied by all the samples’ Bayes factors.

Model selection is the problem of deciding which model, H1 or H2, is better
supported by a series of one or more samples Di. In the Bayesian framework,
this is determined by the posterior odds ratio (2). Henceforth, “odds ratio” will
mean the posterior odds ratio. If the odds ratio is greater than 1, then H1’s
probability is greater than H2’s probability, given the data; that is, the data
supports H1 better than it supports H2. The larger the odds ratio, the higher
the degree of support. An odds ratio of 100 or more is generally considered to
indicate decisive support for H1 [12]. If on the other hand the odds ratio is less
than 1, then the data supports H2 rather than H1, and an odds ratio of 0.01 or
less indicates decisive support for H2.

3.2 Models with Parameters

In the preceding formulas, the models had no free parameters. Now suppose
that model H1 has a parameter θ1 and model H2 has a parameter θ2. Then the
conditional probabilities of the samples given each of the models are obtained
by integrating over the possible parameter values [12]:

pr(D|H1) =

∫
pr(D|θ1,H1)π(θ1|H1) dθ1 (3)

pr(D|H2) =

∫
pr(D|θ2,H2)π(θ2|H2) dθ2 (4)

where pr(D|θ1, H1) is the probability of observing the sample under model H1

with the parameter value θ1, π(θ1|H1) is the prior probability density of θ1 under
model H1, and likewise for H2 and θ2. The Bayes factor is then the ratio of these
two integrals.

3.3 Odds Ratios for Binomial Models

Suppose an experiment performs n Bernoulli trials, where the probability of
success is θ, and counts the number of successes k, which obeys a binomial
distribution. The values n and k constitute the sample D. With this as the
model H, the probability of D given H with parameter θ is

pr(D|θ,H) =

(
n

k

)
θk(1− θ)n−k =

n!

k! (n− k)!
θk(1− θ)n−k .

Consider the odds ratio for two particular binomial models, H1 and H2. H1

is that the Bernoulli success probability θ1 is a certain value p, the value that
the success probability is “supposed” to have. Then the prior probability density

of θ1 is a delta function, π(θ1|H1) = δ(θ1 − p), and the Bayes factor numerator
(3) becomes

pr(D|H1) =
n!

k! (n− k)!
pk(1− p)n−k .

H2 is that the Bernoulli success probability θ2 is some unknown value between
0 and 1, not necessarily the value it is “supposed” to have. The prior probability
density of θ2 is taken to be a uniform distribution: π(θ2|H2) = 1 for 0 ≤ θ2 ≤ 1
and π(θ2|H2) = 0 otherwise. The Bayes factor denominator (4) becomes

pr(D|H2) =

∫ 1

0

n!

k! (n− k)!
θk2 (1− θ2)

n−k dθ2 =
1

n+ 1
.

Putting everything together, the Bayes factor for the two binomial models is

pr(D|H1)

pr(D|H2)
=

(n+ 1)!

k! (n− k)!
pk(1− p)n−k .

Substituting the gamma function for the factorial, n! = Γ(n+ 1), gives

pr(D|H1)

pr(D|H2)
=

Γ(n+ 2)

Γ(k + 1)Γ(n− k + 1)
pk(1− p)n−k .

Because the gamma function’s value typically overflows the range of floating
point values in a computer program, we compute the logarithm of the Bayes
factor instead of the Bayes factor itself:

log
pr(D|H1)

pr(D|H2)
= log Γ(n+ 2) − log Γ(k + 1) − log Γ(n− k + 1) (5)

+ k log p + (n− k) log(1− p) .

The log-gamma function can be computed efficiently (see [18] page 256), and
mathematical software libraries usually include log-gamma.

3.4 Odds Ratio Test

The preceding experiment can be viewed as a test of whether H1 is true, that is,
whether the success probability is p. The log (posterior) odds ratio of the models
H1 and H2 is the log prior odds ratio plus the log Bayes factor (5). Assuming
that H1 and H2 are equally probable at the start, the log odds ratio is just the
log Bayes factor. The test passes if the log odds ratio is greater than 0, otherwise
the test fails.

When multiple independent runs of the preceding experiment are performed,
the overall log odds ratio is the sum of all the log Bayes factors. In this way, one
can aggregate the results of a series of individual tests, yielding an overall odds
ratio test. Again, the aggregate test passes if the overall log odds ratio is greater
than 0, otherwise the aggregate test fails.

Note that the process of aggregating the individual test results automatically
deals with the situation where most of the individual tests passed but some of
the individual tests failed (or vice versa). As long as the overall log odds ratio
is positive, the aggregate test passes, despite the existence of individual test
failures. The analyst need only consider the aggregate result, not the individual
results.

Note also that the odds ratio test is not a frequentist statistical test that
is attempting to disprove some null hypothesis. The odds ratio test is just a
particular way to decide how likely or unlikely it was that a series of observations
came from a Bernoulli(p) distribution, by calculating a posterior odds ratio.
While a frequentist statistical test could be defined based on odds ratios, I am
not doing that here.

3.5 Odds Ratio Test for a Discrete Distribution

Consider a discrete random variable X. The variable has B different possible
values (“bins”), 0 ≤ x ≤ B − 1. Let pr(x) be the probability of bin x; then the
variable’s cumulative distribution function is

F (x) =
x∑

i=0

pr(i) , 0 ≤ x ≤ B − 1 . (6)

Suppose an experiment with n trials is performed. In each trial, the random
variable’s value is observed, and a counter for corresponding bin is incremented.
If the variable obeys the distribution (6), the counter for bin x should end up at
approximately n · pr(x).

An odds ratio test for the random variable calculates the odds ratio of two
hypotheses: H1, that X obeys the discrete distribution with cumulative distribu-
tion function (6), and H2, that X does not obey this distribution. First calculate
the observed cumulative distribution of X:

Fobs(x) =
1

n

x∑
i=0

counter[i] , 0 ≤ x ≤ B − 1 .

Let y be the bin such that the absolute difference |F (y)−Fobs(y)| is maximized.
(This is similar to what is done in a Kolmogorov-Smirnov test for a continuous
distribution.) The trials are now viewed as Bernoulli trials, where incrementing
a bin less than or equal to y is a success, the observed number of successes in n
trials is k = n ·Fobs(y), and the success probability if H1 is true is p = F (y). An
odds ratio test for the discrete distribution (H1 versusH2) is therefore equivalent
to an odds ratio test for this particular binomial distribution, with Equation (5)
giving the log Bayes factor. If the log Bayes factor is greater than 0, then the
observed distribution is close enough to the expected distribution that H1 is
more likely than H2, and the test passes. Otherwise, the observed distribution
is far enough away from the expected distribution that H2 is more likely than
H1, and the test fails.

Table 1. Discrete uniform distribution odds ratio test data; test passes

x counter[x] Fobs(x) F (x) |F (x) − Fobs(x)|
0 99476 0.099476 0.1 0.000524
1 100498 0.199974 0.2 0.000026
2 99806 0.299780 0.3 0.000220
3 99881 0.399661 0.4 0.000339
4 99840 0.499501 0.5 0.000499
5 99999 0.599500 0.6 0.000500
6 99917 0.699417 0.7 0.000583
7 100165 0.799582 0.8 0.000418
8 100190 0.899772 0.9 0.000228
9 100228 1.000000 1.0 0.000000

Table 2. Discrete uniform distribution odds ratio test data; test fails

x counter[x] Fobs(x) F (x) |F (x) − Fobs(x)|
0 101675 0.101675 0.1 0.001675
1 101555 0.203230 0.2 0.003230
2 100130 0.303360 0.3 0.003360
3 99948 0.403308 0.4 0.003308
4 99754 0.503062 0.5 0.003062
5 99467 0.602529 0.6 0.002529
6 99355 0.701884 0.7 0.001884
7 99504 0.801388 0.8 0.001388
8 99306 0.900694 0.9 0.000694
9 99306 1.000000 1.0 0.000000

A couple of examples will illustrate the odds ratio test for the case of a discrete
uniform distribution. I queried a pseudorandom number generator one million
times; each value was uniformly distributed in the range 0.0 (inclusive) through
1.0 (exclusive); I multiplied the value by 10 and truncated to an integer, yielding
a bin x uniformly distributed in the range 0 through 9; and I accumulated
the values into 10 bins, yielding the data in Table 1. The maximum absolute
difference between the observed and expected cumulative distributions occurred
at bin 6. With n = 1000000, k = 699417, and p = 0.7, the log Bayes factor is
5.9596. In other words, the odds are about exp(5.9596) = 387 to 1 that this data
came from a discrete uniform distribution, and the test passes.

I queried a pseudorandom number generator one million times again, but
this time I raised each value to the power 1.01 before converting it to a bin. This
introduced a slight bias towards smaller bins. I got the data in Table 2. The
maximum absolute difference between the observed and expected cumulative
distributions occurred at bin 2. With n = 1000000, k = 303360, and p = 0.3, the
log Bayes factor is −20.057. In other words, the odds are about exp(20.057) =

514 million to 1 that this data did not come from a discrete uniform distribution,
and the test fails.

4 CryptoStat Test Suite

CryptoStat1 is a suite of Java programs, Java classes, and GPU kernels that
uses odds ratio tests to analyze the randomness of cryptographic functions. To
perform an analysis run, the following items are specified:

– The cryptographic function to be analyzed.
– The series of values for the function’s A input.
– The series of values for the function’s B input.
– The series of values to test for randomness, derived from the function’s C

output values.
– The bit groups to test in the test data values.

These items are explained in the subsections below.

4.1 Cryptographic Function

In CryptoStat, a cryptographic function F has two inputs, A and B, and one
output, C = F (A,B). Each input and output is an integer of a fixed bit size. The
interpretation of the inputs and output depends on the particular cryptographic
function; for example:

– Block cipher: A = plaintext, B = encryption key, C = ciphertext.
– Tweakable block cipher: A = plaintext, B = encryption key + tweak, C =

ciphertext.
– Hash function: A = first message block, B = second message block, C =

digest.
– Salted hash function: A = message block, B = salt, C = digest.
– MAC: A = message, B = authentication key, C = tag.

If F has only one input, the input must be split into two pieces A and B;
typically there is a natural way to do this, such as splitting a hash function’s
one input, the message, into two message blocks. If F has more than two inputs,
some of the inputs must be combined together; such as concatenating the key
and tweak inputs of a tweakable block cipher. As will be seen, CryptoStat can
specify separate values for different portions of the A and B inputs.

CryptoStat can also analyze a cryptographic function with inputs or outputs
of unlimited size, by fixing the A, B, or C bit sizes; for example:

– Stream cipher: A = message (n bits), B = encryption key + nonce, C =
ciphertext (n bits).

1 Source code and documentation for CryptoStat are available at https://www.cs.

rit.edu/~ark/parallelcrypto/cryptostat/ .

– Authenticated stream cipher: A = header data (h bits) + message (n bits),
B = encryption key + nonce, C = ciphertext (n bits) + tag.

If F has more than two outputs, the outputs must be combined together; such
as concatenating the ciphertext and tag outputs of an authenticated stream
cipher. As will be seen, CryptoStat tests the randomness of various portions of
the output separately.

CryptoStat defines every cryptographic function to have two inputs and one
output to simplify the design of the test suite and to provide a unified framework
for analyzing any cryptographic function, regardless of the actual number of the
function’s inputs or outputs.

A cryptographic function F typically consists of multiple rounds. Thus, F is
parameterized by a round number: Fr(A,B) is the function reduced to r rounds,
1 ≤ r ≤ R, where R is the full number of rounds. CryptoStat analyzes F ’s
randomness for all reduced-round versions as well as the full-round version.

The cryptographic function to be analyzed is implemented as a Java class (a
subclass of the Function abstract base class) and a GPU kernel. The Java class
encapsulates the function’s characteristics, such as the A input bit size, the B
input bit size, the C output bit size, and the full number of rounds R. The GPU
kernel contains the code to calculate Cr = Fr(A,B), 1 ≤ r ≤ R. The inputs and
outputs are implemented as multiple-precision integers of any (fixed) bit size as
required by the cryptographic function.

During an analysis run, CryptoStat constructs a function object (an instance
of a subclass of the abstract Function class) that implements the desired cryp-
tographic function. CryptoStat uses the function object to evaluate F , feeding
in a series of A and B input values and recording the C output values. The in-
dividual function evaluations are executed in parallel on the GPU’s many cores,
thus speeding up the analysis run.

The CryptoStat distribution includes function classes and GPU kernels for all
variations of AES, SHA-1, and SHA-2. The user can define additional function
classes and GPU kernels to test other cryptographic functions.

4.2 Input Value Series

To perform a CryptoStat analysis run on a cryptographic function F , a series of
values for the A input must be specified, and a series of values for the B input
must be specified. It is important for the input values to be highly nonrandom
[2]. If random inputs are applied to the function and the function’s outputs are
random, the randomness in the outputs might be due to the randomness in
the inputs, rather than to the randomness of the function itself. When nonran-
dom inputs nonetheless yield random outputs, the outputs’ randomness must be
coming from the randomness of the function’s mapping.

CryptoStat lets the user specify three basic kinds of input value sequences,
illustrated below in hexadecimal. Each input value’s bit size is the bit size of the
A or B input to which the value will be applied.

– A given number of sequential values starting from 0:
0000 0001 0002 0003 0004 0005 0006 0007 . . .

– A given number of values in a Gray code sequence starting from 0; each
value differs from the previous value in one bit position:
0000 0001 0003 0002 0006 0007 0005 0004 . . .

– One-off values starting from 0; each value differs from the first value in one
bit position:
0000 0001 0002 0004 0008 0010 0020 0040 . . .

CryptoStat lets the user modify one of these basic input value series in various
ways, including:

– Add a given constant to each input value; for example, add abcd to sequential
values:
abcd abce abcf abd0 abd1 abd2 abd3 abd4 . . .

– Exclusive-or a given constant into each input value; for example, exclusive-or
5555 into Gray code values:
5555 5554 5556 5557 5553 5552 5550 5551 . . .

– Left-shift each input value a given number of bit positions; for example, left-
shift Gray code values by 8 bits:
0000 0100 0300 0200 0600 0700 0500 0400 . . .

– Complement each input value; for example, complement one-off values:
ffff fffe fffd fffb fff7 ffef ffdf ffbf . . .

CryptoStat lets the user combine multiple input value series together in var-
ious ways, including:

– Concatenate the input values; for example:
0000 0001 0002 0003 concatenated with ffff fffe fffd fffc yields
0000 0001 0002 0003 ffff fffe fffd fffc

– Interleave the input values in a round robin fashion; for example:
0000 0001 0002 0003 interleaved with ffff fffe fffd fffc yields
0000 ffff 0001 fffe 0002 fffd 0003 fffc

– For each combination of values from the input series, exclusive-or the values
together; for example:
0001 0002 0003 combined with 0400 0500 0600 yields
0401 0402 0403 0501 0502 0503 0601 0602 0603

Where the A or B input consists of several portions, such as the key and
tweak of a tweakable cipher’s B input, the last option lets the user specify input
values separately for each portion of the input; CryptoStat then automatically
generates all combinations of these to feed into the analysis.

To obtain a value series for the A input, CryptoStat constructs a generator
object, then queries the generator object to get the A input values. CryptoStat
does the same for the B input. The A and B generator objects might or might
not be the same. As will be seen, certain kinds of input generators are typically
coupled with certain kinds of randomness tests.

Fig. 1. Example output value calculation

Each generator object is an instance of a subclass of the Generator abstract
base class. The CryptoStat distribution includes generator subclasses for the
previously described input series and others. The user can define additional
generator subclasses to generate other kinds of input value series.

4.3 Output Value Calculation

Given a cryptographic function F consisting of R rounds, a series of M values
for the function’s A input, and a series of N values for the function’s B input,
CryptoStat calculates a three-dimensional array of C output values as

Cr,i,j = Fr(Ai, Bj), 0 ≤ r ≤ R− 1, 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1 .

Fig. 1 illustrates the array of C output values calculated for a function with six
rounds, eight A input values, and ten B input values. (An actual CryptoStat run
would have much longer input series; on the order of 500 to 1000 input values
for A and for B, say.) The calculations are performed in parallel on the GPU.

Next, CryptoStat groups the individual C output values into a number of
output value series. As will be seen, randomness tests are performed separately
on each output value series. For each round r, there is one output value series
consisting of the C values calculated from the particular value Ai and all B
values, designated as Cr,i,∗. There is also one output value series consisting of
the C values calculated from the particular value Bj and all A values, designated
as Cr,∗,j . Fig. 1 highlights the output value series C0,2,∗ and C0,∗,6.

Organizing the output value series this way lets CryptoStat separately ana-
lyze the effect of each input on the function’s output. For example, for a block
cipher with A = plaintext, B = key, and C = ciphertext, analyzing the Cr,i,∗
output series yields insight into the ciphertext’s behavior when the plaintext is
held constant and the key is changed. Analyzing the Cr,∗,j output series yields
insight into the ciphertext’s behavior when the key is held constant and the
plaintext is changed.

CryptoStat’s organization of the output value series is inspired by the “array-
based approach” of Bajorski et al. [2].

4.4 Test Data Series

From each Cr,i,∗ output data series CryptoStat derives a test data series desig-
nated Tr,i,∗; and from each Cr,∗,j output data series CryptoStat derives a test
data series designated Tr,∗,j . CryptoStat then performs odds ratio tests on these
test data series.

CryptoStat lets the user specify the method to derive the T data series from
the C output series in various ways, including:

– Direct. The test data series is the C output series: Tr,i,j = Cr,i,j .
– Difference. Each test data value is the difference (bitwise exclusive-or) be-

tween a C output value and the previous C output value in the series. Specif-
ically, for the Tr,i,∗ test data series, Tr,i,j = Cr,i,j ⊕ Cr,i,j−1, j ≥ 1; for the
Tr,∗,j test data series, Tr,i,j = Cr,i,j ⊕ Cr,i−1,j , i ≥ 1.

– Avalanche. Each test data value is the difference (bitwise exclusive-or) be-
tween a C output value and the first C output value in the series. Specifically,
for the Tr,i,∗ test data series, Tr,i,j = Cr,i,j ⊕ Cr,i,0, j ≥ 1; for the Tr,∗,j test
data series, Tr,i,j = Cr,i,j ⊕ Cr,0,j , i ≥ 1.

The test data series specifications can be paired with the input value series
specifications to observe certain kinds of cryptographic function behavior. Pair-
ing the “one-off” input value series with the “avalanche” test data series observes
how the function’s outputs change when a single bit is flipped in the first input
value. Pairing the “Gray code” input value series with the “difference” test data
series observes how the function’s outputs change when a single bit is flipped in
the preceding input value. Ideally, in both cases, the avalanche effect should be
observed: a small change to the inputs should result in a large, random change
in the outputs.

The test data series derivation is implemented as a Java class (a subclass of
the Test abstract base class) and a GPU kernel. The Java class encapsulates the
test data series’ characteristics, such as its name. The GPU kernel contains the
code to derive the series of test data values from the series of C output values,
as well as the code to perform odds ratio tests on the test data series.

During an analysis run, CryptoStat constructs a test object (an instance of
a subclass of the abstract Test class) that derives the desired test data series.
CryptoStat uses the test object to perform odds ratio tests on the test data

Fig. 2. Example of groups of adjacent bits

Fig. 3. Example of groups of scattered bits

series. The individual odds ratio tests are executed in parallel on the GPU’s
many cores, thus speeding up the analysis run.

The CryptoStat distribution includes classes and GPU kernels for the direct,
difference, and avalanche test data series. The user can define additional test
classes and GPU kernels to derive other test data series.

4.5 Output Bit Groups

CryptoStat partitions the C output (and T test data) bit positions into disjoint
subsets called bit groups. CryptoStat performs a randomness test on each sep-
arate bit group in each of the T data series. The user can specify the number
of bits in a bit group, from one to eight bits (all bit groups are the same size).
The user can specify the locations of the bits in each bit group in various ways,
including:

– The bits in each bit group are adjacent to each other. For example, Fig. 2
depicts four groups of eight adjacent bit positions in a 32-bit C output value,
namely bits 0–7, 8–15, 16–23, and 24–31.

– The bits in each bit group are scattered across the C output value. For
example, Fig. 3 depicts four groups of eight scattered bit positions, namely
bits (8, 9, 10, 12, 13, 19, 25, 30), (2, 4, 6, 20, 23, 26, 28, 31), (1, 3, 15, 16,
17, 21, 24, 27), and (0, 5, 7, 11, 14, 18, 22, 29).

CryptoStat analyzes the randomness of each bit group separately. By testing
one-bit groups, CryptoStat can detect nonrandomness in individual C output
bit positions. By testing two-bit or larger bit groups, CryptoStat can detect cor-
relations among multiple C output bit positions. Where the C output consists of
several portions, such as the ciphertext and tag of an authenticated cipher’s out-
put, CryptoStat can diagnose nonrandomness in the bit groups in each separate
portion of the output.

To partition the C output bit positions into bit groups, CryptoStat constructs
a bit group object (an instance of a subclass of the abstract BitGroup class),
then queries the bit group object to get the bit positions in every bit group. The
CryptoStat distribution includes bit group subclasses for bit groups consisting

of adjacent bit positions and bit groups consisting of randomly chosen scattered
bit positions. The user can define additional bit group subclasses to generate
other kinds of bit groups.

4.6 Randomness Tests

CryptoStat performs randomness tests for each bit group in each test data series.
The bit group values are integers in the range 0 through 2b − 1, where b is the
bit group size. CryptoStat hypothesizes that the bit group values are uniformly
distributed, as would be expected of a cryptographic function that is supposed
to produce random-looking outputs.

Many statistical tests have been proposed to test a series of discrete values
for uniformity; see [14] for a survey. One fairly simple test is a frequency test, in
which there are 2b bins, one for each possible bit group value, and the probability
of each bin is the same, pr(x) = 2−b.

However, the frequency test has two major drawbacks. First, the frequency
test cannot distinguish a random sequence from a nonrandom sequence in which
the bit group values nonetheless appear with the expected frequencies. For exam-
ple, for two-bit groups, the frequency test would pass when applied to sequences
such as (0 1 2 3 0 1 2 3 . . .) or (3 3 2 2 1 1 0 0 . . .), even though such sequences
are manifestly not random. Second, the frequency test requires an exponentially
growing amount of storage to hold all the bin counters and an exponentially
growing amount of CPU time to compute log odds ratios as the bit group size
increases. This in turn limits the degree of parallelism that can be achieved when
running on the GPU and increases the time needed for analysis runs.

Instead of frequency tests, CryptoStat uses run tests and noncolliding block
tests to test the bit group value sequences for uniformity. These tests are designed
to fail, not only when the bit group values themselves fail to appear with the
correct frequencies, but also when certain patterns in the bit group values fail
to appear with the correct frequencies.

The run test examines consecutive nonoverlapping blocks of four values
(v1 v2 v3 v4) in a bit group value series and checks whether v1 < v2 or v1 ≥ v2,
v2 < v3 or v2 ≥ v3, and v3 < v4 or v3 ≥ v4. For each block, this yields one of
eight possible comparison patterns: (<<<), (<<≥), (<≥<), (<≥≥), (≥<<),
(≥<≥), (≥≥<), and (≥≥≥). Table 3 gives the probability of each comparison
pattern (bin) for bit group sizes from one through eight bits, assuming that
the bit group values are uniformly distributed. (I derived these probabilities by
enumerating all possible four-value blocks.) The run test performs an odds ratio
test for a discrete distribution with these probabilities as described in Section
3.5, yielding a log odds ratio.

Unlike the frequency test, in cases where the bit group values by themselves
appear with the expected frequencies but there are nonrandom patterns in the
bit group values, the run test tends to fail because the eight comparison patterns
do not appear with the expected frequencies. Also unlike the frequency test, the
run test requires the same amount of storage (eight bin counters) regardless of
the bit group size.

Table 3. Run test, bin probabilities

Bit group size

Bin 1 2 3 4 5 6 7 8

<<< 0 1 70 1820 35960 635376 10668000 174792640

<<≥ 0 15 378 7140 122760 2031120 33028128 532668480

<≥< 1 35 714 12580 210056 3428880 55396384 890576960

<≥≥ 3 45 630 9180 139128 2162160 34076640 541056960

≥<< 0 15 378 7140 122760 2031120 33028128 532668480

≥<≥ 4 65 966 14620 226424 3559920 56444896 898965440

≥≥< 3 45 630 9180 139128 2162160 34076640 541056960

≥≥≥ 5 35 330 3876 52360 766480 11716640 183181376

Denom. 24 28 212 216 220 224 228 232

(Note: The bin probability is the table entry divided by
the denominator in the last row.)

Table 4. Noncolliding block test, noncolliding block probabilities

b m p = m!/mm

1 2 5.0000 × 10−1

2 4 9.3750 × 10−2

3 8 2.4033 × 10−3

4 16 1.1342 × 10−6

5 32 1.8004 × 10−13

6 64 3.2203 × 10−27

7 128 7.2993 × 10−55

8 256 2.6544 × 10−110

The noncolliding block test examines consecutive nonoverlapping blocks of
m = 2b values in a bit group series, where b is the bit group size and m is the
number of possible bit group values. A colliding block is a length-m block with
one or more repeated values (collisions); a noncolliding block is a length-m block
with no repeated values. In other words, in a noncolliding block every possible
value appears just once. Of the mm possible arrangements of m possible values
in a length-m block, there are m! arrangements where no value is repeated.
Therefore, the probability of a noncolliding block in a sequence of uniformly
distributed values is m!/mm. Each block can be viewed as a Bernoulli trial,
where a noncolliding block is a success. Let n be the number of blocks, k be
the number of noncolliding blocks, and p = m!/mm; then the noncolliding block
test’s log odds ratio is given by Equation (5). Table 4 lists the noncolliding block
probabilities for bit groups of one through eight bits.

The noncolliding block test is inspired by the observation that some cryp-
tographic functions, especially reduced-round versions, when presented with a
series of 2b consecutive input values, generate a series of output values with those
input values merely arranged in a different order; that is, a noncolliding block.
For example, eight-bit groups in the ciphertext outputs of the early rounds of
AES behave this way. The noncolliding block test would fail in this case because
there would be too many noncolliding blocks, whereas the frequency test would
pass.

CryptoStat combines (adds) together the run test’s and the noncolliding
block test’s log odds ratios and reports the sum as the test result.

4.7 Aggregate Test Results

CryptoStat computes a separate test result, namely the combined log odds ratio
for the run and noncolliding block tests, for each bit group in each output series.
Let Lr,i,∗,g be the log odds ratio for bit group g in output series Cr,i,∗, 0 ≤ g ≤
G− 1, where G is the number of bit groups. Let Lr,∗,j,g be the log odds ratio for
bit group g in output series Cr,∗,j , 0 ≤ g ≤ G− 1.

A typical CryptoStat run would calculate many, many log odds ratios. For
example, consider the AES block cipher, where input A is the 128-bit plaintext,
input B is the 128-bit key, output C is the 128-bit ciphertext, there are 10
rounds, and the user has specified 500 A input values, 500 B input values,
and 128 C output bit groups of one bit each. Then CryptoStat would calculate
10× 500× 128 = 640000 Lr,i,∗,g log odds ratios and an equal quantity of Lr,∗,j,g
log odds ratios.

To gain insight into the cryptographic function’s randomness from all these
individual test results, CryptoStat computes and prints the following aggregate
test results. (Recall that log odds ratios are aggregated by adding them together.)

– For each round r and each input Ai, compute and print

Lr,i,∗,∗ =
G−1∑
g=0

Lr,i,∗,g

This yields insight into the function’s randomness for specific A input values,
aggregated across all bit groups.

– For each round r and each input Bj , compute and print

Lr,∗,j,∗ =
G−1∑
g=0

Lr,∗,j,g

This yields insight into the function’s randomness for specific B input values,
aggregated across all bit groups.

– For each round r and each bit group g, compute and print

Lr,∗,∗,g =

M−1∑
i=0

Lr,i,∗,g +

N−1∑
j=0

Lr,∗,j,g

This yields insight into the function’s randomness for specific bit groups,
aggregated across all A input values and and all B input values.

– For each round r, compute and print

Lr,∗,∗,∗ =
G−1∑
g=0

Lr,∗,∗,g

This yields insight into the function’s overall randomness, aggregated across
all A input values, all B input values, and all bit groups.

(CryptoStat normally does not print the individual test results Lr,i,∗,g and
Lr,∗,j,g. The user can optionally turn on verbose output to print these in addition
to the aggregate test results.)

4.8 Randomness Margin

All of CryptoStat’s test results are reported separately for each reduced-round
version of the cryptographic function, from one round up to the full number of
rounds. Typically, a cryptographic function exhibits nonrandom behavior (neg-
ative log odds ratios) for the smaller numbers of rounds, but eventually exhibits
random behavior (positive log odds ratios) once enough rounds are computed.

The function’s randomness margin is the number of rounds exhibiting ran-
dom behavior as a fraction of the full number of rounds. CryptoStat calculates
the randomness margin from the overall aggregate log odds ratios. Let r be the
largest round such that Lr,∗,∗,∗ < 0; then the randomness margin is (R− r)/R.

The randomness margin gives a quick overall indication of the function’s ran-
domness. Randomness margins closer to 1 are preferred. A randomness margin
closer to 0 suggests a weakness in the function’s design; possibly the function
is not randomizing its inputs adequately, or possibly the function needs more
rounds. The various aggregate test results (Lr,i,∗,∗ and Lr,∗,j,∗ and Lr,∗,∗,g) or
the individual test results (Lr,i,∗,g and Lr,∗,j,g) might help identify the design
weakness.

4.9 Analysis Programs

The preceding sections have described what happens during one CryptoStat
analysis run: the user specifies the cryptographic function, a generator for some
number of A input values, and a generator for some number of B input values;
the function is evaluated on those A and B values, yielding C output series;
bit groups in each test data series derived from the C output series are sub-
jected to randomness tests. A Java program named Analyze in the CryptoStat
distribution performs one analysis run and prints the results.

However, a single analysis run exercises only a limited portion of the cryp-
tographic function’s mapping. To get more coverage, one wants to do multiple
analysis runs with A input value series of various kinds, B input value series of

Table 5. Cryptographic functions analyzed

Cryptographic A input B input C output
function bit size bit size bit size

AES-128 128 128 128
AES-192 128 192 128
AES-256 128 256 128
SHA-1 256 160 160
SHA-224 256 160 224
SHA-256 256 160 256
SHA-384 512 320 384
SHA-512 512 320 512
SHA-512/224 512 320 224
SHA-512/256 512 320 256

various kinds, C output bit groups of various sizes and locations, and various
test data series.

To automate such a series of analysis runs, the CryptoStat distribution in-
cludes another Java program, named AnalyzeSweep. For this program the user
specifies a cryptographic function, a list of A input value generators, a list of
B input value generators, a list of C output bit group specifications, and a test
data series specification. The AnalyzeSweep program then automatically does
an analysis run for every combination of an A input value generator, a B input
value generator, and a C output bit group specification from the lists. For each
combination, the program prints the number of nonrandom rounds detected. Fi-
nally, the program prints the maximum number of nonrandom rounds detected
over all the combinations as well as the resulting randomness margin.

The Java programs and classes in the CryptoStat distribution utilize the
Parallel Java 2 Library [10, 11], a class library for multicore, cluster, and GPU
parallel programming in Java. The GPU kernels are written in C using Nvidia
Corporation’s CUDA.

5 AES, SHA-1, and SHA-2 Analysis Results

I used CryptoStat to analyze all the versions of the AES block cipher [1] and
the SHA-1 and SHA-2 hash functions [20]. For the block ciphers, the A and B
inputs were the plaintext and the key; the C output was the ciphertext. For the
hash functions, a fixed-length message consisting of a single message block was
hashed; the A input was the first half of the message block; the B input was
the second half of the message block, leaving space at the end to add the hash
function’s padding; the C output was the digest. Table 5 lists the cryptographic
functions analyzed and the A, B, and C bit sizes.

I used the AnalyzeSweep program to test the randomness of each crypto-
graphic function. I did one program run with direct test data series, one program
run with avalanche test data series, and one program run with difference test

data series (refer to Section 4.4). Files containing the program runs’ outputs,
which include the AnalyzeSweep command executed, the list of A input value
series, the list of B input value series, and the list of C output bit groups, are
posted on the Web.2

5.1 Direct Tests

For the direct tests on each block cipher and hash function, I specified a list of
A input value series. The first series in the list consisted of 512 sequential input
values starting from 0 (refer to Section 4.2). The next series consisted of 512
sequential input values left-shifted by 8 bits; the series after that, 512 sequential
input values left-shifted by 16 bits; and so on until the input values hit the most
significant end of the A input. The A input value series list also included each
of the above input value series, complemented.

I specified a list of B input value series, in the same manner as the A input
value series.

I specified a list of the following 13 C output bit group definitions (refer to
Section 4.5):

– Adjacent 1-bit groups

– Adjacent 2-bit groups

– Three different scattered 2-bit groups

– Adjacent 4-bit groups

– Three different scattered 4-bit groups

– Adjacent 8-bit groups

– Three different scattered 8-bit groups

I executed the AnalyzeSweep program to perform multiple direct test runs
(refer to Section 4.4), one run for each combination of an A input value series,
a B input value series, and a C output bit group. Ideally, each output bit group
should exhibit a uniform distribution of values.

5.2 Avalanche Tests

For the avalanche tests on each block cipher and hash function, I specified one
A input value series, consisting of the concatenation of the following:

– One-off inputs starting from 000...000 hexadecimal

– One-off inputs starting from 555...555 hexadecimal

– One-off inputs starting from aaa...aaa hexadecimal

– One-off inputs starting from fff...fff hexadecimal

2 https://www.cs.rit.edu/~ark/parallelcrypto/cryptostat/

#testingtherandomness

I specified one B input value series, also consisting of the concatenation of
the above one-off inputs. I specified a list of the same 13 C output bit group
definitions as the direct tests.

I executed the AnalyzeSweep program to perform 13 avalanche test runs, one
run for each C output bit group along with the A input series and the B input
series. Recall that pairing the “one-off” input value series with the “avalanche”
test data series observes how the function’s outputs change when a single bit is
flipped in the first input value. Ideally, the avalanche effect should be observed:
a small change to the inputs should result in a large, random change in the
outputs.

5.3 Difference Tests

For the difference tests on each block cipher and hash function, I specified a list
of A input value series. The first series in the list consisted of 512 input values
in a Gray code sequence starting from 0. The next series consisted of 512 input
values in a Gray code sequence left-shifted by 8 bits; the series after that, 512
sequential input values in a Gray code sequence left-shifted by 16 bits; and so on
until the input values hit the most significant end of the A input. The A input
value series list also included each of the above input value series, complemented.

I specified a list of B input value series, in the same manner as the A input
value series. I specified a list of the same 13 C output bit group definitions as
the direct tests.

I executed the AnalyzeSweep program to perform multiple difference test
runs, one run for each combination of an A input value series, a B input value
series, and a C output bit group. Recall that pairing the “Gray code” input
value series with the “difference” test data series observes how the function’s
outputs change when a single bit is flipped in the previous input value. Ideally,
the avalanche effect should be observed: a small change to the inputs should
result in a large, random change in the outputs.

5.4 Test Results

For each cryptographic function, Table 6 lists the full number of rounds and the
largest number of nonrandom rounds detected by the AnalyzeSweep direct test
runs, avalanche test runs, and difference test runs. Recall that, for a particular
test run, the number of nonrandom rounds corresponds to the largest round with
a negative aggregate log odds ratio (refer to Section 4.8). The avalanche and
difference test results show that each function does in fact exhibit the avalanche
effect, after computing a sufficient number of rounds.

For each cryptographic function, Table 7 lists the full number of rounds,
the largest number of nonrandom rounds detected by all the AnalyzeSweep test
runs, and the cryptographic function’s randomness margin (refer to Section 4.8).

As expected, the full-round versions of the AES block cipher input-output
mappings and the SHA-1 and SHA-2 hash function input-output mappings ex-
hibit random behavior. Beyond that, the data shows that each function has a

Table 6. Number of nonrandom rounds detected

Cryptographic Full Direct Avalanche Difference
function rounds test test test

AES-128 10 2 1 2
AES-192 12 3 2 2
AES-256 14 3 2 2
SHA-1 80 23 20 22
SHA-224 64 17 15 17
SHA-256 64 17 16 17
SHA-384 80 17 16 17
SHA-512 80 18 16 18
SHA-512/224 80 18 16 17
SHA-512/256 80 18 16 17

Table 7. Randomness margins

Full Nonrandom Randomness
Cryptographic rounds rounds margin
function R r (R− r)/R

AES-128 10 2 0.800
AES-192 12 3 0.750
AES-256 14 3 0.786
SHA-1 80 23 0.713
SHA-224 64 17 0.734
SHA-256 64 17 0.734
SHA-384 80 17 0.788
SHA-512 80 18 0.775
SHA-512/224 80 18 0.775
SHA-512/256 80 18 0.775

substantial randomness margin, with 71 to 80 percent of the rounds exhibiting
random behavior, indicative of a conservative design from a randomness point
of view.

References

1. Advanced Encryption Standard (AES). Federal Information Processing Standards
Publication 197 (2001)

2. Bajorski, P., Kaminsky, A., Kurdziel, M., Lukowiak, M., Radziszowski, S.: Array-
based statistical analysis of the MK-3 authenticated encryption scheme. In: IEEE
Military Communications Conference (MILCOM) (2018)

3. Brown, R., Eddelbuettel, D., Bauer, D.: Dieharder: a random number test suite
(2013). http://www.phy.duke.edu/~rgb/General/dieharder.php, retrieved 10-
Apr-2013

4. Doğanaksoy, A., Ege, B., Koçak, O., Sulak, F.: Cryptographic randomness testing
of block ciphers and hash functions. Cryptology ePrint Archive, Report 2010/564
(2010)

5. Doğanaksoy, A., Ege, B., Koçak, O., Sulak, F.: Statistical analysis of reduced
round compression functions of SHA-3 second round candidates. Cryptology ePrint
Archive, Report 2010/611 (2010)

6. El-Fotouh, M., Diepold, K.: Statistical testing for disk encryption modes of oper-
ations. Cryptology ePrint Archive, Report 2007/362 (2007)

7. Filiol, E.: A new statistical testing for symmetric ciphers and hash functions. In:
Deng, R., Bao, F., Zhou, J., Qing, S. (eds.) 4th International Conference on Infor-
mation and Communications Security (ICICS 2002). LNCS, vol. 2513, pp. 342–353.
Springer, Heidelberg (2002)

8. Hellekalek, P., Wegenkittl, S.: Empirical evidence concerning AES. ACM Transac-
tion on Modeling and Computer Simulation 13, 322–333 (2003)

9. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: a new block cipher suitable for low-
resource device. In Goubin, L., Matsui, M. (eds.) 8th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2006). LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

10. Kaminsky, A.: The Parallel Java 2 Library: Parallel Programming in
100% Java. In International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC14), Poster Session. (2014)
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/

tech_poster/tech_poster_pages/post116.html, retrieved 25-Jan-2018
11. Kaminsky, A.: The Parallel Java 2 Library. https://www.cs.rit.edu/~ark/pj2.

shtml
12. Kass, R., Raftery, A.: Bayes factors. Journal of the American Statistical Association

90, 773–795 (1995)
13. Katos, V.: A randomness test for block ciphers. Applied Mathematics and Compu-

tation 162, 29–35 (2005)
14. Knuth, D.: The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms, Third Edition (1998)
15. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random

number generators. ACM Transactions on Mathematical Software 33, 22 (2007)
16. Marsaglia, G.: Diehard battery of tests of randomness. http://i.cs.hku.hk/

~diehard/cdrom/, retrieved 03-Apr-2013
17. Ojha, S., Kumar, N., Jain, K., Sangeeta: TWIS—a lightweight block cipher. In

Prakash, A., Sen Gupta, I. (eds.) 5th International Conference on Information
Systems Security (ICISS 2009). LNCS, vol. 5905, pp. 280–291. Springer, Heidelberg
(2009)

18. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art
of Scientific Computing, Third Edition. Cambridge University Press, Cambridge
(2007)

19. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S., Bassham, L.: A statistical
test suite for random and pseudorandom number generators for cryptographic
applications. NIST Special Publication 800-22 Revision 1a (2010). http://csrc.
nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf, retrieved 03-
Apr-2013

20. Secure Hash Standard (SHS). Federal Information Processing Standards Publica-
tion 180-4 (2015)

21. Soto, J.: Statistical testing of random number generators. 22nd National Infor-
mation Systems Security Conference (1999). http://csrc.nist.gov/groups/ST/
toolkit/rng/documents/nissc-paper.pdf, retrieved 03-Apr-2013

22. Soto, J., Bassham, L.: Randomness testing of the Advanced Encryption Stan-
dard finalist candidates. NIST IR 6483 (2000). http://csrc.nist.gov/groups/
ST/toolkit/rng/documents/aes-report-final.doc, retrieved 03-Apr-2013

23. Sulak, F., Doğanaksoy, A., Ege, B., Koçak, O.: Evaluation of randomness test
results for short sequences. In: Carlet, C., Pott, A. (eds.) Sequences and Their
Applications—SETA 2010. LNCS, vol. 6338, pp. 309–319. Springer, Heidelberg
(2010)

24. Walker, J.: ENT: a pseudorandom number sequence test program (2008). http:
//www.fourmilab.ch/random/, retrieved 10-Apr-2013

25. Wang, H., Zhang, H.: A fast pseudorandom number generator with BLAKE hash
function. Wuhan University Journal of Natural Sciences 15, 393–397 (2010)

